JPH10309583A - Water purifying device - Google Patents
Water purifying deviceInfo
- Publication number
- JPH10309583A JPH10309583A JP9119277A JP11927797A JPH10309583A JP H10309583 A JPH10309583 A JP H10309583A JP 9119277 A JP9119277 A JP 9119277A JP 11927797 A JP11927797 A JP 11927797A JP H10309583 A JPH10309583 A JP H10309583A
- Authority
- JP
- Japan
- Prior art keywords
- water
- chlorine
- supply means
- ammonium
- residual chlorine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Filtration Of Liquid (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は浴槽内の入浴水を浄
化殺菌することで入浴水の長期使用を可能とする水浄化
装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water purifier which purifies and sterilizes bath water in a bath tub so that the bath water can be used for a long time.
【0002】[0002]
【従来技術】従来のこの種の水浄化装置は特開平8−2
81280号公報に記載されているようなものが一般的
であった。この水浄化装置は図7に示すように、循環路
1にポンプ2とヒーター3と内部に微生物を繁殖させた
浄化手段4を備えていた。さらに、浄化手段4の上流と
下流を結ぶバイパス路5を備え、このバイパス路5に残
留塩素を発生させる殺菌手段6を備えていた。また、ポ
ンプ2の働きにより、水7を循環路1からヒーター3を
通って浄化手段4及びバイパス路5の殺菌手段6に水を
送り込み、浄化手段5内に繁殖した微生物の働きにより
水中の懸濁態及び溶存態有機物質の除去を行うように構
成されている。さらに、浄化手段4内に繁殖した微生物
を死滅させないためにバイパス路5をもうけ、バイパス
路5上に殺菌手段6を設けて残留塩素を発生させた。こ
の生成した残留塩素は、浄化手段4の下流側で循環流路
の水に混合することで、浄化手段4内に存在する微生物
を死滅することなく水の浄化及び殺菌を行っていた。そ
して、殺菌手段6で生成する残留塩素の水中の濃度を浄
化手段4に影響のない0.5〜1.0ppmにするように
なっていた。2. Description of the Related Art A conventional water purifying apparatus of this kind is disclosed in
The one described in JP-A-81280 was common. As shown in FIG. 7, this water purification apparatus was provided with a pump 2 and a heater 3 in a circulation path 1 and a purification means 4 in which microorganisms were propagated inside. Further, a bypass 5 connecting the upstream and downstream of the purifying means 4 was provided, and a sterilizing means 6 for generating residual chlorine in the bypass 5 was provided. In addition, by the action of the pump 2, the water 7 is sent from the circulation path 1 through the heater 3 to the purification means 4 and the sterilization means 6 of the bypass path 5, and suspended in the water by the action of microorganisms propagated in the purification means 5. It is configured to remove turbid and dissolved organic substances. Further, in order to prevent the microorganisms propagated in the purification means 4 from being killed, a bypass 5 was provided, and a sterilization means 6 was provided on the bypass 5 to generate residual chlorine. The generated residual chlorine is mixed with the water in the circulation channel on the downstream side of the purifying means 4 to purify and sterilize the water without killing the microorganisms present in the purifying means 4. Then, the concentration of residual chlorine generated in the sterilizing means 6 in the water is set to 0.5 to 1.0 ppm which does not affect the purifying means 4.
【0003】また、ここで使用する殺菌手段6としては
特開昭56−31489号公報に開示されているような
電気分解器が用いられており、さらに、殺菌用電気分解
器としては特開昭61−283391号公報に開示され
ている様な無隔膜タイプのものがものがある。As the sterilizing means 6 used herein, an electrolyzer disclosed in Japanese Patent Application Laid-Open No. 56-31489 is used. There is a non-diaphragm type as disclosed in JP-A-61-283391.
【0004】さらに、循環式プールとして遊離残留塩素
濃度を検出し、その濃度に応じて塩素を供給する特開昭
62ー141267号公報に記載されているものがあ
る。この循環式プールは図8に示すように、プール水8
を循環流路9に設けたポンプ10によって循環させ、ヘ
アーキャッチャー11、濾過機12を通してゴミや塩素
消費物質を捕捉し、循環流路9内に塩素供給手段13に
よって塩素剤を注入してプール水8内の塩素消費物質を
消毒する。次にプール水8内の汚染物質の増加を遊離残
留塩素検出センサ14によって検出すると、塩素供給手
段13により、塩素剤を流路2に注入しプール水8に供
給する構成となっていた。Further, there is a circulating pool described in Japanese Patent Application Laid-Open No. 62-141267, which detects the concentration of free residual chlorine and supplies chlorine in accordance with the concentration. As shown in FIG.
Is circulated by a pump 10 provided in a circulation channel 9 to capture dust and chlorine-consuming substances through a hair catcher 11 and a filter 12. 8. Disinfect the chlorine consuming material in 8. Next, when an increase in contaminants in the pool water 8 is detected by the free residual chlorine detection sensor 14, the chlorine supply means 13 injects a chlorinating agent into the flow path 2 and supplies the same to the pool water 8.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、図7に
示した従来の水浄化装置では、浄化手段内で微生物を繁
殖させることで水の浄化を行っているため、殺菌手段に
よって発生させる残留塩素濃度を浄化手段内の微生物に
影響のない0.5ppm〜1.0ppm以下の濃度にする必要
があった。このため、水中の細菌の殺菌能力に限りがあ
るという課題があった。However, in the conventional water purification apparatus shown in FIG. 7, since water is purified by breeding microorganisms in the purification means, the concentration of residual chlorine generated by the sterilization means is reduced. Has to be adjusted to a concentration of 0.5 ppm to 1.0 ppm or less, which does not affect microorganisms in the purification means. For this reason, there was a problem that the bactericidal ability of bacteria in water was limited.
【0006】さらに、入浴水の状態によって要求塩素量
(殺菌に必要な塩素量)、及び塩素の持続時間が異なる
ため、残留塩素濃度を一定に保ことが困難であった。こ
のため、入浴水の状態によっては塩素殺菌された後に再
度細菌が増殖してしまうことがあった。つまり、殺菌性
能が入浴日数に大きく左右され、十分な殺菌がなされて
いないという課題があった。Furthermore, since the required amount of chlorine (the amount of chlorine required for sterilization) and the duration of chlorine vary depending on the state of bathing water, it has been difficult to keep the residual chlorine concentration constant. For this reason, depending on the condition of bathing water, bacteria may grow again after being sterilized with chlorine. That is, there was a problem that the sterilization performance was greatly affected by the number of bathing days, and sufficient sterilization was not performed.
【0007】さらに、図8に示した循環式プールについ
ては、還元性物質が塩素を消費するため過剰の塩素が必
要となりコストに問題があった。さらに塩素を供給する
ことによってプール水に存在していた細菌を酸化させ殺
菌するが、死菌は非常に小さいため濾過機では除去する
ことが困難であった。このため、塩素の投入量に伴って
死菌が増加するのでプール水が濁ってしまいプール水を
短期間で取り替える必要があった。Further, in the circulating pool shown in FIG. 8, since the reducing substance consumes chlorine, an excessive amount of chlorine is required and there is a problem in cost. Further, by supplying chlorine, the bacteria existing in the pool water are oxidized and sterilized, but the dead bacteria are very small, so that it was difficult to remove them with a filter. For this reason, the number of dead bacteria increases with the input amount of chlorine, so that the pool water becomes turbid and the pool water needs to be replaced in a short period of time.
