JP4465758B2 - Electrolyzer - Google Patents

Electrolyzer Download PDF

Info

Publication number
JP4465758B2
JP4465758B2 JP34846199A JP34846199A JP4465758B2 JP 4465758 B2 JP4465758 B2 JP 4465758B2 JP 34846199 A JP34846199 A JP 34846199A JP 34846199 A JP34846199 A JP 34846199A JP 4465758 B2 JP4465758 B2 JP 4465758B2
Authority
JP
Japan
Prior art keywords
water
turbidity
treated
electrolysis
control means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34846199A
Other languages
Japanese (ja)
Other versions
JP2001162280A (en
Inventor
啓次郎 国本
岳見 桶田
朋秀 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP34846199A priority Critical patent/JP4465758B2/en
Publication of JP2001162280A publication Critical patent/JP2001162280A/en
Application granted granted Critical
Publication of JP4465758B2 publication Critical patent/JP4465758B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電気分解(以後電解と称す)に関するもので、特に電解水を被処理水に供給して殺菌する電解装置において、被処理水の濁度に応じた電解の制御に関するものである。
【0002】
【従来の技術】
従来より、濁度センサーの測定結果に応じて電解電流を制御するものはあった(例えば、特開平10−99614号公報)。
【0003】
この電解装置は図5に示すように、浴槽内の浴水1を吸い込んで浴槽内に返送する循環路2に濾過槽3を設けると共に濾過槽3より上流側においてアルミニウム電極を納めた電解槽4を循環路2に設け、電解槽4で発生させた凝集剤によって浴水1中の濁り成分を凝集させて濾過槽3で濾過するようにしたものであり、濾過槽3から出る浴水1の濁り度を測定する濁度センサ5と、濁度センサ5による測定結果に応じて電解槽4の電解電流値を制御するコントロ−ラ6より構成していた。また、濾過槽3をバイパスして並列に設けた殺菌用電解槽7が具備されていた。なお、8は浴水1を循環する循環ポンプ、9は浴水を保温するヒータユニットである。
【0004】
【発明が解決しようとする課題】
しかしながら、従来の電解装置では、濁度センサ5による測定結果に応じて電解槽4の電解電流値を制御するように構成しているが、この電解槽4はアルミニウム電極を用いて電気分解することにより、陽極からアルミニウムイオンを溶出させ、このアルミニウムイオンが水と反応して水酸化アルミニウムのコロイドを形成し、懸濁物質を凝集させるものである。すなわちアルミニウム電極を溶かして濁り成分を凝集し、濾過しやすくするものである。したがって、人の垢や汚れにより、濁度が上昇した場合に、電解電流を上げて凝集量を増せば濁り成分もよく濾過できるが、人が入浴することにより多くの細菌が持ち込まれ、この細菌が増殖を始めると、それに伴なって濁度が上昇する。濾過槽の濾過速度より細菌の増殖速度が勝れば、濾過中でであっても細菌は増え続け、結果として浴水の濁度は上昇してしまうことになる。特に細菌の栄養源となる有機物が浴水に溶け込んでいる場合は濾過槽で除去することは難しく、速い場合一般細菌は約20分で倍の数に増殖する。
【0005】
また、従来の電解装置にも殺菌用電解槽7が設けられ、浴水の細菌の繁殖を防止するようにしているが、濁度センサーとは関わりなくタイマーでのみ作動し、一定濃度の有効塩素を生成するようにしているだけである。有効塩素は浴水中の有機物等に結合して消費されるため、有機物の含有量が多いと直ぐに濃度が低下して殺菌効果がなくなってしまう。たとえば大勢の人が入浴するような場合、多くの有機物が供給され、有効塩素の殺菌作用が低下して、さらに多くの細菌と豊富な栄養源も供給されるために、細菌が増殖してしまう。これを防止するために生成する有効塩素濃度を上げると、入浴人数が少ない等の供給される有機物が少ない場合は、逆に有効塩素の消費が少なくなり、塩素臭がしたり、肌にダメージを与えたりしてしまうなどの問題があった。
【0006】
【課題を解決するための手段】
本発明は上記課題を解決するもので、内部に少なくとも一対の不溶性電極を備えた電解手段と、前記電解手段の電解水を被処理水へ供給制御する給水制御手段と、前記被処理水の濁度を検知する濁度検知手段と、前記濁度に基づいて前記電解手段の電解水生成量を制御する制御手段とで構成され、前記制御手段は、被処理水の濁度の絶対値と濁度の上昇速度とに基づいて、前記電解手段の電解水生成量を制御するものである
【0007】
上記発明によれば、不溶性電極に通電を行うことで、塩素イオンを含む水を電気分解することにより次亜塩素酸などの化合物である電解水を生成できる。そして、給水制御手段により、この電解水を被処理水へ供給することで、被処理水の殺菌を行う。被処理水は有効塩素濃度が低かったり、細菌の栄養源である有機物が増大すると被処理水内の細菌が増殖してくる。この細菌数に応じて濁度が増加するが、この濁度を濁度検知手段により検出し、濁度の増加度合いにより電極への通電量を制御して電解水の生成量を加減し、給水制御手段により適正量の電解水を被処理水に供給することにより細菌の増殖を抑えることができる。また、無駄な電解水の生成も抑えられる。
【0008】
そして、被処理水の濁度が高い状態で、細菌数の増加に伴なって濁度が上昇し始める濁度上昇速度を検知した場合は、電解水の次亜塩素酸などの化合物の濃度を高めに生成して供給し、被処理水の濁度が低い状態で、細菌数の増加に伴なう濁度上昇速度を検知した場合は、電解水の濃度を低めに生成して供給することで、適正量の電解水を被処理水に供給することができ、無駄な電解水の生成が抑えられる。
【0009】
また、内部に少なくとも一対の不溶性電極を備えた電解手段と、前記電解手段の電解水を被処理水へ供給制御する給水制御手段と、前記被処理水の濁度を検知する濁度検知手段と、前記濁度に基づいて前記電解手段の電解水生成量を制御する制御手段とで構成され、前記制御手段は、被処理水の容量を設定する設定部を有し、前記被処理水の濁度の上昇速度と前記設定部の値との積に基づいて、前記電解手段の電解水生成量を制御するものである。
【0010】
上記発明によれば、被処理水の容量が大きい条件で、細菌数の増加に伴なって濁度が上昇し始める濁度上昇速度を検知した場合は、電解水の次亜塩素酸などの化合物の生成量を多めにして供給し、被処理水の容量が小さい条件で、細菌数の増加に伴なう濁度上昇速度を検知した場合は、電解水を少なめに生成して供給することで、適正量の電解水を被処理水に供給することができ、安全でかつ無駄な電解水の生成が抑えられる。
【0011】
【発明の実施の形態】
本発明の請求項1にかかる電解装置は、内部に少なくとも一対の不溶性電極を備えた電解手段と、前記電解手段の電解水を被処理水へ供給制御する給水制御手段と、前記被処理水の濁度を検知する濁度検知手段と、前記濁度に基づいて前記電解手段の電解水生成量を制御する制御手段とで構成され、前記制御手段は、被処理水の濁度の絶対値と濁度の上昇速度とに基づいて、前記電解手段の電解水生成量を制御するものである。
【0012】
そして、不溶性電極に通電を行うことで、塩素イオンを含む水を電気分解することにより次亜塩素酸などの化合物である電解水を生成し、給水制御手段により、この電解水を被処理水へ供給することで、被処理水の殺菌を行う。被処理水は有効塩素濃度が低かったり、細菌の栄養源である有機物が増大すると被処理水内の細菌が増殖してくる。この細菌数に応じて濁度が増加するが、この濁度に応じて電解水の生成量を加減し、給水制御手段により適正量の電解水を被処理水に供給することにより細菌の増殖を抑えることができる。
【0013】
そして、被処理水の濁度が高い状態で、細菌数の増加に伴なって濁度が上昇し始める濁度上昇速度を検知した場合は、電解水の次亜塩素酸などの化合物の濃度を高めに生成して供給し、被処理水の濁度が低い状態で、細菌数の増加に伴なう濁度上昇速度を検知した場合は、電解水の濃度を低めに生成して供給することで、適正量の電解水を被処理水に供給することができ、無駄な電解水の生成が抑えられる。
【0014】
また、請求項2にかかる電解装置は、内部に少なくとも一対の不溶性電極を備えた電解手段と、前記電解手段の電解水を被処理水へ供給制御する給水制御手段と、前記被処理水の濁度を検知する濁度検知手段と、前記濁度に基づいて前記電解手段の電解水生成量を制御する制御手段とで構成され、前記制御手段は、被処理水の容量を設定する設定部を有し、前記被処理水の濁度の上昇速度と前記設定部の値との積に基づいて、前記電解手段の電解水生成量を制御するものである。
【0015】
そして、被処理水の容量が大きい条件で、細菌数の増加に伴なって濁度が上昇し始める濁度上昇速度を検知した場合は、電解水の次亜塩素酸などの化合物の生成量を多めにして供給し、被処理水の容量が小さい条件で、細菌数の増加に伴なう濁度上昇速度を検知した場合は、電解水を少なめに生成して供給することで、適正量の電解水を被処理水に供給することができ、安全でかつ無駄な電解水の生成が抑えられる。
【0016】
また、請求項3にかかる電解装置は、制御手段が、被処理水の濁度レベルまたは濁度の上昇速度に応じて電解水の生成濃度を可変制御するものである。
【0017】
そして、被処理水の濁度レベルが高い場合は、電解水の次亜塩素酸などの化合物の生成濃度を高くして供給し、濁度レベルが低い場合は、電解水の生成濃度を低くして供給する。また、被処理水の濁度上昇速度が速い場合は、電解水の生成濃度を高くして供給し、濁度上昇速度が遅い場合は、電解水の生成濃度を低くして供給することで、適正量の電解水を被処理水に供給することができる。
【0018】
また、請求項4にかかる電解装置は、電解手段に貯留部を有し、制御手段は電解運転の際にまず電極に通電し、その後給水制御手段を駆動するものである。
【0019】
そして、給水制御手段を停止した状態で電極に通電し、貯留部に生成した電解水を貯え、電解を終了した後に被処理水へ電解水を供給するよう制御する。これは、電解中に通水がないため、電解手段内の水は電極表面に発生する水素ガスや酸素などが浮上する際の誘引作用により、流れが発生し水に含まれる塩素イオンがゆっくりと電極間を通過するため効率の良い電解ができる。
【0020】
また、請求項5にかかる電解装置は、電解質溶液を貯えるタンクと、前記電解質溶液を電解手段に供給する電解質供給手段とを付加し、制御手段が、濁度検知手段の検知濁度に基づいて、給水制御手段と前記電解質供給手段と電極とへの通電を制御するようにしたものである。
【0021】
そして、塩化ナトリウム溶液等の電解質溶液を電解手段に供給することで、電解質溶液内の高濃度の塩素イオンが電解手段に供給されるので、高濃度の次亜塩素酸などの化合物である電解水を生成できる。また、この電解質溶液の供給量を制御することで電解水の生成濃度を可変できる。
【0022】
また、請求項6にかかる電解装置は、被処理水への電解水供給部に濁度検知手段を配置し、電解水により前記濁度検知手段を洗浄するよう構成したものである。
【0023】
そして、被処理水に電解水を供給する際に、生成された高濃度の電解水が濁度検知手段の周囲を通過するよう構成するので、濁度検知手段に付着する汚れが分解したり、洗い流されたりするので、濁度検知が常に安定して行える。
【0024】
また、請求項7にかかる電解装置は、使用者への報知手段を有し、制御手段は、被処理水の濁度レベルまたは濁度の上昇速度が所定値を超えた場合に前記報知手段により被処理水の交換を促す報知をするものである。
【0025】
そして、この被処理水の濁度レベルまたは濁度の上昇速度の所定値は、被処理水の濁度成分が多すぎるために、電解水を供給しても十分な殺菌効果が得られないような場合に、被処理水を交換するように使用者に報知するもので、表示や音で知らせる。
【0026】
【実施例】
以下、本発明の実施例について図面を用いて説明する。
【0027】
(実施例1)
図1は本発明の実施例1における電解装置の構成図である。
【0028】
図1において、電解装置本体15は浴槽16内の被処理水である浴水17を電解し殺菌するとともに循環して浄化するものである。この電解装置本体15内には浴水17を循環路18に流す循環ポンプである給水制御手段19と、循環路18に流す浴水の不純物等の汚れを濾過する濾過手段20と、濾過手段20の下流側に連通し内部に一対の不溶性の電極21を備えた電解手段22と、この電解手段22へ電解質溶液23を供給する電解質供給手段24と、循環路18に流れる浴水の濁度を検知する濁度検知手段25と、制御手段26とを備えている。
【0029】
循環路18を流れる浴水17は、浴槽16から吸引され入口管27を経て給水制御手段19に入り、この給水制御手段19より送出される浴水17は、送水管A28、切換弁A29、送水管B30を経て濾過手段20に送られる。濾過手段20により濾過された浴水17は、出口管A31、切換弁B32、出口管B33を経て浴槽16に戻る。
【0030】
濾過手段20は、内部に円筒状のフィルター34を設け、送水管B30に接続した濾過入口35と、出口管A31と接続した濾過出口36とを備え、濾過入口35とフィルター34の外面を連通させ、濾過出口36とフィルター34内面を連通させて構成している。すなわち循環される水はフィルター34の外面から内面方向に通過し、水に含まれる汚成分である不純物をフィルター34外面に捕捉する。フィルター34は糸巻き状の物、不織布、織物、スポンジ状樹脂や多孔質材料などあるが何れでもよい。
【0031】
電解手段22は、電解槽37の内部に板状の一対の電極21a、21bを対向させて構成している。電解槽37は、下端に電解入口38、上端に電解出口39を設け、電解入口38は濾過手段20のフィルター34内面側の下端と連通している。また、電解出口39は濾過出口36と連通している。なお、ここで用いた電極21は、基材がチタンまたはチタン合金であり、表面には白金またはイリジウムなどの貴金属を被膜したものを用いて不溶性電極を構成している。
【0032】
この濾過手段20と電解手段22との構成は、電解手段22が滞留電解して生成した電解水が濾過手段20に貯留されよう配置された状態となる。すなわち、濾過手段20の下流側に電解手段22の電解入口38と電解出口39を連通させて電解水が自然循環することで、濾過手段20が電解手段22の貯留部を構成している。
【0033】
滞留電解とは、電解手段22への通水を行わない状態での電気分解のことで、給水制御手段19の運転を停止させて循環運転しない状態の電解をいう。
【0034】
濁度検知手段25は、フォトセンサにより浴水の光透過度を電気信号に変換するもので、濾過出口36の上流側で電解出口39近傍に配置し、電解槽37で生成される電解水が直接濁度検知手段25に接触するようにしている。
【0035】
電解質溶液23は、タンク40に貯えられた食塩41の水溶液で、給水路42に設けた電解質供給手段24により出口管A31内の水をタンク40のタンク入口43に供給する。そしてこの水は、タンク40内を貫通する通水パイプ44を通ってタンク底部に導かれ、食塩41の中を通過することでタンク40上部では飽和食塩水となる。この電解質溶液23はタンク上端に設けたタンク出口45より出水路46を経て電解槽37上部に導かれ供給される。なお本実施例では電解質供給手段24に電磁ポンプを用いて微少流量を供給できるようにしている。
【0036】
給水路42には電解質溶液23が出口管A31へ逆流するのを防止する逆止弁47が設けてある。
【0037】
送水管A28は、途中の分岐点47で分岐管48を介して切換弁B32と連通している。切換弁B32は、出口管A31と出口管B33とを連通させる循環運転の状態と、分岐管48と出口管B33とを連通させる逆流洗浄の状態を切換える。
【0038】
49は切換弁A29に連通する排水管で、切換弁A29からの水を電解装置本体15の外に排出する配管である。
【0039】
切換弁A29は、送水管A28と送水管B30とを連通させる循環運転の状態と、送水管A28と排水管49とを連通させる逆流洗浄の状態と、送水管A28と送水管B30と排水管49を全て閉じる閉止の状態とを切換える。すなわちこの切換弁A29は、開閉手段にもなっている。また、切換弁A29と切換弁B32を同時に逆流洗浄の状態に切換え、給水制御手段19を運転すれば濾過手段20に対する循環を逆流する逆流運転となる。すなわち、切換弁A29と切換弁B32は逆流運転への切換手段となっている。
【0040】
制御手段26は、給水制御手段19と、電極21への通電と、電解質供給手段24と、切換弁A29と、切換弁B32を制御するよう構成されており、滞留電解運転、循環濾過運転、濾過手段の逆流洗浄運転等を行う。
【0041】
次に、制御手段26の具体構成を図2を用いて説明する。図において50は、入出力インターフェースやメモリー等を内蔵した公知のマイクロコンピュータ(以降、マイコンと呼ぶ)であり、運転開始スイッチを有した操作パネル51からの信号を入力するように接続され、使用者の指示が入力できる。52は濁度検知手段25からの信号を変換する濁度検知回路である。54は電極21へ一定の電流を供給する定電流回路で、電解中にマイコン50からの指示に応じて駆動する。また、マイコン50の信号に応じて、電極21の極性を切換える極切換回路55を備えている。56はマイコン50の指示により電解質供給手段24である電磁ポンプを駆動する電磁ポンプ駆動回路。57はマイコン50の指示により給水制御手段19を駆動する循環ポンプ駆動回路である。58はマイコン50の指示により切換弁A29を駆動する切換弁A駆動回路で、59は切換弁B32を駆動する切換弁B駆動回路。60は濁度検知手段25で検知した濁度レベルまたは濁度の上昇速度が所定値を超えた場合にマイコン50より浴水の交換を促す報知をする報知手段で、ブザーやLED等で構成される。
【0042】
次に、マイコン50での処理内容と動作を図1、図3および図4を用いて説明する。図3は制御手段のフローチャートで、図4はその動作を示すタイムチャートである。図3において61で運転開始スイッチを押してスイッチオンすると、62で浄化運転が始まる。浄化運転は、図4のT0からT1までの運転で、ここでは給水制御手段である循環ポンプ20がオンし運転する。この時切換弁A29および切換弁B32は共に循環の状態に設定されている。この循環運転で、浴槽21の浴水17は、入口管27、循環ポンプ20、送水管A28、切換弁A29、送水管B30を経て濾過手段20に送られ、フィルター34により不純物が濾過される。そして浄化された浴水は出口管A31、切換弁B32、出口管B33を経て浴槽16に戻る。
【0043】
図3の63では濁度検知手段25より浴水の濁度を読み取る。このとき浴水が濁度検知手段25の周囲を流れるように、短時間だけ循環運転を行う(図4のa)。そして、64で濁度レベルおよび濁度の上昇速度が限界値を超えていないかを判定し、濁度レベルまたは上昇速度が限界値を超えていれば65で浴水の交換を促す報知を行い、電解シーケンスを終了する。64で限界値を超えていなければ、66でこの濁度から電解運転をするかを判定する。判定条件は濁度の上昇速度が所定値を超えるかを見ている。ここでは1時間当たりの濁度上昇が0.1度を超えたら電解をするように判定している。
【0044】
図4の浴水の細菌数は、T0からT1までに入浴により人体から浴槽に細菌が持ち込まれ増加する。この時細菌の栄養源である有機物も一緒に浴水に溶け込むが、この細菌は環境の変化に適応するまで増殖しない。一般に増殖が始まるのは2時間以上経過してからになる。そして、T2で増殖が始まり、細菌への環境が良ければ約20分で倍の数に増殖を続けることになる。この時浴水の濁度は、T0からT1までは入浴により汚れが持ち込まれ濁度は上昇するが、浄化の作用により低下する。そしてT1の時点で浄化が終了し、一定の濁度になる。しかし、T2から細菌数の増加に伴い、浴水は白濁しはじめる。この白濁成分は大半が1μ前後の細菌そのものであり、一般の濾過手段20ではそのほとんどが通過してしまう。したがって、フィルター34の下流側にある濁度検知手段25でもこの濁度の変化は検出できる。また浴水における細菌の増殖度合いは、汚れ等の有機物の量や、水質、温度、細菌の種類などに左右されるため予測することが難しい。
【0045】
図3の66で濁度の上昇速度が所定値を超え、電解すると判定すると、67の塩水供給量算定を行う。一般に塩素イオン濃度が高いほど次亜塩素酸などの塩素化合物の生成量は多くなるため、塩水の供給量を増せば電解水の生成濃度を増すことができる。この塩水供給量Cは式1を用いて濁度の上昇速度(dD/dt)に比例的に求める。なおAは定数、Bは比例係数である。
【0046】
C=A+B×(dD/dt)・・・(式1)
68ではまず切換弁Aを閉止状態し、算定値Cの供給量になるように電解質供給手段24である電磁ポンプを駆動させる。(図4のT3からT4)電磁ポンプ25の駆動に伴いタンク40内の電解質溶液である飽和食塩水24が電解槽37に供給される。電解槽37内に供給された食塩水は比重が大きいため、電解槽37で拡散しながらも沈降して電解槽37底部に溜まる。
【0047】
次に69で電極21への通電を開始し、電気分解を行う。電気分解は電極21aを陽極、21bを陰極として開始する。電気分解の開始直後は、電極21の大部分が浴水と接触しているため、水の電気分解が優先的に起こり、電極21ab間に水素と酸素ガスを発生する。これらのガスは水道水よりも軽いので、電解槽37の上部分に浮上する。このガスの移動により、電極21ab間に上方向への水の流れが発生する。そして、電解槽37底部に滞留している食塩水は、ガスの浮上により発生した水の流れにより電極21ab間に吸い上げられ、浴水に拡散しながら電極21ab間を通り電解出口39方向へと流れる。食塩水が拡散した浴水は次のように反応が起こりやすくなる。
【0048】
2Cl+2e→Cl
Cl+OH→HClO+Cl
Cl2+2OH→ClO+Cl+H
