WO2011065434A1 - Process for treatment of ship ballast water - Google Patents

Process for treatment of ship ballast water Download PDF

Info

Publication number
WO2011065434A1
WO2011065434A1 PCT/JP2010/071039 JP2010071039W WO2011065434A1 WO 2011065434 A1 WO2011065434 A1 WO 2011065434A1 JP 2010071039 W JP2010071039 W JP 2010071039W WO 2011065434 A1 WO2011065434 A1 WO 2011065434A1
Authority
WO
WIPO (PCT)
Prior art keywords
ballast water
hypochlorite
ammonia
ammonium salt
bromoform
Prior art date
Application number
PCT/JP2010/071039
Other languages
French (fr)
Japanese (ja)
Inventor
健司 林
Original Assignee
鶴見曹達株式会社
東亞合成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鶴見曹達株式会社, 東亞合成株式会社 filed Critical 鶴見曹達株式会社
Priority to JP2011543299A priority Critical patent/JPWO2011065434A1/en
Publication of WO2011065434A1 publication Critical patent/WO2011065434A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J4/00Arrangements of installations for treating ballast water, waste water, sewage, sludge, or refuse, or for preventing environmental pollution not otherwise provided for
    • B63J4/002Arrangements of installations for treating ballast water, waste water, sewage, sludge, or refuse, or for preventing environmental pollution not otherwise provided for for treating ballast water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/008Originating from marine vessels, ships and boats, e.g. bilge water or ballast water

Definitions

  • the present invention relates to a method for treating ballast water of a ship so that it can be safely discharged, and a treatment agent for ballast water used in the treatment method.
  • ballast water As alien invasive organisms, and benthic and attached organisms are also affected by ballast water during larval plankton. It is recognized that it is carried in large quantities, and this is considered to be one of the major causes of ecosphere disturbance. In view of such circumstances, it is pointed out that it is important to prevent the movement of aquatic organisms by ballast water, and ballast water exchange is required in a water area 200 nautical miles or more away from land. The International Maritime Organization has taken up this issue since the late 1980s.
  • ballast water treatment methods often generate some harmful substances. For example, when chlorinating ballast water using hypochlorite, bromoform is produced as a minor by-product. To do. In addition to bromoform, trihalomethanes substituted with halogen such as chloride and bromide contained in seawater may be generated. Regarding the reduction of trihalomethanes, various attempts have been made to reduce trihalomethanes, especially chloroform, produced when chlorinating drinking water.
  • sodium hypochlorite In tap water, sodium hypochlorite, a hypochlorite, is widely used for sterilization and disinfection, but this sodium hypochlorite and humic substances present in neutral raw water of about pH 7 React to produce trihalomethanes such as chloroform as a by-product.
  • chloroform In order to suppress by-products such as chloroform, by adding a substance that generates ammonium ions such as ammonia to basic sodium hypochlorite, chloramine is generated in advance, and this is used for sterilization and disinfection. It is known that the generation of chloroform and the like is suppressed.
  • the present invention relates to a ballast water treatment method capable of killing and sterilizing aquatic organisms such as alien invaders in ship's ballast water and suppressing the generation of trihalomethanes including bromoform, and a ballast used in the treatment method. It is an object to provide a treatment agent for water.
  • the present inventors have killed and sterilized aquatic organisms in ballast water to prevent migration and fixation of alien invading organisms and the like such as bromoform which may be harmful when produced in large quantities.
  • the generation of trihalomethanes such as bromoform in ballast water is suppressed even under seawater conditions, and bromoform in ballast water to be drained, etc. It has been found that the concentration of water can be greatly reduced and aquatic organisms in ballast water can be effectively killed and sterilized.
  • the present invention has been made based on these findings.
  • a ballast water treatment method comprising mixing ballast water with ammonia or an ammonium salt and hypochlorite to kill and sterilize aquatic organisms in the ballast water and suppress generation of trihalomethanes .
  • the residual chlorine concentration in the ballast water is adjusted to 1 mg / L or more and 100 mg / L or less by mixing the ammonia or ammonium salt and hypochlorite to kill and sterilize aquatic organisms.
  • ballast water After killing and sterilizing aquatic organisms in ballast water by mixing ammonia or ammonium salt and hypochlorite, reducing and neutralizing residual chlorine in the ballast water with sulfite
  • the method for treating ballast water according to any one of items (1) to (6), wherein:
  • ballast water When mixing ammonia or ammonium salt and hypochlorite in ballast water, after mixing ammonia or ammonium salt with ballast water, hypochlorite is mixed with ballast water.
  • the ammonia or ammonium salt and hypochlorite In mixing the ammonia or ammonium salt and hypochlorite with the ballast water, the ammonia or ammonium salt and hypochlorite are mixed in advance and added to the ballast water (1) The method for treating ballast water according to any one of items (7) to (7).
  • ballast water according to any one of (1) to (7).
  • (11) In mixing ammonia or ammonium salt and hypochlorite into ballast water, after adding ammonia or ammonium salt to the ballast tank in advance, the ballast water mixed with hypochlorite is added to the ballast tank.
  • ballast according to any one of (1) to (11) above, wherein the ammonia or ammonium salt is a compound capable of reacting with hypochlorite to produce chloramine.
  • Water treatment method (13) A ballast water treating agent for use in the method for treating ballast water described in any one of (1) to (12) above, comprising a combination of ammonia or ammonium salt and hypochlorite.
  • ballast water aquatic organisms that can be alien invaders in the ballast water of ships are sterilized and sterilized, and the generation of trihalomethanes such as bromoform in the ballast water is effectively and continuously suppressed and discharged.
  • a method for treating ballast water that can reduce the concentration of trihalomethanes such as bromoform in the ballast water can be provided.
  • the processing agent of the ballast water used for the said processing method can be provided.
  • a low-cost component that is easily available as a treatment agent is used, and it is safe without contaminating the environment / ecosystem of the discharged water area by alien invading organisms or chemical substances that may be harmful. It becomes possible to discharge ballast water.
  • the ballast water treatment method of the present invention is a method for effectively killing and sterilizing aquatic organisms in ballast water, and can suppress the generation of bromoform and the like when performing the killing and sterilization treatment. More specifically, by mixing ammonia or ammonium salt and hypochlorite in the ballast water, aquatic organisms in the ballast water are sterilized and sterilized between intake and drainage, and in the meantime, It is characterized by suppressing the generation of trihalomethanes such as bromoform (hereinafter referred to as bromoform) and suppressing the concentration of bromoform and the like in the ballast water to a low level.
  • bromoform trihalomethanes
  • ballast water out of the ship without bringing aquatic organisms in the intake water area into the drainage water area and in a state where the concentration of bromoform is sufficiently reduced,
  • the negative impact on the marine environment and marine ecosystem of the drainage can be avoided.
  • “killing / sterilizing” includes not only the death of living organisms but also the state in which they cannot reproduce even if they are alive, for example, the generation or generation of microorganisms or bacteria in ballast water while navigating to the destination. It also includes preventing proliferation.
  • Aquatic organisms in ballast water refers to bacteria, microorganisms and organisms that can be contained in ballast water, as well as organisms contained in sediments deposited at the bottom of ballast tanks as well as aquatic organisms contained in ballast water. Eggs are also included. These aquatic organisms include alien invaders that are concerned about disturbing the ecosystem of the destination water area by moving and establishing beyond the distribution area of the main body.
  • the present invention will be described in detail.
  • ballast water treatment method of the present invention uses ammonia or ammonium salt together with hypochlorite as a killing / sterilizing component.
  • Ballast water is water loaded in a ship's hold or ballast tank in order to maintain the stability of the ship. Generally, brackish water mixed with seawater or seawater and fresh water is often used.
  • the aspirated ballast water contains many aquatic organisms, bacteria, and the like, and a bactericidal agent is used to kill and sterilize these.
  • Chlorine and hypochlorous acid which are powerful disinfectants, can be suitably used for the removal of organisms in ballast water, while chlorine and hypochlorous acid added for killing and disinfecting purposes are There is concern that bromoform and the like are generated by reacting with organic substances (for example, humic substances) dissolved in seawater and brackish water used as ballast water.
  • organic substances for example, humic substances
  • the present invention is characterized in that an ammonia component or an ammonium salt component is contained in the ballast water in addition to the hypochlorite component.
  • Examples of the trihalomethanes in the present invention include bromoform (tribromomethane), chloroform (trichloromethane) substituted with chloride or bromide in seawater, bromodichloromethane, dibromochloromethane, and the like.
  • the treatment method of the present invention can suitably suppress the generation of bromoform.
  • seawater and brackish water are often used as ballast water, and bromoform is likely to be generated because bromide ion concentrations in seawater and brackish water are generally higher than in fresh water. Therefore, among the trihalomethanes generated by hypochlorite and the like, it is particularly important from the viewpoint of environmental and ecosystem protection to suppress the generation of bromoform.
  • the treatment method of the present invention can effectively and continuously suppress the generation of bromoform or the like even when seawater or brackish water is used as ballast water.
  • ballast water Regarding the bromoform concentration in ballast water, individual standards may be set in some countries, and regulations are expected to be tightened in the future.
  • chemical substances contained in ballast water at the time of discharge the international maritime organization established in February 2004 “International Convention for the Regulation and Management of Ship Ballast Water and Sediment”. toxicity (P ersistent, B ioaccumulative and T oxic (PBT)), and PEC / PNEC (PEC: P redicted E nvironmental C oncentration / PNEC: P redicted N o E ffect C oncentration) environmental impact assessment that is provided. Moreover, even if the above evaluation is satisfied, it tends to be desired to be more environmentally friendly.
  • the bromoform concentration in the ballast water at the time of discharge is often around 500 ⁇ g / L.
  • concentration of the ballast water at the time of drainage can be 500 microgram / L or less so that it may demonstrate also in the below-mentioned Example.
  • the treatment is preferably performed so that the bromoform concentration is 300 ⁇ g / L or less, more preferably 150 ⁇ g / L or less, and particularly preferably 130 ⁇ g / L or less. .
  • Residual chlorine is also called effective chlorine, and is a concept that includes free chlorine such as hypochlorous acid and bound chlorine such as chloramine and bromoamine. Residual chlorine concentration is also called effective chlorine concentration, and represents the oxidation ability of free chlorine and combined chlorine in terms of chlorine.
  • free chlorine such as hypochlorous acid and bound chlorine such as chloramine and brolamin are generated as residual chlorine.
  • Chloramine is a substance produced by reaction of hypochlorite with ammonia or ammonium salt.
  • bromamine is produced by the reaction of hypochlorite added to seawater with hypochlorite produced by substitution of bromine in seawater with ammonia or ammonium salt.
  • it is a kind of bonded chlorine.
  • the ballast water at the time of discharge by the killing / sterilizing treatment using ammonia or ammonium salt and hypochlorite is the above-mentioned “International Convention for Regulation and Management of Ship Ballast Water and Precipitate”. It is preferable that the ballast water discharge standard defined in the above is satisfied.
  • the number of surviving organisms is less than 10 per mL
  • the treatment method of the present invention can be suitably used for killing and sterilizing bacteria and organisms having a size of 10 ⁇ m or more.
  • organisms having a size of 10 ⁇ m or more include aquatic organisms such as zooplankton, phytoplankton, invertebrates, and algae.
  • cfu is a colony forming unit (group unit), and the minimum size is a minimum value of height, width or depth.
  • the content of ammonia or ammonium salt and the content of hypochlorite to be mixed in the ballast water only need to be able to kill and sterilize aquatic organisms in the ballast water.
  • it can be set as content which can kill and sterilize aquatic organisms so that the ballast water discharge
  • LC 50 representing the acute toxicity values of chloramine are combined chlorine (half lethal concentration) was 0.012mg / L
  • the acute toxic effects of chloramine and hypochlorite are high.
  • ammonia or ammonium salt and hypochlorite are mixed with ballast water so that the residual chlorine in the ballast water is 1 mg / L or more and 100 mg / L or less.
  • ammonia or ammonium salt is not particularly limited as long as it can maintain the above-mentioned residual chlorine concentration, but ammonia or ammonium salt is stoichiometrically equivalent to 2 equivalents with respect to the initial effective chlorine concentration of hypochlorite. It is preferable to use an ammonium salt, more preferably equivalent to 1.5 equivalents, and still more preferably equivalent to 1.2 equivalents.
  • the initial effective chlorine concentration of hypochlorite refers to the effective chlorine concentration obtained from the amount of ballast water and the amount of sodium hypochlorite added.
  • the mode of mixing ammonia or ammonium salt and hypochlorite with ballast water is not particularly limited.
  • ammonia or ammonium salt and hypochlorite may be mixed in the ballast water before being injected into the ballast tank (for example, mixed in piping when seawater is taken into the ballast tank) or after water intake It may be added to the ballast tank and mixed.
  • the ballast tank means a tank that contains water to stabilize the ship, and in addition to the dedicated ballast tank for the ship, the ballast water is added to an oil tank in a tanker or a tank installed in the hold. Including cases.
  • the mixing order of ammonia or ammonium salt and hypochlorite is not particularly limited.
  • ammonia or ammonium salt is first added to ballast water, and then hypochlorite is added.
  • a method of adding chlorate and then adding ammonia or ammonium salt, a method of premixing ammonia or ammonium salt and hypochlorite, adding the mixture to ballast water, and putting ammonia or ammonium salt into the ballast tank in advance Then, a method of injecting ballast water mixed with hypochlorite into the tank can be mentioned.
  • ammonia or ammonium salt and sodium hypochlorite are mixed in advance to form chloramine and then added to ballast water.
  • ballast water even when ammonia or ammonium salt and hypochlorite are mixed separately to produce chloramine, chloramine, etc. in ballast water, the generation of bromoform in ballast water can be effectively suppressed. it can.
  • preferred is a method in which ammonia or ammonium salt is first added to ballast water, and then hypochlorite is added. More preferably, ammonia or ammonium salt and hypochlorite are mixed in advance, and the mixture is mixed. It is a method of adding to ballast water.
  • the mixing interval may be any as long as the residual chlorine can be maintained at a predetermined concentration. For example, this interval is 1 second or more and 1 hour. Can be within.
  • a space between the two may be simply connected by a pipe, a mixer may be inserted, or a tank may be inserted. In this case, the problem of odor or heat generated by mixing ammonia or ammonium salt with hypochlorite can be solved.
  • seawater or the like is taken into the ship as ballast water, it is first returned to the habitat after removing large organisms and plankton using a filter, and then added to the filtered ballast water as described above. Further, ammonia or ammonium salt and hypochlorite may be mixed in the order of addition.
  • the treatment time with ammonia or ammonium salt and hypochlorite is not particularly limited as long as it can kill and sterilize aquatic organisms in ballast water.
  • the upper limit of the processing time may be determined based on the voyage time of the ship. For example, it can be set to a time obtained by loading ballast water and arriving at the port of call and draining the ballast water, excluding sulfite treatment time described later. Such a treatment time is preferable because aquatic organisms in the ballast water can be effectively killed and sterilized, and can be discharged without hindrance.
  • hypochlorite used in the present invention examples include alkali metal salts such as sodium and potassium, and alkaline earth metal salts such as calcium. Of these, potassium and the like are plant-based nutrient components, and barium and the like are toxic. Therefore, sodium hypochlorite, which is a sodium salt that is a seawater component and is easy to handle, is preferable. Hypochlorite is preferably used as an aqueous solution.
  • the ammonia or ammonium salt used in the present invention may be any substance that can react with hypochlorite to produce chloramine. Specifically, ammonia or aqueous ammonia can be used as ammonia.
  • ammonium salt examples include inorganic ammonium salts such as ammonium chloride, ammonium sulfate, and ammonium nitrate, and ammonium acetate. These ammonium salts may be added in solid form or handled in the form of an aqueous solution diluted with water or seawater, but an aqueous solution is preferred from the viewpoint of handling. Among these, in the present invention, from the viewpoint of low cost and easy handling, ammonia water, ammonium chloride, and ammonium sulfate are preferable, and it is more preferable to use ammonia water or an inorganic ammonium salt of chloride which is a seawater component. More preferably, it is used.
  • inorganic ammonium salts such as ammonium chloride, ammonium sulfate, and ammonium nitrate, and ammonium acetate.
  • ammonium salts may be added in solid form or handled in the form of an aqueous solution diluted with water or seawater
  • residual chlorine in ballast water is measured by a method of measuring residual chlorine concentration by amperometric method, DPD (diethyl-p-phenylenediamine) method, oxidation-reduction potential (hereinafter also abbreviated as ORP), etc. Controlling the concentration is also a preferred embodiment.
  • DPD diethyl-p-phenylenediamine
  • ORP oxidation-reduction potential
  • Controlling the concentration is also a preferred embodiment.
  • hypochlorite or the like is added to water containing a large amount of impurities such as seawater, hypochlorite may be decomposed and consumed. Therefore, in order to ensure the killing and sterilizing effects of aquatic organisms regardless of the water quality used as ballast water, a mixed amount management system for hypochlorite and ammonium ions is used.
  • the residual chlorine concentration can be measured with high accuracy and controlled within a desired range.
  • the residual chlorine in the ballast water is reduced and neutralized with sulfite. It is preferable to do. Residual chlorine may cause adverse effects on organisms even in trace amounts, so when discharging ballast water, it is necessary to reduce and neutralize it before treating it so that it does not affect aquatic organisms. There is. Therefore, in the present invention, it is preferable to provide a step of containing sulfite in the ballast water after killing and sterilizing the aquatic organisms in the ballast water, thereby reducing and neutralizing residual chlorine in the ballast water.
  • the amount of sulfite contained in the ballast water may be an amount that can reduce residual chlorine contained in the ballast water to a range that does not affect aquatic organisms.
  • the residual chlorine concentration in the ballast water may be 0.06 mg / L or less.
  • Examples of the sulfite used in the present invention include alkali metal salts such as sodium and potassium, and sodium salt which is the main component of seawater is particularly preferable.
  • the sulfite is preferably used as an aqueous solution.
  • a sulfite may be added in a ballast tank, and when draining ballast water, you may contain a sulfite.
  • sulfite is preferably added to the ballast water during drainage.
  • ballast water When discharging ballast water out of the ship, it is preferable not to drain ballast water in a low oxygen state. That is, it is preferable that the low-oxygen state wastewater does not damage the aquatic organisms around the ship.
  • the low-oxygen state wastewater does not damage the aquatic organisms around the ship.
  • 7 to 8.5 mg / L of dissolved oxygen is contained, but it is preferable to ensure that the dissolved oxygen is in a state of 6 mg / L or more, which is a standard for oxygen deficiency concentration in aquaculture. .
  • Excess sulfite is oxidized to become a sulfate that exists in nature, but dissolved oxygen is also consumed in addition to oxygen in the air.
  • ballast water treatment method of the present invention when ballast water containing residual chlorine is drained, the residual chlorine in the ballast water is completely reduced and neutralized by adjusting the redox potential of the drainage to less than 500 mV with sulfite. be able to.
  • ballast water treatment method of the present invention aquatic organisms and the like in the ballast water can be killed and sterilized, and generation of by-product bromoform and the like can be suppressed. Therefore, ballast water can be discharged safely without adversely affecting the ecosystem and environment of the drainage area.
  • this invention provides the processing agent of the ballast water used for the processing method of the ballast water mentioned above.
  • the treatment agent of the present invention is a combination of ammonia or ammonium salt and hypochlorite.
  • Combining ammonia or ammonium salt and hypochlorite means that ammonia or ammonium salt and hypochlorite may be mixed in advance as a treatment agent, or ammonia or ammonium salt and hypochlorite. It is good also as a processing agent by packaging salt etc. separately.
  • As the ammonia or ammonium salt used for the treating agent a substance capable of producing chloramine by reacting with hypochlorite is preferable.
  • ammonia or ammonium salts include ammonia or ammonium salts used in the above-described method for treating ballast water, and the preferred ranges are also the same.
  • a hypochlorite used for the processing agent of this invention the hypochlorite used for the processing method of the ballast water mentioned above can be mentioned, A preferable range is also the same.
  • the form of ammonia or ammonium salt and hypochlorite used for the treating agent may be a solid such as a powder or a liquid such as a concentrated liquid.
  • the use mode of the treating agent, the amount mixed with the ballast water, and the like are the same as in the treatment method using ammonia or ammonium salt and hypochlorite in the above-described method for treating ballast water.
  • the treatment agent for ballast water of the present invention is inexpensive, easily available and easy to handle, and by using this, foreign invaders existing in the ballast water can be killed and sterilized, and the ballast water Therefore, it can be suitably used for ballast water treatment from the viewpoint of environment and safety.
  • Reagents and analyzers were used in the examples. 1.
  • Reagents, etc. (1) Ballast water Seawater (pH 7.75, 26.6 ° C.) collected in Suehiro-cho, Tsurumi-ku, Yokohama was filtered through a filter and used as simulated ballast water. The filter used was a 95 mm diameter glass filter paper (Advantech GC-90) made of borosilicate glass fiber.
  • Ammonia or ammonium salt As a supply source of ammonia or ammonium salt, 1 mol / L ammonia water and ammonium chloride as a reagent were used.
  • Trihalomethane standard solution B (hexane solution) manufactured by Wako Pure Chemical Industries was used as a standard solution of trihalomethanes.
  • This trihalomethane standard solution B contains chloroform 10 mg / L, bromodichloromethane 2.5 mg / L, chlorodibromomethane 4 mg / L, and bromoform 20 mg / L.
  • Bromoform standard solution Collect exactly 1 mL of the standard solution of trihalomethanes, add it to 100 mL of n-hexane collected in advance, and add the primary diluted bromoform standard hexane solution (hereinafter referred to as the bromoform standard hexane solution simply as the bromoform standard solution).
  • the bromoform standard hexane solution simply as the bromoform standard solution.
  • Exactly 1 mL of the primary diluted bromoform standard solution was collected and added to 50 mL of n-hexane collected in advance to prepare a secondary diluted bromoform standard solution.
  • Sodium hypochlorite Sodium hypochlorite aqueous solution (TG ballast cleaner (trade name)) having an effective chlorine concentration of about 13% by mass was used as sodium hypochlorite.
  • TG ballast cleaner (trade name)
  • Sodium sulfite Sodium sulfite was dissolved in ion-exchanged water to obtain a 0.25 mol / L sodium sulfite aqueous solution (TG Environmental Guard (trade name)).
  • the measurement of the analysis sample was performed using a gas chromatograph with an electron capture detector (G-5000, manufactured by Hitachi, Ltd.).
  • the column was a capillary column made of fused silica having an inner diameter of 0.32 mm and a length of 25 m, and the inner surface was coated with a liquid phase of 5% diphenylpolysiloxane-95% dimethylpolysiloxane with a thickness of 1.20 ⁇ m.
  • the measurement conditions were a column temperature of 120 ° C., an injection temperature of 210 ° C., and a detector temperature of 220 ° C.
  • Example 1 After adding ammonia water to the above ballast water so as to be 22 mg / L, after adding sodium hypochlorite aqueous solution so as to have an initial effective chlorine concentration of 20 mg / L, it is sealed and covered with aluminum foil for light shielding And left at room temperature for 17 days. Thereafter, a ballast water sample 1 was obtained by adding and reducing and neutralizing an aqueous sodium sulfite solution to 30 mg / L. In Example 1 and Example 2 below, samples were prepared in duplicate.
  • ballast water was sealed in the same manner, covered with aluminum foil and shielded from light, and allowed to stand at room temperature for 17 days, and then an aqueous sodium sulfite solution was added in the same amount as sample 1 above.
  • an aqueous sodium sulfite solution was added in the same amount as sample 1 above. was prepared as a blank sample.
  • Example 2 After adding an aqueous ammonium chloride solution to the above ballast water to a concentration of 22 mg / L, and then adding an aqueous sodium hypochlorite solution to an initial effective chlorine concentration of 20 mg / L, it is sealed and covered with aluminum foil for light shielding. And left at room temperature for 17 days. Then, the ballast water sample 2 was reduced and neutralized with the same amount of sodium sulfite aqueous solution as in Example 1.
  • Example 3 A solution in which the same amount of ammonia water (22 mg / L) and sodium hypochlorite aqueous solution (initial effective chlorine concentration 20 mg / L) as that added in Example 1 was mixed in advance was prepared and added to the above ballast water. .
  • the ballast water sample 3 was sealed and sealed and light-shielded for 17 days at room temperature, then reduced and neutralized with the same amount of sodium sulfite aqueous solution as in Example 1.
  • Example 4 Prepare a solution in which the same amount of ammonia chloride aqueous solution (22 mg / L) and sodium hypochlorite aqueous solution (initial effective chlorine concentration 20 mg / L) as those added in Example 2 were mixed in advance and added to the above ballast water did.
  • a ballast water sample 4 was obtained by sealing and sealing the whole with an aluminum foil and allowing it to stand at room temperature for 17 days, followed by reduction and neutralization with the same amount of sodium sulfite aqueous solution as in Example 1.
  • Comparative Example 1 An aqueous sodium hypochlorite solution was added to the above ballast water so as to have an initial effective chlorine concentration of 20 mg / L, which was then sealed and allowed to stand at room temperature for 1 day with the whole covered with an aluminum foil and shielded from light. Thereafter, the same amount of sodium sulfite aqueous solution as in Example 1 was added for reduction and neutralization. The sample was sealed and sealed for 16 days at room temperature in a state where the whole was covered with aluminum foil and shielded from light, and used as Comparative Sample 1.
  • Comparative Example 2 A sodium hypochlorite aqueous solution was added to the above ballast water so as to have an initial effective chlorine concentration of 20 mg / L, and then sealed, covered with an aluminum foil and shielded from light, and allowed to stand at room temperature for 17 days. Thereafter, a comparative sample 2 was prepared by adding and reducing and neutralizing the same amount of sodium sulfite aqueous solution as in Example 1.
  • Comparative Example 3 An aqueous sodium hypochlorite solution was added to the above ballast water so as to have an initial effective chlorine concentration of 20 mg / L, which was then sealed and allowed to stand at room temperature for 1 day with the whole covered with an aluminum foil and shielded from light. Thereafter, an aqueous sodium sulfite solution corresponding to an initial effective chlorine concentration of 10 mg / L was added for reduction and neutralization. The sample was sealed and sealed for 16 days at room temperature in a state where the whole was covered with an aluminum foil and shielded from light.
  • the amount of bromoform produced was measured for the ballast water samples obtained in Examples 1 to 4 and Comparative Examples 1 to 3. Using a whole pipette, 5 mL of each ballast water sample was collected, added to a colorimetric tube containing exactly 50 mL of n-hexane in advance, and shaken for 15 seconds to extract bromoform in the n-hexane layer. For the blank sample, sample 3 and sample 4, the bromoform concentration of the extraction layer was directly measured with an analyzer. For Samples 1 and 2 and Comparative Samples 1 to 3, since the bromoform concentration of this extraction layer is high, each of the analytical samples diluted as described below was prepared and the bromoform concentration was measured.
  • ballast water unlike neutral drinking water, the pH is high, and even when seawater containing a large amount of bromide ions is used as ballast water, ammonia or ammonium salt and hypochlorite can be used in combination. It was found that the generation of bromoform in ballast water can be greatly suppressed. That is, a method of mixing ammonia or ammonium salt and sodium hypochlorite in advance to produce chloramine and then mixing with ballast water, and first mixing ammonia or ammonium salt with ballast water, and then sodium hypochlorite It was found that bromoform formation under seawater conditions can be remarkably suppressed by both methods of mixing bromide and producing bromamine, chloramine, etc. in ballast water.
  • the ballast water treatment method of the present invention and the ballast water treatment agent used in the method are capable of effectively killing and sterilizing harmful aquatic organisms contained in the ballast water, and trihalomethanes such as bromoform during the killing and sterilization treatment. Generation can be suppressed. Therefore, by using the treatment method and the treatment agent of the present invention, it becomes possible to safely discharge the ballast water of the ship without polluting the environment / ecosystem of the discharge water area.

Abstract

A method for treating ship ballast water, characterized in that the ballast water is mixed with ammonia or an ammonium salt and a hypochlorous acid salt to eradicate or kill aquatic organisms in the ballast water and suppress the generation of any trihalomethane compound; and an agent for treating ballast water, which can be used for the method.