【0008】つまり、本発明の目的とする浴槽水の浄化
に応用する場合では、入浴水が濁ってしまうため入浴水
を短期間に取り替える必要がありコストがかかってしま
う。このため、循環式の温浴器のメリットである水を長
期間入れ替えせずとも殺菌・浄化が可能で水道代が安く
なるという点を満たさない。In other words, when the present invention is applied to purifying bath water, the bath water becomes turbid, and it is necessary to change the bath water in a short period of time, which increases the cost. For this reason, it does not satisfy the merits of the circulation type hot water bath that sterilization and purification can be performed without replacing the water for a long period of time and that the cost of water supply is reduced.
【0009】[0009]
【課題を解決するための手段】本発明は、上記課題を解
決するために循環流路に水を循環する循環手段と、水の
懸濁物質をろ過するろ過手段と、電気分解により金属水
和物を生成することで水中の懸濁物質を凝集する凝集手
段と、水中にアンモニウムを供給するアンモニウム供給
手段と、水中に残留塩素を生成する塩素化合物供給手段
と、水中の残留塩素濃度を検知する残留塩素検知手段を
設け、前記残留塩素検知手段の出力信号により塩素化合
物供給手段及びアンモニウム供給手段を制御するもので
ある。SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a circulating means for circulating water in a circulating flow path, a filtering means for filtering suspended substances in water, and a metal hydration by electrolysis. Agglomeration means for aggregating suspended substances in water by generating substances, ammonium supply means for supplying ammonium into water, chlorine compound supply means for generating residual chlorine in water, and detecting residual chlorine concentration in water A residual chlorine detecting means is provided, and the chlorine compound supplying means and the ammonium supplying means are controlled by an output signal of the residual chlorine detecting means.
【0010】上記発明によれば、水中の懸濁物質等の汚
れを凝集手段で生成した金属水和物で凝集し、粒子径を
増大させ、この凝集塊を濾過手段でろ過除去すること
で、水の浄化を行う。このため、死菌等の非常に小さな
汚れも除去することが可能となる。さらに、アンモニウ
ムを供給し、塩素化合物供給手段で生成された塩素化合
物と反応させ、殺菌効果の持続時間が長い成分であるN
H2Cl等のクロラミンを生成させる。この結果、殺菌持
続時間を長時間に渡って保持し、殺菌効果を持続する。
また、アンモニウムイオンの存在によって、還元性物質
による塩素の消費を抑制することができるので要求塩素
量も入浴水の状態にかかわらずほぼ一定値に抑えること
ができ、過剰な塩素を供給する必要がない。さらに、残
留塩素検出手段は、クロラミン等の残留塩素濃度を検知
するため、残留塩素が消費されて殺菌に無効な濃度を示
した場合に、再度塩素を供給する。このため常に水が浄
化できる。また、残留塩素は浴槽及び循環流路などに存
在するバイオフィルムの形成をも抑制することができ
る。According to the above invention, dirt such as suspended substances in water is aggregated by the metal hydrate generated by the aggregating means to increase the particle diameter, and the aggregate is removed by filtration by the filtering means. Perform water purification. For this reason, it is possible to remove very small dirt such as dead bacteria. Further, ammonium is supplied and reacted with the chlorine compound generated by the chlorine compound supply means, and N, which is a component having a long sterilization effect, is used.
Chloramine such as H 2 Cl is produced. As a result, the sterilization duration is maintained for a long time, and the sterilization effect is maintained.
In addition, since the consumption of chlorine by the reducing substance can be suppressed by the presence of ammonium ions, the required chlorine amount can be suppressed to a substantially constant value regardless of the state of bathing water, and it is necessary to supply an excessive amount of chlorine. Absent. Further, the residual chlorine detecting means detects the residual chlorine concentration of chloramine or the like, and supplies chlorine again when the residual chlorine is consumed and shows an invalid concentration for sterilization. For this reason, water can always be purified. Further, the residual chlorine can also suppress the formation of a biofilm present in a bathtub, a circulation channel, and the like.
【0011】[0011]
【発明の実施の形態】本発明の請求項1にかかる水浄化
装置は、循環流路に水を循環する循環手段と、水の懸濁
物質をろ過するろ過手段と、電気分解により金属水和物
を生成することで水中の懸濁物質を凝集する凝集手段
と、水中にアンモニウムを供給するアンモニウム供給手
段と、水中に残留塩素を生成する塩素化合物供給手段
と、水中の残留塩素濃度を検知する残留塩素検知手段を
有する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A water purifying apparatus according to a first aspect of the present invention comprises a circulating means for circulating water in a circulating flow path, a filtering means for filtering suspended substances in water, and a metal hydration by electrolysis. Agglomeration means for aggregating suspended substances in water by generating substances, ammonium supply means for supplying ammonium into water, chlorine compound supply means for generating residual chlorine in water, and detecting residual chlorine concentration in water It has residual chlorine detection means.
【0012】そして、残留塩素検知手段が浴槽内の残留
塩素濃度を検出し、殺菌に最低限必要な塩素化合物をそ
の都度、塩素化合物供給手段により供給するため、常に
殺菌・浄化された水を実現できる。さらに、アンモニウ
ム供給手段によって水中にアンモニウムイオンを生成
し、この水を循環手段によって塩素化合物供給手段に送
り込むことで、持続時間の長い残留塩素(クロラミン)
を生成することができる。また、アンモニウムイオンの
存在により、 FeやMn等の還元性物質による塩素消
費を抑制することができるので要求塩素量も入浴水の状
態にかかわらずほぼ一定値に抑えることができ、過剰な
塩素を投入する必要がない。さらに、死菌等の微小な汚
れも凝集手段により増大させ、濾過手段によって除去可
能となる。The residual chlorine detecting means detects the residual chlorine concentration in the bathtub and supplies the minimum required chlorine compound for sterilization by the chlorine compound supply means each time, so that sterilized and purified water is always realized. it can. Further, ammonium ions are generated in the water by the ammonium supply means, and the water is sent to the chlorine compound supply means by the circulation means, whereby residual chlorine (chloramine) having a long duration is obtained.
Can be generated. In addition, because of the presence of ammonium ions, chlorine consumption by reducing substances such as Fe and Mn can be suppressed, so that the required chlorine amount can be suppressed to a substantially constant value regardless of the state of bathing water, and excess chlorine can be reduced. There is no need to throw it. Furthermore, minute dirt such as dead bacteria is also increased by the aggregating means, and can be removed by the filtering means.
【0013】本発明の請求項2にかかる水浄化装置の塩
素化合物供給手段は、アンモニウム供給手段及び塩素化
合物供給手段の作動・停止時間を計測するタイマを有す
る。そして、タイマがアンモニウム供給手段と塩素化合
物供給手段の動作時間を計測することで、浴槽内の残留
塩素濃度を算出しアンモニウム供給手段及び、塩素化合
物供給手段を制御する。つまり、動作時間によって浴槽
内に供給する残留塩素濃度を管理し、殺菌に必要以上の
塩素が存在しないよう塩素化合物供給手段を制御する。
また、動作停止時間がある規定時間を上回った場合には
殺菌に有効な残留塩素濃度が消費されたとみなして再
度、アンモニウム供給手段及び塩素化合物供給手段を再
動作させる。このため、簡単な構成で過剰な塩素投入を
抑制することができ、常に殺菌・浄化された入浴水を実
現できる。The chlorine compound supply means of the water purification apparatus according to the second aspect of the present invention has a timer for measuring the operation / stop time of the ammonium supply means and the chlorine compound supply means. Then, the timer measures the operation time of the ammonium supply means and the chlorine compound supply means, calculates the residual chlorine concentration in the bathtub, and controls the ammonium supply means and the chlorine compound supply means. That is, the concentration of residual chlorine supplied into the bathtub is controlled according to the operation time, and the chlorine compound supply means is controlled so that there is no more chlorine than necessary for sterilization.
If the operation stoppage time exceeds a predetermined time, it is considered that the residual chlorine concentration effective for sterilization has been consumed, and the ammonium supply means and the chlorine compound supply means are operated again. For this reason, excessive chlorine injection can be suppressed with a simple configuration, and sterilized and purified bathing water can always be realized.
【0014】本発明の請求項3にかかる水浄化装置は、
アンモニウム供給手段及び塩素化合物供給手段の動作停
止後の残留塩素濃度が少なくとも1ppm以上保持するよ
う残留塩素検知手段よって管理する。According to a third aspect of the present invention, there is provided a water purifying apparatus.
The residual chlorine concentration is controlled by the residual chlorine detecting means so that the residual chlorine concentration after the operation of the ammonium supplying means and the chlorine compound supplying means is stopped is at least 1 ppm.
【0015】そして、殺菌に有効な1ppmを少なくとも
保持するので常に殺菌・浄化された入浴水を保つと共に
過剰な塩素投入を抑制できる。さらに、アンモニウム供
給手段及び塩素化合物供給手段を常に動作させる必要が
ないため、電力を抑えると共に機器の耐久性が向上す
る。Further, since at least 1 ppm effective for sterilization is maintained, bath water sterilized and purified is always maintained, and excessive chlorine input can be suppressed. Further, since it is not necessary to always operate the ammonium supply means and the chlorine compound supply means, the power is suppressed and the durability of the equipment is improved.
【0016】本発明の請求項4にかかる水浄化装置は塩
素化合物供給手段として、水と化学反応して次亜塩素酸
及び次亜塩素酸イオンを生成する物質あるいは溶液を供
給する手段を有したものである。The water purification apparatus according to claim 4 of the present invention has, as a chlorine compound supply means, a means for supplying a substance or a solution which chemically reacts with water to produce hypochlorous acid and hypochlorite ions. Things.
【0017】そして、塩素化合物供給手段が水と化学反
応して次亜塩素酸及び次亜塩素酸イオンを生成する溶
液、例えば次亜塩素酸ナトリウム溶液などを供給するこ
とで、アンモニウム供給手段によって供給されたアンモ
ニウムイオンと反応し、クロラミンを生成するため、塩
素化合物を供給するという簡単な構成で殺菌効果を得る
ことができる。The chlorine compound supply means supplies a solution which chemically reacts with water to produce hypochlorous acid and hypochlorite ions, such as a sodium hypochlorite solution, and is supplied by the ammonium supply means. Since it reacts with the ammonium ion thus produced to produce chloramine, a bactericidal effect can be obtained with a simple structure of supplying a chlorine compound.
【0018】本発明の請求項5にかかる水浄化装置の塩
素化合物供給手段は、水を電気分解し、水中の塩素イオ
ンから残留塩素を生成可能な電気分解手段とした。そし
て、水中の塩素イオンから電気分解により、残留塩素を
生成するので塩素化合物供給手段への塩素化合物の補給
が必要なくなり、長期間メンテナンスの手間がいらなく
なる。このため、塩素化合物の補給忘れなどによる人為
的な性能低下をなくすことができる。The chlorine compound supply means of the water purification apparatus according to claim 5 of the present invention is an electrolysis means capable of electrolyzing water and generating residual chlorine from chlorine ions in the water. Then, since residual chlorine is generated by electrolysis from chlorine ions in the water, it is not necessary to supply the chlorine compound to the chlorine compound supply means, and maintenance work is not required for a long time. For this reason, it is possible to eliminate an artificial decrease in performance due to forgetting to supply the chlorine compound.
【0019】本発明の請求項6にかかる水浄化装置のア
ンモニウム供給手段は塩化アンモニウムを供給する構成
とした。The ammonium supply means of the water purification apparatus according to claim 6 of the present invention is configured to supply ammonium chloride.
【0020】そして、塩化アンモニウムを供給すること
によって、浴槽水にアンモニウムイオンと塩素イオンを
同時に供給することができ、アンモニウム供給手段を設
ける必要がなくなる。さらに塩素イオンが供給された水
を電気分解することで、塩素イオンを酸化し塩素ガスを
多量に発生させる。この塩素ガスが水中に溶けて殺菌作
用をもたらす残留塩素を生成するため、残留塩素の生成
効率が上がり殺菌性能が向上する。By supplying ammonium chloride, ammonium ions and chlorine ions can be simultaneously supplied to bath water, eliminating the need for providing ammonium supply means. Further, by electrolyzing water supplied with chlorine ions, the chlorine ions are oxidized to generate a large amount of chlorine gas. Since this chlorine gas is dissolved in water to produce residual chlorine which has a bactericidal action, the production efficiency of residual chlorine is increased and the sterilization performance is improved.
【0021】本発明の請求項7にかかる水浄化装置は電
気分解の電解温度を5〜45℃の範囲内で動作する。The water purifying apparatus according to claim 7 of the present invention operates within an electrolysis temperature of 5 to 45 ° C. for electrolysis.
【0022】そして、塩素化合物供給手段として特に電
気分解を行う場合は、水温が45℃を越えると熱分解等
により急激に残留塩素量が減少し、5℃未満では電子の
活性が低下し、塩素ガスの発生効率が低下する。このた
め、発生量が安定する5〜45℃で行うことで塩素の発
生効率を良くし、殺菌性能を向上することができる。In particular, when electrolysis is carried out as a chlorine compound supply means, when the water temperature exceeds 45 ° C., the amount of residual chlorine decreases sharply due to thermal decomposition and the like. Gas generation efficiency decreases. For this reason, by performing at 5 to 45 ° C. where the generation amount is stable, the generation efficiency of chlorine can be improved, and the sterilization performance can be improved.
【0023】以下、本発明の実施例について図面を用い
て説明する。 (実施例1)図1は本発明の実施例1の水浄化装置の構
成図である。Hereinafter, embodiments of the present invention will be described with reference to the drawings. (Embodiment 1) FIG. 1 is a configuration diagram of a water purification apparatus according to Embodiment 1 of the present invention.
【0024】図1において、15は浴槽で、循環手段1
6は吸い込み口17と吐き出し口18からなる循環流路
で、循環流路16には、浴槽水を循環流路に循環するポ
ンプ19が設けられている。また凝集手段20は、金属
水和物を水に溶出可能なアルミニウム製の電極及びステ
ンレス製の本体で構成され、この凝集手段20によって
粒子径が増大した懸濁物質をろ過手段21により浴槽水
を浄化する。そして、浄化された水の残留塩素濃度を残
留塩素検知手段22によって検知し、この検知信号によ
って浴槽水にアンモニウム供給手段23により塩化アン
モニウムを供給し、さらに塩素化合物供給手段24によ
り、塩素化合物を供給する。In FIG. 1, reference numeral 15 denotes a bathtub,
Reference numeral 6 denotes a circulation flow path comprising a suction port 17 and a discharge port 18. The circulation flow path 16 is provided with a pump 19 for circulating bath water in the circulation flow path. The aggregating means 20 is composed of an aluminum electrode capable of eluting a metal hydrate into water and a stainless steel main body. Purify. Then, the residual chlorine concentration of the purified water is detected by the residual chlorine detecting means 22, and ammonium chloride is supplied to the bathtub water by the ammonium supplying means 23 according to the detection signal, and the chlorine compound is supplied by the chlorine compound supplying means 24. I do.
【0025】また、循環流路16の塩素化合物供給手段
24下流方向には浴槽15内の水の保温を行うヒータ2
5を設けている。A heater 2 for keeping the temperature of water in the bathtub 15 downstream of the chlorine compound supply means 24 in the circulation flow path 16.
5 are provided.