電解により生成した次亜塩素酸などの生成水は、ガスの浮上による水流により電解出口39からフィルター34内側の上部へ流れ込み、フィルター34内側の下部より電解入口38に戻る循環作用をする。したがって、生成水はフィルター34内側に貯留されてゆく。このとき発生するガスは、切換弁A29は閉止状態であり濾過手段20の入口側が閉止されているため、発生するガスは濾過出口36近傍に溜り、出口管A31方向に押し出されてゆく。
【0049】
電解中に電極21の極性を、予め設定した時間間隔(例えば10分間隔)で切り換える。この極切換は、陽極と陰極を切り換えることで、陰極に付着するスケール成分を除去する(図4のT4からT5)。
【0050】
70では、給水制御手段19である循環ポンプをオンし電解水供給運転を行う。切換弁A29および切換弁B32は共に循環の状態に設定する。電解によりフィルター34内側および電解槽37内に貯留されていた生成水は、循環運転による浴槽21に送出され、浴槽21全体に拡散する。したがって、生成水が浴槽21および循環路18、濾過手段20にゆきわたり全体に殺菌作用を及ぼす(図4のT5からT6)。
【0051】
71で電解運転停止が指示されていなければ63の濁度検知まで戻り、再び濁度が上昇するまで待機することになる。また71で停止となれば、運転を停止し、電解のシーケンスは終了する。
【0052】
以上のように実施例1では、濾過手段20の下流側と電解手段22を連通して、給水制御手段19の運転を停止した状態で、食塩水を電解槽37に供給した後、不溶性電極21に通電を行うので、電解を始めると電極21間に発生するガスの上昇によって電解手段22と濾過手段20の下流側との間で循環流れが形成される。この流れにより、電解槽37内の食塩水は電極21の間に吸引され通過するので、高濃度の次亜塩素酸などの塩素化合物の生成水が効率よくできる。また、電解中は濾過手段20内のフィルター34が高濃度の生成水で満たされるので短時間に殺菌浄化でき、菌の増殖によるフィルター34の目詰まりを防止できる。この高濃度の生成水は殺菌作用だけでなく、蛋白質を分解したり漂白作用などの浄化作用がある事も知られている。また、生成水は濾過手段20に貯留できるため、電解手段21の貯留部が不要となるため電解手段22を小型化できる。また、電解運転後に循環運転を再開して、生成水を浴槽21に循環させれば、生成水は浴槽21および循環路18、濾過手段20にゆきわたり全体を殺菌でき、菌の増殖やぬめりの発生を抑えることができる。
【0053】
しかし浴水は有効塩素濃度が低かったり、細菌の栄養源である有機物が増大すると被処理水内の細菌が増殖してくる。細菌が増殖しはじめると、浴水が白濁してしまう。実施例1では細菌の増殖に応じて濁度が増加する現象をとらえ、この濁度を濁度検知手段25により検出し、濁度の増加速度により電解槽への食塩水の供給量を制御して電解水の生成濃度を加減し、適正量の電解水を浴水に供給することにより細菌の増殖を抑えることができる。また、無駄な電解水の生成も抑えられる。
【0054】
さらに、濁度検知手段25は、電解出口39近傍に配置し、電解槽37で生成される電解水が直接濁度検知手段25に接触するようにしているので、濁度検出手段25の表面に検出中に付着する有機物等の汚れが電解水により溶解されるため、再び循環流れがはじまる際に洗い流される。したがって、濁度検知手段25の表面が常にリフレッシュされ、検出精度が維持される。
【0055】
(実施例2)
実施例1の電解装置と同一構造のものは同一符号を付与し、説明を省略する。
【0056】
実施例1との違いは、図3の67における塩水供給量の算定において、塩水供給量Cは式2を用いて濁度の上昇速度(dD/dt)と、濁度の絶対値Dに比例的に求めるところにある。なおAは定数、BおよびEは比例係数である。
【0057】
C=A+B×(dD/dt)+E×D・・・(式2)
濁度の絶対値Dが高いのは、浴水に含まれる汚れ成分が多いためで、これら汚れ成分の量が多いと、次亜塩素酸等の電解水が消費されやすくなるため、本実施例2では濁度の絶対値Dに比例的に塩水供給量を増し、電解水の生成濃度を上げることで、濁度の絶対値のレベルに関わらず安定した細菌の抑制効果が得られる。
【0058】
(実施例3)
実施例1の電解装置と同一構造のものは同一符号を付与し、説明を省略する。
【0059】
実施例1との違いは、図2の51の操作パネルに浴槽16の浴水17容量を入力する設定部を設け、図3の67における塩水供給量の算定において、塩水供給量Cは式3を用いて濁度の上昇速度(dD/dt)と、設定部で設定された容量Vの積に比例的に求めるところにある。なおAは定数、Bは比例係数である。
【0060】
C=A+B×{(dD/dt)×V}・・・(式3)
細菌の増殖量は浴水の容量に比例するため、この増殖を抑制するためには浴水容量に比例した電解水が必要になる。したがって、濁度の上昇速度と浴水容量の積に比例的に塩水供給量を制御し、電解水の生成濃度を調整することで、浴水量に関わらず安定した細菌の抑制効果が得られる。
【0061】
なお、上記実施例1から3では電解質に食塩を用いたが、塩化マグネシウム、塩化カリウム、塩化カルシウムなどの塩素イオンを含む塩素化合物を用いても上記と同様の効果が得られる。
【0062】
また、電解手段には電極間に隔膜を持たない無隔膜電解方式で説明したが、隔膜を有する電解方式であってもよい。
【0063】
さらに、実施例では風呂水の浄化に本発明の電解装置を用いたが、プールや浄化槽などでも用いることができる。
【0064】
また、海水等を浄化する場合は塩素イオンが十分に含有しているので電解質溶液の必要がないため、電解質溶液と、これを供給する電解質供給手段を省いた構成となる。
【0065】
濁度検知手段はフォトセンサにより水の光透過度を電気信号に変換するものを用いたが、細菌数を直接計測できる菌センサーであってもよい。
【0066】
【発明の効果】
以上のように、本発明によれば以下の効果を得ることができる。
【0067】
(1)内部に少なくとも一対の不溶性電極を備えた電解手段と、この電解手段の電解水を被処理水へ供給制御する給水制御手段と、被処理水の濁度を検知する濁度検知手段と、この濁度に基づいて前記電解手段の電解水生成量を制御する制御手段とで構成するものであるから、被処理水内の細菌数に応じて増加する濁度に応じて電解水の生成量を加減し、給水制御手段により適正量の電解水を被処理水に供給することができるので、過剰な電解水を供給することなく被処理水の細菌の増殖を抑えることができる。
【0068】
(2)制御手段として、被処理水の濁度の上昇速度に基づいて電解手段の電解水生成量を制御するものは、被処理水の細菌数の増加に伴なって濁度が上昇し始める時期が検知でき、適切なタイミングで電解水を供給するため、被処理水の初期濁度に関わらず細菌の増殖を抑制できる。
【0069】
(3)制御手段として、被処理水の濁度の絶対値と濁度の上昇速度に基づいて前記電解手段の電解水生成量を制御するものは、被処理水の濁度が高い状態で、細菌数の増加に伴なって濁度が上昇し始める濁度上昇速度を検知した場合は、電解水の濃度を高めに生成して供給し、被処理水の濁度が低い状態で、細菌数の増加に伴なう濁度上昇速度を検知した場合は、電解水の濃度を低めに生成して供給することができるので、汚れ成分の量により消費される次亜塩素酸などの電解水の量を加味でき、より適正な量の電解水を被処理水に供給することがで、無駄な電解水の生成が抑えられる。
【0070】
(4)制御手段として、被処理水の容量を設定する設定部を有し、前記被処理水の濁度の上昇速度と前記設定部の値との積に基づいて電解水生成量を制御するものは、被処理水の容量が大きい条件で、細菌数の増加に伴なって濁度が上昇し始める濁度上昇速度を検知した場合は、電解水の生成量を多めにして供給し、被処理水の容量が小さい条件で、細菌数の増加に伴なう濁度上昇速度を検知した場合は、電解水を少なめに生成して供給することができるので、適正量の電解水を被処理水に供給することができ、安全でかつ無駄な電解水の生成が抑えられる。
【0071】
(5)制御手段として、被処理水の濁度レベルまたは濁度の上昇速度に応じて電解水の生成濃度を可変制御するものは、被処理水の濁度レベルが高い場合は、電解水の次亜塩素酸などの化合物の生成濃度を高くして供給し、濁度レベルが低い場合は、電解水の生成濃度を低くして供給できる。また、被処理水の濁度上昇速度が速い場合は、電解水の生成濃度を高くして供給し、濁度上昇速度が遅い場合は、電解水の生成濃度を低くして供給することで、適正量の電解水を被処理水に供給することができる。したがって、被処理水の細菌の増殖を抑えるだけでなく、電解装置内も汚れや細菌の増殖状況により電解水の濃度が可変され、洗浄される。
【0072】
(6)電解手段に貯留部を有し、制御手段は電解運転の際にまず電極に通電し、その後給水制御手段を駆動するようにしたものは、給水制御手段を停止した状態で電極に通電し、貯留部に生成した電解水を貯え、電解を終了した後に被処理水へ電解水を供給するよう制御することにより、電解中に通水がないため、電解手段内の水は電極表面に発生する水素ガスや酸素などのが浮上する際の誘引作用により流れが発生し、水に含まれる塩素イオンがゆっくりと電極間を通過するため効率の良い電解ができる。
【0073】
(7)電解質溶液を貯えるタンクと、この電解質溶液を電解手段に供給する電解質供給手段とを付加し、制御手段を濁度検知手段の検知濁度に基づいて給水制御手段と前記電解質供給手段と電極への通電を制御するようにしたものは、塩化ナトリウム溶液等の電解質溶液を電極間に供給することでき、電解質溶液内の高濃度の塩素イオンが電極間に供給されるので、高濃度の次亜塩素酸などの化合物である電解水を生成できる。また、この電解質溶液の供給量を制御することで電解水の生成濃度を可変できる。
【0074】
(8)被処理水への電解水供給部に濁度検知手段を配置し、電解水により前記濁度検知手段を洗浄するよう構成したものは、被処理水に電解水を供給する際に、生成された高濃度の電解水が濁度検知手段の周囲を通過し、濁度検知手段に付着する汚れが分解したり、洗い流されるため、濁度検知手段の表面が常に清浄に保たれ、濁度検知が安定に行える。
【0075】
(9)使用者への報知手段を有し、制御手段は、被処理水の濁度レベルまたは濁度の上昇速度が所定値を超えた場合に、この報知手段により被処理水の交換を促す報知をするようにしたものは、被処理水の濁度成分が多すぎるために、電解水を供給しても十分な殺菌効果が得られないような場合に、被処理水を交換するように使用者に報知することができ、無駄な電解や、使用者への時間の無駄を省くことができる。
【図面の簡単な説明】
【図1】 本発明の実施例1における電解装置の構成図
【図2】 同実施例1における制御手段の構成図
【図3】 同実施例1における制御のフローチャート
【図4】 同実施例1における制御のタイムチャート
【図5】 従来の電解装置の構成図
【符号の説明】
17 被処理水
19 給水制御手段
21 電極
22 電解手段
23 電解質溶液
24 電解質供給手段
25 濁度検知手段
26 制御手段
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to electrolysis (hereinafter referred to as electrolysis), and particularly to control of electrolysis according to the turbidity of water to be treated in an electrolysis apparatus that supplies and sterilizes electrolyzed water to the water to be treated.
[0002]
[Prior art]
  Conventionally, there has been one that controls the electrolysis current in accordance with the measurement result of the turbidity sensor (for example, JP-A-10-99614).
[0003]
  As shown in FIG. 5, this electrolysis apparatus is provided with a filter tank 3 in a circulation path 2 that sucks bath water 1 in a bathtub and returns it to the bathtub, and an electrolytic tank 4 in which an aluminum electrode is placed upstream of the filter tank 3. Is provided in the circulation path 2, the turbid components in the bath water 1 are aggregated by the flocculant generated in the electrolytic tank 4 and filtered through the filter tank 3. The turbidity sensor 5 for measuring the turbidity and the controller 6 for controlling the electrolytic current value of the electrolytic cell 4 in accordance with the measurement result by the turbidity sensor 5 are used. Moreover, the sterilization electrolytic cell 7 provided in parallel by bypassing the filtration tank 3 was provided. In addition, 8 is a circulation pump that circulates the bath water 1, and 9 is a heater unit that keeps the bath water warm.
[0004]
[Problems to be solved by the invention]
  However, the conventional electrolyzer is configured to control the electrolysis current value of the electrolyzer 4 according to the measurement result by the turbidity sensor 5, and the electrolyzer 4 is electrolyzed using an aluminum electrode. Thus, aluminum ions are eluted from the anode, the aluminum ions react with water to form aluminum hydroxide colloids, and the suspended substances are aggregated. That is, the aluminum electrode is melted to aggregate turbid components and facilitate filtration. Therefore, when the turbidity increases due to human dirt or dirt, the turbidity can be filtered well by increasing the amount of aggregation by increasing the electrolysis current, but many bacteria are brought in by human bathing. As it begins to grow, turbidity increases with it. If the growth rate of bacteria is higher than the filtration rate of the filtration tank, the bacteria will continue to increase even during filtration, resulting in an increase in the turbidity of the bath water. In particular, when organic substances that are nutrients for bacteria are dissolved in the bath water, it is difficult to remove them in a filtration tank, and when they are fast, general bacteria grow to double in about 20 minutes.
[0005]
  In addition, the conventional electrolyzer is also provided with a sterilization electrolytic cell 7 to prevent the propagation of bacteria in the bath water, but it operates only with a timer regardless of the turbidity sensor, and has a certain concentration of effective chlorine. Is just generated. Since effective chlorine is consumed by being bound to organic matter in the bath water, the concentration immediately decreases when the content of organic matter is large, and the bactericidal effect is lost. For example, when a large number of people take a bath, many organic substances are supplied, the bactericidal action of available chlorine is reduced, and more bacteria and abundant nutrients are supplied, so the bacteria grow. . If the effective chlorine concentration generated to prevent this is increased, the consumption of effective chlorine will be reduced if there is a small amount of organic matter to be supplied, such as a small number of bathers. There were problems such as giving.
[0006]
[Means for Solving the Problems]
  The present invention solves the above problems.With thingsElectrolysis means having at least a pair of insoluble electrodes therein, water supply control means for controlling supply of the electrolyzed water of the electrolysis means to the water to be treated, turbidity detecting means for detecting the turbidity of the water to be treated, And a control means for controlling the amount of electrolyzed water generated by the electrolysis means based on the turbidityThe control means controls the amount of electrolyzed water generated by the electrolysis means based on the absolute value of the turbidity of the water to be treated and the rate of increase in turbidity..
[0007]
  According to the said invention, electrolyzed water which is compounds, such as hypochlorous acid, can be produced | generated by electrolyzing the water containing a chlorine ion by supplying with electricity to an insoluble electrode. Then, the water to be treated is sterilized by supplying the electrolyzed water to the water to be treated by the water supply control means. The treated water has a low effective chlorine concentration, or when organic matter that is a nutrient source of bacteria increases, bacteria in the treated water grow. Turbidity increases according to the number of bacteria, but this turbidity is detected by the turbidity detection means, and the amount of electrolyzed water generated is controlled by controlling the amount of electricity supplied to the electrode according to the degree of increase in turbidity. Bacteria growth can be suppressed by supplying an appropriate amount of electrolyzed water to the water to be treated by the control means. Moreover, the production | generation of useless electrolyzed water is also suppressed.