Description

船舶のバラスト水の処理方法Ship ballast water treatment method
 本発明は、船舶のバラスト水を安全に排出できるよう処理する方法、及び当該処理方法に用いるバラスト水の処理剤に関する。 The present invention relates to a method for treating ballast water of a ship so that it can be safely discharged, and a treatment agent for ballast water used in the treatment method.
 近年、水生生物がその自然分布域を越えた水域に人為的に運ばれて定着し、新たな水域の生態系を乱している事例が、各国で報告され問題となっている。このような生物は外来侵入生物と呼ばれ、その多くは二枚貝や、ヒトデ、フジツボ類、或いは海藻のような底生生物・付着生物である。移動定着の原因としては、船体への付着やバラスト水への混入といった船舶を介する場合、養殖や放流のための輸入あるいは輸入水産物に混入しての移動といった水産業に起因する場合等が考えられている。海洋調査等の研究の進展に伴い、外来侵入生物として渦鞭毛藻類、カイアシ類、クシクラゲ等のプランクトンがバラスト水によって運ばれるのはもちろんのこと、底生・付着生物も幼生のプランクトン時にバラスト水によって大量に運ばれていることが認識されるようになり、これが生態圏撹乱の大きな原因の一つであると考えられている。このような実情に鑑み、バラスト水による水生生物の移動を防ぐことの重要性が指摘され、陸地から200海里以上離れた水域でのバラスト水交換が義務付けられている。
 国際海事機関ではこの問題を1980年代後半から取り上げ、2004年2月には「船舶のバラスト水および沈殿物の規制および管理のための国際条約(INTERNATIONAL CONVENTION FOR THE CONTROL AND MANAGEMENT OF SHIPS’ BALLAST WATER AND SEDIMENTS)」を採択して、バラスト水管理を規制しようと努めている。この条約によって、国際航海に従事する船舶には承認されたバラスト水管理システム(バラスト水処理装置など)の設置を義務付ける等といった今後の求められる方向性が明確にされている。さらには、前述のように陸地から200海里以上離れた水域でのバラスト水交換によって、交換中の船舶が転覆するという事故もあり、バラスト水の規制管理強化の方向性が加速されている。
In recent years, cases in which aquatic organisms have been artificially transported and settled in waters beyond their natural distribution and disturbed the ecosystems of new waters have been reported and problematic in various countries. Such organisms are called alien invading organisms, most of which are bivalves, starfish, barnacles, or benthic and attached organisms such as seaweed. Possible causes of migration and settlement are via ship such as sticking to the hull or mixing with ballast water, or due to fisheries such as import for aquaculture or release or movement mixed with imported marine products. ing. With the progress of research such as oceanographic surveys, planktons such as dinoflagellates, copepods, and jellyfishes are carried by ballast water as alien invasive organisms, and benthic and attached organisms are also affected by ballast water during larval plankton. It is recognized that it is carried in large quantities, and this is considered to be one of the major causes of ecosphere disturbance. In view of such circumstances, it is pointed out that it is important to prevent the movement of aquatic organisms by ballast water, and ballast water exchange is required in a water area 200 nautical miles or more away from land.
The International Maritime Organization has taken up this issue since the late 1980s. In February 2004, “International Convention for the Control and Management of Ships' Ballast Water and the International Convention for the Control and Management of Ship Ballast Water and Precipitates” SEDIMENTS) ”and is trying to regulate ballast water management. This treaty clarifies the future direction that ships that are engaged in international voyages, such as requiring the installation of an approved ballast water management system (such as a ballast water treatment system). Further, as described above, there is an accident that the ship being exchanged capsizes due to the ballast water exchange in a water area that is 200 nautical miles or more away from the land, and the direction of strengthening the regulation management of the ballast water is accelerated.
 さらに近年、バラスト水処理に伴って発生又は副生する化学物質の存在についても関心が高まっている。これらの化学物質を何ら処理せず、バラスト水を目的海域等で排出した場合に、上述した外来侵入生物の場合と同様、海洋環境を汚染し、ひいては生態系に悪影響を与えることが懸念されている。化学物質による汚染は、例えば、バラスト水中の外来侵入生物を殺滅・殺菌する目的で混入された殺菌剤等の化学物質が、殺滅・殺菌後においてもバラスト水中に残存し、これを処理しないまま排水を行うこと等によっても生じ得る。そのため、排出に際して外来侵入生物と微量であっても発生又は副生する化学物質との双方を除去し、生態系に悪影響を与えることなく安全な状態でバラスト水を排出しうるシステムの構築が希求されている。 In recent years, there has been an increasing interest in the presence of chemical substances that are generated or by-produced during ballast water treatment. When these chemical substances are not treated at all and ballast water is discharged in the target sea area, etc., as in the case of the alien invaders described above, there is a concern that the marine environment may be polluted and eventually adversely affect the ecosystem. Yes. Contamination with chemical substances, for example, chemical substances such as bactericides mixed for the purpose of killing and sterilizing alien invaders in ballast water remain in ballast water even after killing and sterilization, and do not treat them. It can also occur by draining the wastewater. Therefore, there is a demand for the construction of a system that can remove ballast water in a safe state without adversely affecting the ecosystem by removing both alien invaders and chemical substances that are generated or by-produced even in trace amounts during discharge. Has been.
 一般的に行われているバラスト水の処理方法では、何らかの有害物質が生成することが多く、例えば、次亜塩素酸塩などを用いてバラスト水を塩素処理する場合、微量副生物としてブロモホルムを生成する。また、ブロモホルムの他に、海水中に含まれる塩化物や臭化物等のハロゲンで置換されたトリハロメタン類が発生することもある。
 トリハロメタン類の低減化については、飲料水を塩素処理する際に生成するトリハロメタン類、特にクロロホルムを低減させる試みが種々行われている。水道水では、殺菌消毒のために次亜塩素酸塩である次亜塩素酸ナトリウムが広く用いられているが、この次亜塩素酸ナトリウムとpH7程度の中性の原水中に存在するフミン質とが反応し、副生成物としてクロロホルムをはじめとするトリハロメタン類を生成する。クロロホルム等の副生を抑制するために、塩基性にした次亜塩素酸ナトリウムにアンモニア等のアンモニウムイオンを生成する物質を加えて予めクロラミンを生成させ、これを殺菌消毒に用いることで副生成物であるクロロホルム等の発生が抑制されることが知られている。また、飲料水等に使用するための原水からトリハロメタン類の前駆物質(フミン質等)を除去し、トリハロメタン類の発生を抑制する方法が提案されている(例えば、特公平3-15516号公報、特開平8-155493号公報、及び特開平10-202297号公報を参照)。
 しかしながら、バラスト水に通常用いられる海水や汽水は、pHが8程度であること、臭化物イオンを豊富に含むこと等中性の飲料水とは性質が大きく異なり、これら海水や汽水においてブロモホルム等のトリハロメタン類の発生を抑制することについては未だ検討がなされていない。
Commonly used ballast water treatment methods often generate some harmful substances. For example, when chlorinating ballast water using hypochlorite, bromoform is produced as a minor by-product. To do. In addition to bromoform, trihalomethanes substituted with halogen such as chloride and bromide contained in seawater may be generated.
Regarding the reduction of trihalomethanes, various attempts have been made to reduce trihalomethanes, especially chloroform, produced when chlorinating drinking water. In tap water, sodium hypochlorite, a hypochlorite, is widely used for sterilization and disinfection, but this sodium hypochlorite and humic substances present in neutral raw water of about pH 7 React to produce trihalomethanes such as chloroform as a by-product. In order to suppress by-products such as chloroform, by adding a substance that generates ammonium ions such as ammonia to basic sodium hypochlorite, chloramine is generated in advance, and this is used for sterilization and disinfection. It is known that the generation of chloroform and the like is suppressed. Further, a method has been proposed in which trihalomethane precursors (humic substances, etc.) are removed from raw water for use in drinking water and the like, and the generation of trihalomethanes is suppressed (for example, Japanese Patent Publication No. 3-15516, (See JP-A-8-155493 and JP-A-10-202297).
However, seawater and brackish water usually used for ballast water are significantly different in nature from neutral drinking water such as having a pH of about 8 and containing abundant bromide ions. In these seawater and brackish water, trihalomethane such as bromoform is used. No investigation has been made yet on the suppression of the occurrence of mosquitoes.
 本発明は、船舶のバラスト水中における外来侵入生物等の水生生物を殺滅・殺菌するとともに、ブロモホルムをはじめとするトリハロメタン類の発生を抑制しうるバラスト水の処理方法、及び当該処理方法に用いるバラスト水の処理剤を提供することを課題とする。 The present invention relates to a ballast water treatment method capable of killing and sterilizing aquatic organisms such as alien invaders in ship's ballast water and suppressing the generation of trihalomethanes including bromoform, and a ballast used in the treatment method. It is an object to provide a treatment agent for water.
 本発明者らは上記課題に鑑み、バラスト水中の水生生物を殺滅・殺菌して外来侵入生物等の移動定着を防止するとともに、多量に生成した場合には有害となる恐れがあるブロモホルム等の発生を抑制する方法について鋭意検討した。その結果、バラスト水にアンモニア又はアンモニウム塩と次亜塩素酸塩とを混合することで、海水条件下においてもバラスト水中のブロモホルムをはじめとするトリハロメタン類の発生を抑え、排水するバラスト水中のブロモホルム等の濃度を大幅に低減できるとともに、バラスト水中の水生生物を効果的に殺滅・殺菌することができることを見出した。本発明は、これらの知見に基づき成されるに至ったものである。 In view of the above problems, the present inventors have killed and sterilized aquatic organisms in ballast water to prevent migration and fixation of alien invading organisms and the like such as bromoform which may be harmful when produced in large quantities. We have intensively studied how to suppress the occurrence. As a result, by mixing ammonia or ammonium salt and hypochlorite in ballast water, the generation of trihalomethanes such as bromoform in ballast water is suppressed even under seawater conditions, and bromoform in ballast water to be drained, etc. It has been found that the concentration of water can be greatly reduced and aquatic organisms in ballast water can be effectively killed and sterilized. The present invention has been made based on these findings.
 本発明によれば、下記の手段が提供される:
(1)バラスト水にアンモニア又はアンモニウム塩と次亜塩素酸塩とを混合し、バラスト水中の水生生物を殺滅・殺菌させ且つトリハロメタン類の発生を抑制することを特徴とするバラスト水の処理方法。
(2)排出時のバラスト水中のブロモホルムの濃度が300μg/L以下であることを特徴とする前記(1)項に記載のバラスト水の処理方法。
(3)前記ブロモホルム濃度が150μg/L以下であることを特徴とする前記(2)項に記載のバラスト水の処理方法。
According to the present invention, the following means are provided:
(1) A ballast water treatment method comprising mixing ballast water with ammonia or an ammonium salt and hypochlorite to kill and sterilize aquatic organisms in the ballast water and suppress generation of trihalomethanes .
(2) The method for treating ballast water as described in (1) above, wherein the concentration of bromoform in the ballast water at the time of discharge is 300 μg / L or less.
(3) The method for treating ballast water as described in (2) above, wherein the bromoform concentration is 150 μg / L or less.
(4)前記アンモニア又はアンモニウム塩と次亜塩素酸塩との混合により、バラスト水中の残留塩素濃度を1mg/L以上100mg/L以下に調整して水生生物を殺滅・殺菌することを特徴とする前記(1)~(3)項のいずれか1項に記載のバラスト水の処理方法。
(5)前記バラスト水中の残留塩素濃度を2mg/L以上20mg/L以下に調整して水生生物を殺滅・殺菌することを特徴とする前記(4)項に記載のバラスト水の処理方法。
(6)前記バラスト水中の残留塩素濃度を2mg/L以上10mg/L以下に調整して水生生物を殺滅・殺菌することを特徴とする前記(4)項に記載のバラスト水の処理方法。
(7)前記アンモニア又はアンモニウム塩と次亜塩素酸塩との混合により、バラスト水中の水生生物を殺滅・殺菌処理した後、該バラスト水中の残留塩素を亜硫酸塩によって還元・中和処理することを特徴とする前記(1)~(6)項のいずれか1項に記載のバラスト水の処理方法。
(4) The residual chlorine concentration in the ballast water is adjusted to 1 mg / L or more and 100 mg / L or less by mixing the ammonia or ammonium salt and hypochlorite to kill and sterilize aquatic organisms. The method for treating ballast water according to any one of (1) to (3) above.
(5) The method for treating ballast water according to (4) above, wherein the residual chlorine concentration in the ballast water is adjusted to 2 mg / L or more and 20 mg / L or less to kill and sterilize aquatic organisms.
(6) The method for treating ballast water according to (4) above, wherein the residual chlorine concentration in the ballast water is adjusted to 2 mg / L or more and 10 mg / L or less to kill and sterilize aquatic organisms.
(7) After killing and sterilizing aquatic organisms in ballast water by mixing ammonia or ammonium salt and hypochlorite, reducing and neutralizing residual chlorine in the ballast water with sulfite The method for treating ballast water according to any one of items (1) to (6), wherein:
(8)バラスト水にアンモニア又はアンモニウム塩と次亜塩素酸塩とを混合するにあたり、アンモニア又はアンモニウム塩をバラスト水に混合した後、次亜塩素酸塩をバラスト水に混合することを特徴とする前記(1)~(7)項のいずれか1項に記載のバラスト水の処理方法。
(9)バラスト水にアンモニア又はアンモニウム塩と次亜塩素酸塩とを混合するにあたり、アンモニア又はアンモニウム塩と次亜塩素酸塩とを予め混合しバラスト水に加えることを特徴とする前記(1)~(7)項のいずれか1項に記載のバラスト水の処理方法。
(10)バラスト水にアンモニア又はアンモニウム塩と次亜塩素酸塩とを混合するにあたり、次亜塩素酸塩をバラスト水に混合した後、アンモニア又はアンモニウム塩をバラスト水に混合することを特徴とする前記(1)~(7)項のいずれか1項に記載のバラスト水の処理方法。
(11)バラスト水にアンモニア又はアンモニウム塩と次亜塩素酸塩とを混合するにあたり、アンモニア又はアンモニウム塩を事前にバラストタンクへ添加した後、次亜塩素酸塩を混合したバラスト水をバラストタンクに注入することを特徴とする前記(1)~(7)項のいずれか1項に記載のバラスト水の処理方法。
(8) When mixing ammonia or ammonium salt and hypochlorite in ballast water, after mixing ammonia or ammonium salt with ballast water, hypochlorite is mixed with ballast water. The method for treating ballast water according to any one of (1) to (7).
(9) In mixing the ammonia or ammonium salt and hypochlorite with the ballast water, the ammonia or ammonium salt and hypochlorite are mixed in advance and added to the ballast water (1) The method for treating ballast water according to any one of items (7) to (7).
(10) When mixing ammonia or ammonium salt and hypochlorite into ballast water, after mixing hypochlorite with ballast water, ammonia or ammonium salt is mixed with ballast water. The method for treating ballast water according to any one of (1) to (7).
(11) In mixing ammonia or ammonium salt and hypochlorite into ballast water, after adding ammonia or ammonium salt to the ballast tank in advance, the ballast water mixed with hypochlorite is added to the ballast tank. The method for treating ballast water according to any one of (1) to (7), wherein the ballast water is injected.
(12)前記アンモニア又はアンモニウム塩が、次亜塩素酸塩と反応してクロラミンを生成しうる化合物であることを特徴とする前記(1)~(11)項のいずれか1項に記載のバラスト水の処理方法。
(13)アンモニア又はアンモニウム塩と次亜塩素酸塩とを組合わせてなる前記(1)~(12)項のいずれか1項に記載のバラスト水の処理方法に用いるバラスト水の処理剤。
(14)前記アンモニア又はアンモニウム塩が、次亜塩素酸塩と反応してクロラミンを生成しうる化合物であることを特徴とする前記(13)項に記載のバラスト水の処理剤。
(12) The ballast according to any one of (1) to (11) above, wherein the ammonia or ammonium salt is a compound capable of reacting with hypochlorite to produce chloramine. Water treatment method.
(13) A ballast water treating agent for use in the method for treating ballast water described in any one of (1) to (12) above, comprising a combination of ammonia or ammonium salt and hypochlorite.
(14) The treatment agent for ballast water as described in (13) above, wherein the ammonia or ammonium salt is a compound capable of reacting with hypochlorite to produce chloramine.
 本発明によれば、船舶のバラスト水中において外来侵入生物となり得る水生生物を殺滅・殺菌するとともに、バラスト水中におけるブロモホルムをはじめとするトリハロメタン類の発生を効果的且つ持続的に抑制し、排出するバラスト水中のブロモホルム等のトリハロメタン類の濃度を低減できるバラスト水の処理方法を提供することができる。また、本発明によれば、前記処理方法に用いるバラスト水の処理剤を提供することができる。
 本発明の処理方法によれば、処理剤として入手が容易で低コストな成分を使用し、外来侵入生物や有害性が懸念される化学物質によって排出水域の環境・生態系を汚染することなく安全にバラスト水を排出することが可能となる。
According to the present invention, aquatic organisms that can be alien invaders in the ballast water of ships are sterilized and sterilized, and the generation of trihalomethanes such as bromoform in the ballast water is effectively and continuously suppressed and discharged. A method for treating ballast water that can reduce the concentration of trihalomethanes such as bromoform in the ballast water can be provided. Moreover, according to this invention, the processing agent of the ballast water used for the said processing method can be provided.
According to the treatment method of the present invention, a low-cost component that is easily available as a treatment agent is used, and it is safe without contaminating the environment / ecosystem of the discharged water area by alien invading organisms or chemical substances that may be harmful. It becomes possible to discharge ballast water.
 本発明の上記及び他の特徴及び利点は、下記の記載からより明らかになるであろう。 The above and other features and advantages of the present invention will become more apparent from the following description.
 本発明のバラスト水処理方法は、バラスト水中の水生生物を効果的に殺滅・殺菌する方法であり、しかも当該殺滅・殺菌処理を行うにあたりブロモホルム等の発生を抑制できるものである。より具体的には、バラスト水にアンモニア又はアンモニウム塩と次亜塩素酸塩とを混合することで、取水から排水までの間においてバラスト水中の水生生物を殺滅・殺菌し、且つその間バラスト水中でブロモホルムをはじめとするトリハロメタン類(以下、ブロモホルム等という)が発生することを抑制し、バラスト水中のブロモホルム等の濃度を低いレベルに抑えることを特徴とする。本発明の方法によれば、取水水域の水生生物等を排水水域に持ち込むことなく、しかもブロモホルム等の濃度が十分に低減された状態でバラスト水を船外に排出することが可能となるため、排水水域の海洋環境及び海洋生態系への悪影響を回避できる。
 本発明において「殺滅・殺菌」とは、生物等の個体死のほか、生きていても繁殖できない状態を含み、例えば、目的地までの航行中にバラスト水中において、微生物や細菌等の発生ないしは増殖を防止することも包含する。また、「バラスト水中の水生生物」とは、バラスト水中に含まれうる細菌、微生物及び生物をいい、バラスト水に含まれる水生生物はもちろん、バラストタンク底部に堆積した底質中に含まれる生物や卵等も含まれる。これらの水生生物には、本体の分布地域を超えて移動定着することで、移動先の水域の生態系を乱すことが懸念される外来侵入生物が含まれる。
 以下、本発明について詳細に説明する。
The ballast water treatment method of the present invention is a method for effectively killing and sterilizing aquatic organisms in ballast water, and can suppress the generation of bromoform and the like when performing the killing and sterilization treatment. More specifically, by mixing ammonia or ammonium salt and hypochlorite in the ballast water, aquatic organisms in the ballast water are sterilized and sterilized between intake and drainage, and in the meantime, It is characterized by suppressing the generation of trihalomethanes such as bromoform (hereinafter referred to as bromoform) and suppressing the concentration of bromoform and the like in the ballast water to a low level. According to the method of the present invention, it is possible to discharge ballast water out of the ship without bringing aquatic organisms in the intake water area into the drainage water area and in a state where the concentration of bromoform is sufficiently reduced, The negative impact on the marine environment and marine ecosystem of the drainage can be avoided.
In the present invention, “killing / sterilizing” includes not only the death of living organisms but also the state in which they cannot reproduce even if they are alive, for example, the generation or generation of microorganisms or bacteria in ballast water while navigating to the destination. It also includes preventing proliferation. “Aquatic organisms in ballast water” refers to bacteria, microorganisms and organisms that can be contained in ballast water, as well as organisms contained in sediments deposited at the bottom of ballast tanks as well as aquatic organisms contained in ballast water. Eggs are also included. These aquatic organisms include alien invaders that are concerned about disturbing the ecosystem of the destination water area by moving and establishing beyond the distribution area of the main body.
Hereinafter, the present invention will be described in detail.
 本発明のバラスト水の処理方法は、殺滅・殺菌成分として次亜塩素酸塩とともにアンモニア又はアンモニウム塩を併せて用いる。
 バラスト水は、船舶の安定性を保つために船舶の船倉内またはバラストタンク内に積載される水で、一般的に海水や海水と淡水とが混ざり合った汽水を用いることが多い。取水されたバラスト水中には多くの水生生物や細菌等が含まれ、これらを殺滅・殺菌するために殺菌剤を用いることが行われている。強力な殺菌剤である塩素や次亜塩素酸は、バラスト水中の生物等の除去のため好適に用いることができるが、その一方で殺滅・殺菌目的で添加した塩素や次亜塩素酸が、バラスト水として用いた海水や汽水に溶存している有機物(例えば、フミン質)と反応して、ブロモホルム等が発生するという懸念がある。
 このような事情に鑑み、本発明は、バラスト水中に次亜塩素酸塩成分に併せて、アンモニア成分又はアンモニウム塩成分を含有させることを特徴とする。アンモニア又はアンモニウム塩を併せて使用することにより、次亜塩素酸塩を単独で用いた場合と比較して、バラスト水中の水生生物に対する殺滅・殺菌能力を維持したまま、バラスト水中におけるブロモホルム等の発生を効果的かつ持続的に抑制又は防止することができる。本発明の方法により処理されたバラスト水は、取水から排水までの間においてブロモホルム等の発生が低いレベルに抑えられており、排水時に更なるブロモホルム等の低減化処理等を施すことなく、安全に排出又は再利用することができる。
The ballast water treatment method of the present invention uses ammonia or ammonium salt together with hypochlorite as a killing / sterilizing component.
Ballast water is water loaded in a ship's hold or ballast tank in order to maintain the stability of the ship. Generally, brackish water mixed with seawater or seawater and fresh water is often used. The aspirated ballast water contains many aquatic organisms, bacteria, and the like, and a bactericidal agent is used to kill and sterilize these. Chlorine and hypochlorous acid, which are powerful disinfectants, can be suitably used for the removal of organisms in ballast water, while chlorine and hypochlorous acid added for killing and disinfecting purposes are There is concern that bromoform and the like are generated by reacting with organic substances (for example, humic substances) dissolved in seawater and brackish water used as ballast water.
In view of such circumstances, the present invention is characterized in that an ammonia component or an ammonium salt component is contained in the ballast water in addition to the hypochlorite component. By using ammonia or ammonium salt in combination with chlorform, etc. in ballast water while maintaining the ability to kill and sterilize aquatic organisms in ballast water compared to when hypochlorite is used alone. Generation | occurrence | production can be suppressed or prevented effectively and continuously. In the ballast water treated by the method of the present invention, the generation of bromoform and the like is suppressed to a low level during the period from intake to drainage, and it can be safely performed without further reduction treatment of bromoform or the like during drainage. Can be discharged or reused.
 本発明におけるトリハロメタン類としては、ブロモホルム(トリブロモメタン)の他に、海水中の塩化物や臭化物などで置換されたクロロホルム(トリクロロメタン)、ブロモジクロロメタン、ジブロモクロロメタン等が挙げられる。中でも、本発明の処理方法はブロモホルムの発生を好適に抑制することができる。上述のようにバラスト水は海水や汽水を用いることが多く、一般に海水や汽水中の臭化物イオン濃度は淡水中よりも高いためブロモホルムが生成されやすい。そのため、次亜塩素酸塩等によって発生するトリハロメタン類の中でも、特にブロモホルムの発生を抑制することが環境・生態系保護の点から重要である。本発明の処理方法は、バラスト水として海水又は汽水を用いた場合においても効果的かつ持続的にブロモホルム等の発生を抑制することができる。 Examples of the trihalomethanes in the present invention include bromoform (tribromomethane), chloroform (trichloromethane) substituted with chloride or bromide in seawater, bromodichloromethane, dibromochloromethane, and the like. Among these, the treatment method of the present invention can suitably suppress the generation of bromoform. As mentioned above, seawater and brackish water are often used as ballast water, and bromoform is likely to be generated because bromide ion concentrations in seawater and brackish water are generally higher than in fresh water. Therefore, among the trihalomethanes generated by hypochlorite and the like, it is particularly important from the viewpoint of environmental and ecosystem protection to suppress the generation of bromoform. The treatment method of the present invention can effectively and continuously suppress the generation of bromoform or the like even when seawater or brackish water is used as ballast water.
 バラスト水中のブロモホルム濃度については、国によっては個別の基準値を設定する可能性もあり、今後規制が厳格化されることが見込まれる。排出時のバラスト水に含まれる化学物質に関しては、国際海事機関が2004年2月に定めた「船舶バラスト水及び沈殿物の規制及び管理のための国際条約」において難分解性、生物蓄積性及び毒性(Persistent,Bioaccumulative and Toxic(PBT))、及びPEC/PNEC(PEC:Predicted Environmental Concentration/PNEC:Predicted No Effect Concentration)という環境影響評価が設けられている。また、上記評価を満足しても更に環境にやさしいことが望まれる傾向にある。通常、排出時のバラスト水中のブロモホルム濃度は500μg/L前後であることが多い。本発明の処理方法を用いれば、後述の実施例でも実証されているように、排水時のバラスト水のブロモホルム濃度を500μg/L以下とすることができる。さらに、本発明においては当該ブロモホルム濃度を300μg/L以下となるよう処理することが好ましく、150μg/L以下となるよう処理することがより好ましく、130μg/L以下となるよう処理することが特に好ましい。 Regarding the bromoform concentration in ballast water, individual standards may be set in some countries, and regulations are expected to be tightened in the future. Regarding the chemical substances contained in ballast water at the time of discharge, the international maritime organization established in February 2004 “International Convention for the Regulation and Management of Ship Ballast Water and Sediment”. toxicity (P ersistent, B ioaccumulative and T oxic (PBT)), and PEC / PNEC (PEC: P redicted E nvironmental C oncentration / PNEC: P redicted N o E ffect C oncentration) environmental impact assessment that is provided. Moreover, even if the above evaluation is satisfied, it tends to be desired to be more environmentally friendly. Usually, the bromoform concentration in the ballast water at the time of discharge is often around 500 μg / L. If the processing method of this invention is used, the bromoform density | concentration of the ballast water at the time of drainage can be 500 microgram / L or less so that it may demonstrate also in the below-mentioned Example. Further, in the present invention, the treatment is preferably performed so that the bromoform concentration is 300 μg / L or less, more preferably 150 μg / L or less, and particularly preferably 130 μg / L or less. .
 バラスト水中含まれる水生生物を効果的に殺滅・殺菌するためには、殺滅・殺菌や酸化反応に有効に作用しうる残留塩素がバラスト水中にどの程度含まれているかが重要であり、これは残留塩素濃度として表すことができる。残留塩素は有効塩素ともいい、次亜塩素酸等の遊離塩素及びクロラミンやブロラミン等の結合塩素を含む概念である。残留塩素濃度は有効塩素濃度とも言い、遊離塩素や結合塩素の酸化能力を塩素換算で表したものである。
 本発明においては、アンモニア又はアンモニウム塩と次亜塩素酸塩とをバラスト水中に混合させることにより、残留塩素として次亜塩素酸等の遊離塩素とクロラミンやブロラミン等の結合塩素とが生じる。これらの残留塩素は生物等に対して殺菌・殺滅作用を発揮する。クロラミンは次亜塩素酸塩とアンモニア又はアンモニウム塩が反応して生成する物質である。また、ブロラミンは、海水に添加された次亜塩素酸塩の塩素と海水中の臭素が置換され生成した次亜臭素酸塩が、アンモニア又はアンモニウム塩と反応して生成するものであり、クロラミンと同様に結合塩素の一種である。
In order to effectively kill and sterilize aquatic organisms contained in ballast water, it is important how much residual chlorine is contained in the ballast water that can effectively act on killing, sterilization and oxidation reactions. Can be expressed as residual chlorine concentration. Residual chlorine is also called effective chlorine, and is a concept that includes free chlorine such as hypochlorous acid and bound chlorine such as chloramine and bromoamine. Residual chlorine concentration is also called effective chlorine concentration, and represents the oxidation ability of free chlorine and combined chlorine in terms of chlorine.
In the present invention, by mixing ammonia or ammonium salt and hypochlorite in ballast water, free chlorine such as hypochlorous acid and bound chlorine such as chloramine and brolamin are generated as residual chlorine. These residual chlorines exert sterilizing and killing effects on living organisms. Chloramine is a substance produced by reaction of hypochlorite with ammonia or ammonium salt. In addition, bromamine is produced by the reaction of hypochlorite added to seawater with hypochlorite produced by substitution of bromine in seawater with ammonia or ammonium salt. Similarly, it is a kind of bonded chlorine.
 本発明においては、アンモニア又はアンモニウム塩と次亜塩素酸塩とを用いた殺滅・殺菌処理によって、排出時のバラスト水が前記「船舶バラスト水及び沈殿物の規制及び管理のための国際条約」に定められているバラスト水排出基準を満たしていることが好ましい。具体的な基準としては、前記条約のD節:バラスト水管理基準 規則D-2:バラスト水排出基準で、最小サイズ50μm以上の生物について、1m当たり生存可能数10未満、また、最小サイズ50μm未満で10μm以上の生物について、1mL当たり生存可能数10未満の排出とされ、さらに人間の健康基準としての指標微生物として(1)病毒性コレラ菌(O1及びO139)について、1cfu/100mL未満、又は動物プランクトンのサンプル1cfu/1g未満(湿重量)、(2)大腸菌について、250cfu/100mL未満、(3)腸球菌について、100cfu/100mL未満と示されており、これらを満たすよう殺滅・殺菌処理を行うことが好ましい。なかでも、本発明の処理方法は、細菌および10μm以上のサイズの生物を殺滅・殺菌するために好適に用いることができる。10μm以上のサイズの生物の具体例としては、例えば、動物プランクトン、植物プランクトン、無脊椎動物、藻類などの水生生物があげられる。なお、前記条約の規定によれば、cfuとは、colony forming unit(群単位)のことであり、最小サイズとは、高さ、幅または奥行きのうち最小値のことである。 In the present invention, the ballast water at the time of discharge by the killing / sterilizing treatment using ammonia or ammonium salt and hypochlorite is the above-mentioned “International Convention for Regulation and Management of Ship Ballast Water and Precipitate”. It is preferable that the ballast water discharge standard defined in the above is satisfied. Specific criteria, D clause of the Treaty: ballast water management standards regulations D-2: in ballast water discharge standard, the minimum size 50μm or more organisms, 1 m 3 per viable count less than 10, and the minimum size 50μm For organisms of less than 10 μm or less, the number of surviving organisms is less than 10 per mL, and (1) for virulent Vibrio cholerae (O1 and O139) as indicator microorganisms as human health standards, or less than 1 cfu / 100 mL, or Zooplankton samples less than 1 cfu / 1 g (wet weight), (2) E. coli less than 250 cfu / 100 mL, (3) Enterococci less than 100 cfu / 100 mL, killed and sterilized to meet these It is preferable to carry out. Among these, the treatment method of the present invention can be suitably used for killing and sterilizing bacteria and organisms having a size of 10 μm or more. Specific examples of organisms having a size of 10 μm or more include aquatic organisms such as zooplankton, phytoplankton, invertebrates, and algae. According to the provisions of the Convention, cfu is a colony forming unit (group unit), and the minimum size is a minimum value of height, width or depth.
 バラスト水中に混合するアンモニア又はアンモニウム塩の含有量及び次亜塩素酸塩の含有量は、バラスト水中の水生生物を殺滅・殺菌できればよい。例えば、上述したバラスト水排出基準を満たすよう水生生物を殺滅・殺菌可能な含有量とすることができる。結合塩素であるクロラミンの急性毒性値を表すLC50(半致死濃度)は0.012mg/Lであり、次亜塩素酸塩等に由来する遊離塩素の急性毒性値を表すLC50(半致死濃度)は0.005mg/Lである。一般に、多くの水生生物に対する急性毒性値は、0.01~0.1mg/L付近であることから、クロラミン及び次亜塩素酸塩の急性毒性作用は高く、従って、水生生物に対する殺滅・殺菌能力も非常に高いといえる。このような殺菌・殺滅能力を考慮すると、本発明ではバラスト水中の残留塩素が1mg/L以上100mg/L以下となるようにアンモニア又はアンモニウム塩と次亜塩素酸塩とをバラスト水に混合することが好ましく、2mg/L以上100mg/L以下となるように混合することがより好ましく、2mg/L以上20mg/L以下となるように混合することがさらに好ましく、2mg/L以上10mg/L以下となるように混合することが特に好ましい。この範囲とすることで、バラスト水中の水生生物をより効果的に殺滅・殺菌でき、また、必要量以上のアンモニア又はアンモニウム塩、次亜塩素酸塩を消費することなく実際的である。 The content of ammonia or ammonium salt and the content of hypochlorite to be mixed in the ballast water only need to be able to kill and sterilize aquatic organisms in the ballast water. For example, it can be set as content which can kill and sterilize aquatic organisms so that the ballast water discharge | emission standard mentioned above may be satisfied. LC 50 representing the acute toxicity values of chloramine are combined chlorine (half lethal concentration) was 0.012mg / L, LC 50 (lethal concentration representing the acute toxicity values of free chlorine from salt hypochlorite ) Is 0.005 mg / L. Generally, since the acute toxicity value for many aquatic organisms is around 0.01 to 0.1 mg / L, the acute toxic effects of chloramine and hypochlorite are high. The ability is also very high. In view of such sterilizing / killing ability, in the present invention, ammonia or ammonium salt and hypochlorite are mixed with ballast water so that the residual chlorine in the ballast water is 1 mg / L or more and 100 mg / L or less. It is more preferable to mix so that it may become 2 mg / L or more and 100 mg / L or less, It is more preferable to mix so that it may become 2 mg / L or more and 20 mg / L or less, 2 mg / L or more and 10 mg / L or less It is particularly preferable to mix so that By setting it within this range, aquatic organisms in the ballast water can be more effectively killed and sterilized, and it is practical without consuming more ammonia, ammonium salt or hypochlorite than necessary.
 アンモニア又はアンモニウム塩の含有量は、上述の残留塩素濃度を保持できればよく特に限定されないが、次亜塩素酸塩の初期有効塩素濃度に対して化学量論的に当量~2当量となるようアンモニア又はアンモニウム塩を使用することが好ましく、当量~1.5当量とすることがより好ましく、当量~1.2当量とすることが更に好ましい。なお、次亜塩素酸塩の初期有効塩素濃度とは、バラスト水量と添加された次亜塩素酸ナトリウム量から求めた有効塩素濃度のことを言う。 The content of ammonia or ammonium salt is not particularly limited as long as it can maintain the above-mentioned residual chlorine concentration, but ammonia or ammonium salt is stoichiometrically equivalent to 2 equivalents with respect to the initial effective chlorine concentration of hypochlorite. It is preferable to use an ammonium salt, more preferably equivalent to 1.5 equivalents, and still more preferably equivalent to 1.2 equivalents. The initial effective chlorine concentration of hypochlorite refers to the effective chlorine concentration obtained from the amount of ballast water and the amount of sodium hypochlorite added.
 本発明において、アンモニア又はアンモニウム塩と次亜塩素酸塩とをバラスト水に混合する際の態様は特に限定されない。例えば、アンモニア又はアンモニウム塩と次亜塩素酸塩とをバラストタンクに注入前のバラスト水に混合(例えば、海水をバラストタンクに取水する際の配管内等で混合)してもよいし、取水後のバラストタンクに添加し混合してもよい。なお、本明細書においてバラストタンクとは、船舶を安定させるために水を入れるものを意味し、船舶の専用のバラストタンク以外に、タンカーにおける油槽や船倉内に設置したタンク等にバラスト水を入れる場合を含むものである。 In the present invention, the mode of mixing ammonia or ammonium salt and hypochlorite with ballast water is not particularly limited. For example, ammonia or ammonium salt and hypochlorite may be mixed in the ballast water before being injected into the ballast tank (for example, mixed in piping when seawater is taken into the ballast tank) or after water intake It may be added to the ballast tank and mixed. In addition, in this specification, the ballast tank means a tank that contains water to stabilize the ship, and in addition to the dedicated ballast tank for the ship, the ballast water is added to an oil tank in a tanker or a tank installed in the hold. Including cases.
 アンモニア又はアンモニウム塩と次亜塩素酸塩との混合順についても特に限定されず、例えば、バラスト水にまずアンモニア又はアンモニウム塩を加え、次いで次亜塩素酸塩を加える方法、バラスト水にまず次亜塩素酸塩を加え、次いでアンモニア又はアンモニウム塩を加える方法、アンモニア又はアンモニウム塩と次亜塩素酸塩とを予め混合し、その混合物をバラスト水に加える方法、バラストタンクに予めアンモニア又はアンモニウム塩を投入し、次いで次亜塩素酸塩が混合されたバラスト水を該タンクに注入する方法等が挙げられる。後述の実施例でも実証されているように、本発明の処理方法では、アンモニア又はアンモニウム塩と次亜塩素酸ナトリウムとを予め混合してクロラミンを生成させた後にバラスト水に添加した場合であっても、アンモニア又はアンモニウム塩と次亜塩素酸塩とを別々に混合してバラスト水中でブロラミンやクロラミン等を生成させた場合であっても、バラスト水中におけるブロモホルムの発生を効果的に抑制することができる。中でも好ましくは、バラスト水にまずアンモニア又はアンモニウム塩を加え、次いで次亜塩素酸塩を加える方法であり、より好ましくは、アンモニア又はアンモニウム塩と次亜塩素酸塩とを予め混合し、その混合物をバラスト水に加える方法である。 The mixing order of ammonia or ammonium salt and hypochlorite is not particularly limited. For example, ammonia or ammonium salt is first added to ballast water, and then hypochlorite is added. A method of adding chlorate and then adding ammonia or ammonium salt, a method of premixing ammonia or ammonium salt and hypochlorite, adding the mixture to ballast water, and putting ammonia or ammonium salt into the ballast tank in advance Then, a method of injecting ballast water mixed with hypochlorite into the tank can be mentioned. As demonstrated in the examples described later, in the treatment method of the present invention, ammonia or ammonium salt and sodium hypochlorite are mixed in advance to form chloramine and then added to ballast water. However, even when ammonia or ammonium salt and hypochlorite are mixed separately to produce chloramine, chloramine, etc. in ballast water, the generation of bromoform in ballast water can be effectively suppressed. it can. Among them, preferred is a method in which ammonia or ammonium salt is first added to ballast water, and then hypochlorite is added. More preferably, ammonia or ammonium salt and hypochlorite are mixed in advance, and the mixture is mixed. It is a method of adding to ballast water.
 アンモニア又はアンモニウム塩と次亜塩素酸塩とを別々にバラスト水に混合する場合、混合間隔は残留塩素を所定の濃度に保持できるものであればよく、例えば、この間隔を1秒以上で1時間以内とすることができる。また、両者を混合する間を単にパイプで連結してもよく、間に混合器を入れてもよく、タンクを入れてもよい。この場合、アンモニア又はアンモニウム塩と次亜塩素酸塩との混合によって生ずる臭い、又は発熱の問題を解消できる。
 また、バラスト水として海水等を船舶に取りこむときに、はじめにフィルタ等によって大型の生物やプランクトンを除去してもとの生息域に戻し、その後、ろ過後のバラスト水に、上述のような添加態様及び添加順序でアンモニア又はアンモニウム塩と次亜塩素酸塩とを混合してもよい。
When ammonia or ammonium salt and hypochlorite are mixed separately into ballast water, the mixing interval may be any as long as the residual chlorine can be maintained at a predetermined concentration. For example, this interval is 1 second or more and 1 hour. Can be within. In addition, a space between the two may be simply connected by a pipe, a mixer may be inserted, or a tank may be inserted. In this case, the problem of odor or heat generated by mixing ammonia or ammonium salt with hypochlorite can be solved.
In addition, when seawater or the like is taken into the ship as ballast water, it is first returned to the habitat after removing large organisms and plankton using a filter, and then added to the filtered ballast water as described above. Further, ammonia or ammonium salt and hypochlorite may be mixed in the order of addition.
 本発明において、アンモニア又はアンモニウム塩と次亜塩素酸塩とによる処理時間としては、バラスト水中の水生生物を殺滅・殺菌することができればよく、特に限定されない。また、当該処理時間の上限は、船舶の航海時間により決定すれば良い。例えば、バラスト水を積み込んだ後に寄港地に到着してバラスト水を排水する迄の時間から、後述する亜硫酸塩の処理時間を除いた時間とすることができる。このような処理時間であると、バラスト水中の水生生物を効果的に殺滅・殺菌することができ、かつ、支障のない排出ができ好ましい。 In the present invention, the treatment time with ammonia or ammonium salt and hypochlorite is not particularly limited as long as it can kill and sterilize aquatic organisms in ballast water. Further, the upper limit of the processing time may be determined based on the voyage time of the ship. For example, it can be set to a time obtained by loading ballast water and arriving at the port of call and draining the ballast water, excluding sulfite treatment time described later. Such a treatment time is preferable because aquatic organisms in the ballast water can be effectively killed and sterilized, and can be discharged without hindrance.
 本発明に用いる次亜塩素酸塩としては、ナトリウムやカリウム等のアルカリ金属塩、又はカルシウム等のアルカリ土類金属塩が挙げられる。なかでも、カリウム等は植物系の栄養成分となり、またバリウム等は毒性があるため、海水成分であるナトリウム塩であって取り扱いが簡素な次亜塩素酸ナトリウムが好ましい。また、次亜塩素酸塩は水溶液として用いることが好ましい。
 本発明で用いるアンモニア又はアンモニウム塩としては、次亜塩素酸塩と反応してクロラミンを生成しうる物質であればよい。アンモニアとして、具体的にはアンモニア、アンモニア水を用いることができる。具体的なアンモニウム塩としては、塩化アンモニウム、硫酸アンモニウム、硝酸アンモニウム等の無機アンモニウム塩、酢酸アンモニウム等が挙げられる。これらアンモニウム塩は固形で添加しても、水や海水で希釈した水溶液の形態で扱っても良いが、水溶液が取り扱い面から好ましい。
 なかでも本発明においては、安価且つ取り扱いやすい点から、アンモニア水、塩化アンモニウム、硫酸アンモニウムが好ましく、アンモニア水又は海水成分である塩化物の無機アンモニウム塩を用いることがより好ましく、アンモニア水又は塩化アンモニウムを用いることがさらに好ましい。
Examples of hypochlorite used in the present invention include alkali metal salts such as sodium and potassium, and alkaline earth metal salts such as calcium. Of these, potassium and the like are plant-based nutrient components, and barium and the like are toxic. Therefore, sodium hypochlorite, which is a sodium salt that is a seawater component and is easy to handle, is preferable. Hypochlorite is preferably used as an aqueous solution.
The ammonia or ammonium salt used in the present invention may be any substance that can react with hypochlorite to produce chloramine. Specifically, ammonia or aqueous ammonia can be used as ammonia. Specific examples of the ammonium salt include inorganic ammonium salts such as ammonium chloride, ammonium sulfate, and ammonium nitrate, and ammonium acetate. These ammonium salts may be added in solid form or handled in the form of an aqueous solution diluted with water or seawater, but an aqueous solution is preferred from the viewpoint of handling.
Among these, in the present invention, from the viewpoint of low cost and easy handling, ammonia water, ammonium chloride, and ammonium sulfate are preferable, and it is more preferable to use ammonia water or an inorganic ammonium salt of chloride which is a seawater component. More preferably, it is used.
 本発明においては、電流滴定法、DPD(diethyl-p-phenylenediamine)法、酸化還元電位(Oxidation-Reduction Potential:以下ORPとも略する)等により残留塩素濃度を測定する方法によって、バラスト水中の残留塩素濃度を制御することも好ましい態様である。一般に、海水等の不純物を多く含む水中に次亜塩素酸塩等を添加すると、次亜塩素酸塩が分解、消費されることがある。そこで、どのような水質の水をバラスト水として用いた場合においても、水生生物の殺滅・殺菌効果を担保できるようにするためには、次亜塩素酸塩とアンモニウムイオンの混合量管理システムに加え、残留塩素濃度を測定・制御できるようなシステムを備えていることが好ましい。電流滴定法、DPD法、酸化還元電位による方法を用いると、残留塩素濃度を高精度に測定し、所望の範囲に制御することができる。 In the present invention, residual chlorine in ballast water is measured by a method of measuring residual chlorine concentration by amperometric method, DPD (diethyl-p-phenylenediamine) method, oxidation-reduction potential (hereinafter also abbreviated as ORP), etc. Controlling the concentration is also a preferred embodiment. Generally, when hypochlorite or the like is added to water containing a large amount of impurities such as seawater, hypochlorite may be decomposed and consumed. Therefore, in order to ensure the killing and sterilizing effects of aquatic organisms regardless of the water quality used as ballast water, a mixed amount management system for hypochlorite and ammonium ions is used. In addition, it is preferable to have a system that can measure and control the residual chlorine concentration. By using a current titration method, a DPD method, or a method using an oxidation-reduction potential, the residual chlorine concentration can be measured with high accuracy and controlled within a desired range.
 本発明においては、前述したアンモニア又はアンモニウム塩と次亜塩素酸塩とを用いてバラスト水中の水生生物を殺滅・殺菌処理した後に、該バラスト水中の残留塩素を亜硫酸塩によって還元・中和処理することが好ましい。残留塩素は、微量でも生物に対して悪影響を与える懸念があるため、バラスト水排出の際には、還元・中和して水生生物等に対して影響のないように処理してから排出する必要がある。そこで本発明においては、バラスト水中の水生生物を殺滅・殺菌処理した後、当該バラスト水中に亜硫酸塩を含有させる工程を設けることが好ましく、これによりバラスト水中の残留塩素を還元・中和して生物に影響のない安全な状態にすることができる。
 本発明において、バラスト水に含有させる亜硫酸塩の量としては、バラスト水に含まれる残留塩素を水生生物等に対して影響が無い範囲にまで低減化することができる量であればよい。残留塩素を水生生物等に対して影響が無い範囲まで低減化するとは、具体的には、バラスト水中の残留塩素濃度が0.06mg/L以下であればよい。
In the present invention, after killing and sterilizing the aquatic organisms in the ballast water using the above-described ammonia or ammonium salt and hypochlorite, the residual chlorine in the ballast water is reduced and neutralized with sulfite. It is preferable to do. Residual chlorine may cause adverse effects on organisms even in trace amounts, so when discharging ballast water, it is necessary to reduce and neutralize it before treating it so that it does not affect aquatic organisms. There is. Therefore, in the present invention, it is preferable to provide a step of containing sulfite in the ballast water after killing and sterilizing the aquatic organisms in the ballast water, thereby reducing and neutralizing residual chlorine in the ballast water. It can be in a safe state that does not affect living organisms.
In the present invention, the amount of sulfite contained in the ballast water may be an amount that can reduce residual chlorine contained in the ballast water to a range that does not affect aquatic organisms. Specifically, to reduce the residual chlorine to a range that does not affect aquatic organisms, the residual chlorine concentration in the ballast water may be 0.06 mg / L or less.
 本発明に用いる亜硫酸塩としては、ナトリウムやカリウム等のアルカリ金属塩が挙げられ、なかでも海水の主成分であるナトリウム塩が好ましい。また、亜硫酸塩は水溶液として用いることが好ましい。
 亜硫酸塩による処理の態様については、特に限定されず、バラストタンク内に亜硫酸塩を加えてもよく、バラスト水を排水するときに亜硫酸塩を含有させても良い。本発明のバラスト水処理方法においては、排水時にバラスト水中に亜硫酸塩を添加することが好ましい。
Examples of the sulfite used in the present invention include alkali metal salts such as sodium and potassium, and sodium salt which is the main component of seawater is particularly preferable. The sulfite is preferably used as an aqueous solution.
About the aspect of a process by a sulfite, it does not specifically limit, A sulfite may be added in a ballast tank, and when draining ballast water, you may contain a sulfite. In the ballast water treatment method of the present invention, sulfite is preferably added to the ballast water during drainage.
 バラスト水を船外に排出する場合、低酸素状態のバラスト水の排水を行わないことが好ましい。即ち、低酸素状態の排水が船舶周辺の水生生物にダメージを与えないようにすることが好ましい。通常の海洋の例では7~8.5mg/Lの溶存酸素を含有するが、養殖での酸素欠乏濃度の目安となる溶存酸素6mg/L以上の状態であることが確保されていることが好ましい。過剰の亜硫酸塩は自身が酸化されて自然界に存在する硫酸塩となるが、空気中の酸素以外に溶存酸素も消費される。この場合、バラストタンク内で曝気しても良く、排水管中に空気を吹き込んでも良いが、滞船料の増加の原因等になる。そのため投入する亜硫酸塩の量を適切な量に調整することが好ましい。この方法も上記のアンモニア又はアンモニウム塩と次亜塩素酸塩とによる処理の場合と同様に、電流滴定法、DPD法、酸化還元電位を活用する方法が有効である。本発明のバラスト水処理方法において、残留塩素を含むバラスト水を排水する際、亜硫酸塩で当該排水の酸化還元電位を500mV未満に調整すれば、バラスト水中の残留塩素は完全に還元・中和することができる。 When discharging ballast water out of the ship, it is preferable not to drain ballast water in a low oxygen state. That is, it is preferable that the low-oxygen state wastewater does not damage the aquatic organisms around the ship. In the case of a normal ocean, 7 to 8.5 mg / L of dissolved oxygen is contained, but it is preferable to ensure that the dissolved oxygen is in a state of 6 mg / L or more, which is a standard for oxygen deficiency concentration in aquaculture. . Excess sulfite is oxidized to become a sulfate that exists in nature, but dissolved oxygen is also consumed in addition to oxygen in the air. In this case, aeration may be performed in the ballast tank or air may be blown into the drain pipe, but this may cause an increase in the berthing fee. Therefore, it is preferable to adjust the amount of sulfite added to an appropriate amount. In this method, as in the case of the treatment with ammonia or ammonium salt and hypochlorite described above, an amperometric method, a DPD method, and a method utilizing an oxidation-reduction potential are effective. In the ballast water treatment method of the present invention, when ballast water containing residual chlorine is drained, the residual chlorine in the ballast water is completely reduced and neutralized by adjusting the redox potential of the drainage to less than 500 mV with sulfite. be able to.
 本発明のバラスト水処理方法によれば、バラスト水中の水生生物等を殺滅・殺菌させることができるとともに、副生するブロモホルム等の発生を抑制できる。そのため、排水水域の生態系や環境に悪影響を与えることなく、安全にバラスト水を排出することができる。 According to the ballast water treatment method of the present invention, aquatic organisms and the like in the ballast water can be killed and sterilized, and generation of by-product bromoform and the like can be suppressed. Therefore, ballast water can be discharged safely without adversely affecting the ecosystem and environment of the drainage area.
 また、本発明は、上述したバラスト水の処理方法に用いるバラスト水の処理剤を提供するものである。本発明の処理剤は、アンモニア又はアンモニウム塩と次亜塩素酸塩とを組合わせてなる。アンモニア又はアンモニウム塩と次亜塩素酸塩とを組合わせてなるとは、アンモニア又はアンモニウム塩と次亜塩素酸塩とを予め混合した状態で処理剤としてもよく、アンモニア又はアンモニウム塩と次亜塩素酸塩とを別々にパッケージ等して処理剤としてもよい。
 処理剤に用いるアンモニア又はアンモニウム塩としては、次亜塩素酸塩と反応してクロラミンを生成しうる物質が好ましい。アンモニア又はアンモニウム塩として具体的には、上述したバラスト水の処理方法に用いるアンモニア又はアンモニウム塩を挙げることができ、好ましい範囲も同様である。また、本発明の処理剤に用いる次亜塩素酸塩としては、上述したバラスト水の処理方法に用いる次亜塩素酸塩を挙げることができ、好ましい範囲も同様である。
 処理剤に用いられるアンモニア又はアンモニウム塩、及び次亜塩素酸塩の形態としては、粉末等の固体であってもよいし、濃縮液等の液体であってもよい。処理剤の使用態様やバラスト水への混合量等についても、上述したバラスト水の処理方法において、アンモニア又はアンモニウム塩と次亜塩素酸塩とを用いて処理を行う際と同様である。
 本発明のバラスト水の処理剤は、安価で容易に入手でき取扱いが簡便であり、これを用いることによって、バラスト水中に存在する外来侵入生物等を殺滅・殺菌することができ、かつバラスト水中のブロモホルム等の発生を抑制することができるため、環境面や安全性の点からバラスト水処理に好適に用いることができる。
Moreover, this invention provides the processing agent of the ballast water used for the processing method of the ballast water mentioned above. The treatment agent of the present invention is a combination of ammonia or ammonium salt and hypochlorite. Combining ammonia or ammonium salt and hypochlorite means that ammonia or ammonium salt and hypochlorite may be mixed in advance as a treatment agent, or ammonia or ammonium salt and hypochlorite. It is good also as a processing agent by packaging salt etc. separately.
As the ammonia or ammonium salt used for the treating agent, a substance capable of producing chloramine by reacting with hypochlorite is preferable. Specific examples of ammonia or ammonium salts include ammonia or ammonium salts used in the above-described method for treating ballast water, and the preferred ranges are also the same. Moreover, as a hypochlorite used for the processing agent of this invention, the hypochlorite used for the processing method of the ballast water mentioned above can be mentioned, A preferable range is also the same.
The form of ammonia or ammonium salt and hypochlorite used for the treating agent may be a solid such as a powder or a liquid such as a concentrated liquid. The use mode of the treating agent, the amount mixed with the ballast water, and the like are the same as in the treatment method using ammonia or ammonium salt and hypochlorite in the above-described method for treating ballast water.
The treatment agent for ballast water of the present invention is inexpensive, easily available and easy to handle, and by using this, foreign invaders existing in the ballast water can be killed and sterilized, and the ballast water Therefore, it can be suitably used for ballast water treatment from the viewpoint of environment and safety.
 以下、本発明を実施例に基づき更に詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.
 下記の試薬等及び分析装置を実施例に用いた。
1.試薬等
(1)バラスト水
 横浜市鶴見区末広町にて採取した海水(pH7.75、26.6℃)をフィルタでろ過し、模擬バラスト水として用いた。フィルタは、硼珪酸塩ガラス繊維製の直径95mmのガラスろ紙(アドバンテック製 GC-90)を使用した。
(2)アンモニア又はアンモニウム塩
 アンモニア又はアンモニウム塩の供給源として、試薬の1mol/Lアンモニア水及び塩化アンモニウムを用いた。塩化アンモニウムは、試薬1級塩化アンモニウムをイオン交換水に溶解し、1mol/L塩化アンモニウム水溶液としたものを用いた。
(3)トリハロメタン類の標準液
 トリハロメタン類の標準液として、和光純薬工業製のトリハロメタン標準液B(ヘキサン溶液)を用いた。このトリハロメタン標準液Bは、クロロホルム10mg/L、ブロモジクロロメタン2.5mg/L、クロロジブロモメタン4mg/L、ブロモホルム20mg/Lを含むものである。
(4)ブロモホルム標準液
 トリハロメタン類の標準液を正確に1mL採取し、予め採取した100mLのn-ヘキサンに添加し、1次希釈ブロモホルム標準ヘキサン溶液(以下、ブロモホルム標準ヘキサン溶液を、単にブロモホルム標準液という)を作製した。1次希釈ブロモホルム標準液を正確に1mL採取し、予め採取した50mLのn-ヘキサンに添加し、2次希釈ブロモホルム標準液を作製した。2次希釈ブロモホルム標準液を正確に1mL採取し、予め採取した50mLのn-ヘキサンに添加し、ブロモホルム標準液を作製した。このブロモホルム標準液は、ブロモホルムを76.1μg/L含むものである。
The following reagents and analyzers were used in the examples.
1. Reagents, etc. (1) Ballast water Seawater (pH 7.75, 26.6 ° C.) collected in Suehiro-cho, Tsurumi-ku, Yokohama was filtered through a filter and used as simulated ballast water. The filter used was a 95 mm diameter glass filter paper (Advantech GC-90) made of borosilicate glass fiber.
(2) Ammonia or ammonium salt As a supply source of ammonia or ammonium salt, 1 mol / L ammonia water and ammonium chloride as a reagent were used. As ammonium chloride, a reagent primary ammonium chloride dissolved in ion-exchanged water to make a 1 mol / L ammonium chloride aqueous solution was used.
(3) Standard solution of trihalomethanes Trihalomethane standard solution B (hexane solution) manufactured by Wako Pure Chemical Industries was used as a standard solution of trihalomethanes. This trihalomethane standard solution B contains chloroform 10 mg / L, bromodichloromethane 2.5 mg / L, chlorodibromomethane 4 mg / L, and bromoform 20 mg / L.
(4) Bromoform standard solution Collect exactly 1 mL of the standard solution of trihalomethanes, add it to 100 mL of n-hexane collected in advance, and add the primary diluted bromoform standard hexane solution (hereinafter referred to as the bromoform standard hexane solution simply as the bromoform standard solution). Was made. Exactly 1 mL of the primary diluted bromoform standard solution was collected and added to 50 mL of n-hexane collected in advance to prepare a secondary diluted bromoform standard solution. Accurately 1 mL of the secondary diluted bromoform standard solution was sampled and added to 50 mL of n-hexane collected in advance to prepare a bromoform standard solution. This bromoform standard solution contains 76.1 μg / L of bromoform.
(5)次亜塩素酸ナトリウム
 次亜塩素酸ナトリウムとして、有効塩素濃度が約13質量%の次亜塩素酸ナトリウム水溶液(TGバラストクリーナー(商品名))を用いた。
(6)亜硫酸ナトリウム
 亜硫酸ナトリウムをイオン交換水に溶解し、0.25mol/L亜硫酸ナトリウム水溶液(TGエンバイロンメンタルガード(商品名))としたものを用いた。
(5) Sodium hypochlorite Sodium hypochlorite aqueous solution (TG ballast cleaner (trade name)) having an effective chlorine concentration of about 13% by mass was used as sodium hypochlorite.
(6) Sodium sulfite Sodium sulfite was dissolved in ion-exchanged water to obtain a 0.25 mol / L sodium sulfite aqueous solution (TG Environmental Guard (trade name)).
2.分析装置
 分析試料の測定は、電子捕獲型検出器付きガスクロマトグラフ(日立製作所製、G-5000)を用いて行った。カラムは、内径0.32mm、長さ25mの溶融シリカ製のキャピラリーカラムで、内面に5%ジフェニルポリシロキサン-95%ジメチルポリシロキサンの液相を1.20μmの厚さで被覆したものを用いた。測定条件は、カラム温度120℃、インジェクション温度210℃、検出器温度220℃とした。
2. Analyzer The measurement of the analysis sample was performed using a gas chromatograph with an electron capture detector (G-5000, manufactured by Hitachi, Ltd.). The column was a capillary column made of fused silica having an inner diameter of 0.32 mm and a length of 25 m, and the inner surface was coated with a liquid phase of 5% diphenylpolysiloxane-95% dimethylpolysiloxane with a thickness of 1.20 μm. The measurement conditions were a column temperature of 120 ° C., an injection temperature of 210 ° C., and a detector temperature of 220 ° C.
 下記実施例及び比較例は、最高気温30.1℃(試験期間中の平均値)及び最低気温24.2℃(平均値)の条件下において室温で行われたものである。アンモニア又は塩化アンモニウムと次亜塩素酸塩との併用による効果を明確にするため、実際にバラスト水が取排水又は運搬される条件よりもブロモホルム等が発生しやすい条件下において検証を行った。 The following examples and comparative examples were carried out at room temperature under conditions of a maximum temperature of 30.1 ° C. (average value during the test period) and a minimum temperature of 24.2 ° C. (average value). In order to clarify the effect of the combined use of ammonia or ammonium chloride and hypochlorite, verification was performed under conditions where bromoform and the like are more likely to be generated than conditions under which ballast water is actually taken or discharged.
実施例1
 上記のバラスト水に、アンモニア水を22mg/Lとなるよう添加後、次亜塩素酸ナトリウム水溶液を初期有効塩素濃度20mg/Lとなるよう添加後、密栓し、アルミ箔で全体を覆い遮光した状態で、室温で17日間静置した。その後、亜硫酸ナトリウム水溶液を30mg/Lとなるよう添加し還元・中和したものをバラスト水試料1とした。なお、実施例1及び下記の実施例2はそれぞれ2連で試料を作成した。
 また、ブランク試料として、上記のバラスト水のみを同様に密栓し、アルミ箔で全体を覆い遮光した状態で、室温で17日間静置した後、亜硫酸ナトリウム水溶液を上記試料1と同量添加したものを作製し、ブランク試料とした。
Example 1
After adding ammonia water to the above ballast water so as to be 22 mg / L, after adding sodium hypochlorite aqueous solution so as to have an initial effective chlorine concentration of 20 mg / L, it is sealed and covered with aluminum foil for light shielding And left at room temperature for 17 days. Thereafter, a ballast water sample 1 was obtained by adding and reducing and neutralizing an aqueous sodium sulfite solution to 30 mg / L. In Example 1 and Example 2 below, samples were prepared in duplicate.
In addition, as a blank sample, only the above ballast water was sealed in the same manner, covered with aluminum foil and shielded from light, and allowed to stand at room temperature for 17 days, and then an aqueous sodium sulfite solution was added in the same amount as sample 1 above. Was prepared as a blank sample.
実施例2
 上記のバラスト水に、塩化アンモニア水溶液を22mg/Lとなるよう添加後、次亜塩素酸ナトリウム水溶液を初期有効塩素濃度20mg/Lとなるように添加後、密栓し、アルミ箔で全体を覆い遮光した状態で、室温で17日間静置した。その後、実施例1と同量の亜硫酸ナトリウム水溶液で還元・中和したものをバラスト水試料2とした。
Example 2
After adding an aqueous ammonium chloride solution to the above ballast water to a concentration of 22 mg / L, and then adding an aqueous sodium hypochlorite solution to an initial effective chlorine concentration of 20 mg / L, it is sealed and covered with aluminum foil for light shielding. And left at room temperature for 17 days. Then, the ballast water sample 2 was reduced and neutralized with the same amount of sodium sulfite aqueous solution as in Example 1.
実施例3
 実施例1で添加したのと同量のアンモニア水(22mg/L)及び次亜塩素酸ナトリウム水溶液(初期有効塩素濃度20mg/L)を予め混合した溶液を調製し、上記のバラスト水に添加した。密栓し、アルミ箔で全体を覆い遮光した状態で、室温で17日間静置した後、実施例1と同量の亜硫酸ナトリウム水溶液で還元・中和したものをバラスト水試料3とした。
Example 3
A solution in which the same amount of ammonia water (22 mg / L) and sodium hypochlorite aqueous solution (initial effective chlorine concentration 20 mg / L) as that added in Example 1 was mixed in advance was prepared and added to the above ballast water. . The ballast water sample 3 was sealed and sealed and light-shielded for 17 days at room temperature, then reduced and neutralized with the same amount of sodium sulfite aqueous solution as in Example 1.
実施例4
 実施例2で添加したのと同量の塩化アンモニア水溶液(22mg/L)及び次亜塩素酸ナトリウム水溶液(初期有効塩素濃度20mg/L)を予め混合した溶液を調製し、上記のバラスト水に添加した。密栓し、アルミ箔で全体を覆い遮光した状態で、室温で17日間静置した後、実施例1と同量の亜硫酸ナトリウム水溶液で還元・中和したものをバラスト水試料4とした。
Example 4
Prepare a solution in which the same amount of ammonia chloride aqueous solution (22 mg / L) and sodium hypochlorite aqueous solution (initial effective chlorine concentration 20 mg / L) as those added in Example 2 were mixed in advance and added to the above ballast water did. A ballast water sample 4 was obtained by sealing and sealing the whole with an aluminum foil and allowing it to stand at room temperature for 17 days, followed by reduction and neutralization with the same amount of sodium sulfite aqueous solution as in Example 1.
比較例1
 上記のバラスト水に、次亜塩素酸ナトリウム水溶液を初期有効塩素濃度20mg/Lとなるように添加後、密栓し、アルミ箔で全体を覆い遮光した状態で、室温で1日間静置した。その後、実施例1と同量の亜硫酸ナトリウム水溶液を添加して還元・中和した。密栓し、アルミ箔で全体を覆い遮光した状態で、室温で16日間静置したものを比較試料1とした。
Comparative Example 1
An aqueous sodium hypochlorite solution was added to the above ballast water so as to have an initial effective chlorine concentration of 20 mg / L, which was then sealed and allowed to stand at room temperature for 1 day with the whole covered with an aluminum foil and shielded from light. Thereafter, the same amount of sodium sulfite aqueous solution as in Example 1 was added for reduction and neutralization. The sample was sealed and sealed for 16 days at room temperature in a state where the whole was covered with aluminum foil and shielded from light, and used as Comparative Sample 1.
比較例2
 上記のバラスト水に、次亜塩素酸ナトリウム水溶液を初期有効塩素濃度20mg/Lとなるように添加後、密栓し、アルミ箔で全体を覆い遮光した状態で、室温で17日間静置した。その後、実施例1と同量の亜硫酸ナトリウム水溶液を添加して還元・中和したものを比較試料2とした。
Comparative Example 2
A sodium hypochlorite aqueous solution was added to the above ballast water so as to have an initial effective chlorine concentration of 20 mg / L, and then sealed, covered with an aluminum foil and shielded from light, and allowed to stand at room temperature for 17 days. Thereafter, a comparative sample 2 was prepared by adding and reducing and neutralizing the same amount of sodium sulfite aqueous solution as in Example 1.
比較例3
 上記のバラスト水に、次亜塩素酸ナトリウム水溶液を初期有効塩素濃度20mg/Lとなるように添加後、密栓し、アルミ箔で全体を覆い遮光した状態で、室温で1日間静置した。その後、初期有効塩素濃度10mg/L相当の亜硫酸ナトリウム水溶液を添加して還元・中和した。密栓し、アルミ箔で全体を覆い遮光した状態で、室温で16日間静置したものを比較試料3とした。
Comparative Example 3
An aqueous sodium hypochlorite solution was added to the above ballast water so as to have an initial effective chlorine concentration of 20 mg / L, which was then sealed and allowed to stand at room temperature for 1 day with the whole covered with an aluminum foil and shielded from light. Thereafter, an aqueous sodium sulfite solution corresponding to an initial effective chlorine concentration of 10 mg / L was added for reduction and neutralization. The sample was sealed and sealed for 16 days at room temperature in a state where the whole was covered with an aluminum foil and shielded from light.
ブロモホルム濃度の測定
 実施例1~4及び比較例1~3で得られたバラスト水試料について、ブロモホルム生成量を測定した。ホールピペットを用いて各バラスト水試料を5mL採取し、予めn-ヘキサンを正確に50mL入れた比色管に添加し、15秒間振り混ぜ、n-ヘキサン層にブロモホルムを抽出した。ブランク試料、試料3及び試料4については、本抽出層のブロモホルム濃度を直接分析装置にて測定した。試料1~2及び比較試料1~3については、本抽出層のブロモホルム濃度が高いため、下記のように希釈した分析試料をそれぞれ作製し、それらのブロモホルム濃度を測定し、希釈前の試料中のブロモホルム濃度に換算した。試料1及び試料2については、本抽出層を正確に1mL採取し、予めn-ヘキサンを正確に10mL入れた比色管に添加し、11倍希釈して分析試料として用いた。比較試料1~3については、本抽出層を正確に1mL採取し、予めn-ヘキサンを正確に10mL入れた比色管に添加し、11倍希釈した。さらに、11倍希釈溶液を正確に1mL採取し、予めn-ヘキサンを正確に10mL入れた比色管に添加し、最終的に121倍希釈したものを分析試料として用いた。
 各試料のブロモホルム濃度を表1に示す。
Measurement of Bromoform Concentration The amount of bromoform produced was measured for the ballast water samples obtained in Examples 1 to 4 and Comparative Examples 1 to 3. Using a whole pipette, 5 mL of each ballast water sample was collected, added to a colorimetric tube containing exactly 50 mL of n-hexane in advance, and shaken for 15 seconds to extract bromoform in the n-hexane layer. For the blank sample, sample 3 and sample 4, the bromoform concentration of the extraction layer was directly measured with an analyzer. For Samples 1 and 2 and Comparative Samples 1 to 3, since the bromoform concentration of this extraction layer is high, each of the analytical samples diluted as described below was prepared and the bromoform concentration was measured. Converted to bromoform concentration. For Sample 1 and Sample 2, 1 mL of this extraction layer was accurately collected, added to a colorimetric tube containing exactly 10 mL of n-hexane in advance, diluted 11 times, and used as an analysis sample. For Comparative Samples 1 to 3, 1 mL of this extraction layer was accurately collected, added to a colorimetric tube containing exactly 10 mL of n-hexane, and diluted 11 times. Further, exactly 1 mL of the 11-fold diluted solution was sampled, added to a colorimetric tube containing exactly 10 mL of n-hexane in advance, and finally diluted 121-fold was used as an analysis sample.
Table 1 shows the bromoform concentration of each sample.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果から明らかなように、バラスト水に次亜塩素酸ナトリウム水溶液のみを混合した場合は、ブロモホルム濃度は高い値を示した(比較試料1~3)。一方、バラスト水にアンモニア水又は塩化アンモニウム水溶液を添加後、次亜塩素酸ナトリウム水溶液を添加した場合(試料1~2)では、次亜塩素酸ナトリウム水溶液のみを混合した場合(比較試料1~3)と比較して、ブロモホルム濃度を1/6~1/7程度まで抑えることができた。また、アンモニア水または塩化アンモニウム水溶液と次亜塩素酸ナトリウム水溶液とを予め混合した溶液をバラスト水に添加した場合(試料3~4)では、次亜塩素酸ナトリウム水溶液のみを混合した場合(比較試料1~3)と比較して、ブロモホルム濃度を1/30以下にまで抑えることができた。以上のことから、アンモニア又はアンモニウム塩と次亜塩素酸塩とを併用することで、次亜塩素酸塩を単独で添加した場合と比べ、長期間保持後でもブロモホルムの発生量を大幅に抑制できることがわかった。
 また、中性の飲料水等とは異なりpHが高く、臭化物イオンを多く含有する海水をバラスト水として用いた場合であっても、アンモニア又はアンモニウム塩と次亜塩素酸塩とを併用することで、バラスト水中でのブロモホルムの発生を大幅に抑制できることがわかった。すなわち、アンモニア又はアンモニウム塩と次亜塩素酸ナトリウムとを予め混合してクロラミンを生成させた後にバラスト水に混合する方法、及びバラスト水にまずアンモニア又はアンモニウム塩を混合し、その後次亜塩素酸ナトリウムを混合してバラスト水中でブロラミンやクロラミン等を生成させる方法はともに、海水条件下におけるブロモホルムの発生を顕著に抑制できることがわかった。
As is clear from the results in Table 1, when only the sodium hypochlorite aqueous solution was mixed with the ballast water, the bromoform concentration showed a high value (Comparative Samples 1 to 3). On the other hand, when adding aqueous ammonia or ammonium chloride to ballast water followed by addition of aqueous sodium hypochlorite (samples 1 and 2), mixing only aqueous sodium hypochlorite (comparative samples 1 to 3) ), The bromoform concentration could be reduced to about 1/6 to 1/7. In addition, when a premixed solution of ammonia water or ammonium chloride aqueous solution and sodium hypochlorite aqueous solution is added to the ballast water (samples 3 to 4), only sodium hypochlorite aqueous solution is mixed (comparative sample) Compared with 1-3), the bromoform concentration could be suppressed to 1/30 or less. From the above, the combined use of ammonia or ammonium salt and hypochlorite can greatly reduce the amount of bromoform generated even after long-term retention compared to when hypochlorite is added alone. I understood.
In addition, unlike neutral drinking water, the pH is high, and even when seawater containing a large amount of bromide ions is used as ballast water, ammonia or ammonium salt and hypochlorite can be used in combination. It was found that the generation of bromoform in ballast water can be greatly suppressed. That is, a method of mixing ammonia or ammonium salt and sodium hypochlorite in advance to produce chloramine and then mixing with ballast water, and first mixing ammonia or ammonium salt with ballast water, and then sodium hypochlorite It was found that bromoform formation under seawater conditions can be remarkably suppressed by both methods of mixing bromide and producing bromamine, chloramine, etc. in ballast water.
 本発明のバラスト水の処理方法及び当該方法に用いるバラスト水の処理剤は、バラスト水に含まれる有害な水生生物を効果的に殺滅・殺菌でき、しかも殺滅・殺菌処理に際してブロモホルム等のトリハロメタン類の発生を抑制することができる。したがって、本発明の処理方法及び処理剤を用いることで、船舶のバラスト水を排出水域の環境・生態系を汚染することなく安全に排出することが可能となる。 The ballast water treatment method of the present invention and the ballast water treatment agent used in the method are capable of effectively killing and sterilizing harmful aquatic organisms contained in the ballast water, and trihalomethanes such as bromoform during the killing and sterilization treatment. Generation can be suppressed. Therefore, by using the treatment method and the treatment agent of the present invention, it becomes possible to safely discharge the ballast water of the ship without polluting the environment / ecosystem of the discharge water area.
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。 While this invention has been described in conjunction with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified and are contrary to the spirit and scope of the invention as set forth in the appended claims. I think it should be interpreted widely.
 本願は、2009年11月27日に日本国で特許出願された特願2009-270655に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。 This application claims priority based on Japanese Patent Application No. 2009-270655 filed in Japan on November 27, 2009, which is hereby incorporated herein by reference. Capture as part.

Claims (14)

  1.  バラスト水にアンモニア又はアンモニウム塩と次亜塩素酸塩とを混合し、バラスト水中の水生生物を殺滅・殺菌させ且つトリハロメタン類の発生を抑制することを特徴とするバラスト水の処理方法。 Ballast water treatment method characterized by mixing ammonia or ammonium salt and hypochlorite in ballast water to kill and sterilize aquatic organisms in the ballast water and suppress generation of trihalomethanes.
  2.  排出時のバラスト水中のブロモホルムの濃度が300μg/L以下であることを特徴とする請求項1記載のバラスト水の処理方法。 The method for treating ballast water according to claim 1, wherein the concentration of bromoform in the ballast water during discharge is 300 µg / L or less.
  3.  前記ブロモホルム濃度が150μg/L以下であることを特徴とする請求項2記載のバラスト水の処理方法。 The method for treating ballast water according to claim 2, wherein the bromoform concentration is 150 µg / L or less.
  4.  前記アンモニア又はアンモニウム塩と次亜塩素酸塩との混合により、バラスト水中の残留塩素濃度を1mg/L以上100mg/L以下に調整して水生生物を殺滅・殺菌することを特徴とする請求項1~3のいずれか1項に記載のバラスト水の処理方法。 The aquatic organisms are killed and sterilized by adjusting the residual chlorine concentration in the ballast water to 1 mg / L or more and 100 mg / L or less by mixing the ammonia or ammonium salt and hypochlorite. 4. The method for treating ballast water according to any one of 1 to 3.
  5.  前記バラスト水中の残留塩素濃度を2mg/L以上20mg/L以下に調整して水生生物を殺滅・殺菌することを特徴とする請求項4記載のバラスト水の処理方法。 The method for treating ballast water according to claim 4, wherein the residual chlorine concentration in the ballast water is adjusted to 2 mg / L or more and 20 mg / L or less to kill and sterilize aquatic organisms.
  6.  前記バラスト水中の残留塩素濃度を2mg/L以上10mg/L以下に調整して水生生物を殺滅・殺菌することを特徴とする請求項4記載のバラスト水の処理方法。 The method for treating ballast water according to claim 4, wherein the residual chlorine concentration in the ballast water is adjusted to 2 mg / L or more and 10 mg / L or less to kill and sterilize aquatic organisms.
  7.  前記アンモニア又はアンモニウム塩と次亜塩素酸塩との混合により、バラスト水中の水生生物を殺滅・殺菌処理した後、該バラスト水中の残留塩素を亜硫酸塩によって還元・中和処理することを特徴とする請求項1~6のいずれか1項に記載のバラスト水の処理方法。 After killing and sterilizing aquatic organisms in ballast water by mixing ammonia or ammonium salt and hypochlorite, the residual chlorine in the ballast water is reduced and neutralized with sulfite. The method for treating ballast water according to any one of claims 1 to 6.
  8.  バラスト水にアンモニア又はアンモニウム塩と次亜塩素酸塩とを混合するにあたり、アンモニア又はアンモニウム塩をバラスト水に混合した後、次亜塩素酸塩をバラスト水に混合することを特徴とする請求項1~7のいずれか1項に記載のバラスト水の処理方法。 2. In mixing ammonia or ammonium salt and hypochlorite with ballast water, after mixing ammonia or ammonium salt with ballast water, hypochlorite is mixed with ballast water. 8. The ballast water treatment method according to any one of 1 to 7.
  9.  バラスト水にアンモニア又はアンモニウム塩と次亜塩素酸塩とを混合するにあたり、アンモニア又はアンモニウム塩と次亜塩素酸塩とを予め混合しバラスト水に加えることを特徴とする請求項1~7のいずれか1項に記載のバラスト水の処理方法。 The ammonia or ammonium salt and hypochlorite are mixed in advance and added to the ballast water when the ammonia or ammonium salt and hypochlorite are mixed in the ballast water. The method for treating ballast water according to claim 1.
  10.  バラスト水にアンモニア又はアンモニウム塩と次亜塩素酸塩とを混合するにあたり、次亜塩素酸塩をバラスト水に混合した後、アンモニア又はアンモニウム塩をバラスト水に混合することを特徴とする請求項1~7のいずれか1項に記載のバラスト水の処理方法。 2. In mixing ammonia or ammonium salt and hypochlorite with ballast water, after mixing hypochlorite with ballast water, ammonia or ammonium salt is mixed with ballast water. 8. The ballast water treatment method according to any one of 1 to 7.
  11.  バラスト水にアンモニア又はアンモニウム塩と次亜塩素酸塩とを混合するにあたり、アンモニア又はアンモニウム塩を事前にバラストタンクへ添加した後、次亜塩素酸塩を混合したバラスト水をバラストタンクに注入することを特徴とする請求項1~7のいずれか1項に記載のバラスト水の処理方法。 In mixing ammonia or ammonium salt and hypochlorite in ballast water, after adding ammonia or ammonium salt to the ballast tank in advance, the ballast water mixed with hypochlorite is injected into the ballast tank. The method for treating ballast water according to any one of claims 1 to 7, wherein:
  12.  前記アンモニア又はアンモニウム塩が、次亜塩素酸塩と反応してクロラミンを生成しうる化合物であることを特徴とする請求項1~11に記載のバラスト水の処理方法。 The method for treating ballast water according to any one of claims 1 to 11, wherein the ammonia or ammonium salt is a compound capable of reacting with hypochlorite to produce chloramine.
  13.  アンモニア又はアンモニウム塩と次亜塩素酸塩とを組合わせてなる請求項1~12のいずれか1項に記載のバラスト水の処理方法に用いるバラスト水の処理剤。 The ballast water treatment agent used in the ballast water treatment method according to any one of claims 1 to 12, wherein ammonia or an ammonium salt and a hypochlorite are combined.
  14.  前記アンモニア又はアンモニウム塩が、次亜塩素酸塩と反応してクロラミンを生成しうる化合物であることを特徴とする請求項13に記載のバラスト水の処理剤。 The treatment agent for ballast water according to claim 13, wherein the ammonia or ammonium salt is a compound capable of reacting with hypochlorite to produce chloramine.
PCT/JP2010/071039 2009-11-27 2010-11-25 Process for treatment of ship ballast water WO2011065434A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011543299A JPWO2011065434A1 (en) 2009-11-27 2010-11-25 Ship ballast water treatment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-270655 2009-11-27
JP2009270655 2009-11-27

Publications (1)

Publication Number Publication Date
WO2011065434A1 true WO2011065434A1 (en) 2011-06-03

Family

ID=44066539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071039 WO2011065434A1 (en) 2009-11-27 2010-11-25 Process for treatment of ship ballast water

Country Status (3)

Country Link
JP (1) JPWO2011065434A1 (en)
TW (1) TW201144235A (en)
WO (1) WO2011065434A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102432120A (en) * 2011-10-31 2012-05-02 崇义章源钨业股份有限公司 Method for comprehensively purifying wastewater produced in tungsten smelting ion exchange process
US8986606B2 (en) 2008-05-23 2015-03-24 Kemira Oyj Chemistry for effective microbe control with reduced gas phase corrosiveness in pulp and paper processing systems
JP2015167937A (en) * 2014-03-10 2015-09-28 栗田工業株式会社 Apparatus and method for treating ballast water
JP5839121B2 (en) * 2012-07-03 2016-01-06 Jfeエンジニアリング株式会社 Ballast water treatment equipment
CN107531518A (en) * 2015-04-17 2018-01-02 三菱重工环境·化学工程株式会社 The processing method of hypochlorous acid feedway and discharging of boiler

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111504992A (en) * 2020-05-06 2020-08-07 中国检验检疫科学研究院 Rapid detection kit for chlorine dioxide after ballast water disinfection
CN111504993A (en) * 2020-05-06 2020-08-07 中国检验检疫科学研究院 Ballast water disinfection residual chlorine rapid detection kit

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6443392A (en) * 1987-08-12 1989-02-15 Hitachi Ltd Sterilization control apparatus
JPH05146785A (en) * 1991-06-03 1993-06-15 Bromine Compounds Ltd Method and composition for sterilizing water
JPH10309583A (en) * 1997-05-09 1998-11-24 Matsushita Electric Ind Co Ltd Water purifying device
US20030029811A1 (en) * 2000-11-06 2003-02-13 Larry Russell Ballast water treatment for exotic species control
JP2003329389A (en) * 2002-05-14 2003-11-19 Mitsubishi Gas Chem Co Inc Sticking preventive method of marine organism
WO2008041470A1 (en) * 2006-09-27 2008-04-10 Tg Corporation Method for treatment of ballast water for ship
JP2008221152A (en) * 2007-03-14 2008-09-25 K I Chemical Industry Co Ltd Method for preventing growth of microorganism
WO2008153809A2 (en) * 2007-06-01 2008-12-18 Severn Trent De Nora, L.L.C. Ballast water tank circulation treatment system
JP2009000583A (en) * 2007-06-19 2009-01-08 Jfe Engineering Kk Ballast water treatment apparatus
JP2009249296A (en) * 2008-04-01 2009-10-29 Somar Corp Extermination agent for harmful microorganism and method for extermination of harmful microorganism using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005077833A1 (en) * 2004-02-13 2005-08-25 Mitsubishi Heavy Industries, Ltd. Method of liquid detoxification and apparatus therefor
WO2006132157A1 (en) * 2005-06-10 2006-12-14 Jfe Engineering Corporation Ballast water treating apparatus and method of treating

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6443392A (en) * 1987-08-12 1989-02-15 Hitachi Ltd Sterilization control apparatus
JPH05146785A (en) * 1991-06-03 1993-06-15 Bromine Compounds Ltd Method and composition for sterilizing water
JPH10309583A (en) * 1997-05-09 1998-11-24 Matsushita Electric Ind Co Ltd Water purifying device
US20030029811A1 (en) * 2000-11-06 2003-02-13 Larry Russell Ballast water treatment for exotic species control
JP2003329389A (en) * 2002-05-14 2003-11-19 Mitsubishi Gas Chem Co Inc Sticking preventive method of marine organism
WO2008041470A1 (en) * 2006-09-27 2008-04-10 Tg Corporation Method for treatment of ballast water for ship
JP2008221152A (en) * 2007-03-14 2008-09-25 K I Chemical Industry Co Ltd Method for preventing growth of microorganism
WO2008153809A2 (en) * 2007-06-01 2008-12-18 Severn Trent De Nora, L.L.C. Ballast water tank circulation treatment system
JP2009000583A (en) * 2007-06-19 2009-01-08 Jfe Engineering Kk Ballast water treatment apparatus
JP2009249296A (en) * 2008-04-01 2009-10-29 Somar Corp Extermination agent for harmful microorganism and method for extermination of harmful microorganism using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8986606B2 (en) 2008-05-23 2015-03-24 Kemira Oyj Chemistry for effective microbe control with reduced gas phase corrosiveness in pulp and paper processing systems
CN102432120A (en) * 2011-10-31 2012-05-02 崇义章源钨业股份有限公司 Method for comprehensively purifying wastewater produced in tungsten smelting ion exchange process
JP5839121B2 (en) * 2012-07-03 2016-01-06 Jfeエンジニアリング株式会社 Ballast water treatment equipment
JP2015167937A (en) * 2014-03-10 2015-09-28 栗田工業株式会社 Apparatus and method for treating ballast water
CN107531518A (en) * 2015-04-17 2018-01-02 三菱重工环境·化学工程株式会社 The processing method of hypochlorous acid feedway and discharging of boiler

Also Published As

Publication number Publication date
JPWO2011065434A1 (en) 2013-04-18
TW201144235A (en) 2011-12-16

Similar Documents

Publication Publication Date Title
WO2011065434A1 (en) Process for treatment of ship ballast water
Werschkun et al. Emerging risks from ballast water treatment: The run-up to the International Ballast Water Management Convention
AU768428B2 (en) Process for preventing contamination of the aquatic environment with organisms from another locality
US8152989B2 (en) System and process for treating ballast water
US8147673B2 (en) System and process for treatment and de-halogenation of ballast water
US9452229B2 (en) Highly concentrated, biocidally active compositions and aqueous mixtures and methods of making the same
JP6131342B2 (en) Method for producing sterilized cultured water and method for culturing flowing water-sterilized water fish using the same
US7794607B2 (en) Composition and method for enhanced sanitation and oxidation of aqueous systems
Cha et al. Enhancing the efficacy of electrolytic chlorination for ballast water treatment by adding carbon dioxide
US6652889B2 (en) Concentrated aqueous bromine solutions and their preparation and use
KR101803368B1 (en) Emissions control system and method
EP2391585B1 (en) Ballast water treatment system
JPH0566198B2 (en)
JP2003146817A (en) Antimicrobial algicidal agent composition, method for killing microbe and alga in water system and method for producing antimicrobial algicidal agent composition
US20090304810A1 (en) Composition and method for enhanced sanitation and oxidation of aqueous systems
JP2009084163A (en) Bactericidal/algicidal method
Ziegler et al. Long-term algal toxicity of oxidant treated ballast water
US6511682B1 (en) Concentrated aqueous bromine solutions and their preparation
JP2020028865A (en) Slime control method for reverse osmosis membrane device
WO2011068705A1 (en) Microbiocidal control in drinking line systems
Jang et al. Long-term changes of disinfection byproducts in treatment of simulated ballast water
Rajagopal Chlorination and biofouling control in industrial cooling water systems
US7087251B2 (en) Control of biofilm
US7097773B1 (en) Process for treating water
AU2006301729A1 (en) Composition for destroying thread algae

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10833280

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011543299

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10833280

Country of ref document: EP

Kind code of ref document: A1