【0026】次に動作、作用について説明すると、浴槽
水を循環流路に循環するポンプ19によって浴槽水は凝
集手段20へ導かれる。凝集手段20には、金属水和物
を水に溶出可能なアルミニウム製の電極及びステンレス
製の本体(図示せず)で構成され、電極を陽極、本体を
陰極として電気分解により水中にアルミニウムイオンを
溶出させる。そして溶出したアルミニウムイオンは水中
で直ちに金属水和物の水酸化アルミニウムとなり、この
水酸化アルミニウムと水中の懸濁物質が化学反応し、凝
集塊を生成するため、懸濁物質の粒子径を増大すること
ができる。つまり、浴槽15内には入浴により人体由来
の角質などの垢や、水中に溶存する有機物質を栄養とし
て増殖した細菌が存在する。この粒子径は1μm前後か
ら100μm程度であるので、生成した水酸化アルミニ
ウムと反応し、粒子径を増大させて、懸濁物質を除去す
る濾材と濾材の流出を抑える濾床を内部に備えたろ過手
段21により浴槽水を浄化する。そして、この浄化され
た浴槽水にアンモニウム供給手段23によりアンモニウ
ムを供給することで、水中にアンモニウムイオンを生成
させる。このアンモニウムイオンが存在する浴槽水に塩
素化合物供給手段24により塩素化合物を供給すること
で、反応速度が緩やかで、殺菌効果が長持ちするアンモ
ニアと塩素の化合物NH2Cl等(クロラミン:以下クロ
ラミンという)を生成する。このため、殺菌効果を長時
間持続することができ、塩素化合物供給手段の動作時間
を短くすることができる。Next, the operation and operation will be described. The bathtub water is guided to the flocculating means 20 by the pump 19 which circulates the bathtub water in the circulation flow path. The aggregating means 20 is composed of an aluminum electrode and a stainless steel body (not shown) capable of eluting a metal hydrate into water. Elute. The eluted aluminum ions immediately become aluminum hydroxide, a metal hydrate, in water, and the aluminum hydroxide and the suspended substance in the water chemically react to form aggregates, thereby increasing the particle diameter of the suspended substance. be able to. That is, in the bathtub 15, there are dirt such as keratin derived from the human body due to bathing, and bacteria that have grown as nutrients using organic substances dissolved in water. Since the particle diameter is about 1 μm to about 100 μm, it reacts with the produced aluminum hydroxide to increase the particle diameter, and has a filter medium for removing suspended substances and a filter bed for suppressing the outflow of the filter medium. Means 21 purifies the bath water. Then, ammonium is supplied to the purified bathtub water by the ammonium supply means 23 to generate ammonium ions in the water. By supplying the chlorine compound to the bath water in which the ammonium ions are present by the chlorine compound supply means 24, a compound of ammonia and chlorine, such as NH 2 Cl, which has a slow reaction rate and a long-lasting effect (chloramine: hereinafter referred to as chloramine) Generate Therefore, the sterilizing effect can be maintained for a long time, and the operation time of the chlorine compound supply means can be shortened.
【0027】また、アンモニウムイオンが水中に存在す
ることによって、塩素がFeやMnやH2S等の還元性
物質と反応して消費される前にクロラミンを生成するた
め、殺菌に無関係な塩素の消費を抑制することができ、
過剰の塩素を投入する必要がない。In addition, since ammonium ions are present in water, chloramine is formed before chlorine is consumed by reacting with reducing substances such as Fe, Mn, and H 2 S. Consumption can be suppressed,
There is no need to add excessive chlorine.
【0028】このとき、残留塩素濃度が高くなるほど殺
菌効果は向上するが、高濃度の塩素は肌があれる等の人
体への影響が生じる。このため、浴槽水の残留塩素濃度
を測定する残留塩素検知手段22を用いて、残留塩素濃
度が殺菌に必要以上の過剰な塩素を検知した場合、アン
モニウム供給手段23及び塩素化合物供給手段24の動
作を停止させ、塩素濃度が殺菌に無効な既定値以下にな
ったら、アンモニウム供給手段23及び塩素化合物供給
手段24を動作させて塩素を生成するように制御した。At this time, the higher the residual chlorine concentration, the higher the bactericidal effect, but the high concentration of chlorine has an effect on the human body, such as skin blemishes. Therefore, when the residual chlorine concentration is detected by the residual chlorine detecting means 22 for measuring the residual chlorine concentration in the bathtub water, the residual chlorine concentration is excessively necessary for sterilization, the operation of the ammonium supply means 23 and the chlorine compound supply means 24 is performed. Was stopped, and when the chlorine concentration became equal to or less than a predetermined value invalid for sterilization, the ammonium supply means 23 and the chlorine compound supply means 24 were operated so as to generate chlorine.
【0029】このため、常に殺菌・浄化された浴槽水を
実現でき、快適な入浴を実現することが可能となった。[0029] For this reason, it is possible to always realize sterilized and purified bathtub water, and to realize comfortable bathing.
【0030】図2に上記の水浄化装置を用いた時の塩素
化合物と水との接触時間と、その時の細菌数を示す。比
較のためにアンモニウム供給手段23を設けていない水
浄化装置を用いた場合と、図7に示した従来の水浄化装
置を用いた場合についても同図に示した。図7に示した
従来の水浄化装置については微生物浄化方式を採用して
いることから、残留塩素濃度を0.5〜1.0ppm以内
に抑える必要があるため、本実施例においては殺菌手段
7によって残留塩素濃度を1.0ppmになるよう設定し
た。FIG. 2 shows the contact time between the chlorine compound and water when the above-mentioned water purification apparatus is used, and the bacterial count at that time. For comparison, FIG. 7 also shows a case where the water purification device without the ammonium supply means 23 is used and a case where the conventional water purification device shown in FIG. 7 is used. Since the conventional water purification apparatus shown in FIG. 7 employs a microorganism purification method, it is necessary to keep the residual chlorine concentration within 0.5 to 1.0 ppm. The residual chlorine concentration was set to 1.0 ppm.
【0031】また、本発明の水浄化装置及びアンモニウ
ム供給手段23を設けていない水浄化装置は物理浄化方
式を採用していることから、残留塩素濃度の上限がない
ためから残留塩素濃度を3.0ppmになるよう塩素化合
物供給手段24により1度に供給し、その後は供給を停
止した。このとき、残留塩素検知手段22は浴槽水の残
留塩素濃度を検知するだけで塩素化合物供給手段24を
制御しない構成とした。ここで、残留塩素検知手段22
はアンペロメトリ方式(電流滴定方式)の残留塩素計を
用いた。Further, since the water purifying apparatus of the present invention and the water purifying apparatus not provided with the ammonium supply means 23 employ the physical purification method, there is no upper limit of the residual chlorine concentration. It was supplied at once by the chlorine compound supply means 24 so as to be 0 ppm, and thereafter the supply was stopped. At this time, the residual chlorine detecting means 22 was configured to only detect the residual chlorine concentration of the bathtub water and not to control the chlorine compound supplying means 24. Here, the residual chlorine detecting means 22
Used an amperometric (current titration) residual chlorine meter.
【0032】また、本実施例では塩素化合物供給手段2
4は水と反応して次亜塩素酸及び次亜塩素酸イオンを生
成する次亜塩素酸ナトリウムを供給する構成とした。さ
らに、使用した入浴水については、入浴水の状態が同じ
に成るように共に入浴1日後(4人入浴)の水を用い
た。In this embodiment, the chlorine compound supply means 2
No. 4 supplies sodium hypochlorite which reacts with water to produce hypochlorous acid and hypochlorite ions. Further, as for the used bathing water, water was used one day after bathing (bathing by four persons) so that the bathing water condition would be the same.
【0033】また、一般細菌数については各々約760
000〜730000CFU/mlと多少のばらつきはあ
ったが殺菌効果を評価するうえでは問題ないとした。The number of general bacteria is about 760 each.