[0008]
  And when the turbidity increase rate at which the turbidity starts to increase with the increase in the number of bacteria is detected with the turbidity of the water to be treated being high, the concentration of compounds such as hypochlorous acid in the electrolyzed water is changed. When the turbidity increase rate accompanying the increase in the number of bacteria is detected in a state where the turbidity of the water to be treated is low and the turbidity of the water to be treated is low, generate and supply the electrolyzed water at a low concentration. Thus, an appropriate amount of electrolyzed water can be supplied to the water to be treated, and generation of useless electrolyzed water can be suppressed.
[0009]
  Further, an electrolyzing means having at least a pair of insoluble electrodes therein, a water supply control means for controlling supply of the electrolyzed water of the electrolyzing means to the water to be treated, and a turbidity detecting means for detecting the turbidity of the water to be treated. And control means for controlling the amount of electrolyzed water produced by the electrolyzing means based on the turbidity, the control means having a setting unit for setting the capacity of the treated water, and the turbidity of the treated water The amount of electrolyzed water generated by the electrolyzing means is controlled based on the product of the rate of increase in the degree and the value of the setting unit.
[0010]
  According to the above-described invention, when a turbidity increase rate at which the turbidity starts to increase with an increase in the number of bacteria is detected under a condition where the volume of water to be treated is large, a compound such as hypochlorous acid in electrolyzed water If the turbidity increase rate accompanying the increase in the number of bacteria is detected under the condition that the volume of water to be treated is small and supplied, the electrolyzed water is generated in a small amount and supplied. An appropriate amount of electrolyzed water can be supplied to the water to be treated, and the production of safe and wasteful electrolyzed water can be suppressed.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
  An electrolysis apparatus according to claim 1 of the present invention includes an electrolysis unit having at least a pair of insoluble electrodes therein, a water supply control unit that controls supply of electrolyzed water of the electrolysis unit to the water to be treated, and the water to be treated. Consists of turbidity detecting means for detecting turbidity and control means for controlling the amount of electrolyzed water generated by the electrolyzing means based on the turbidity.And the control means controls the amount of electrolyzed water generated by the electrolysis means based on the absolute value of the turbidity of the water to be treated and the rate of increase in turbidity.Is.
[0012]
  Then, by supplying electricity to the insoluble electrode, electrolyzed water containing chlorine ions is generated to produce electrolyzed water that is a compound such as hypochlorous acid, and the electrolyzed water is supplied to the water to be treated by the water supply control means. By supplying, the water to be treated is sterilized. The treated water has a low effective chlorine concentration, or when organic matter that is a nutrient source of bacteria increases, bacteria in the treated water grow. Turbidity increases according to the number of bacteria, but the amount of electrolyzed water generated is adjusted according to this turbidity, and the appropriate amount of electrolyzed water is supplied to the water to be treated by the water supply control means to increase bacterial growth. Can be suppressed.
[0013]
  And when the turbidity increase rate at which the turbidity starts to increase with the increase in the number of bacteria is detected with the turbidity of the water to be treated being high, the concentration of compounds such as hypochlorous acid in the electrolyzed water is changed. When the turbidity increase rate accompanying the increase in the number of bacteria is detected in a state where the turbidity of the water to be treated is low and the turbidity of the water to be treated is low, generate and supply the electrolyzed water at a low concentration. Thus, an appropriate amount of electrolyzed water can be supplied to the water to be treated, and generation of useless electrolyzed water can be suppressed.
[0014]
  Also,Claim 2The electrolyzer according toElectrolysis means having at least a pair of insoluble electrodes therein, water supply control means for controlling supply of the electrolyzed water of the electrolysis means to the water to be treated, turbidity detecting means for detecting the turbidity of the water to be treated, and And control means for controlling the amount of electrolyzed water produced by the electrolyzing means based on turbidity, the control means having a setting unit for setting the capacity of the treated water, Based on the product of the rising speed and the value of the setting unit, the amount of electrolyzed water generated by the electrolyzing means is controlled.
[0015]
  AndWhen the turbidity increase rate is detected under the condition that the volume of treated water is large and the turbidity starts to increase with the increase in the number of bacteria, the production amount of compounds such as hypochlorous acid in the electrolyzed water is increased. If the rate of turbidity increase due to an increase in the number of bacteria is detected under the condition that the volume of treated water is small, an appropriate amount of electrolyzed water can be produced by supplying less electrolyzed water. Water can be supplied to the water to be treated, and production of safe and wasteful electrolyzed water can be suppressed.
[0016]
  Also,Claim 3The electrolyzer according toControl meansThe generation concentration of electrolyzed water is variably controlled in accordance with the turbidity level of the water to be treated or the rate of increase in turbidity.
[0017]
  When the turbidity level of the water to be treated is high, supply the compound water such as hypochlorous acid at a high concentration, and when the turbidity level is low, reduce the concentration of the electrolyzed water. Supply. In addition, when the turbidity increase rate of the water to be treated is fast, supply the electrolyzed water at a high concentration, and when the turbidity increase rate is slow, supply the electrolyzed water at a low concentration. An appropriate amount of electrolyzed water can be supplied to the water to be treated.
[0018]
  Also,Claim 4The electrolysis apparatus according to the present invention has a reservoir in the electrolysis means, and the control means first energizes the electrodes during the electrolysis operation, and then drives the water supply control means.
[0019]
  And it supplies with electricity to an electrode in the state which stopped the water supply control means, stores the electrolyzed water produced | generated in the storage part, and controls to supply electrolyzed water to to-be-processed water after complete | finishing electrolysis. This is because there is no water flow during electrolysis, so the water in the electrolysis means flows due to the attracting action when the hydrogen gas or oxygen generated on the electrode surface rises, and the chlorine ions contained in the water slowly Since it passes between the electrodes, efficient electrolysis can be performed.
[0020]
  Also,Claim 5The electrolytic apparatus according to the present invention includes a tank for storing an electrolyte solution and an electrolyte supply means for supplying the electrolyte solution to the electrolytic means.The control meansBased on turbidity detected by turbidity detection meansAnd salaryWater control means, the electrolyte supply means,To the extremeThe current supply is controlled.
[0021]
  Then, by supplying an electrolytic solution such as a sodium chloride solution to the electrolytic means, a high concentration of chlorine ions in the electrolytic solution is supplied to the electrolytic means. Therefore, electrolyzed water that is a compound such as a high concentration of hypochlorous acid is used. Can be generated. Moreover, the production | generation density | concentration of electrolyzed water can be varied by controlling the supply amount of this electrolyte solution.
[0022]
  Also,Claim 6The electrolysis apparatus according to the present invention is configured such that turbidity detection means is disposed in the electrolyzed water supply section to the water to be treated, and the turbidity detection means is washed with the electrolyzed water.
[0023]
  And, when supplying the electrolyzed water to the water to be treated, the generated high concentration electrolyzed water is configured to pass around the turbidity detecting means, so that the dirt adhering to the turbidity detecting means is decomposed, Since it is washed away, turbidity detection can always be performed stably.
[0024]
  Also,Claim 7The electrolyzer according to the present invention has means for notifying the user, and the control means replaces the water to be treated by the notifying means when the turbidity level of the water to be treated or the rising speed of the turbidity exceeds a predetermined value. This is a notification for prompting.
[0025]
  And the predetermined value of the turbidity level of this to-be-treated water or the turbidity increasing speed has too many turbidity components of to-be-treated water, so that sufficient sterilizing effect cannot be obtained even if electrolytic water is supplied. In such a case, the user is informed to change the water to be treated, and is notified by display or sound.
[0026]
【Example】
  Embodiments of the present invention will be described below with reference to the drawings.
[0027]
  Example 1
  FIG. 1 is a configuration diagram of an electrolysis apparatus according to Embodiment 1 of the present invention.
[0028]
  In FIG. 1, an electrolyzer main body 15 electrolyzes and sterilizes bath water 17 which is water to be treated in a bathtub 16 and circulates and purifies it. Within the electrolyzer main body 15, a water supply control means 19, which is a circulation pump for flowing the bath water 17 through the circulation path 18, a filtration means 20 for filtering dirt such as impurities of the bath water flowing through the circulation path 18, and a filtration means 20. Turbidity of bath water flowing in the circulation path 18, electrolysis means 22 having a pair of insoluble electrodes 21 in the interior thereof, an electrolyte supply means 24 for supplying the electrolyte solution 23 to the electrolysis means 22, A turbidity detecting means 25 for detecting and a control means 26 are provided.
[0029]
  The bath water 17 flowing through the circulation path 18 is sucked from the bathtub 16 and enters the water supply control means 19 through the inlet pipe 27. The bath water 17 delivered from the water supply control means 19 is supplied with the water supply pipe A28, the switching valve A29, It is sent to the filtering means 20 through the water pipe B30. The bath water 17 filtered by the filtering means 20 returns to the bathtub 16 through the outlet pipe A31, the switching valve B32, and the outlet pipe B33.
[0030]
  The filtration means 20 is provided with a cylindrical filter 34 therein, and includes a filtration inlet 35 connected to the water supply pipe B30 and a filtration outlet 36 connected to the outlet pipe A31. The filtration inlet 35 and the outer surface of the filter 34 are communicated with each other. The filtration outlet 36 and the inner surface of the filter 34 are communicated with each other. That is, the circulated water passes from the outer surface of the filter 34 toward the inner surface, and traps impurities that are soil components contained in the water on the outer surface of the filter 34. The filter 34 may be a spool, a non-woven fabric, a woven fabric, a sponge-like resin, a porous material, or the like.
[0031]
  The electrolysis means 22 is configured by facing a pair of plate-like electrodes 21 a and 21 b inside an electrolytic cell 37. The electrolytic bath 37 is provided with an electrolytic inlet 38 at the lower end and an electrolytic outlet 39 at the upper end, and the electrolytic inlet 38 communicates with the lower end of the filter means 20 on the inner side of the filter 34. The electrolytic outlet 39 communicates with the filtration outlet 36. In addition, the electrode 21 used here has a base material of titanium or a titanium alloy, and a surface coated with a noble metal such as platinum or iridium is used as an insoluble electrode.
[0032]
  The configuration of the filtering means 20 and the electrolysis means 22 is in a state where the electrolytic water generated by the electrolysis of the electrolysis means 22 is stored in the filtration means 20. That is, the electrolytic means 38 communicates with the electrolytic inlet 38 and the electrolytic outlet 39 on the downstream side of the filtering means 20 so that the electrolytic water naturally circulates, so that the filtering means 20 constitutes a storage part of the electrolytic means 22.
[0033]
  The staying electrolysis is electrolysis in a state where water is not passed through the electrolysis means 22 and means electrolysis in a state where the operation of the water supply control means 19 is stopped and the circulation operation is not performed.
[0034]
  The turbidity detecting means 25 converts the light transmittance of the bath water into an electrical signal by a photo sensor. The turbidity detecting means 25 is arranged in the vicinity of the electrolysis outlet 39 on the upstream side of the filtration outlet 36, and the electrolyzed water generated in the electrolysis tank 37 is The turbidity detecting means 25 is directly contacted.
[0035]
  The electrolyte solution 23 is an aqueous solution of salt 41 stored in the tank 40, and supplies the water in the outlet pipe A 31 to the tank inlet 43 of the tank 40 by the electrolyte supply means 24 provided in the water supply path 42. This water is guided to the bottom of the tank through a water passage pipe 44 penetrating the tank 40 and passes through the salt 41 to become saturated saline at the top of the tank 40. This electrolyte solution 23 is guided and supplied from the tank outlet 45 provided at the upper end of the tank to the upper part of the electrolytic cell 37 through the water outlet 46. In this embodiment, a minute flow rate can be supplied to the electrolyte supply means 24 using an electromagnetic pump.
[0036]
  The water supply path 42 is provided with a check valve 47 that prevents the electrolyte solution 23 from flowing back to the outlet pipe A31.
[0037]
  The water supply pipe A28 communicates with the switching valve B32 via a branch pipe 48 at a branch point 47 on the way. The switching valve B32 switches between a circulation operation state in which the outlet pipe A31 and the outlet pipe B33 are communicated and a backwashing state in which the branch pipe 48 and the outlet pipe B33 are in communication.
[0038]
  A drain pipe 49 communicates with the switching valve A29, and is a pipe for discharging water from the switching valve A29 to the outside of the electrolyzer main body 15.
[0039]
  The switching valve A29 is in a circulating operation state in which the water supply pipe A28 and the water supply pipe B30 are in communication, in a backwashing state in which the water supply pipe A28 and the drainage pipe 49 are in communication, and in the water supply pipe A28, the water supply pipe B30, and the drainage pipe 49. Is switched between the closed state and the closed state. That is, the switching valve A29 is also an opening / closing means. Further, if the switching valve A29 and the switching valve B32 are simultaneously switched to the backwashing state and the water supply control means 19 is operated, the backflow operation is performed so that the circulation to the filtering means 20 is backflowed. That is, the switching valve A29 and the switching valve B32 serve as switching means for backflow operation.
[0040]
  The control means 26 is configured to control the water supply control means 19, the energization of the electrode 21, the electrolyte supply means 24, the switching valve A29, and the switching valve B32, and the residence electrolytic operation, the circulation filtration operation, the filtration Perform backwashing operation of the means.
[0041]
  Next, a specific configuration of the control means 26 will be described with reference to FIG. In the figure, reference numeral 50 denotes a known microcomputer (hereinafter referred to as a microcomputer) incorporating an input / output interface, a memory, etc., which is connected to input a signal from an operation panel 51 having an operation start switch. Can be input. A turbidity detection circuit 52 converts a signal from the turbidity detection means 25. A constant current circuit 54 supplies a constant current to the electrode 21 and is driven according to an instruction from the microcomputer 50 during electrolysis. A pole switching circuit 55 that switches the polarity of the electrode 21 in accordance with a signal from the microcomputer 50 is provided. An electromagnetic pump drive circuit 56 drives an electromagnetic pump as the electrolyte supply means 24 in accordance with an instruction from the microcomputer 50. A circulation pump drive circuit 57 drives the water supply control means 19 according to an instruction from the microcomputer 50. 58 is a switching valve A drive circuit that drives the switching valve A29 in accordance with an instruction from the microcomputer 50, and 59 is a switching valve B drive circuit that drives the switching valve B32. Reference numeral 60 is an informing means for informing the microcomputer 50 to exchange bath water when the turbidity level detected by the turbidity detecting means 25 or the rising speed of the turbidity exceeds a predetermined value. The
[0042]
  Next, processing contents and operations in the microcomputer 50 will be described with reference to FIGS. FIG. 3 is a flowchart of the control means, and FIG. 4 is a time chart showing its operation. In FIG. 3, when the operation start switch is pressed and turned on in 61, the purification operation starts in 62. The purification operation is an operation from T0 to T1 in FIG. 4. Here, the circulation pump 20 which is a water supply control means is turned on and operates. At this time, both the switching valve A29 and the switching valve B32 are set in a circulating state. In this circulation operation, the bath water 17 in the bathtub 21 is sent to the filtering means 20 through the inlet pipe 27, the circulation pump 20, the water supply pipe A28, the switching valve A29, and the water supply pipe B30, and impurities are filtered by the filter 34. The purified bath water returns to the bathtub 16 through the outlet pipe A31, the switching valve B32, and the outlet pipe B33.
[0043]
  In 63 of FIG. 3, the turbidity of the bath water is read from the turbidity detecting means 25. At this time, the circulating operation is performed for a short time so that the bath water flows around the turbidity detecting means 25 (a in FIG. 4). Then, at 64, it is determined whether the turbidity level and the rising speed of the turbidity do not exceed the limit value, and if the turbidity level or rising speed exceeds the limit value, a notification is made to prompt the exchange of the bath water at 65. End the electrolysis sequence. If the limit value is not exceeded at 64, it is determined at 66 whether or not the electrolytic operation is performed from this turbidity. Judgment conditions look at whether the increase rate of turbidity exceeds a predetermined value. Here, it is determined to perform electrolysis when the increase in turbidity per hour exceeds 0.1 degree.
[0044]
  The number of bacteria in the bath water of FIG. 4 increases from the human body to the bathtub by bathing from T0 to T1. At this time, organic matter, which is a nutrient source of bacteria, also dissolves in the bath water, but the bacteria do not grow until they adapt to environmental changes. In general, growth begins after 2 hours or more. Then, growth starts at T2, and if the environment for bacteria is good, it will continue to double in about 20 minutes. At this time, the turbidity of the bath water is increased by turbidity from T0 to T1, and the turbidity increases due to bathing, but decreases due to the purification action. At the time T1, the purification is finished and the turbidity is constant. However, as the number of bacteria increases from T2, the bath water begins to become cloudy. Most of the cloudy components are bacteria of about 1 μm, and most of them pass through the general filtering means 20. Therefore, this turbidity change can also be detected by the turbidity detecting means 25 on the downstream side of the filter 34. In addition, the degree of bacterial growth in bath water is difficult to predict because it depends on the amount of organic matter such as dirt, water quality, temperature, and type of bacteria.
[0045]
  If it is determined at 66 in FIG. 3 that the turbidity increase rate exceeds a predetermined value and electrolysis occurs, 67 salt water supply amount is calculated. In general, the higher the chlorine ion concentration, the greater the amount of chlorine compound such as hypochlorous acid that is generated. Therefore, if the amount of salt water supplied is increased, the concentration of electrolyzed water can be increased. This salt water supply amount C is obtained in proportion to the rate of increase in turbidity (dD / dt) using Equation 1. A is a constant and B is a proportional coefficient.
[0046]
  C = A + B × (dD / dt) (Formula 1)
  In 68, first, the switching valve A is closed, and the electromagnetic pump as the electrolyte supply means 24 is driven so that the supply amount of the calculated value C is obtained. (T3 to T4 in FIG. 4) As the electromagnetic pump 25 is driven, the saturated saline solution 24, which is the electrolyte solution in the tank 40, is supplied to the electrolytic cell 37. Since the salt solution supplied into the electrolytic cell 37 has a large specific gravity, it settles while being diffused in the electrolytic cell 37 and accumulates at the bottom of the electrolytic cell 37.
[0047]
  Next, at 69, energization of the electrode 21 is started and electrolysis is performed. Electrolysis starts with electrode 21a as the anode and 21b as the cathode. Immediately after the start of electrolysis, since most of the electrode 21 is in contact with the bath water, electrolysis of water occurs preferentially, and hydrogen and oxygen gas are generated between the electrodes 21ab. Since these gases are lighter than tap water, they float on the upper part of the electrolytic cell 37. This gas movement causes an upward flow of water between the electrodes 21ab. Then, the saline staying at the bottom of the electrolytic cell 37 is sucked up between the electrodes 21ab by the flow of water generated by the floating of the gas, and flows in the direction of the electrolytic outlet 39 through the electrodes 21ab while diffusing into the bath water. . The bath water in which the saline solution is diffused is likely to react as follows.
[0048]
  2Cl+ 2e→ Cl2
  Cl2+ OH→ HClO + Cl
  Cl2 + 2OH→ ClO+ Cl+ H2O
  Generated water such as hypochlorous acid generated by electrolysis flows into the upper part inside the filter 34 from the electrolytic outlet 39 by the water flow caused by the rising of the gas, and returns to the electrolytic inlet 38 from the lower part inside the filter 34. Accordingly, the generated water is stored inside the filter 34. The gas generated at this time is in the closed state of the switching valve A29 and the inlet side of the filtering means 20 is closed, so that the generated gas accumulates in the vicinity of the filtration outlet 36 and is pushed out toward the outlet pipe A31.
[0049]
  During the electrolysis, the polarity of the electrode 21 is switched at a preset time interval (for example, every 10 minutes). In this pole switching, the scale component adhering to the cathode is removed by switching between the anode and the cathode (from T4 to T5 in FIG. 4).
[0050]
  In 70, the circulating pump which is the water supply control means 19 is turned on to perform the electrolyzed water supply operation. Both the switching valve A29 and the switching valve B32 are set in a circulating state. The generated water stored inside the filter 34 and in the electrolytic cell 37 by electrolysis is sent to the bathtub 21 by circulation operation and diffused throughout the bathtub 21. Therefore, the generated water moves to the bathtub 21, the circulation path 18, and the filtering means 20 and has a sterilizing effect on the whole (from T 5 to T 6 in FIG. 4).
[0051]
  If it is not instructed to stop the electrolysis operation in 71, the process returns to turbidity detection in 63 and waits until the turbidity rises again. If the operation stops at 71, the operation is stopped and the electrolysis sequence is completed.
[0052]
  As described above, in Example 1, the saline solution is supplied to the electrolytic cell 37 in a state where the downstream side of the filtration unit 20 and the electrolysis unit 22 are communicated and the operation of the water supply control unit 19 is stopped. When the electrolysis is started, a circulating flow is formed between the electrolysis means 22 and the downstream side of the filtration means 20 due to the rise of gas generated between the electrodes 21. Due to this flow, the saline solution in the electrolytic cell 37 is sucked and passes between the electrodes 21, so that water for producing a chlorine compound such as high concentration hypochlorous acid can be efficiently produced. During electrolysis, the filter 34 in the filtering means 20 is filled with high-concentration product water, so that the filter 34 can be sterilized and purified in a short time, and clogging of the filter 34 due to the growth of bacteria can be prevented. It is known that this high concentration of produced water has not only a bactericidal action, but also a purification action such as protein decomposition and bleaching action. Moreover, since the produced water can be stored in the filtering means 20, the storage part of the electrolysis means 21 is not required, and the electrolysis means 22 can be downsized. In addition, if the circulation operation is resumed after the electrolytic operation and the produced water is circulated to the bathtub 21, the produced water can reach the bathtub 21, the circulation path 18, and the filtering means 20 to sterilize the whole, and bacteria growth and slimming can be achieved. Occurrence can be suppressed.
[0053]
  However, when the effective chlorine concentration of bath water is low or the organic matter that is a nutrient source of bacteria increases, bacteria in the water to be treated grow. When bacteria begin to grow, the bath water becomes cloudy. In Example 1, the phenomenon that the turbidity increases according to the growth of bacteria is detected, this turbidity is detected by the turbidity detecting means 25, and the amount of saline supplied to the electrolytic cell is controlled by the increasing rate of turbidity. The growth of bacteria can be suppressed by adjusting the concentration of the electrolyzed water and supplying an appropriate amount of electrolyzed water to the bath water. Moreover, the production | generation of useless electrolyzed water is also suppressed.
[0054]
  Further, the turbidity detecting means 25 is arranged in the vicinity of the electrolytic outlet 39 so that the electrolyzed water generated in the electrolytic cell 37 is in direct contact with the turbidity detecting means 25, so that the turbidity detecting means 25 is placed on the surface of the turbidity detecting means 25. Since dirt such as organic substances adhering during the detection is dissolved by the electrolyzed water, it is washed away when the circulating flow starts again. Therefore, the surface of the turbidity detecting means 25 is always refreshed and the detection accuracy is maintained.
[0055]
  (Example 2)
  Components having the same structure as the electrolysis apparatus of Example 1 are given the same reference numerals, and description thereof is omitted.
[0056]
  The difference from Example 1 is that, in the calculation of the salt water supply amount 67 in FIG. 3, the salt water supply amount C is proportional to the rate of increase in turbidity (dD / dt) and the absolute value D of turbidity using Equation 2. Is the place to ask for. A is a constant, and B and E are proportional coefficients.
[0057]
  C = A + B × (dD / dt) + E × D (Formula 2)
  The absolute value D of the turbidity is high because there are many soil components contained in the bath water. If the amount of these soil components is large, electrolyzed water such as hypochlorous acid is easily consumed. In No. 2, the amount of salt water supplied is increased in proportion to the absolute value D of turbidity, and the concentration of electrolyzed water is increased, so that a stable bacterial suppression effect can be obtained regardless of the level of the absolute value of turbidity.
[0058]
  (Example 3)
  Components having the same structure as the electrolysis apparatus of Example 1 are given the same reference numerals, and description thereof is omitted.
[0059]
  A difference from the first embodiment is that a setting unit for inputting the bath water 17 capacity of the bathtub 16 is provided on the operation panel 51 of FIG. 2, and the salt water supply amount C is calculated by the formula 3 in the calculation of the salt water supply amount 67 in FIG. 3. Is obtained in proportion to the product of the turbidity increasing rate (dD / dt) and the capacity V set by the setting unit. A is a constant and B is a proportional coefficient.
[0060]
  C = A + B × {(dD / dt) × V} (Formula 3)
  Since the amount of bacterial growth is proportional to the volume of bath water, electrolyzed water proportional to the volume of bath water is required to suppress this growth. Therefore, by controlling the amount of salt water supplied in proportion to the product of the rate of increase in turbidity and the capacity of the bath water, and adjusting the concentration of electrolyzed water, a stable bacteria suppression effect can be obtained regardless of the amount of bath water.
[0061]
  In Examples 1 to 3, sodium chloride was used as the electrolyte, but the same effect as described above can be obtained by using a chlorine compound containing chlorine ions such as magnesium chloride, potassium chloride, and calcium chloride.
[0062]
  Further, although the electrolysis means has been described in the non-diaphragm electrolysis system without a diaphragm between the electrodes, an electrolysis system having a diaphragm may be used.
[0063]
  Furthermore, although the electrolysis apparatus of the present invention was used for purification of bath water in the examples, it can also be used in a pool or a septic tank.
[0064]
  Further, when purifying seawater or the like, chlorine ions are sufficiently contained, so that an electrolyte solution is not necessary, so that the electrolyte solution and the electrolyte supply means for supplying it are omitted.
[0065]
  The turbidity detecting means uses a photosensor that converts the light transmittance of water into an electrical signal, but it may be a bacteria sensor that can directly measure the number of bacteria.
[0066]
【The invention's effect】
  As described above, according to the present invention, the following effects can be obtained.
[0067]
  (1) Electrolyzing means provided with at least a pair of insoluble electrodes inside, water supply control means for controlling supply of the electrolyzed water of the electrolyzing means to the water to be treated, turbidity detecting means for detecting the turbidity of the water to be treated And the control means for controlling the amount of electrolyzed water produced by the electrolyzing means based on the turbidity, so that electrolyzed water is produced according to the turbidity that increases according to the number of bacteria in the water to be treated. Since the amount can be adjusted and an appropriate amount of electrolyzed water can be supplied to the water to be treated by the water supply control means, the growth of bacteria in the water to be treated can be suppressed without supplying excess electrolyzed water.
[0068]
  (2) The control means that controls the amount of electrolyzed water generated by the electrolysis means based on the rate of increase in turbidity of the water to be treated starts to increase in turbidity as the number of bacteria in the water to be treated increases. Since the timing can be detected and the electrolyzed water is supplied at an appropriate timing, the growth of bacteria can be suppressed regardless of the initial turbidity of the water to be treated.
[0069]
  (3) As a control means, what controls the amount of electrolyzed water generated by the electrolysis means based on the absolute value of the turbidity of the water to be treated and the rate of increase in turbidity is in a state where the turbidity of the water to be treated is high, If a turbidity increase rate is detected, where the turbidity starts to increase with the increase in the number of bacteria, it is generated and supplied at a higher concentration of electrolyzed water. When the rate of increase in turbidity due to the increase in water content is detected, the concentration of electrolyzed water can be generated and supplied at a low level, so electrolyzed water such as hypochlorous acid consumed by the amount of soil components. The amount can be taken into account, and by supplying a more appropriate amount of electrolyzed water to the water to be treated, the generation of useless electrolyzed water can be suppressed.
[0070]
  (4) As a control means, it has a setting part which sets up the capacity of treated water, and controls the amount of electrolyzed water generation based on the product of the rate of increase in turbidity of treated water and the value of the setting part If the turbidity increase rate at which the turbidity starts to increase with the increase in the number of bacteria is detected under the condition that the volume of treated water is large, supply a larger amount of electrolyzed water, When the rate of turbidity increase due to an increase in the number of bacteria is detected under conditions where the volume of treated water is small, it is possible to generate and supply a small amount of electrolyzed water, so an appropriate amount of electrolyzed water is treated. It can be supplied to water, and the production of safe and wasteful electrolyzed water is suppressed.
[0071]
  (5) The control means that variably controls the generation concentration of the electrolyzed water according to the turbidity level of the water to be treated or the rate of increase in turbidity, When the generation concentration of a compound such as hypochlorous acid is increased and supplied, and the turbidity level is low, the generation concentration of electrolyzed water can be decreased and supplied. In addition, when the turbidity increase rate of the water to be treated is fast, supply the electrolyzed water at a high concentration, and when the turbidity increase rate is slow, supply the electrolyzed water at a low concentration. An appropriate amount of electrolyzed water can be supplied to the water to be treated. Therefore, not only the growth of bacteria in the water to be treated is suppressed, but also the inside of the electrolysis apparatus is varied and washed with the concentration of the electrolysis water depending on the state of dirt and bacterial growth.
[0072]
  (6) In the electrolysis means having a storage section, the control means first energizes the electrode during the electrolysis operation, and then drives the water supply control means, and then energizes the electrode with the water supply control means stopped. Then, by storing the electrolyzed water generated in the reservoir and controlling the electrolyzed water to be supplied to the water to be treated after the electrolysis is completed, there is no water flow during electrolysis, so that the water in the electrolyzing means is deposited on the electrode surface. A flow is generated by the attracting action when the generated hydrogen gas, oxygen, and the like rise, and chlorine ions contained in water slowly pass between the electrodes, so that efficient electrolysis can be performed.
[0073]
  (7) A tank for storing the electrolyte solution and an electrolyte supply means for supplying the electrolyte solution to the electrolysis means are added, and the control means is a water supply control means and the electrolyte supply means based on the turbidity detected by the turbidity detection means. In the case of controlling the energization to the electrode, an electrolyte solution such as a sodium chloride solution can be supplied between the electrodes, and a high concentration of chlorine ions in the electrolyte solution is supplied between the electrodes. Electrolyzed water that is a compound such as hypochlorous acid can be generated. Moreover, the production | generation density | concentration of electrolyzed water can be varied by controlling the supply amount of this electrolyte solution.
[0074]
  (8) When the turbidity detecting means is disposed in the electrolyzed water supply unit to the treated water and the turbidity detecting means is washed with the electrolyzed water, when supplying the electrolyzed water to the treated water, The generated high-concentration electrolyzed water passes around the turbidity detecting means, and the dirt adhering to the turbidity detecting means is decomposed or washed away, so that the surface of the turbidity detecting means is always kept clean and turbid. Degree detection can be performed stably.
[0075]
  (9) It has a means for notifying the user, and the control means urges replacement of the water to be treated by this notifying means when the turbidity level of the water to be treated or the rising speed of the turbidity exceeds a predetermined value. In the case where the notification is made, there is too much turbidity component of the water to be treated, so that the water to be treated should be replaced when sufficient sterilizing effect cannot be obtained even if electrolytic water is supplied. The user can be notified, and wasteful electrolysis and waste of time for the user can be omitted.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an electrolysis apparatus according to Embodiment 1 of the present invention.
FIG. 2 is a configuration diagram of control means in the first embodiment.
FIG. 3 is a flowchart of control in the first embodiment.
FIG. 4 is a time chart of control in the first embodiment.
FIG. 5 is a configuration diagram of a conventional electrolyzer.
[Explanation of symbols]
  17 treated water
  19 Water supply control means
  21 electrodes
  22 Electrolytic means
  23 Electrolyte solution
  24 Electrolyte supply means
  25 Turbidity detection means
  26 Control means

Claims (7)

内部に少なくとも一対の不溶性電極を備えた電解手段と、前記電解手段の電解水を被処理水へ供給制御する給水制御手段と、前記被処理水の濁度を検知する濁度検知手段と、前記濁度に基づいて前記電解手段の電解水生成量を制御する制御手段とで構成され、前記制御手段は、被処理水の濁度の絶対値と濁度の上昇速度とに基づいて、前記電解手段の電解水生成量を制御する電解装置。Electrolysis means having at least a pair of insoluble electrodes therein, water supply control means for controlling supply of the electrolyzed water of the electrolysis means to the water to be treated, turbidity detecting means for detecting the turbidity of the water to be treated, and And control means for controlling the amount of electrolyzed water produced by the electrolysis means based on turbidity, the control means based on the absolute value of the turbidity of the water to be treated and the rate of increase in turbidity. An electrolyzer that controls the amount of electrolyzed water produced by the means. 内部に少なくとも一対の不溶性電極を備えた電解手段と、前記電解手段の電解水を被処理水へ供給制御する給水制御手段と、前記被処理水の濁度を検知する濁度検知手段と、前記濁度に基づいて前記電解手段の電解水生成量を制御する制御手段とで構成され、前記制御手段は、被処理水の容量を設定する設定部を有し、前記被処理水の濁度の上昇速度と前記設定部の値との積に基づいて、前記電解手段の電解水生成量を制御する電解装置。 Electrolysis means having at least a pair of insoluble electrodes therein, water supply control means for controlling supply of the electrolyzed water of the electrolysis means to the water to be treated, turbidity detecting means for detecting the turbidity of the water to be treated, and And control means for controlling the amount of electrolyzed water generated by the electrolyzing means based on turbidity, the control means having a setting unit for setting the capacity of the water to be treated, and the turbidity of the water to be treated An electrolyzer that controls the amount of electrolyzed water generated by the electrolyzing means based on a product of an ascending speed and a value of the setting unit . 制御手段は、被処理水の濁度レベルまたは濁度の上昇速度に応じて、電解水の生成濃度を可変制御する請求項1または2に記載の電解装置。Control means, electrolysis apparatus according to claim 1 or 2 in accordance with the rate of increase of turbidity level or turbidity of the water to be treated, the product concentration of electrolytic water is variably controlled. 電解手段は貯留部を有し、制御手段は、電解運転の際に、まず電極に通電し、その後給水制御手段を駆動する請求項1〜3のいずれか1項に記載の電解装置。Electrolytic means comprises a reservoir, the control means, conductive during solution operation, first energizes the electrodes, electrolyte according to any one of claims 1 to 3 for driving the water supply control means after its apparatus. 電解質溶液を貯えるタンクと、前記電解質溶液を電解手段に供給する電解質供給手段とを備え、制御手段が、濁度検知手段の検知濁度に基づいて、給水制御手段と前記電解質供給手段と電極とへの通電を制御するようにした請求項1〜4のいずれか1項に記載の電解装置。A tank to store the electrolyte solution, the electrolyte solution and an electrolyte supply means for supplying electrolytic means, control means, based on the detection turbidity turbidity sensing means, said electrolyte supply means and collector and water supply control means The electrolysis apparatus according to any one of claims 1 to 4 , wherein energization to the electrode is controlled. 被処理水への電解水供給部に濁度検知手段を配置し、電解水により前記濁度検知手段を洗浄するよう構成した請求項1〜5のいずれか1項に記載の電解装置。The electrolysis apparatus according to any one of claims 1 to 5, wherein turbidity detection means is disposed in an electrolyzed water supply unit to the water to be treated, and the turbidity detection means is washed with electrolyzed water. 使用者への報知手段を有し、制御手段は、被処理水の濁度レベルまたは濁度の上昇速度が所定値を超えた場合に、前記報知手段により被処理水の交換を促す報知をする請求項1〜6のいずれか1項に記載の電解装置。A means for notifying a user, and the control means notifies the user that the water to be treated is to be replaced by the notifying means when the turbidity level of the water to be treated or the rising speed of the turbidity exceeds a predetermined value. The electrolysis apparatus according to any one of claims 1 to 6 .
JP34846199A 1999-12-08 1999-12-08 Electrolyzer Expired - Fee Related JP4465758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34846199A JP4465758B2 (en) 1999-12-08 1999-12-08 Electrolyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34846199A JP4465758B2 (en) 1999-12-08 1999-12-08 Electrolyzer

Publications (2)

Publication Number Publication Date
JP2001162280A JP2001162280A (en) 2001-06-19
JP4465758B2 true JP4465758B2 (en) 2010-05-19

Family

ID=18397171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34846199A Expired - Fee Related JP4465758B2 (en) 1999-12-08 1999-12-08 Electrolyzer

Country Status (1)

Country Link
JP (1) JP4465758B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5164872B2 (en) * 2009-02-03 2013-03-21 三菱電機株式会社 Purification device
KR101237050B1 (en) * 2012-06-01 2013-02-25 양희권 An apparatus for producing ozone by electrolysis
KR101564594B1 (en) * 2013-06-19 2015-10-30 주식회사 이오니아 Water ionizer

Also Published As

Publication number Publication date
JP2001162280A (en) 2001-06-19

Similar Documents

Publication Publication Date Title
US7008529B2 (en) Water treating device
US9181119B2 (en) Electrolysis method, and method and plant for the pretreatment of raw water
US4693806A (en) Chlorine generator device
JP2010137165A (en) Apparatus for producing electrolytic water
JP4465758B2 (en) Electrolyzer
CN218951506U (en) Equipment for generating acid-base water through electrolysis
JPH0615276A (en) Electrolytic disinfection of water and flowing water type water electrolytic disinfector
JP4716617B2 (en) Water treatment equipment
JP5385776B2 (en) Middle water supply equipment
JP5415372B2 (en) Electrolyte salt water supply device
KR101849076B1 (en) Water treatment apparatus for functioning as a sterilizer
JPH09220572A (en) Water treatment method and apparatus therefor
KR20030006427A (en) Sterilizing Processing System for Swimming Pool Using Artificiality Salt Water
JP4286580B2 (en) Wastewater treatment method incorporating electrochemical treatment
JP4771396B2 (en) Method and apparatus for sterilizing and purifying bath water
JPH07163982A (en) Electrolytic sterilization device for stored water
JP3887969B2 (en) Water purification equipment
JP2003071465A (en) Method and apparatus for sterilizing and cleaning hot bath water
JP2000334460A (en) Electrolytic filter unit
JP2004243166A (en) Sterilization method of bath tub hot water and sterilization apparatus thereof
JP3671639B2 (en) Circulating and purifying device for bath water
KR101053430B1 (en) Deposition type strong acid water generator
JPH10192857A (en) Electrolytic water making apparatus
JP2000317456A (en) Water purifying device
WO2005077831A1 (en) Electrochemical water treatment method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061012

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20061114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080829

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees