JP2009084163A - Bactericidal/algicidal method - Google Patents

Bactericidal/algicidal method Download PDF

Info

Publication number
JP2009084163A
JP2009084163A JP2007252303A JP2007252303A JP2009084163A JP 2009084163 A JP2009084163 A JP 2009084163A JP 2007252303 A JP2007252303 A JP 2007252303A JP 2007252303 A JP2007252303 A JP 2007252303A JP 2009084163 A JP2009084163 A JP 2009084163A
Authority
JP
Japan
Prior art keywords
stabilizer
chlorine concentration
bactericidal
hypochlorite
residual chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007252303A
Other languages
Japanese (ja)
Other versions
JP5141163B2 (en
Inventor
Yutaka Yoneda
裕 米田
Hideo Otaka
秀夫 大高
Koichi Tanaka
浩一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2007252303A priority Critical patent/JP5141163B2/en
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to KR1020107005483A priority patent/KR101706548B1/en
Priority to US12/733,746 priority patent/US10421676B2/en
Priority to BRPI0817976 priority patent/BRPI0817976A2/en
Priority to EP08832826.5A priority patent/EP2196092B1/en
Priority to CN200880106419A priority patent/CN101801199A/en
Priority to PCT/JP2008/066338 priority patent/WO2009041267A1/en
Priority to MYPI2010001310A priority patent/MY173605A/en
Priority to TW97136528A priority patent/TWI439423B/en
Publication of JP2009084163A publication Critical patent/JP2009084163A/en
Application granted granted Critical
Publication of JP5141163B2 publication Critical patent/JP5141163B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bactericidal/algicidal method comprising the addition of an oxidant-based bactericidal/algicidal agent and its stabilizer to a target water system to carry out a bactericidal/algicidal treatment and reducing the nitrogen content and COD level derived from the stabilizer by effectively utilizing the stabilizer and reducing the amount of the stabilizer. <P>SOLUTION: The bactericidal/algicidal method comprises the addition of an oxidant-based bactericidal/algicidal agent and its stabilizer to a target water system, while controlling the addition amount of the oxidant-based bactericidal/algicidal agent in a manner to fall the total residual chlorine concentration of the water system within a prescribed range and controlling the addition amount of the stabilizer in a manner to fall the free residual chlorine concentration within a prescribed range. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、冷却水系、紙パルププロセス水系、集塵水系、スクラバー水系、噴水系などの各種水系に、酸化剤系殺菌殺藻(殺菌及び/又は殺藻を意味する。)剤とその安定化剤とを添加して殺菌殺藻処理するに際し、上記安定化剤を有効活用し、その使用量を低減することにより、該安定化剤由来の窒素分及びCOD分を低減し得る、水系の殺菌殺藻方法に関するものである。   The present invention is applicable to various water systems such as a cooling water system, a paper pulp process water system, a dust collection water system, a scrubber water system, and a fountain system, and an oxidizer-based sterilizing agent (meaning sterilization and / or algae) and its stabilization. In the sterilization and algae treatment by adding an agent, the above-mentioned stabilizer is effectively used, and the amount of nitrogen and COD derived from the stabilizer can be reduced by reducing the amount of the stabilizer used. It relates to an algaecidal method.

各種の水系において、菌類や藻類によるさまざまな障害が発生している。例えば、開放循環式冷却水系においては、ズーグレア状細菌、糸状細菌、鉄バクテリア、イオウ細菌、硝化細菌、硫酸塩還元菌などの細菌類、ミズカビ、アオカビなどの真菌類、藍藻、緑藻、珪藻などの藻類が増殖し、これらの微生物を主体として、これに土砂などの無機物や塵埃などが混ざりあって形成される軟泥状の汚濁物の付着や堆積により、スライムやスラッジが発生する。スライムやスラッジは、熱効率の低下や通水の悪化をもたらすばかりでなく、機器、配管などの局部腐食の原因となる。また、冷却塔から飛散したレジオネラ菌に起因する在郷軍人病のように、水系で増殖した菌類が人体に直接被害を及ぼす場合もある。製紙工程水系においても、各種の細菌、真菌、酵母などが増殖してスライムを形成し、製品にホール、斑点、目玉などの欠点を発生させて製品品質を落とすばかりでなく、断紙の原因となって生産性を低下させている。   In various water systems, various obstacles have occurred due to fungi and algae. For example, in an open circulation cooling water system, bacteria such as zoom glial bacteria, filamentous bacteria, iron bacteria, sulfur bacteria, nitrifying bacteria, sulfate-reducing bacteria, fungi such as water mold and blue mold, cyanobacteria, green algae, diatoms, etc. Algae grow, and slime and sludge are generated by adhesion and accumulation of soft mud-like contaminants formed by mixing these inorganic substances such as earth and sand and dust, etc., mainly with these microorganisms. Slime and sludge not only cause a decrease in thermal efficiency and water flow, but also cause local corrosion of equipment and piping. In addition, there are cases where fungi grown in the water system directly cause damage to the human body, such as a local illness caused by Legionella bacteria scattered from the cooling tower. Even in the papermaking process water system, various bacteria, fungi, yeast, etc. grow to form slime, causing defects such as holes, spots, eyeballs, etc. in the product, not only reducing product quality, but also causing paper breakage. And productivity is reduced.

従来、菌類や藻類によるこのような障害を防止するために、水系に次亜塩素酸塩などの塩素系酸化剤を添加することが行われている。一般に、水中の残留塩素濃度が5mgCl2/L以上であれば、菌類と藻類の増殖を抑制することができると言われている。しかし、次亜塩素酸塩などの塩素系酸化剤は、紫外線により分解が促進されやすく、殺菌殺藻剤をプラスチック容器などに充填して屋外などに保管、放置すると、紫外線により有効成分である塩素系酸化剤が分解する。また、殺菌殺藻剤が水系に添加された後も、開放循環式冷却水系などにおいては、冷却水を完全に光から遮断することは困難である。さらに、水系の配管や熱交換器の材料などに銅や銅合金などが用いられ、銅イオンが溶出すると、次亜塩素酸塩などの塩素系酸化剤の分解が一層促進される。 Conventionally, a chlorine-based oxidizing agent such as hypochlorite has been added to an aqueous system in order to prevent such damage caused by fungi and algae. In general, it is said that the growth of fungi and algae can be suppressed when the residual chlorine concentration in water is 5 mgCl 2 / L or more. However, chlorine-based oxidizers such as hypochlorite are easily decomposed by ultraviolet rays, and if they are stored and left outdoors, such as in a plastic container filled with a bactericidal algicide, chlorine is an active ingredient due to ultraviolet rays. System oxidizer decomposes. Further, even after the bactericidal algicide is added to the aqueous system, it is difficult to completely block the cooling water from light in an open circulation cooling water system or the like. Furthermore, when copper or a copper alloy is used as a material for water-based pipes or heat exchangers and the copper ions are eluted, the decomposition of a chlorine-based oxidant such as hypochlorite is further promoted.