Although there was some variation between 000 and 730000 CFU / ml, there was no problem in evaluating the bactericidal effect.
【0034】図2に示した横軸は塩素との接触時間(時
間)、縦軸は1ml中に存在する一般細菌数(CFU)を
示した。ここで、従来の水浄化装置を用いた場合は一般
細菌数が非常に多く存在していたため、第二軸にて細菌
数を示した。The horizontal axis shown in FIG. 2 shows the contact time (hour) with chlorine, and the vertical axis shows the number of general bacteria (CFU) present in 1 ml. Here, when the conventional water purification apparatus was used, the number of general bacteria was very large, so the number of bacteria was shown on the second axis.
【0035】図2に示すように、従来の水浄化装置では
30分後には約2桁ほど一般細菌数が減少し、4時間後
には4500CFU/mlまで減少したがその後、増殖し
はじめ、5時間後には50000CFU/ml、24時間
経過後には280000CFU/mlにも増殖した。しか
し、本発明の水浄化装置を用いた場合で、アンモニウム
供給手段23を設けていない場合は、30分接触させる
ことで細菌数が0CFU/ml(検出限界以下)になり4
時間経過後も同様の結果であった。しかし5時間後には
100CFU/mlに増殖し翌日(24時間後)には28
00CFU/mlに増殖した。また、アンモニウム供給手
段23を備えた本発明の水浄化装置では、接触時間が3
0分で検出限界以下になり、24時間経過後も同様の結
果がえられた。As shown in FIG. 2, in the conventional water purification apparatus, the number of general bacteria decreased by about two digits after 30 minutes, and decreased to 4500 CFU / ml after 4 hours, but then began to proliferate, and after 5 hours Later, it grew to 50,000 CFU / ml, and after 24 hours, it grew to 280000 CFU / ml. However, when the water purification apparatus of the present invention is used and the ammonium supply means 23 is not provided, the number of bacteria becomes 0 CFU / ml (below the detection limit) by contacting for 30 minutes.
The same result was obtained after a lapse of time. However, after 5 hours the cells had grown to 100 CFU / ml and the next day (24 hours later)
Proliferated to 00 CFU / ml. Further, in the water purification apparatus of the present invention provided with the ammonium supply means 23, the contact time is 3 hours.
It fell below the detection limit at 0 minutes, and similar results were obtained after 24 hours.
【0036】さらに、残留塩素検出手段22によって浴
槽水の残留塩素を測定した結果を図3に示す。従来の水
浄化装置は殺菌手段7によって1ppmになるよう次亜塩
素酸ナトリウムを供給したが5分後には0.3ppmに減
少し、2時間後には全て消費された。さらに、塩化アン
モニウム供給手段23を設けていない水浄化装置につい
ては、塩素化合物供給手段24によって3ppmになるよ
う次亜塩素酸ナトリウムを供給したが5分後には1.1
ppmしか存在せず、その後も減少しつづけ翌日には0.
1ppmしか存在しなかった。しかし、本発明の図1に示
した水浄化装置は2時間経過後も3ppmを保持し、その
後緩やかに1次的に減少していくが24時間経過後も約
1ppmの残留塩素を保持していた。これは、前にも述べ
たように、アンモニウムイオンの存在によって入浴水中
に含まれるFeやMn等の還元性物質による塩素消費を
抑制することができるので要求塩素量を入浴水の状態に
かかわらずほぼ一定値に抑えることができるためであ
る。さらにアンモニウムイオンと塩素が反応して反応速
度が緩やかなクロラミンを生成することで殺菌の持続時
間も長くなると考えられる。このため、図2に示したよ
うに本発明の水浄化装置は長時間殺菌効果を持続するこ
とが可能となり殺菌・浄化性能を向上させることが可能
となった。FIG. 3 shows the result of measuring the residual chlorine in the bathtub water by the residual chlorine detecting means 22. In the conventional water purification apparatus, sodium hypochlorite was supplied by the sterilizing means 7 so as to be 1 ppm, but after 5 minutes it was reduced to 0.3 ppm, and after 2 hours, it was completely consumed. Further, with respect to the water purifying apparatus not provided with the ammonium chloride supply means 23, sodium chloride was supplied by the chlorine compound supply means 24 so as to have a concentration of 3 ppm.
Only ppm was present, and continued to decrease thereafter.
Only 1 ppm was present. However, the water purification apparatus shown in FIG. 1 of the present invention keeps 3 ppm even after 2 hours and then gradually and gradually decreases, but retains about 1 ppm of residual chlorine after 24 hours. Was. This is because the consumption of chlorine by reducing substances such as Fe and Mn contained in the bathing water can be suppressed by the presence of ammonium ions as described above, so that the required chlorine amount can be controlled regardless of the state of the bathing water. This is because it can be suppressed to a substantially constant value. Further, it is considered that the duration of sterilization is prolonged by the reaction of ammonium ions and chlorine to produce chloramine having a slow reaction rate. For this reason, as shown in FIG. 2, the water purification apparatus of the present invention can maintain the sterilization effect for a long time, and can improve the sterilization / purification performance.
【0037】また、殺菌に必要な塩素量を還元性物質に
消費されることがないため、入浴水の状態にかかわらず
一定に保ことができたため、塩素化合物供給手段24の
動作時に少なくとも3ppmになるよう塩素化合物を供給
することで、殺菌効果が得られることが解った。この結
果、過剰な塩素を投入する必要がなく、人体への影響を
防ぐことができる。Further, since the amount of chlorine necessary for sterilization is not consumed by the reducing substance, it can be kept constant irrespective of the state of bathing water. It has been found that a bactericidal effect can be obtained by supplying a chlorine compound in such a manner. As a result, it is not necessary to supply excessive chlorine, and the influence on the human body can be prevented.
【0038】さらに、塩素投入後の浴槽水の残留塩素濃
度を残留塩素検知手段22によって管理し、1ppmを下
回った時にアンモニウム供給手段23及び塩素化合物供
給手段24を動作させ少なくとも3ppmになるよう残留
塩素を供給することで、常に殺菌効果を保つことができ
る。Further, the residual chlorine concentration in the bathtub water after the chlorine injection is controlled by the residual chlorine detecting means 22. When the residual chlorine concentration falls below 1 ppm, the ammonium supply means 23 and the chlorine compound supply means 24 are operated so that the residual chlorine concentration becomes at least 3 ppm. , The sterilizing effect can always be maintained.
【0039】この結果、最低限殺菌に必要な残留塩素を
残留塩素検知手段22で管理し、塩素が消費された時点
でアンモニウム供給手段23及び塩素化合物供給手段2
4を制御して塩素を投入する構成にすることで、過剰の
塩素投入をすることなく殺菌性能を維持できる。さら
に、人体の影響を防ぐとともに浴槽への劣化を防ぎ、常
にアンモニウム供給手段23及び塩素化合物供給手段2
4を動作させる必要がないことから電力の消費を低減で
きる結果となる。As a result, the residual chlorine necessary for the minimum sterilization is managed by the residual chlorine detecting means 22, and when the chlorine is consumed, the ammonium supplying means 23 and the chlorine compound supplying means 2 are controlled.
By controlling the number 4 to supply chlorine, sterilization performance can be maintained without excessive chlorine input. Furthermore, the influence of the human body and the deterioration of the bathtub are prevented, and the ammonium supply means 23 and the chlorine compound supply means 2 are always used.
4 does not need to be operated, so that the power consumption can be reduced.
【0040】また、上記には塩素化合物供給手段24と
して、水と化学反応して次亜塩素酸及び次亜塩素酸イオ
ンを生成する物質あるいは溶液として次亜塩素酸ナトリ
ウム溶液を供給したが、水を電気分解し、水中の塩素イ
オンから水中に塩素化合物を生成する構成にした場合に
おいても同様の結果が得られた。In the above description, as the chlorine compound supply means 24, a sodium hypochlorite solution was supplied as a substance or a solution which chemically reacts with water to generate hypochlorous acid and hypochlorite ions. Was electrolyzed to produce a chlorine compound in water from chlorine ions in water, and similar results were obtained.
【0041】さらに、アンモニウム供給手段23として
塩化アンモニウムを供給することで水中にアンモニウム
イオンと塩素イオンを同時に生成できる。アンモニウム
のみ供給していた場合と比較すると、図4に示すように
本発明の水浄化装置は残留塩素の発生効率を約5倍ほど
向上することができた。Further, by supplying ammonium chloride as the ammonium supply means 23, ammonium ions and chlorine ions can be simultaneously generated in water. As compared with the case where only ammonium was supplied, as shown in FIG. 4, the water purification apparatus of the present invention was able to improve the generation efficiency of residual chlorine by about 5 times.
【0042】つまり、電極間に電流を流すと、(1)式
に示すように陽極で塩素イオンが酸化されて塩素ガス
(Cl22)が発生する。That is, when a current is passed between the electrodes, chlorine ions are oxidized at the anode as shown in equation (1), and chlorine gas (Cl 22 ) is generated.
【0043】2Clー→Cl2+2eー (1) この発生したガスは(2)式に示すように水中にとけて
殺菌作用をもたらす次亜塩素酸を(HClO)を生成す
る。[0043] 2Cl over → Cl 2 + 2e chromatography (1) The generated gas generates hypochlorous acid provide a bactericidal action melted in water as shown in equation (2) (HClO).
【0044】Cl2+H2O→HClO+HC1 (2) このため、図4に示したように水中に塩素イオンが存在
することで塩素ガスの発生効率が上がり、残留塩素も増
加し殺菌性能が向上する。つまり、塩素化物供給手段2
4を電気分解して塩素を生成する構成にした場合、塩化
アンモニウムを供給することで効率良く塩素を生成で
き、殺菌性能を向上することが可能となった。Cl 2 + H 2 O → HClO + HC1 (2) Therefore, as shown in FIG. 4, the presence of chlorine ions in water increases the efficiency of chlorine gas generation, increases residual chlorine, and improves sterilization performance. . That is, the chlorinated substance supply means 2
In the case where chlorine is generated by electrolysis of No. 4, chlorine can be efficiently generated by supplying ammonium chloride, and sterilization performance can be improved.
【0045】さらに、図5に電解温度と残留塩素濃度に
ついて示した。図5に示すように、水温が5〜45℃で
は生成される残留塩素濃度をほぼ安定しており、45℃
を越えると急激に減少してくることが解る。つまり、塩
素化合物供給手段24として電気分解を実施した場合は
生成される残留塩素濃度は電解温度に強く依存すること
が判明し、5〜45℃が最も最適な電解温度であること
が解る。このため、本発明の水浄化装置において電解す
る入浴水は循環流路内で循環することで温度を5〜45
℃の範囲内に低下させた後に、電気分解させて塩素を生
成させ、その後ヒータ25によって再度加熱保温し、浴
槽15内に送り込む構成にした。この結果、効率良く残
留塩素を生成でき電力消費を最低限に抑えることが可能
となった。FIG. 5 shows the electrolysis temperature and the residual chlorine concentration. As shown in FIG. 5, when the water temperature is 5 to 45 ° C., the concentration of the generated residual chlorine is almost stable.
It turns out that it decreases sharply when it exceeds. That is, when electrolysis is performed as the chlorine compound supply means 24, it is found that the generated residual chlorine concentration strongly depends on the electrolysis temperature, and it is understood that 5-45 ° C. is the most optimal electrolysis temperature. For this reason, bathing water to be electrolyzed in the water purification device of the present invention is circulated in the circulation flow path to reduce the temperature to 5-45.
After the temperature was lowered to within the range of ° C., chlorine was generated by electrolysis, and then the temperature was again heated and maintained by the heater 25 and sent into the bathtub 15. As a result, it was possible to efficiently generate residual chlorine and to minimize power consumption.
【0046】(実施例2)図6は本発明の実施例2の水
浄化装置を示す構成図である。(Embodiment 2) FIG. 6 is a block diagram showing a water purification apparatus according to Embodiment 2 of the present invention.
【0047】本実施例2において、実施例1と異なる点
は浴槽水の残留塩素濃度を検出する残留塩素検知手段2
2としてタイマ26を設けている点である。The second embodiment is different from the first embodiment in that a residual chlorine detecting means 2 for detecting a residual chlorine concentration in bath water is used.
2 is that a timer 26 is provided.
【0048】なお、実施例2と同一符号のものは同一構
造を有し、説明は省略する。次に動作、作用を説明する
と、タイマ26はアンモニウム供給手段23及び塩素化
合物供給手段24の動作時間を制御するとともに動作停
止後の経過時間を記憶する。この経過時間によって浴槽
内の残留塩素濃度を管理し、ある一定時間を経過した際
にタイマ26がアンモニウム供給手段23及び塩素化合
物供給手段24を再度動作させて塩素を生成させる。The components having the same reference numerals as those of the second embodiment have the same structure, and the description is omitted. Next, the operation and the operation will be described. The timer 26 controls the operation time of the ammonium supply means 23 and the chlorine compound supply means 24 and stores the elapsed time after the operation is stopped. The residual chlorine concentration in the bathtub is controlled based on the elapsed time, and when a certain time has elapsed, the timer 26 operates the ammonium supply means 23 and the chlorine compound supply means 24 again to generate chlorine.
【0049】残留塩素濃度と経過時間とは実施例1で述
べたように、ある一定時間を経過すると1次的に減少す
る。(図3参照)浴槽水にはアンモニウム供給手段23
によってアンモニウムイオンが存在しているため、上記
で述べたように塩素が還元性物質によって消費されるこ
とがない。このため、入浴水の状態にかかわらず残留塩
素の減少率は一定であるので時間を管理することだけで
浴槽水の残留塩素をコントロールすることができる。つ
まり、塩素が消費され、殺菌効果を持たない残留塩素濃
度になる時間を算出して、その時間を経過した時点で、
再度アンモニウム供給手段23と塩素化合物供給手段2
4を動作させて塩素を生成させる。本発明では実施例1
で述べたように、動作停止後の残留塩素濃度が殺菌効果
を維持するためには少なくとも1ppm必要であり、この
1ppmになるまでの経過時間が約24時間であったた
め、タイマ26により24時間間隔で塩化アンモニウム
供給手段23及び塩素化合物供給手段24を動作させ
た。As described in the first embodiment, the residual chlorine concentration and the elapsed time decrease temporarily after a certain period of time. (See FIG. 3) Ammonium supply means 23 is provided in the bath water.
As described above, chlorine is not consumed by the reducing substance because ammonium ions are present. For this reason, the residual chlorine reduction rate is constant irrespective of the state of the bathing water, so that the residual chlorine can be controlled only by controlling the time. In other words, the time when chlorine is consumed and the residual chlorine concentration that does not have a bactericidal effect is calculated, and when that time has elapsed,
Again ammonium supply means 23 and chlorine compound supply means 2
4 is operated to generate chlorine. Example 1 of the present invention
As described above, the residual chlorine concentration after the operation was stopped required at least 1 ppm in order to maintain the sterilizing effect, and the elapsed time until the concentration became 1 ppm was about 24 hours. Then, the ammonium chloride supply means 23 and the chlorine compound supply means 24 were operated.
【0050】この結果、殺菌効果を維持し、安全かつ心
地好い入浴を簡単な構成で実現することができた。As a result, it was possible to maintain a sterilizing effect and realize safe and comfortable bathing with a simple structure.