このような次亜塩素酸塩などの塩素系酸化剤の分解を抑制するために、次亜塩素酸塩、ベンゾトリアゾールやトリルトリアゾール及びスルファミン酸塩を含有し、pHを13以上に調整することで、有効塩素成分を安定化したものを水系に添加する技術が開示されている(例えば、特許文献1参照)。
次亜塩素酸塩にスルファミン酸塩を添加すると、N−モノクロロスルファミン酸塩若しくはN,N−ジクロロスルファミン酸塩を形成し、有効塩素成分が安定化される。
しかし、対象水系のスライムが多い場合、あるいは紫外線照射が強かったり、高温条件下では、安定化次亜塩素酸塩の分解が激しく、安定化剤のスルファミン酸塩の使用量を多くする必要がある。安定化次亜塩素酸塩が分解した際に、次亜塩素酸塩は消費されるが、スルファミン酸塩は水系内に残留する。その結果、残留したスルファミン酸塩が系外にブローされると、窒素分及びCOD分の規制に影響を及ぼす。
また、これまで、安定化次亜塩素酸塩溶液を調製して水系に添加する場合、次亜塩素酸塩溶液とスルファミン酸塩溶液を、次亜塩素酸塩とスルファミン酸塩とが等モル比になるように、ラインで混合して安定化次亜塩素酸塩溶液を調製することがよく行われている。この場合、両成分を等モル比でライン混合できる特殊な制御装置が必要となる。
In order to suppress decomposition of such chlorine-based oxidants such as hypochlorite, it contains hypochlorite, benzotriazole, tolyltriazole and sulfamate, and the pH is adjusted to 13 or more. In addition, a technique for adding a stabilized effective chlorine component to an aqueous system is disclosed (for example, see Patent Document 1).
When sulfamate is added to hypochlorite, N-monochlororosulfamate or N, N-dichlorosulfamate is formed, and the effective chlorine component is stabilized.
However, when there is a lot of slime in the target water system, or when UV irradiation is strong, or under high temperature conditions, the decomposition of stabilized hypochlorite is severe, and it is necessary to increase the amount of stabilizer sulfamate used. . When the stabilized hypochlorite decomposes, the hypochlorite is consumed, but the sulfamate remains in the aqueous system. As a result, when the remaining sulfamate is blown out of the system, it affects the regulation of nitrogen and COD.
In addition, when preparing a stabilized hypochlorite solution and adding it to an aqueous system, a hypochlorite solution and a sulfamate solution are mixed in an equimolar ratio of hypochlorite and sulfamate. It is often performed to prepare a stabilized hypochlorite solution by mixing in a line. In this case, a special control device capable of line-mixing both components at an equimolar ratio is required.

特許第3832399号公報Japanese Patent No. 3832399

本発明は、このような状況下になされたもので、対象水系に、酸化剤系殺菌殺藻剤とその安定化剤とを添加して、殺菌殺藻処理するに際し、上記安定化剤を有効活用し、その使用量を低減することにより、該安定化剤由来の窒素分及びCOD分を低減し得ると共に、前記のような特殊なライン混合用制御装置を必要としない、殺菌殺藻方法を提供することを目的とするものである。   The present invention has been made under such circumstances. When the sterilizing algaecide and its stabilizer are added to the target water system and the sterilizing treatment is performed, the above stabilizer is effective. By utilizing and reducing the amount used, it is possible to reduce the nitrogen content and COD content derived from the stabilizer, and to eliminate the need for a special line mixing controller as described above, It is intended to provide.

本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、水系における全残留塩素濃度が所定の範囲内にあるように、酸化剤系殺菌殺藻剤の添加量を制御すると共に、遊離残留塩素濃度が所定範囲内にあるように、安定化剤の添加量を制御することにより、その目的を達成し得ることを見出した。本発明は、かかる知見に基づいて完成したものである。
すなわち、本発明は、
(1)酸化剤系殺菌殺藻剤とその安定化剤とを、対象水系に添加して殺菌殺藻する方法であって、当該水系における全残留塩素濃度が所定の範囲内にあるように、前記酸化剤系殺菌殺藻剤の添加量を制御すると共に、遊離残留塩素濃度が所定範囲内にあるように、前記安定化剤の添加量を制御することを特徴とする殺菌殺藻方法、
(2)酸化剤系殺菌殺藻剤が次亜塩素酸塩及び/又は次亜臭素酸塩である上記(1)に記載の殺菌殺藻方法、
(3)塩素濃度測定装置を用いて、次亜塩素酸塩及び/又は次亜臭素酸塩の塩素換算による全残留塩素濃度が0.1〜100mg/Lの範囲にあるように、酸化剤系殺菌殺藻剤の添加量を制御すると共に、次亜塩素酸塩及び/又は次亜臭素酸塩の塩素換算による遊離残留塩素濃度が1mg/L以下にあるように、安定化剤の添加量を制御する上記(1)又は(2)に記載の殺菌殺藻方法、及び
(4)安定化剤が、スルファミン酸及び/又はその塩である上記(1)〜(3)のいずれかに記載の殺菌殺藻方法、
を提供するものである。
As a result of intensive studies to achieve the above object, the inventors of the present invention have controlled the addition amount of the oxidizer-based bactericidal algicide so that the total residual chlorine concentration in the aqueous system is within a predetermined range. The inventors have found that the purpose can be achieved by controlling the amount of the stabilizer added so that the free residual chlorine concentration is within a predetermined range. The present invention has been completed based on such findings.
That is, the present invention
(1) A method for sterilizing and killing an oxidizer-based bactericidal algicide and its stabilizer to a target water system, wherein the total residual chlorine concentration in the water system is within a predetermined range, A bactericidal algaecidal method characterized by controlling the addition amount of the oxidizer-based bactericidal algicide and controlling the addition amount of the stabilizer so that the free residual chlorine concentration is within a predetermined range;
(2) The sterilizing algaecidal method according to the above (1), wherein the oxidizer-based bactericidal algicidal agent is hypochlorite and / or hypobromite,
(3) Using a chlorine concentration measuring device, the oxidizer system so that the total residual chlorine concentration in terms of chlorine of hypochlorite and / or hypobromite is in the range of 0.1 to 100 mg / L. The amount of stabilizer added is controlled so that the amount of free residual chlorine in the chlorine conversion of hypochlorite and / or hypobromite is 1 mg / L or less while controlling the amount of fungicidal algicide. The bactericidal and algicidal method according to (1) or (2) to be controlled, and (4) the stabilizer is sulfamic acid and / or a salt thereof according to any one of (1) to (3) above Bactericidal algae method,
Is to provide.

本発明の殺菌殺藻方法によれば、冷却水系、紙パルププロセス水系、集塵水系、スクラバー水系、噴水系などの各種水系に、酸化剤系殺菌殺藻剤とその安定化剤とを添加して殺菌殺藻処理するに際し、上記安定化剤を有効活用し、その使用量を低減することにより、該安定化剤由来の窒素分及びCOD分を低減し得ると共に、従来においてライン混合の際に用いられている特殊な制御装置を必要としない。   According to the sterilizing algaecide method of the present invention, an oxidizer-based sterilizing algaecide and its stabilizer are added to various water systems such as a cooling water system, a paper pulp process water system, a dust collection water system, a scrubber water system, and a fountain system. In the sterilization and sterilization treatment, the stabilizer can be effectively used, and the amount of the stabilizer can be reduced to reduce the nitrogen and COD content derived from the stabilizer. No special control device is used.

本発明の殺菌殺藻方法は、酸化剤系殺菌殺藻剤とその安定化剤とを、対象水系に添加して殺菌殺藻する方法であって、当該水系における全残留塩素濃度が所定の範囲内にあるように、前記酸化剤系殺菌殺藻剤の添加量を制御すると共に、遊離残留塩素濃度が所定範囲内にあるように、前記安定化剤の添加量を制御することを特徴とする。
なお、本発明の殺菌殺藻方法の残留塩素濃度の測定方法としては、DPD吸光光度法、DPD比色法、電流滴定法、ポーラログラフ法等を採用することができる。
The bactericidal algae method of the present invention is a method for adding a oxidizer-based bactericidal algicide and its stabilizer to a target water system for bactericidal algae, wherein the total residual chlorine concentration in the water system is within a predetermined range. The amount of the oxidizing agent-based disinfectant algaecide is controlled so as to be within the range, and the amount of the stabilizer added is controlled so that the free residual chlorine concentration is within a predetermined range. .
In addition, as a measuring method of the residual chlorine concentration of the bactericidal and algicidal method of the present invention, a DPD absorptiometric method, a DPD colorimetric method, an amperometric method, a polarographic method and the like can be employed.

[酸化剤系殺菌殺藻剤]
本発明の方法において使用される酸化剤系殺菌殺藻剤としては、従来、酸化剤系殺菌殺藻剤として知られている化合物を用いることができるが、本発明では、特に次亜塩素酸塩を用いることが好ましい。なお、次亜塩素酸塩にかえて次亜臭素酸塩単独か、又は次亜塩素酸塩と次亜臭素酸塩とを併用して添加してもよい。
上記次亜塩素酸や次亜臭素酸の塩の形態としては、ナトリウム塩、カリウム塩、カルシウム塩、バリウム塩などを挙げることができるが、水溶性及び経済性などの観点から、ナトリウム塩が好適である。
本発明においては、これらの次亜塩素酸塩や次亜臭素酸塩は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
これらの次亜塩素酸塩や次亜臭素酸塩は、紫外線により分解が促進されやすく、この分解を抑制して、有効塩素成分を安定化させるために、本発明においては、上記酸化剤系殺菌殺藻剤と共に、その安定化剤を対象水系に添加する。
[Oxidizer-based bactericidal algicide]
As the oxidant-based bactericidal algicide used in the method of the present invention, a compound conventionally known as an oxidant-based bactericidal algicide can be used. In the present invention, hypochlorite is particularly used. Is preferably used. Note that hypobromite alone or a combination of hypochlorite and hypobromite may be used instead of hypochlorite.
Examples of the salt form of hypochlorous acid or hypobromite include sodium salt, potassium salt, calcium salt, barium salt, etc., but from the viewpoint of water solubility and economy, sodium salt is preferable. It is.
In the present invention, these hypochlorite and hypobromite may be used singly or in combination of two or more.
These hypochlorite and hypobromite are easily decomposed by ultraviolet rays, and in order to stabilize the effective chlorine component by suppressing this decomposition, in the present invention, the oxidizer-based sterilization is performed. Along with the algicidal agent, the stabilizer is added to the target water system.

[安定化剤]
本発明の方法においては、前述の酸化剤系殺菌殺藻剤の安定化剤としては、従来酸化剤系殺菌殺藻剤の安定化剤として知られている公知の化合物の中から任意のものを適宜選択して用いることができる。より具体的な安定化剤としては、スルファミン酸及び/又はその塩、アゾール系化合物、尿素、チオ尿素、クレアチニン、シアヌル酸、アルキルヒダントイン、モノ又はジエタノールアミン、有機スルホンアミド、ビュウレット、有機スルファミン酸及びメラミン等を挙げることができる。これらのなかで、次亜塩素酸塩や次亜臭素酸塩の安定化剤として有効なスルファミン酸及び/又はその塩を用いることが好ましい。スルファミン酸塩に特に制限はなく、例えば、スルファミン酸ナトリウム、スルファミン酸カリウム、スルファミン酸カルシウム、スルファミン酸ストロンチウム、スルファミン酸バリウム、スルファミン酸鉄、スルファミン酸亜鉛などを挙げることができるが、これらの中で水溶性及び経済性の観点から、スルファミン酸ナトリウムが好適である。
本発明においては、これらのスルファミン酸やその塩は一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
[Stabilizer]
In the method of the present invention, as the stabilizer for the above-mentioned oxidant-based bactericidal algicide, any one of known compounds conventionally known as stabilizers for oxidant-type bactericidal algicide can be used. It can be appropriately selected and used. More specific stabilizers include sulfamic acid and / or its salt, azole compound, urea, thiourea, creatinine, cyanuric acid, alkylhydantoin, mono- or diethanolamine, organic sulfonamide, burette, organic sulfamic acid and melamine Etc. Among these, it is preferable to use sulfamic acid and / or a salt thereof effective as a stabilizer for hypochlorite or hypobromite. The sulfamate is not particularly limited, and examples thereof include sodium sulfamate, potassium sulfamate, calcium sulfamate, strontium sulfamate, barium sulfamate, iron sulfamate, and zinc sulfamate. From the viewpoint of water solubility and economy, sodium sulfamate is preferred.
In the present invention, these sulfamic acids and salts thereof may be used alone or in combination of two or more.

次亜塩素酸イオンとスルファミン酸は、次式のように反応して、N−モノクロロスルファミン酸イオン又はN,N−ジクロロスルファミン酸イオンを形成して塩素系酸化剤の有効成分を安定化する。
HClO+H2NSO3 -→HClNSO3 -+H2
2HClO+H2NSO3 -→Cl2NSO3 -+2H2
モノ又はジクロロスルファミン酸イオンは、遊離の塩素イオンに比べて殺菌効果は弱い。
Hypochlorite ion and sulfamic acid react as shown in the following formula to form N-monochlorosulfamate ion or N, N-dichlorosulfamate ion to stabilize the active ingredient of the chlorinated oxidant.
HClO + H 2 NSO 3 → HClNSO 3 + H 2 O
2HClO + H 2 NSO 3 → Cl 2 NSO 3 + 2H 2 O
Mono- or dichlorosulfamic acid ions have a weaker bactericidal effect than free chlorine ions.

一方、次亜臭素酸イオンと、安定化剤のスルファミン酸は次式のように反応して、N−モノブロモスルファミン酸イオン又はN,N−ジブロモスルファミン酸イオンを形成して臭素系酸化剤の有効成分を安定化する。
HBrO+H2NSO3 -→HBrNSO3 -+H2
2HBrO-+H2NSO3 -→Br2NSO3 -+2H2
モノ又はジブロモスルファミン酸イオンは、遊離の臭素イオンとほぼ同様の殺菌効果を有する。
On the other hand, hypobromite ion and stabilizer sulfamic acid react as shown in the following formula to form N-monobromosulfamic acid ion or N, N-dibromosulfamic acid ion to form brominated oxidant. Stabilize active ingredients.
HBrO + H 2 NSO 3 → HBrNSO 3 + H 2 O
2HBrO + H 2 NSO 3 → Br 2 NSO 3 + 2H 2 O
Mono- or dibromosulfamate ions have a bactericidal effect almost similar to free bromine ions.

[酸化剤系殺菌殺藻剤及び安定化剤の添加量制御]
本発明においては、対象水系における全残留塩素濃度が所定の範囲内にあるように、前述の酸化剤系殺菌殺藻剤の添加量を制御すると共に、遊離残留塩素濃度が所定範囲内にあるように、前述の安定化剤の添加量を制御する。なお、次亜塩素酸塩にかえて、又は加えて次亜臭素酸塩を採用する場合でも、次亜臭素酸塩の濃度は、塩素換算値として表す。
因みに、次亜塩素酸(52.5g/L)=次亜臭素酸(97.5g/L)=塩素(71g/L)として換算する。
具体的には、塩素濃度測定装置を用いて、対象水系における全残留塩素濃度が、好ましくは0.1〜100mg/L、より好ましくは1〜100mg/Lの範囲にあるように、酸化剤系殺菌殺藻剤の添加量を制御すると共に、安定化剤の添加量は、上記酸化剤系殺菌殺藻剤の添加量に対して、通常0.5〜2.0倍モル量の範囲内になるように、かつ遊離残留塩素濃度が、好ましくは1mg/L以下、より好ましくは0.5mg/L以下、さらに好ましくは0.3mg/L以下になるように制御することにより、殺菌殺藻処理を行う。
このような殺菌殺藻処理は、水系のpHが3.0〜10.0の範囲、好ましくは6.0〜9.0の範囲になるように制御して行うのが有利である。
なお、上記の全残留塩素濃度及び遊離残留塩素濃度の測定方法については、後で詳述する。
殺菌殺藻力を強化するためには、全残留塩素濃度を増加させるのがよいが、その際、遊離残留塩素濃度が増加すれば、安定化剤が不足している状態であるので、安定化剤濃度を上げることで、遊離残留塩素濃度を低下させる。このような制御は、自動で行ってもよく、手動で行ってもよい。
また、オンライン全残留塩素濃度分析計にて酸化剤殺菌殺藻剤の添加量を制御すると共に、オンライン遊離残留塩素濃度分析計にて安定化剤の添加量を制御してもよい。
[Control of addition amount of oxidizer-based bactericidal algicide and stabilizer]
In the present invention, the amount of the aforementioned oxidizer-based bactericidal and algicidal agent is controlled so that the total residual chlorine concentration in the target water system is within a predetermined range, and the free residual chlorine concentration is within the predetermined range. In addition, the amount of the stabilizer mentioned above is controlled. Even when hypobromite is used instead of or in addition to hypochlorite, the concentration of hypobromite is expressed as a chlorine equivalent.
Incidentally, it converts as hypochlorous acid (52.5 g / L) = hypochlorous acid (97.5 g / L) = chlorine (71 g / L).
Specifically, using a chlorine concentration measuring device, the total residual chlorine concentration in the target water system is preferably in the range of 0.1 to 100 mg / L, more preferably 1 to 100 mg / L. While controlling the addition amount of the bactericidal algicide, the addition amount of the stabilizer is usually within the range of 0.5 to 2.0 times the molar amount with respect to the addition amount of the oxidizing bactericidal algicide. And by controlling the free residual chlorine concentration to be preferably 1 mg / L or less, more preferably 0.5 mg / L or less, and even more preferably 0.3 mg / L or less. I do.
Such a bactericidal and algicidal treatment is advantageously performed while controlling the pH of the aqueous system to be in the range of 3.0 to 10.0, preferably in the range of 6.0 to 9.0.
The method for measuring the total residual chlorine concentration and the free residual chlorine concentration will be described in detail later.
In order to strengthen the bactericidal and algicidal power, it is better to increase the total residual chlorine concentration. However, if the free residual chlorine concentration increases at this time, the stabilizer is insufficient. By increasing the agent concentration, the free residual chlorine concentration is reduced. Such control may be performed automatically or manually.
In addition, the addition amount of the oxidizing agent bactericidal algicide may be controlled by an online total residual chlorine concentration analyzer, and the addition amount of the stabilizer may be controlled by an online free residual chlorine concentration analyzer.

[対象水系]
本発明の殺菌殺藻方法が適用される水系に特に制限はなく、例えば冷却水系、紙パルププロセス水系、集塵水系、スクラバー水系、噴水系などを挙げることができる。
これらの水系に、本発明の殺菌殺藻方法を適用することにより、日光の照射を受ける環境や、銅や銅合金材料が、配管、熱交換器などに使用されている水系においても、高い残留塩素濃度が維持され、対象水系の効果的な殺菌殺藻処理が可能であると共に、安定化剤が有効に活用され、その使用量を低減することにより、該安定化剤由来の窒素分及びCOD分を低減することができる。
[Target water system]
There is no restriction | limiting in particular in the water system to which the sterilization algicide method of this invention is applied, For example, a cooling water system, a paper pulp process water system, a dust collection water system, a scrubber water system, a fountain system etc. can be mentioned.
By applying the sterilizing and algae killing method of the present invention to these water systems, high residuals can be obtained even in environments where sunlight is irradiated, or in water systems where copper or copper alloy materials are used in piping, heat exchangers, etc. The chlorine concentration is maintained, and effective sterilization and algae treatment of the target water system is possible, and the stabilizer is effectively utilized. By reducing the amount of the stabilizer used, the nitrogen content and COD derived from the stabilizer are reduced. Minutes can be reduced.

次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
なお、遊離残留塩素濃度及び全残留塩素濃度は、以下に示す方法に従って測定した。
(1)遊離残留塩素濃度
(a)DPD試薬の作製
N,N−ジエチル−フェニレンジアミン硫酸塩1.0gと無水硫酸ナトリウム24gとの混合物からなるDPD(N,N−ジエチル−p−フェニレンジアミン)試薬を作製する。
(b)リン酸緩衝液(pH=6.5)の調製
0.2mol/Lリン酸二水素カリウム100mLに0.2mol/L水酸化ナトリウム溶液35.4mLを加え、これにtrans−1,2−シクロヘキサンジアミン四酢酸−水和物0.13gを溶解し、リン酸緩衝液(pH=6.5)を調製する。
(c)遊離残留塩素濃度の測定
リン酸緩衝液2.5mLを共栓付き容器50mLに採り、これにPDP試薬0.5gを加え、次いで検水を加えて全量を50mLとして、混和する。次に混和した溶液の適量を吸収セルに採り、光電分光光度計を用いて、波長510〜555nm付近における吸光度
を測定し、予め作成した検量線から、遊離残留塩素濃度を求める。
(2)全残留塩素濃度
上記(1)(c)で得られた混和溶液50mLに、ヨウ化カリウム約0.5gを加えて溶かし、約3分間静置後、上記(1)(c)と同様にして、光電分光光度計を用いて波長510〜555nm付近における吸光度を測定し、予め作成した検量線から全残留塩素濃度を求める。
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.
The free residual chlorine concentration and the total residual chlorine concentration were measured according to the methods shown below.
(1) Free residual chlorine concentration (a) Preparation of DPD reagent DPD (N, N-diethyl-p-phenylenediamine) comprising a mixture of 1.0 g of N, N-diethyl-phenylenediamine sulfate and 24 g of anhydrous sodium sulfate Make reagents.
(B) Preparation of phosphate buffer solution (pH = 6.5) 35.4 mL of 0.2 mol / L sodium hydroxide solution was added to 100 mL of 0.2 mol / L potassium dihydrogen phosphate, and trans-1,2 was added thereto. -Dissolve 0.13 g of cyclohexanediaminetetraacetic acid-hydrate to prepare a phosphate buffer (pH = 6.5).
(C) Measurement of Free Residual Chlorine Concentration: Take 2.5 mL of phosphate buffer solution in 50 mL of a stoppered container, add 0.5 g of PDP reagent, add test water to make the total volume 50 mL, and mix. Next, an appropriate amount of the mixed solution is taken in an absorption cell, the absorbance at a wavelength of about 510 to 555 nm is measured using a photoelectric spectrophotometer, and the free residual chlorine concentration is obtained from a calibration curve prepared in advance.
(2) Total residual chlorine concentration To 50 mL of the mixed solution obtained in (1) and (c) above, about 0.5 g of potassium iodide was added and dissolved, and after standing for about 3 minutes, the above (1) (c) and Similarly, the absorbance in the vicinity of a wavelength of 510 to 555 nm is measured using a photoelectric spectrophotometer, and the total residual chlorine concentration is obtained from a calibration curve prepared in advance.

実施例1
次亜塩素酸塩の安定化
模擬冷却水(Mアルカリ度250mg/L、カルシウム硬度250mg/L、マグネシウム硬度125mg/L)1Lに、30℃にて、次亜塩素酸ナトリウムを0.014mmol/L(全残留塩素濃度1mg/L)添加した。これに、スルファミン酸ナトリウムを次亜塩素酸ナトリウムの有効成分の1、2、5倍モル当量となるように追加した。
その結果、次亜塩素酸塩の有効成分に対して、スルファミン酸塩を等モル以上反応させることで、約24時間後には、遊離残留塩素濃度を低いレベルに安定化できることが確認された。
結果を第1表に示すと共に、図1に示す。なお、表及び図において、T−Cl2:全残留塩素濃度、F−Cl2:遊離残留塩素濃度、NT:安定化次亜塩素酸塩濃度([T−Cl2]−[F−Cl2])である。以下、同様
Example 1
Stabilized simulated cooling water for hypochlorite (M alkalinity 250 mg / L, calcium hardness 250 mg / L, magnesium hardness 125 mg / L) 1 L at 30 ° C., sodium hypochlorite 0.014 mmol / L (Total residual chlorine concentration 1 mg / L) was added. To this, sodium sulfamate was added in a molar equivalent of 1, 2, 5 times the active ingredient of sodium hypochlorite.
As a result, it was confirmed that the free residual chlorine concentration can be stabilized at a low level after about 24 hours by reacting the active ingredient of hypochlorite with an equimolar amount or more of sulfamate.
The results are shown in Table 1 and shown in FIG. In the tables and figures, T-Cl 2 : total residual chlorine concentration, F-Cl 2 : free residual chlorine concentration, NT: stabilized hypochlorite concentration ([T-Cl 2 ]-[F-Cl 2 ]). The same applies below

Figure 2009084163
Figure 2009084163

Figure 2009084163
Figure 2009084163

Figure 2009084163
Figure 2009084163

実施例2
汚れ成分により消耗した安定化次亜塩素酸塩の再生方法
模擬冷却水(Mアルカリ度250mg/L、カルシウム硬度250mg/L、マグネシウム硬度125mg/L)1Lに、30℃にて、次亜塩素酸ナトリウムを0.0705mmol/L(有効塩素濃度5mg/L)およびスルファミン酸ナトリウムを0.3525mmol/L(有効塩素濃度に対して5倍モル当量)をそれぞれ添加した。これに、実冷却水系から採取した汚れ成分を追加し、濁度100となるように調整した。汚れ成分により有効塩素成分が消耗した。はじめ5mg/Lであった全残留塩素濃度が、約3日後には1.5mg/Lまで低下した。その時点で次亜塩素酸ナトリウムを有効成分として5mg/L添加した結果、全残留塩素濃度は6.5mg/Lまであがった。遊離残留塩素濃度はほとんど検出されなかった。つまり、安定化次亜塩素酸塩を再生できた。その後は、再び汚れ成分により有効塩素成分が消耗され、全残留塩素濃度は低下傾向となった。
結果を図2に示す。
汚れ成分により有効塩素成分(次亜塩素酸塩)は消耗するが、スルファミン酸塩は系内に残存する。その状態で次亜塩素酸塩を添加すれば、系内に残存したスルファミン酸塩と反応し、再び安定化次亜塩素酸塩が生成される。
実系では以下の方法で管理できる。安定化次亜塩素酸塩の有効成分濃度(全残留塩素濃度)が低下してきた場合、次亜塩素酸塩を追加することで、所定の有効成分濃度(全残留塩素濃度)を維持する。スルファミン酸塩に対して次亜塩素酸塩が過剰に追加された状態になると、遊離残留塩素濃度が検出される。そのときは、スルファミン酸塩を追加することで遊離残留塩素濃度を低下でき、安定化次亜塩素酸塩を再生できる。
Example 2
Regeneration method of stabilized hypochlorite consumed by soil components Simulated cooling water (M alkalinity 250 mg / L, calcium hardness 250 mg / L, magnesium hardness 125 mg / L) 1 L, hypochlorous acid at 30 ° C. 0.0705 mmol / L of sodium (effective chlorine concentration 5 mg / L) and 0.3525 mmol / L of sodium sulfamate (5-fold molar equivalent with respect to effective chlorine concentration) were added. To this, a soil component collected from the actual cooling water system was added, and the turbidity was adjusted to 100. The effective chlorine component was consumed by the soil component. The total residual chlorine concentration, which was initially 5 mg / L, decreased to 1.5 mg / L after about 3 days. At that time, as a result of adding 5 mg / L of sodium hypochlorite as an active ingredient, the total residual chlorine concentration increased to 6.5 mg / L. Little free residual chlorine concentration was detected. That is, the stabilized hypochlorite could be regenerated. Thereafter, the effective chlorine component was consumed again by the soil component, and the total residual chlorine concentration tended to decrease.
The results are shown in FIG.
The effective chlorine component (hypochlorite) is consumed by the soil component, but the sulfamate remains in the system. If hypochlorite is added in this state, it reacts with the sulfamate remaining in the system, and stabilized hypochlorite is produced again.
In the real system, it can be managed by the following method. When the active ingredient concentration (total residual chlorine concentration) of the stabilized hypochlorite has decreased, a predetermined active ingredient concentration (total residual chlorine concentration) is maintained by adding hypochlorite. Free hypochlorite concentration is detected when hypochlorite is added in excess to the sulfamate. At that time, by adding sulfamate, the concentration of free residual chlorine can be reduced, and the stabilized hypochlorite can be regenerated.

実施例3
スルファミン酸塩と次亜塩素酸塩の反応性
模擬冷却水(Mアルカリ度250mg/L、カルシウム硬度250mg/L、マグネシウム硬度125mg/L)1Lに、30℃にて、次亜塩素酸ナトリウムを0.084mmol/L(全残留塩素濃度6mg/L)添加した。これに、スルファミン酸ナトリウムを次亜塩素酸ナトリウムの有効成分の0.83,1.7,4.2倍モル当量となるように追加し、時間の経過によるT−Cl2及びF−Cl2の変化を調べた。その結果を第2表に示すと共に、図3に示す。
その結果、次亜塩素酸塩の有効成分に対してスルファミン酸塩を等モル以上反応させることで、22時間後には安定化塩素を生成して、遊離残留塩素濃度を低いレベルにすることができることを確認できた。また、全残留塩素濃度を1mg/Lから6mg/Lに上げることにより安定化塩素の生成速度を速くすることができることが第1表と第2表の比較からわかる。
Example 3
Reactivity simulated cooling water of sulfamate and hypochlorite (M alkalinity 250 mg / L, calcium hardness 250 mg / L, magnesium hardness 125 mg / L) 1 L at 30 ° C. with sodium hypochlorite 0 0.084 mmol / L (total residual chlorine concentration 6 mg / L) was added. To this, sodium sulfamate was added in an amount of 0.83, 1.7, 4.2 times the molar equivalent of the active ingredient of sodium hypochlorite, and T-Cl 2 and F-Cl 2 over time were added. I examined the changes. The results are shown in Table 2 and shown in FIG.
As a result, it is possible to generate stabilized chlorine after 22 hours and to reduce the free residual chlorine concentration to a low level by reacting sulfamate with an equimolar amount or more with respect to the active ingredient of hypochlorite. Was confirmed. Further, it can be seen from the comparison between Table 1 and Table 2 that the rate of formation of stabilized chlorine can be increased by increasing the total residual chlorine concentration from 1 mg / L to 6 mg / L.

Figure 2009084163
Figure 2009084163

Figure 2009084163
Figure 2009084163

Figure 2009084163
Figure 2009084163

比較例1
特開2006−206608号公報「殺菌殺藻剤組成物」の実施例4に、水8.2g、45重量%水酸化ナトリウム水溶液19.3g、スルファミン酸12.0g、12重量%次亜塩素酸ナトリウム60.0g、ベンゾトリアゾール0.5gを配合した一剤化された安定化次亜塩素酸を挙げている。
本剤を実施例2と同じく、汚れの負荷が高い水系に適用すると、安定化次亜塩素酸塩の有効成分濃度(全残留塩素濃度)が消耗される。有効成分濃度を維持するためには、薬剤の添加濃度を上げる必要がある。その場合、薬剤中のスルファミン酸、ベンゾトリアゾール由来のCOD、窒素分が水系に添加されることになり、環境負荷につながる。
Comparative Example 1
In Example 4 of JP-A-2006-206608 “Bactericidal Algicidal Composition”, 8.2 g of water, 19.3 g of 45 wt% aqueous sodium hydroxide, 12.0 g of sulfamic acid, 12 wt% hypochlorous acid One stabilized hypochlorous acid blended with 60.0 g sodium and 0.5 g benzotriazole is mentioned.
As in Example 2, when this agent is applied to an aqueous system with a high soil load, the active hypochlorite concentration (total residual chlorine concentration) of the stabilized hypochlorite is consumed. In order to maintain the active ingredient concentration, it is necessary to increase the additive concentration of the drug. In that case, sulfamic acid, COD derived from benzotriazole, and nitrogen content in the drug are added to the aqueous system, leading to an environmental burden.

本発明の殺菌殺藻方法は、次亜塩素酸塩及び/又は次亜臭素酸塩とスルファミン酸塩を過不足なく効率的に反応させることで、安定化次亜塩素酸塩及び/又は次亜臭素酸塩を生成できる技術であり、従来技術の課題であるスルファミン酸、ベンゾトリアゾール由来のCOD、窒素負荷を低減できる。   The bactericidal and algicidal method of the present invention comprises stabilizing hypochlorite and / or hypochlorite by reacting hypochlorite and / or hypobromite and sulfamate efficiently without excess or deficiency. This is a technology capable of producing bromate, and can reduce COD and nitrogen load derived from sulfamic acid and benzotriazole, which are problems of the prior art.

実施例1における残留塩素濃度と時間との関係を示すグラフである。3 is a graph showing the relationship between residual chlorine concentration and time in Example 1. 実施例2における残留塩素濃度と時間との関係を示すグラフである。6 is a graph showing the relationship between residual chlorine concentration and time in Example 2. 実施例3における残留塩素濃度と時間との関係を示すグラフである。6 is a graph showing a relationship between residual chlorine concentration and time in Example 3.

Claims (4)

酸化剤系殺菌殺藻剤とその安定化剤とを、対象水系に添加して殺菌殺藻する方法であって、当該水系における全残留塩素濃度が所定の範囲内にあるように、前記酸化剤系殺菌殺藻剤の添加量を制御すると共に、遊離残留塩素濃度が所定範囲内にあるように、前記安定化剤の添加量を制御することを特徴とする殺菌殺藻方法。   An oxidizer-based bactericidal algicide and its stabilizer are added to a target water system for bactericidal algae, wherein the oxidizer is such that the total residual chlorine concentration in the water system is within a predetermined range. A sterilizing algaecidal method characterized by controlling the addition amount of the system sterilizing algicide and controlling the addition amount of the stabilizer so that the free residual chlorine concentration is within a predetermined range. 酸化剤系殺菌殺藻剤が次亜塩素酸塩及び/又は次亜臭素酸塩である請求項1に記載の殺菌殺藻方法。   The sterilizing algaecide method according to claim 1, wherein the oxidizer-based sterilizing algaecide is hypochlorite and / or hypobromite. 塩素濃度測定装置を用いて、次亜塩素酸塩及び/又は次亜臭素酸塩の塩素換算による全残留塩素濃度が0.1〜100mg/Lの範囲にあるように、酸化剤系殺菌殺藻剤の添加量を制御すると共に、次亜塩素酸塩及び/又は次亜臭素酸塩の塩素換算による遊離残留塩素濃度が1mg/L以下にあるように、安定化剤の添加量を制御する請求項1又は2に記載の殺菌殺藻方法。   Using a chlorine concentration measuring device, the oxidizer-based sterilizing alga so that the total residual chlorine concentration in terms of chlorine of hypochlorite and / or hypobromite is in the range of 0.1 to 100 mg / L The amount of stabilizer added is controlled, and the amount of stabilizer added is controlled so that the free residual chlorine concentration in terms of chlorine in hypochlorite and / or hypobromite is 1 mg / L or less. Item 3. The method for bactericidal algae killing according to item 1 or 2. 安定化剤が、スルファミン酸及び/又はその塩である請求項1〜3のいずれかに記載の殺菌殺藻方法。   The sterilizing method according to any one of claims 1 to 3, wherein the stabilizer is sulfamic acid and / or a salt thereof.
JP2007252303A 2007-09-27 2007-09-27 Bactericidal and algae killing method Active JP5141163B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2007252303A JP5141163B2 (en) 2007-09-27 2007-09-27 Bactericidal and algae killing method
US12/733,746 US10421676B2 (en) 2007-09-27 2008-09-10 Bactericidal/algicidal method
BRPI0817976 BRPI0817976A2 (en) 2007-09-27 2008-09-10 BACTERICIDE / ALGICIDE METHOD
EP08832826.5A EP2196092B1 (en) 2007-09-27 2008-09-10 Bactericidal/algicidal method
KR1020107005483A KR101706548B1 (en) 2007-09-27 2008-09-10 Bactericidal/algicidal method
CN200880106419A CN101801199A (en) 2007-09-27 2008-09-10 Bactericidal/algicidal method
PCT/JP2008/066338 WO2009041267A1 (en) 2007-09-27 2008-09-10 Bactericidal/algicidal method
MYPI2010001310A MY173605A (en) 2007-09-27 2008-09-10 Bactericidal/algicidal method
TW97136528A TWI439423B (en) 2007-09-27 2008-09-23 Method for sterilizing and killing algae

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007252303A JP5141163B2 (en) 2007-09-27 2007-09-27 Bactericidal and algae killing method

Publications (2)

Publication Number Publication Date
JP2009084163A true JP2009084163A (en) 2009-04-23
JP5141163B2 JP5141163B2 (en) 2013-02-13

Family

ID=40658054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007252303A Active JP5141163B2 (en) 2007-09-27 2007-09-27 Bactericidal and algae killing method

Country Status (1)

Country Link
JP (1) JP5141163B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102020376A (en) * 2009-09-22 2011-04-20 金圣钟 Method for removing algae using chlorine dioxide and device thereof
WO2011125762A1 (en) * 2010-03-31 2011-10-13 栗田工業株式会社 Combined chlorine agent, and manufacturing method and method of use for same
JP2013123680A (en) * 2011-12-14 2013-06-24 Jfe Steel Corp Method for treating cooling water
WO2014119606A1 (en) * 2013-01-30 2014-08-07 栗田工業株式会社 Method for controlling slime in aqueous paper pulp system
WO2015020188A1 (en) * 2013-08-08 2015-02-12 東亜ディーケーケー株式会社 Residual-chlorine measurement device, and residual-chlorine measurement method
JP2015044765A (en) * 2013-08-28 2015-03-12 オルガノ株式会社 Water treatment agent composition, method for producing water treatment agent composition, and water treatment method
WO2015046016A1 (en) * 2013-09-24 2015-04-02 栗田工業株式会社 Antimicrobial and algicidal method for cooling water system and antimicrobial and algicidal agent
JP2015209610A (en) * 2014-04-25 2015-11-24 オルガノ株式会社 Slime suppression method for paper-making process water
WO2016136304A1 (en) * 2015-02-24 2016-09-01 オルガノ株式会社 Method for modifying reverse osmosis membrane, reverse osmosis membrane, treatment method for boron-containing water, and method for operating separation membrane
US10647598B2 (en) 2013-09-24 2020-05-12 Kurita Water Industries Ltd. Antimicrobial and algicidal agent for cooling water system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3170883A (en) * 1962-04-02 1965-02-23 Cortez Chemicals Company Stabilization of chlorine in aqueous solutions
JPH11506139A (en) * 1996-03-22 1999-06-02 ナルコ ケミカル カンパニー Stabilized alkali or alkaline earth metal hypobromite and process for producing the same
JP2001163713A (en) * 1999-12-13 2001-06-19 Acculab Co Ltd Method for controlling microbial contamination using alkali metal or alkaline earth metal hypobromite and its controlling system
JP2003503323A (en) * 1999-06-29 2003-01-28 エス.シー. ジョンソン アンド サン、インコーポレイテッド N-chlorosulfamate composition with enhanced antibacterial effect
JP2003267812A (en) * 2002-03-14 2003-09-25 Kurita Water Ind Ltd Algicide, algicide composition and algicidal method
WO2007050162A1 (en) * 2005-10-27 2007-05-03 Nalco Company Biofouling control

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3170883A (en) * 1962-04-02 1965-02-23 Cortez Chemicals Company Stabilization of chlorine in aqueous solutions
JPH11506139A (en) * 1996-03-22 1999-06-02 ナルコ ケミカル カンパニー Stabilized alkali or alkaline earth metal hypobromite and process for producing the same
JP2003503323A (en) * 1999-06-29 2003-01-28 エス.シー. ジョンソン アンド サン、インコーポレイテッド N-chlorosulfamate composition with enhanced antibacterial effect
JP2001163713A (en) * 1999-12-13 2001-06-19 Acculab Co Ltd Method for controlling microbial contamination using alkali metal or alkaline earth metal hypobromite and its controlling system
JP2003267812A (en) * 2002-03-14 2003-09-25 Kurita Water Ind Ltd Algicide, algicide composition and algicidal method
WO2007050162A1 (en) * 2005-10-27 2007-05-03 Nalco Company Biofouling control

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6011060473; 化学大辞典編集委員会編: 化学大辞典 3 縮刷版, 第30刷, p.1002, 共立出版株式会社 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102020376A (en) * 2009-09-22 2011-04-20 金圣钟 Method for removing algae using chlorine dioxide and device thereof
JP5720964B2 (en) * 2010-03-31 2015-05-20 栗田工業株式会社 Combined chlorine agent, its production and use
WO2011125762A1 (en) * 2010-03-31 2011-10-13 栗田工業株式会社 Combined chlorine agent, and manufacturing method and method of use for same
US9700847B2 (en) 2010-03-31 2017-07-11 Kurita Water Industries, Ltd. Combined chlorine agent and production and use thereof
JP2013123680A (en) * 2011-12-14 2013-06-24 Jfe Steel Corp Method for treating cooling water
WO2014119606A1 (en) * 2013-01-30 2014-08-07 栗田工業株式会社 Method for controlling slime in aqueous paper pulp system
JP2014145145A (en) * 2013-01-30 2014-08-14 Kurita Water Ind Ltd Method for suppressing generation of slime in paper pulp-water system
WO2015020188A1 (en) * 2013-08-08 2015-02-12 東亜ディーケーケー株式会社 Residual-chlorine measurement device, and residual-chlorine measurement method
JP2015034741A (en) * 2013-08-08 2015-02-19 東亜ディーケーケー株式会社 Residual chlorine measuring device and residual chlorine measuring method
JP2015044765A (en) * 2013-08-28 2015-03-12 オルガノ株式会社 Water treatment agent composition, method for producing water treatment agent composition, and water treatment method
WO2015046016A1 (en) * 2013-09-24 2015-04-02 栗田工業株式会社 Antimicrobial and algicidal method for cooling water system and antimicrobial and algicidal agent
CN105555716A (en) * 2013-09-24 2016-05-04 栗田工业株式会社 Antimicrobial and algicidal method for cooling water system and antimicrobial and algicidal agent
JP2015063475A (en) * 2013-09-24 2015-04-09 栗田工業株式会社 Antibacterial/algicidal method of cooling water system and antibacterial/algicidal agent
US10647598B2 (en) 2013-09-24 2020-05-12 Kurita Water Industries Ltd. Antimicrobial and algicidal agent for cooling water system
JP2015209610A (en) * 2014-04-25 2015-11-24 オルガノ株式会社 Slime suppression method for paper-making process water
WO2016136304A1 (en) * 2015-02-24 2016-09-01 オルガノ株式会社 Method for modifying reverse osmosis membrane, reverse osmosis membrane, treatment method for boron-containing water, and method for operating separation membrane
TWI702081B (en) * 2015-02-24 2020-08-21 日商奧璐佳瑙股份有限公司 Method of modifying reverse osmosis membrane, reverse osmosis membrane, method of processing boron-containing water, and method of operating separation membrane

Also Published As

Publication number Publication date
JP5141163B2 (en) 2013-02-13

Similar Documents

Publication Publication Date Title
JP5141163B2 (en) Bactericidal and algae killing method
KR101706548B1 (en) Bactericidal/algicidal method
JP4317762B2 (en) Method for the preparation of biocides containing stabilized hypochlorite and bromide ion sources, and methods for controlling microbial fouling using the same
JP3832399B2 (en) Bactericidal algicide composition and water-based bactericidal algae method
AU640153B2 (en) Biocidal methods and compositions for recirculating water systems
EP2292096B1 (en) Active bromine containing biocidal compositions and their preparation
JPWO2016175006A1 (en) Ammonia nitrogen-containing wastewater treatment method and ammonia nitrogen decomposing agent
JPS6324485B2 (en)
JP2016209837A (en) Sterilization method of water
JP2019194159A (en) Generation method of bonded chlorine compound
WO2006030540A1 (en) Method of yielding hypobromous acid in aqueous system
JP5729399B2 (en) Slime control method in pulp and paper water system
JP6548870B2 (en) Method for controlling slime in papermaking process water
JP4470121B2 (en) Disinfecting and algae killing method of circulating cooling water system
JP2003267812A (en) Algicide, algicide composition and algicidal method
JP6630563B2 (en) Water sterilization method
JP2008247751A (en) Granular green alga controller and method for controlling granular green alga
WO2006043948A1 (en) Treatment for hydrostatic testing water
US20110024367A1 (en) Cyclic process for in-situ generation of chlorine dioxide in biguanide treated aquatic facilities
JP2006206608A5 (en) Water-based sterilization method
JP2005224645A (en) Water treatment method for waste water system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5141163

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250