【0051】[0051]
【発明の効果】以上の説明から明らかなように、本発明
の水浄化装置によれば、次の効果が得られる。As apparent from the above description, the water purifying apparatus of the present invention has the following effects.
【0052】(1)残留塩素検知手段を設けて、浴槽水
の残留塩素濃度に応じて塩化アンモニウム供給手段と塩
素化合物供給手段を制御することにより、殺菌に必要以
上の過剰な残留塩素の存在を防ぐことができる。この結
果、アンモニアや塩素臭の発生を抑制し、残留塩素によ
る肌への影響や浴槽に影響を与えることなく水を殺菌浄
化することが可能となった。(1) By providing a residual chlorine detecting means and controlling the ammonium chloride supplying means and the chlorine compound supplying means according to the residual chlorine concentration in the bathtub water, the presence of excessive residual chlorine more than necessary for sterilization can be determined. Can be prevented. As a result, it has become possible to suppress the generation of ammonia and chlorine odor, and to sterilize and purify water without affecting the skin and the bathtub due to residual chlorine.
【0053】(2)タイマを設けて塩化アンモニウム供
給手段と塩素化合物供給手段の動作・停止時間を制御す
ることによって、浴槽水の残留塩素を管理することがで
きる。このため、簡単な構成で殺菌に必要以上の過剰な
残留塩素の存在を防ぐことができ、アンモニアや塩素臭
の発生を抑制し、残留塩素による肌への影響や浴槽に影
響を与えることなく水を殺菌浄化することが可能となっ
た。(2) Residual chlorine in bath water can be managed by providing a timer to control the operation / stop time of the ammonium chloride supply means and the chlorine compound supply means. Therefore, with a simple configuration, it is possible to prevent the presence of excessive residual chlorine more than necessary for sterilization, suppress the generation of ammonia and chlorine odor, and maintain the water without affecting the skin and bathtub due to the residual chlorine. Can be sterilized and purified.
【0054】(3)塩化アンモニウム供給手段及び塩素
化合物供給手段の動作停止後の浴槽水の残留塩素濃度を
少なくとも1ppm保持することによって、殺菌効果を保
つことができる。さらに、塩化アンモニウム供給手段及
び塩素化合物供給手段を常に動作させる必要がないので
過剰な塩素投入を防ぎ、電力の低減化を図れ、機器の耐
久性も向上できる。(3) The sterilizing effect can be maintained by maintaining at least 1 ppm of the residual chlorine concentration in the bathtub water after the operation of the ammonium chloride supply means and the chlorine compound supply means is stopped. Furthermore, since it is not necessary to always operate the ammonium chloride supply means and the chlorine compound supply means, excessive chlorine injection can be prevented, power consumption can be reduced, and the durability of equipment can be improved.
【0055】(4)塩素化合物供給手段を例えば次亜塩
素酸ナトリウムのような水と反応して次亜塩素酸を生成
するような溶液又は物体を供給することによって、容易
に水中に塩素を投入する事が可能となり、簡単な構成で
殺菌することができる。(4) The chlorine compound supply means supplies a solution or an object which produces hypochlorous acid by reacting with water such as sodium hypochlorite, so that chlorine is easily introduced into water. It is possible to sterilize with a simple configuration.
【0056】(5)塩素化合物供給手段は浴槽水を電気
分解し残留塩素を生成するので、塩素化合物供給手段へ
の塩素化合物の補給が必要なくなり、長期間メンテナン
スの手間がいらなくなる。このため、塩素化合物の補給
忘れなどによる人為的な性能低下をなくすことができ
る。(5) Since the chlorine compound supply means electrolyzes the bathtub water and generates residual chlorine, it is not necessary to supply the chlorine compound to the chlorine compound supply means and maintenance work is not required for a long period of time. For this reason, it is possible to eliminate an artificial decrease in performance due to forgetting to supply the chlorine compound.
【0057】(6)塩化アンモニウムを供給して水中に
塩素イオンを存在させ、この塩素イオンを電気分解によ
って酸化させることで塩素ガスの発生効率を向上でき、
残留塩素の発生効率を向上できる。(6) By supplying ammonium chloride to cause chlorine ions to be present in the water and oxidizing the chlorine ions by electrolysis, the generation efficiency of chlorine gas can be improved.
The generation efficiency of residual chlorine can be improved.
【0058】(7)塩素化合物供給手段として、水を電
気分解する際の電解温度を5〜45℃で行うことで効率
良く残留塩素を発生させることが可能となり、消費電力
を低減することができた。(7) As the chlorine compound supply means, by performing the electrolysis temperature at the time of electrolyzing water at 5 to 45 ° C., it becomes possible to efficiently generate residual chlorine and reduce power consumption. Was.
【図1】本発明の実施例1における水浄化装置の構成図FIG. 1 is a configuration diagram of a water purification device according to a first embodiment of the present invention.
【図2】同実施例の塩素の接触時間と一般細菌数の関係
を示す特性図FIG. 2 is a characteristic diagram showing the relationship between chlorine contact time and the number of general bacteria in the example.
【図3】同実施例の塩素の接触時間と残留塩素濃度の関
係を示す特性図FIG. 3 is a characteristic diagram showing a relationship between a chlorine contact time and a residual chlorine concentration in the example.
【図4】同実施例の動作時間と残留塩素濃度の関係を示
す特性図FIG. 4 is a characteristic diagram showing a relationship between an operation time and a residual chlorine concentration in the embodiment.
【図5】同実施例の電解温度と残留塩素濃度の関係を示
す特性図FIG. 5 is a characteristic diagram showing a relationship between an electrolysis temperature and a residual chlorine concentration in the example.
【図6】本発明の実施例2における水浄化装置の構成図FIG. 6 is a configuration diagram of a water purification device according to a second embodiment of the present invention.
【図7】従来の水浄化装置の構成図FIG. 7 is a configuration diagram of a conventional water purification device.
【図8】従来の循環式プールの構成図FIG. 8 is a configuration diagram of a conventional circulation-type pool.
15 浴槽 16 循環手段 17 吸い込み口 18 吐き出し口 19 ポンプ 20 凝集手段 21 ろ過手段 22 残留塩素検知手段 23 塩化アンモニウム検出手段 24 塩素化合物供給手段 25 ヒータ 26 タイマ Reference Signs List 15 bath 16 circulation means 17 suction port 18 discharge port 19 pump 20 flocculation means 21 filtration means 22 residual chlorine detection means 23 ammonium chloride detection means 24 chlorine compound supply means 25 heater 26 timer
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C02F 1/50 560 C02F 1/50 560F B01D 35/027 1/46 Z C02F 1/46 1/76 A 1/463 B01D 35/02 J 1/465 C02F 1/46 102 1/76 (72)発明者 桶田 岳見 大阪府門真市大字門真1006番地 松下電器 産業株式会社内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C02F 1/50 560 C02F 1/50 560F B01D 35/027 1/46 Z C02F 1/46 1/76 A 1/463 B01D 35 / 02 J 1/465 C02F 1/46 102 1/76 (72) Inventor Takemi Oketa 1006 Ojidoma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.
Claims (7)
懸濁物質をろ過するろ過手段と、電気分解により金属水
和物を生成することで水中の懸濁物質を凝集する凝集手
段と、水中にアンモニウムを供給するアンモニウム供給
手段と、水中に残留塩素を生成する塩素化合物供給手段
と、水中の残留塩素濃度を検知する残留塩素検知手段を
設け、前記残留塩素検知手段の出力信号により塩素化合
物供給手段及びアンモニウム供給手段を制御する水浄化
装置。1. A circulating means for circulating water in a circulation channel, a filtering means for filtering suspended matter in water, and an agglomeration for aggregating suspended matter in water by generating metal hydrate by electrolysis. Means, ammonium supply means for supplying ammonium into water, chlorine compound supply means for producing residual chlorine in water, and residual chlorine detection means for detecting residual chlorine concentration in water, and an output signal of the residual chlorine detection means. A water purification apparatus for controlling chlorine compound supply means and ammonium supply means by means of
段と塩素化合物供給手段の動作及び停止時間を計測する
タイマを設け、両者の動作及び停止時間から浴槽内の残
留塩素濃度を算出し、アンモニウム供給手段及び塩素化
合物供給手段を制御する請求項1記載の水浄化装置。2. The residual chlorine detecting means includes a timer for measuring the operation and stop time of the ammonium supply means and the chlorine compound supply means, and calculates the residual chlorine concentration in the bath tub from the operation and stop time of both to supply ammonium chloride. 2. The water purifying apparatus according to claim 1, wherein the means and the chlorine compound supply means are controlled.
なくとも1ppm以上保持するように動作する請求項1ま
たは2記載の水浄化装置。3. The water purification apparatus according to claim 1, wherein the chlorine compound supply means operates so as to maintain a residual chlorine concentration of at least 1 ppm.
次亜塩素酸及び次亜塩素酸イオンを生成する物質あるい
は溶液を供給する請求項1ないし3のいずれか1項記載
の水浄化装置。4. The water purification apparatus according to claim 1, wherein the chlorine compound supply means supplies a substance or a solution which chemically reacts with water to produce hypochlorous acid and hypochlorite ions. apparatus.
水中の塩素イオンから水中に塩素化合物を生成する請求
項1ないし3のいずれか1項記載の水浄化装置。5. The chlorine compound supply means electrolyzes water,
The water purification device according to any one of claims 1 to 3, wherein a chlorine compound is generated in water from chlorine ions in the water.
ムを供給する請求項5記載の水浄化装置。6. The water purifier according to claim 5, wherein the ammonium supply means supplies ammonium chloride.
囲で動作させる請求項5または6記載の水浄化装置。7. The water purifier according to claim 5, wherein the chlorine compound supply means is operated in a temperature range of 5 to 45 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11927797A JP3870482B2 (en) | 1997-05-09 | 1997-05-09 | Water purification equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11927797A JP3870482B2 (en) | 1997-05-09 | 1997-05-09 | Water purification equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10309583A true JPH10309583A (en) | 1998-11-24 |
JP3870482B2 JP3870482B2 (en) | 2007-01-17 |
Family
ID=14757405
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11927797A Expired - Fee Related JP3870482B2 (en) | 1997-05-09 | 1997-05-09 | Water purification equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3870482B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001232371A (en) * | 2000-02-24 | 2001-08-28 | Noritsu Koki Co Ltd | Cleaning equipment for water storage facility and cleaning process of stored water in the water storage facility |
GB2368838A (en) * | 2000-11-13 | 2002-05-15 | Wellby Water Systems Ltd | Maintaining the water in a swimming pool in a safe state |
KR100400674B1 (en) * | 2000-11-06 | 2003-10-10 | 주식회사 동방수기 | Chloramine Feed System Using Injector and Rapid Mixing Unit |
KR100404948B1 (en) * | 1999-12-14 | 2003-11-10 | 산요덴키가부시키가이샤 | Water processing equipment |
KR100404949B1 (en) * | 1999-12-16 | 2003-11-10 | 산요덴키가부시키가이샤 | Water processing equipment |
KR100421256B1 (en) * | 2001-07-12 | 2004-03-09 | 주식회사 이림테크 | Sterilizing Processing Apparatus for Swimming Pool Using Artificiality Salt Water |
KR100437308B1 (en) * | 2001-04-27 | 2004-06-25 | 산요덴키가부시키가이샤 | Water treatment apparatus |
JP2009131820A (en) * | 2007-12-03 | 2009-06-18 | Yamatake Corp | Water management device and water management method |
WO2011065434A1 (en) * | 2009-11-27 | 2011-06-03 | 鶴見曹達株式会社 | Process for treatment of ship ballast water |
-
1997
- 1997-05-09 JP JP11927797A patent/JP3870482B2/en not_active Expired - Fee Related
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100404948B1 (en) * | 1999-12-14 | 2003-11-10 | 산요덴키가부시키가이샤 | Water processing equipment |
KR100404949B1 (en) * | 1999-12-16 | 2003-11-10 | 산요덴키가부시키가이샤 | Water processing equipment |
JP2001232371A (en) * | 2000-02-24 | 2001-08-28 | Noritsu Koki Co Ltd | Cleaning equipment for water storage facility and cleaning process of stored water in the water storage facility |
KR100400674B1 (en) * | 2000-11-06 | 2003-10-10 | 주식회사 동방수기 | Chloramine Feed System Using Injector and Rapid Mixing Unit |
GB2368838A (en) * | 2000-11-13 | 2002-05-15 | Wellby Water Systems Ltd | Maintaining the water in a swimming pool in a safe state |
KR100437308B1 (en) * | 2001-04-27 | 2004-06-25 | 산요덴키가부시키가이샤 | Water treatment apparatus |
KR100421256B1 (en) * | 2001-07-12 | 2004-03-09 | 주식회사 이림테크 | Sterilizing Processing Apparatus for Swimming Pool Using Artificiality Salt Water |
JP2009131820A (en) * | 2007-12-03 | 2009-06-18 | Yamatake Corp | Water management device and water management method |
WO2011065434A1 (en) * | 2009-11-27 | 2011-06-03 | 鶴見曹達株式会社 | Process for treatment of ship ballast water |
JPWO2011065434A1 (en) * | 2009-11-27 | 2013-04-18 | 鶴見曹達株式会社 | Ship ballast water treatment method |
Also Published As
Publication number | Publication date |
---|---|
JP3870482B2 (en) | 2007-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2119802C1 (en) | Device for performing electrochemical treatment of liquid media | |
JPH10309583A (en) | Water purifying device | |
JPH0615276A (en) | Electrolytic disinfection of water and flowing water type water electrolytic disinfector | |
KR101951448B1 (en) | Sterilizing water generating device capable of controlling concentration | |
KR200353265Y1 (en) | Drinking water purifier with disinfection system | |
JP3906527B2 (en) | Water purification equipment | |
JP3802888B2 (en) | Electrolytic sterilization apparatus and method | |
JPH11123383A (en) | Water cleaning device | |
JPH11128942A (en) | Water purification and mechanism thereof | |
JP3887969B2 (en) | Water purification equipment | |
JPH08281280A (en) | Method for purifying and sterilizing bath water and electrolytic device for sterilization | |
JP3359661B2 (en) | Method for cleaning / sterilizing a continuous electrolytic water regulator and an electrolytic water regulator provided with a mechanism for performing the method | |
KR100323337B1 (en) | Purification equipment for swimming pools and baths | |
JP3870479B2 (en) | Water purification equipment | |
JPH1177055A (en) | Bath water sterilization apparatus | |
JPH10314748A (en) | Sterilization apparatus | |
EP1226094A1 (en) | Device for electrolysis | |
KR20040065761A (en) | Water purification and sterilization using salt water electrolysis | |
JP4465758B2 (en) | Electrolyzer | |
JPH1190447A (en) | Apparatus for circulating bath water | |
JPH11207353A (en) | Purifying treatment of utility water or waste water and device therefor | |
JPH11179379A (en) | Water clarification apparatus | |
JPH04277081A (en) | Method for sterilizing water | |
JP2001232395A (en) | Method and device for circulating/sterilizing hot water | |
JP3650309B2 (en) | Water purification system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050523 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20050623 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060613 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060719 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060926 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061009 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091027 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101027 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111027 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |