JPH08281280A - Method for purifying and sterilizing bath water and electrolytic device for sterilization - Google Patents

Method for purifying and sterilizing bath water and electrolytic device for sterilization

Info

Publication number
JPH08281280A
JPH08281280A JP19092195A JP19092195A JPH08281280A JP H08281280 A JPH08281280 A JP H08281280A JP 19092195 A JP19092195 A JP 19092195A JP 19092195 A JP19092195 A JP 19092195A JP H08281280 A JPH08281280 A JP H08281280A
Authority
JP
Japan
Prior art keywords
bath water
sterilizing
purifying
sterilization
chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP19092195A
Other languages
Japanese (ja)
Inventor
Koji Osada
光司 長田
Yoshihiko Ujiie
良彦 氏家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP19092195A priority Critical patent/JPH08281280A/en
Publication of JPH08281280A publication Critical patent/JPH08281280A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PURPOSE: To provide a device with which sterilization and purification are both assured and the efficient execution of sterilization is possible with small current by specifying the concn. of the effective chlorine generated by a sterilizing means and the total generation amt. of the chlorine. CONSTITUTION: The bath water sucked from a suction port 11 into a circulating path 1 is prevented from lowering in temp. by a heater H and flows partly to a purifying means F and the remaining water to the sterilizing means E where the purification and sterilization are respectively executed when a pump P is driven. The purified water and the sterilized water join and the joined water returns from a discharge port 2 into the bathtub. An electrolytic device which is the sterilizing means E is of a diaphragmless type in which a pair of electrode plates 21 face each other without via a diaphragm. This device electrolyzes a part of the chlorine ions included in the bath water (city water) to execute a reduction exchange of these ions to the chlorine and free chlorine, thereby imparting sterilizing power to the bath water. At this time, the concn. of the effective chlorine generated by the sterilizing means E is specified to 0.5 to 1.0ppm and the total generation amt. of the chlorine is confined to <=1.0mg per 1 hour with liter bath water.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は浴槽内の浴用水を浄
化殺菌することで浴用水の長期使用を可能とする浴用水
浄化殺菌装置における浄化殺菌方法及び殺菌用電解装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for purifying and sterilizing a bath water purifying and sterilizing apparatus and a sterilizing electrolysis apparatus which enables long-term use of the bath water by purifying and sterilizing the bath water in the bathtub.

【0002】[0002]

【従来の技術】近年、家庭用の風呂においても24時間
の入浴を可能としたものが提供されている。この場合、
浴槽内の浴用水は、その長期使用を可能とするために、
常時、もしくは周期的に浄化殺菌しなくてはならない。
このために、この種の風呂においては、図5に示すよう
に、浴槽内の浴用水をポンプPで吸い上げてヒータHで
加熱した後、浄化手段Fによる浄化と殺菌手段Eによる
殺菌とを順次行って浴槽内に戻すということがなされて
いる。
2. Description of the Related Art In recent years, there have been provided baths for home use that allow bathing for 24 hours. in this case,
The bath water in the bathtub can be used for a long period of time.
It must be sterilized constantly or periodically.
For this reason, in this type of bath, as shown in FIG. 5, after the bath water in the bathtub is sucked up by the pump P and heated by the heater H, purification by the purification means F and sterilization by the sterilization means E are sequentially performed. It is said to go and return to the bathtub.

【0003】そして、ここで使用する殺菌手段Eとして
は、特開昭56−31489号公報に示されているよう
に、電気分解器が一般に用いられている。また、殺菌用
電気分解器としては、飲料水用ではあるが、無隔膜タイ
プのものが特開昭61−283391号公報に示されて
いる。
As the sterilizing means E used here, an electrolyzer is generally used, as disclosed in JP-A-56-31489. Further, as the sterilization electrolyzer, which is for drinking water, a diaphragmless type is disclosed in JP-A-61-283391.

【0004】[0004]

【発明が解決しようとする課題】ところで、浴用水中に
は人体から出る汗やタンパク質が含まれており、これら
を物理的浄化で取り去ることは困難であるため、浄化手
段として、単なる物理的浄化を行うものを用いたのでは
浴用水を長期にわたり使用することはできず、このため
に、実公平4−33933号公報にも示されているよう
に、生物浄化を行うものを用いている。つまり、汗(ア
ンモニア)やタンパク質を分解する微生物を利用してい
る。
By the way, since the bath water contains sweat and proteins that are emitted from the human body and it is difficult to remove them by physical purification, mere physical purification is used as a purification means. Since the bath water cannot be used for a long period of time by using the water purifier, for this reason, as shown in Japanese Utility Model Publication No. 4-33933, a water purifier is used. In other words, it utilizes microorganisms that decompose sweat (ammonia) and proteins.

【0005】ここにおいて、上記殺菌手段を浄化手段に
直列に接続して用いた場合、次のような問題を招く。つ
まり、浴用水の循環させる流量(単位時間当たり流量)
は、浴槽の容量と、浄化手段による処理能力と、処理時
間とによって決定するわけであるが、この場合、殺菌手
段を通過する浴用水の時間当たり流量が多く、このため
に殺菌に必要な塩素を発生するには、電解槽として大き
なものが必要であると同時に、電解電流値を大きくしな
くてはならない。一方、塩素発生量を多くしすぎると、
浴槽内の浴用水の塩素濃度も高くなり、これが再度浄化
手段に入った時、生物浄化のための微生物にダメージを
与えてしまい、汗や垢等の有機物の分解がなされなくな
ってしまう。これらの点から、この種のものにおいては
殺菌手段における塩素濃度をかなり低くしているのが現
状であって、十分な殺菌ができないものであった。
If the sterilizing means is connected to the purifying means in series, the following problems will occur. In other words, the flow rate of circulating bath water (flow rate per unit time)
Is determined by the capacity of the bath, the treatment capacity of the purification means, and the treatment time. In this case, the flow rate of bath water passing through the sterilization means is large per hour, and therefore chlorine required for sterilization is required. In order to generate, a large electrolytic cell is required, and at the same time, the electrolytic current value must be increased. On the other hand, if too much chlorine is generated,
The chlorine concentration of the bath water in the bathtub also increases, and when it enters the purification means again, it damages the microorganisms for biological purification, and the decomposition of organic substances such as sweat and dirt cannot be achieved. From these points, in this type, the chlorine concentration in the sterilizing means is considerably low under the present circumstances, and sufficient sterilization cannot be achieved.

【0006】本発明はこのような点に鑑み為されたもの
であり、その目的とするところは殺菌及び浄化が共に確
実になされる浴用水の浄化殺菌方法と、小電流で効率良
く殺菌を行うことができる殺菌用電解装置を提供するに
ある。
The present invention has been made in view of the above points, and an object of the present invention is to purify and sterilize bath water that ensures both sterilization and purification, and to perform sterilization efficiently with a small current. It is to provide a sterilizing electrolysis device that can perform.

【0007】[0007]

【課題を解決するための手段】しかして本発明に係る浴
用水の浄化殺菌方法は、浴槽内の浴用水を循環させるた
めの循環路中に配した浄化手段及び殺菌手段によって浴
用水の浄化と殺菌とを行うにあたり、殺菌手段によって
発生させた有効塩素の濃度を0.5ppm以上で且つ
1.0ppm以下とするとともに、総塩素発生量を浴用
水1リットルに対して1時間当たり1.0mg以下とす
ることに第1の特徴を有している。
The bath water purifying and sterilizing method according to the present invention, however, purifies the bath water by the purifying means and the sterilizing means arranged in the circulation path for circulating the bath water in the bathtub. When performing sterilization, the concentration of effective chlorine generated by the sterilizing means is set to 0.5 ppm or more and 1.0 ppm or less, and the total chlorine generation amount is 1.0 mg or less per hour for 1 liter of bath water. It has the first feature.

【0008】ここにおける殺菌手段としては、隔膜を介
することなく対向する対の電極を納めた殺菌槽を有する
電解装置を好適に用いることができる。また、殺菌手段
として、少なくとも72時間以内に1分以上電流が電極
に流される電解装置や、電極が白金電極であり、通過流
量毎分1リットル当たり、0.8〜1.6Aで定電流制
御されている電解装置や、電極が白金−イリジウム電極
であり、通過流量毎分1リットル当たり、0.3〜0.
6Aで定電流制御される電解装置や、電極への印加電圧
が一定とされているとともに、電極間の電流値に応じて
印加時間が制御されている電解装置を好適に用いること
ができる。
As the sterilization means here, an electrolysis device having a sterilization tank accommodating a pair of electrodes facing each other without a diaphragm is preferably used. Further, as a sterilizing means, an electrolysis device in which a current is passed through the electrode for at least 1 minute within at least 72 hours, or a platinum electrode as the electrode, and a constant current control at 0.8 to 1.6 A per 1 liter of flow rate per minute The electrolyzer and the electrode used are platinum-iridium electrodes, and 0.3 to 0.
It is possible to preferably use an electrolysis device in which a constant current is controlled by 6 A, or an electrolysis device in which the voltage applied to the electrodes is constant and the application time is controlled according to the current value between the electrodes.

【0009】電解装置における電極を白金電極とする場
合、殊に白金メッキ電極とする場合、電極への連続通電
に際して2分以内に電流の極性が反転されるものを用い
ることが好ましい。上記印加時間の制御にあたっては、
電流値の2次式の逆数に比例するものとしたり、印加時
間と印加休止時間とからなる1サイクル時間が、殺菌槽
における浴用水の滞留時間以内となるようにすることが
好ましい。
When the electrode in the electrolysis device is a platinum electrode, particularly when a platinum-plated electrode is used, it is preferable to use an electrode whose current polarity is reversed within 2 minutes when the electrode is continuously energized. In controlling the application time,
It is preferable that the current value is proportional to the reciprocal of the quadratic equation, or that one cycle time consisting of the application time and the application rest time is within the residence time of the bath water in the sterilization tank.

【0010】また本発明に係る浴用水の浄化殺菌方法
は、浴槽内の浴用水を循環させるとともにこの循環のた
めの循環路中に配した浄化手段及び殺菌手段によって浴
用水の浄化と殺菌とを行うにあたり、循環路中に設けた
バイパス路に設置した殺菌手段で殺菌を行うことに第2
の特徴を有している。この時、バイパス路中で且つ殺菌
手段の下流側に設けた滞留槽に殺菌手段に通した浴用水
を滞留させたり、浴槽に浴用水を戻すにあたり、エジェ
クターにて気泡を発生させたり、あるいは浴槽内の浴用
水を浄化手段に送るにあたり、活性炭フィルターまたは
活性炭含有フィルターに通したりすることがより好まし
い。
Further, the method for purifying and sterilizing bath water according to the present invention circulates the bath water in the bathtub and purifies and sterilizes the bath water by the purifying means and the sterilizing means arranged in the circulation path for this circulation. In carrying out, sterilizing with a sterilizing means installed in the bypass provided in the circulation path
It has the characteristics of At this time, the bath water passed through the sterilizing means is retained in the retention tank provided in the bypass passage and on the downstream side of the sterilizing means, or bubbles are generated by the ejector when returning the bath water to the bathtub, or the bathtub When sending the bath water inside to the purification means, it is more preferable to pass it through an activated carbon filter or an activated carbon-containing filter.

【0011】そして本発明に係る殺菌用電解装置は、浴
槽内の浴用水を循環させるための循環路中に配される殺
菌用電解装置であって、隔膜を介することなく対向する
対の電極を納めた殺菌槽を具備するとともに、循環路と
の接続部である流入口及び流出口を、上記殺菌槽におけ
る電極の上端よりも上方位置に配していることに特徴を
有している。
The sterilization electrolysis apparatus according to the present invention is a sterilization electrolysis apparatus arranged in a circulation path for circulating bath water in a bathtub, and has a pair of electrodes facing each other without a diaphragm. It is characterized in that it has a sterilization tank housed therein, and that the inflow port and the outflow port, which are the connecting portions with the circulation path, are arranged above the upper ends of the electrodes in the sterilization tank.

【0012】本発明の浴用水の浄化殺菌方法の第1の特
徴とするところによれば、微生物を用いた浄化手段に悪
影響を与えることなく、十分な殺菌を行うことができ
る。この時の殺菌手段としては、隔膜を介することなく
対向する対の電極を納めた殺菌槽を有する電解装置を用
いる時、上記の塩素濃度を得ることが容易となる。ま
た、電解装置には少なくとも72時間以内に1分以上電
流が電流に流されるようにしておくと、電極表面に生物
膜が生じたりカルシウム等のスケールが付着しても回復
させることができて、電解効率の悪化がないものとな
る。
According to the first feature of the method for purifying and sterilizing bath water of the present invention, sufficient sterilization can be performed without adversely affecting the purification means using microorganisms. As the sterilizing means at this time, when using an electrolyzer having a sterilizing tank containing a pair of electrodes facing each other without a diaphragm, it becomes easy to obtain the above chlorine concentration. In addition, if the electric current is applied to the electrolyzer for at least 1 minute within at least 72 hours, even if a biofilm is formed on the electrode surface or scale such as calcium adheres, it can be recovered. The electrolysis efficiency does not deteriorate.

【0013】電解電流を定電流制御する場合には、電極
が白金電極であれば、通過流量毎分1リットル当たり、
0.8〜1.6A、電極が白金−イリジウム電極であれ
ば、通過流量毎分1リットル当たり、0.3〜0.6A
とすると、微生物を用いた浄化手段に悪影響を与えるこ
となく十分な殺菌を行うことができる塩素を発生させる
ことができる。電極が白金メッキ電極である時には、連
続通電に際して2分以内に電流の極性が反転されるよう
にしておくと、いわゆる逆電洗浄によって電極表面をき
れいに保つことができる。
When the electrolysis current is controlled at a constant current, if the electrode is a platinum electrode, the flow rate per liter per minute is
0.8 to 1.6 A, if the electrode is a platinum-iridium electrode, 0.3 to 0.6 A per liter of flow rate per minute
Then, it is possible to generate chlorine capable of performing sufficient sterilization without adversely affecting the purification means using microorganisms. When the electrode is a platinum-plated electrode, if the polarity of the current is reversed within 2 minutes during continuous energization, the electrode surface can be kept clean by so-called reverse electrolysis cleaning.

【0014】電極への印加電圧を一定する定電圧制御と
する時には、電極間の電流値に応じて印加時間を制御す
ると、塩素濃度を所定値に保ちやすく、殊に印加時間を
電流値の2次式の逆数に比例するものとすることで、塩
素濃度を確実に一定に保つことができる。また、印加時
間と印加休止時間とからなる1サイクル時間を、殺菌槽
における浴用水の滞留時間以内とすると、濃度むらが生
じることがない。
In the case of constant voltage control in which the voltage applied to the electrodes is constant, if the application time is controlled according to the current value between the electrodes, it is easy to keep the chlorine concentration at a predetermined value. By making it proportional to the reciprocal of the following equation, the chlorine concentration can be reliably kept constant. Further, if one cycle time consisting of the application time and the application rest time is within the retention time of the bath water in the sterilization tank, uneven concentration does not occur.

【0015】また、本発明の浴用水の浄化殺菌方法の第
2の特徴とするところによれば、殺菌手段に流れる浴用
水の流量が、循環させている流量よりも少なくなるため
に、殺菌手段における薬品濃度(塩素濃度)が高くと
も、浴槽内の浴用水全体における薬品濃度を低く保つこ
とができ、このために浄化手段に影響を与えることが殆
どないものとなる。
According to the second characteristic of the method for purifying and sterilizing bath water according to the present invention, the flow rate of bath water flowing through the sterilizing means is smaller than the circulating flow rate, so that the sterilizing means is provided. Even if the chemical concentration (chlorine concentration) in is high, the chemical concentration in the whole bath water in the bathtub can be kept low, and therefore the purification means is hardly affected.

【0016】そして、バイパス路中で且つ殺菌手段の下
流側に設けた滞留槽に殺菌手段に通した浴用水を滞留さ
せる時には、薬品濃度が高い状態がしばし継続されるた
めに、殺菌効率が高くなり、浴槽に浴用水を戻すにあた
り、エジェクターにて気泡を発生させたり、あるいは浴
槽内の浴用水を浄化手段に送るにあたり、活性炭フィル
ターまたは活性炭含有フィルターに通したりする時に
は、浄化手段への影響をより少なくすることができる。
When the bath water passed through the sterilizing means is retained in the retention tank provided in the bypass passage and on the downstream side of the sterilizing means, the chemical concentration is often kept high, and the sterilizing efficiency is high. When the bath water is returned to the bathtub, bubbles are generated by the ejector, or when passing the bath water in the bathtub to the purification means through an activated carbon filter or an activated carbon-containing filter, the effect on the purification means should be avoided. Can be less.

【0017】更に本発明の殺菌用電解装置においては、
電極間を流れる水(浴用水)の流量が少なくなるため
に、小電流で所要の塩素を発生させることができる。
Further, in the sterilization electrolysis apparatus of the present invention,
Since the flow rate of water (bath water) flowing between the electrodes is small, the required chlorine can be generated with a small current.

【0018】[0018]

【発明の実施の形態】以下本発明を図示の実施例に基づ
いて詳述すると、図1において、1は一端が吸い込み口
11、他端が吐出口12となっている循環路で、この循
環路1の吸い込み口11側にはポンプPと、ヒータHと
が設けられている。また、循環路1の吐出口12側には
浄化手段Fが設けられているとともに、浄化手段Fをバ
イパスするバイパス路13が設けられて、バイパス路1
3中に殺菌手段Eが設置されている。上記ヒータHは湯
の温度低下を防ぐための小熱量のものである。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below with reference to the illustrated embodiment. In FIG. 1, reference numeral 1 denotes a circulation path having a suction port 11 at one end and a discharge port 12 at the other end. A pump P and a heater H are provided on the suction port 11 side of the passage 1. Further, a purifying means F is provided on the discharge port 12 side of the circulation path 1, and a bypass passage 13 that bypasses the purifying means F is provided so that the bypass passage 1 is provided.
The sterilization means E is installed in the No. 3. The heater H has a small amount of heat to prevent the temperature of hot water from decreasing.

【0019】ポンプPを駆動することによって吸い込み
口11から循環路1へ吸い込まれた浴用水は、ヒータH
が作動している時にはここで温度低下が防がれた後、一
部は浄化手段Fへ、残る一部は殺菌手段Eへと流れ、夫
々浄化及び殺菌がなされた後、合流して吐出口12から
浴槽内に戻る。上記浄化手段Fは、汚れや臭いのもとを
分解除去する微生物が添加された濾材を内蔵したものに
よって構成されている。また殺菌手段Eは、図2(a)ま
たは図2(b)に示すように、殺菌槽20内に一対の電極
板21,21を配した電解装置によって構成されてい
る。この殺菌手段Eである電解装置は、一対の電極板2
1,21が隔膜を介することなく対向している無隔膜タ
イプのもので、浴用水(水道水)には塩素イオン(Cl
-)が含まれているが、この塩素イオン(Cl-)の一部
を電気分解により塩素(Cl2)や遊離塩素(ClO-
に還元変換することで、殺菌力を浴用水に持たせるもの
である。
The bath water sucked into the circulation path 1 from the suction port 11 by driving the pump P is heated by the heater H.
When the is operating, the temperature drop is prevented here, then a part flows to the purifying means F, and the remaining part flows to the sterilizing means E. After being purified and sterilized respectively, they are joined to the discharge port. Return from 12 to the bath. The purifying means F is configured by incorporating a filter medium containing a microorganism that decomposes and removes the source of dirt and odor. As shown in FIG. 2 (a) or FIG. 2 (b), the sterilization means E is composed of an electrolysis device in which a pair of electrode plates 21, 21 are arranged in the sterilization tank 20. The electrolysis device, which is the sterilizing means E, includes a pair of electrode plates 2
1, 21 are non-diaphragm type that face each other without a diaphragm, and chloride water (tap water) contains chlorine ions (Cl
-) have been included, the chlorine ions (Cl - chlorine by electrolysis a portion of) (Cl 2) and free chlorine (ClO -)
By reducing and converting to, the bath water has sterilizing power.

【0020】ここにおいて、バイパス路13に接続され
る流入口22及び流出口23は、殺菌槽20における電
極21,21の上端よりも上方位置に設けられており、
流入口22から殺菌槽20内に入って流出口23から出
て行く浴用水は、電極21,21間を横切ることなく、
殺菌槽21の上部内を通り過ぎるものとなっている。こ
のようにした場合、流入口22及び流出口23が図7に
示すように夫々殺菌槽20の下部と上部とに設けられた
場合のように、電極21,21間を浴用水が流れるよう
になっている場合に比して、少ない電流で多くの塩素を
発生させることができる。これは、電極21,21間の
水の流速が遅いと、陽極近傍の塩素イオン濃度が高くな
るために、塩素濃度も高くなるためと考えられる。
Here, the inflow port 22 and the outflow port 23 connected to the bypass passage 13 are provided above the upper ends of the electrodes 21, 21 in the sterilization tank 20,
Bath water that enters the sterilization tank 20 through the inflow port 22 and exits through the outflow port 23 does not cross between the electrodes 21 and 21,
It passes through the upper part of the sterilization tank 21. In this case, as in the case where the inflow port 22 and the outflow port 23 are provided in the lower portion and the upper portion of the sterilization tank 20 as shown in FIG. 7, the bath water flows between the electrodes 21 and 21. Compared to the case where it becomes, more chlorine can be generated with less current. It is considered that this is because when the flow velocity of water between the electrodes 21 and 21 is low, the chlorine ion concentration in the vicinity of the anode is high and the chlorine concentration is also high.

【0021】ちなみに、100×80×15mmの大き
さの殺菌槽20内に、3mmの間隔を置いて配した電極
21,21に2Aの電流を流すとともに、殺菌手段Eを
通過する浴用水の流量を3リットル/minとした時の
流出口23付近における塩素濃度を測定すると、流入口
22及び流出口23が図2(a)に示す配置である時には
1.22ppm、図2(b)に示す配置である時には1.
21ppmであったのに対して、図5に示す配置とした
時には、0.18ppmであった。
By the way, a current of 2 A is applied to the electrodes 21 and 21 arranged at intervals of 3 mm in the sterilization tank 20 having a size of 100 × 80 × 15 mm, and the flow rate of bath water passing through the sterilization means E. When the chlorine concentration in the vicinity of the outflow port 23 was measured at a flow rate of 3 liter / min, 1.22 ppm was obtained when the inflow port 22 and the outflow port 23 were arranged as shown in FIG. 2 (a), and shown in FIG. 2 (b). When it is the arrangement, 1.
While it was 21 ppm, it was 0.18 ppm when the arrangement shown in FIG. 5 was used.

【0022】そして、このように発生させた塩素によっ
て殺菌手段Eは殺菌を行うわけであるが、前述のよう
に、殺菌手段Eは循環路1に設けたバイパス路13に設
置されており、通過する流量は循環路1を流れる流量よ
りも少ないために、殺菌手段E内における塩素濃度が殺
菌に十分な濃度であっても、浴槽内における塩素濃度は
低いものであり、このために浴槽内から吸い上げられて
浄化手段Fを通過する浴用水が、浄化手段Fにおける生
物浄化用の微生物にダメージを与えてしまうことはな
い。
Then, the sterilizing means E sterilizes by the chlorine thus generated. As described above, the sterilizing means E is installed in the bypass passage 13 provided in the circulation passage 1 and passes through it. Since the flow rate to be performed is lower than the flow rate flowing through the circulation path 1, even if the chlorine concentration in the sterilizing means E is sufficient for sterilization, the chlorine concentration in the bathtub is low, and therefore, from the inside of the bathtub. The bath water sucked up and passing through the purification means F does not damage the biological purification microorganisms in the purification means F.

【0023】図3に他の実施例を示す。ここでは吸い込
み口11に活性炭を添着した繊維状フィルターまたは繊
維状活性炭からなるフィルターTFを配設するととも
に、吐出口12は、空気吸い込み口15から吸い込んだ
空気を同時に吐出するエジェクターEJで構成してい
る。またバイパス路13中で且つ殺菌手段Eよりも下流
側となるところには、所要の容量の滞留槽Rを設けてあ
る。
FIG. 3 shows another embodiment. Here, a fibrous filter in which activated carbon is impregnated or a filter TF made of fibrous activated carbon is arranged at the suction port 11, and the discharge port 12 is composed of an ejector EJ that simultaneously discharges the air sucked from the air suction port 15. There is. Further, in the bypass passage 13 and on the downstream side of the sterilizing means E, a retention tank R having a required capacity is provided.

【0024】フィルターTFにおける活性炭は、浴用水
中の塩素を吸着して浄化手段Fへと向かう浴用水中の塩
素濃度を更に下げるために、浄化手段Fに対する塩素の
影響が更に小さくなるものであり、またエジェクターE
Jより発生する気泡は、浴用水と空気との接触面積を増
大させて塩素を飛びやすくしてしまうために、やはり浴
用水中の塩素濃度を低下させ、浄化手段Fに対する塩素
の影響を小さくしてしまう。一方、上記滞留槽Rは、殺
菌手段Eを通過することで塩素濃度が高くなっている浴
用水をしばしその状態に保つために、菌と高濃度塩素と
の接触時間を長くするものであり、このために殺菌効率
が高くなる。
The activated carbon in the filter TF further reduces the chlorine concentration in the bath water that adsorbs chlorine in the bath water and goes to the purification means F, so that the effect of chlorine on the purification means F is further reduced. Ejector E
The bubbles generated from J increase the contact area between the bath water and the air and make it easier for chlorine to fly. Therefore, the concentration of chlorine in the bath water is also lowered, and the influence of chlorine on the purification means F is reduced. I will end up. On the other hand, the retention tank R is intended to lengthen the contact time between the bacteria and the high-concentration chlorine in order to keep the bath water having a high chlorine concentration by passing through the sterilizing means E for a long time, Therefore, the sterilization efficiency is increased.

【0025】図1に示した第1の実施例と、図3に示し
た第2の実施例及び図5に示す直列配置の3例につい
て、同一の殺菌手段Eを同一の条件下で作動させた場合
の殺菌効果(時間−細菌数の変化)を図4に示す。直列
配置の例(図中●)では殆ど殺菌されていないのに対し
て、第1実施例(図中△)や第2実施例(図中○)の場
合には、殺菌がなされていることがわかるとともに、滞
留槽Rによる殺菌効果の向上を確認することができる。
また、第2実施例については浴槽内の残留有効塩素濃度
も測定した(図中□)が低濃度に保たれていた。
For the first embodiment shown in FIG. 1, the second embodiment shown in FIG. 3 and the three series arrangements shown in FIG. 5, the same sterilizing means E is operated under the same conditions. Fig. 4 shows the bactericidal effect (change of time-number of bacteria) in the case of exposure. In the case of the first embodiment (△ in the figure) and the second embodiment (○ in the figure), almost no sterilization is performed in the example of serial arrangement (● in the figure), but sterilization is performed. It is possible to confirm that the sterilization effect by the retention tank R is improved.
Further, in the second example, the residual available chlorine concentration in the bath was also measured (□ in the figure), but the concentration was kept low.

【0026】さらに、第2実施例において、殺菌手段E
を1日当たり4時間作動させるという条件下で、毎日5
人が入浴する浴槽内の浴用水(湯温41℃に維持)の殺
菌を行ったところ、30日後の水質は、 過マンガン酸カリウム消費量:3.5ppm 濁度 :0.4 一般細菌数 :1200個/ml 大腸菌 :検出されず pH :8.1 であった。殺菌がなされていると同時に、生物浄化を行
う浄化手段Fにダメージを与えていないことがわかる。
Further, in the second embodiment, the sterilizing means E
Is operated for 4 hours a day, 5 days daily
After sterilizing the bath water (maintained at a bath temperature of 41 ° C) in a bathtub for people, the water quality after 30 days was potassium permanganate consumption: 3.5 ppm Turbidity: 0.4 General bacterial count: 1200 / ml E. coli: Not detected pH: 8.1 It can be seen that, at the same time as the sterilization is performed, the purifying means F that performs biological purification is not damaged.

【0027】以上の実施例にあっては、殺菌手段Eが浄
化手段Fと並列接続となるようにバイパス路13を設け
ているが、バイパス路13を設けるにあたっては、浄化
手段Fよりも下流側であるならば、つまり殺菌手段Eを
通過した浴用水が浴槽を経て浄化手段Fに送られるよう
になっているならば、バイパス路13の接続位置を問う
ものではない。
In the above embodiment, the bypass passage 13 is provided so that the sterilizing means E and the purifying means F are connected in parallel. However, when the bypass passage 13 is provided, the bypass passage 13 is located downstream of the purifying means F. In other words, if the bath water that has passed through the sterilization means E is to be sent to the purification means F through the bathtub, the connection position of the bypass passage 13 does not matter.

【0028】ところで、バイパス路13に殺菌手段Eを
設けた場合においても、塩素濃度があまりにも低ければ
殺菌が不十分となり、塩素濃度がきわめて高ければ浄化
手段Eにおける生物浄化のための微生物に影響を与えて
しまうことには変わりはない。このために、図5に示す
ように殺菌槽20を接続した場合の殺菌槽20の流出口
23付近での塩素濃度と殺菌率との関係を調べるととも
に、塩素濃度が微生物に及ぼす影響とを調べたところ、
次のようになった。
Even if the bypass passage 13 is provided with the sterilization means E, if the chlorine concentration is too low, the sterilization becomes insufficient, and if the chlorine concentration is extremely high, the microorganisms for biological purification in the purification means E are affected. There is no change in giving. Therefore, as shown in FIG. 5, when the sterilization tank 20 is connected, the relationship between the chlorine concentration near the outlet 23 of the sterilization tank 20 and the sterilization rate is examined, and the influence of the chlorine concentration on the microorganisms is examined. Where
It became like this.

【0029】すなわち、濁度0.40、菌数3×105
/mlの浴用水200リットルを、100×80×15
mmの大きさの殺菌槽20(電極間距離3mm)に流量
3リットル/minで循環(殺菌槽20の接続は図5に
示す直列接続)させるとともに、流す電流値を変えるこ
とによって発生塩素濃度を変化させて2時間電解をかけ
た時の電解前後の浴用水中の菌数を測定したところ、塩
素濃度が0.3ppmの時には電解後の菌数が2×10
5/ml(殺菌率33%)、0.4ppmの時は1×10
5/ml(殺菌率67%)、0.5ppmの時は3×10
4/ml(殺菌率90%)、0.6ppmの時は2×10
4/ml(殺菌率93%)であり、0.5ppm以上の塩
素濃度があれば、1桁以上の殺菌ができた。
That is, the turbidity is 0.40 and the number of bacteria is 3 × 10 5.
200 liters of bath water / ml, 100 x 80 x 15
The generated chlorine concentration is changed by circulating the sterilization tank 20 with a size of 3 mm (distance between electrodes 3 mm) at a flow rate of 3 liters / min (the sterilization tank 20 is connected in series as shown in FIG. 5) and changing the flowing current value. When the number of bacteria in the bath water was measured before and after electrolysis when electrolysis was carried out for 2 hours under varying conditions, the number of bacteria after electrolysis was 2 x 10 when the chlorine concentration was 0.3 ppm.
5 / ml (sterilization rate 33%), 1 x 10 when 0.4 ppm
5 / ml (sterilization rate 67%), 3 x 10 at 0.5 ppm
4 / ml (sterilization rate 90%), 2 x 10 at 0.6 ppm
It was 4 / ml (sterilization rate 93%), and if the chlorine concentration was 0.5 ppm or more, sterilization of one digit or more was possible.

【0030】また、濁度0.40の浴用水を異なる塩素
濃度で夫々2時間電解をかけた時の翌日の濁度を調べた
ところ、塩素濃度が0.9ppmの時の翌日の濁度は
0.41、1.0ppmの時の翌日の濁度は0.41、
1.1ppmの時の翌日の濁度は0.56、1.2pp
mの時の翌日の濁度は0.82であった。塩素濃度が
1.0ppm以下であれば、翌日の濁度も安定してお
り、生物浄化のための微生物に与える影響がないことが
わかる。しかし、塩素濃度を1.0ppmに保ったもの
の、流量4リットル/minで循環させることで、1時
間当たりの総塩素発生量を浴用水1リットル中に1.2
mgとした時には、翌日の濁度が1.10となってしま
うとともに、1時間当たりの総塩素発生量を浴用水1リ
ットル中に1.0mg以下とした時には、翌日の濁度も
安定していた。
When the bath water having a turbidity of 0.40 was electrolyzed at different chlorine concentrations for 2 hours, the turbidity of the next day was examined. The turbidity of the next day at 0.41 and 1.0 ppm is 0.41,
The turbidity of the next day at 1.1 ppm is 0.56, 1.2 pp.
When m, the turbidity of the next day was 0.82. It can be seen that when the chlorine concentration is 1.0 ppm or less, the turbidity of the next day is stable and there is no effect on the microorganisms for biological purification. However, although the chlorine concentration was kept at 1.0 ppm, the total chlorine generation amount per hour was 1.2 in 1 liter of bath water by circulating at a flow rate of 4 liter / min.
When the amount is mg, the turbidity of the next day becomes 1.10, and when the total amount of chlorine generated per hour is 1.0 mg or less in 1 liter of bath water, the turbidity of the next day is also stable. It was

【0031】これらのことから、殺菌槽20によって発
生させた有効塩素の濃度が殺菌槽20の流出口付近にお
いて0.5ppm以上で且つ1.0ppm以下であり且
つ総塩素発生量が浴用水1リットルに対して1時間当た
り1.0mg以下となるように殺菌手段Eを制御するこ
とが好ましいことがわかる。なお、このような塩素濃度
及び総塩素発生量とすることは、図5に示した殺菌手段
Eを直列に接続したものにおいても可能である。もっと
も、バイパス路13に殺菌手段Eを配した方が前述のよ
うに有利であり、この場合の上記塩素濃度は、バイパス
路13が循環路に合流する部分での濃度とする。従っ
て、バイパス路13に殺菌槽20がある場合の殺菌槽2
0の流出口23付近での塩素濃度は1.0ppmを越え
ていてもよい。
From these facts, the concentration of available chlorine generated by the sterilization tank 20 is 0.5 ppm or more and 1.0 ppm or less near the outlet of the sterilization tank 20, and the total chlorine generation amount is 1 liter of bath water. On the other hand, it is understood that it is preferable to control the sterilization means E so that the sterilization means E is 1.0 mg or less per hour. It should be noted that such a chlorine concentration and a total chlorine generation amount can be obtained even in the case where the sterilizing means E shown in FIG. 5 is connected in series. However, it is advantageous to dispose the sterilizing means E in the bypass passage 13 as described above, and the chlorine concentration in this case is the concentration at the portion where the bypass passage 13 joins the circulation passage. Therefore, the sterilization tank 2 when the bypass passage 13 has the sterilization tank 20
The chlorine concentration in the vicinity of the outflow port 23 of 0 may exceed 1.0 ppm.

【0032】上記塩素濃度及び塩素発生量を得るには、
電解電流を定電流制御する場合、電極21,21が白金
電極であれば、通過流量毎分1リットル当たり、0.8
〜1.6A、電極21,21が白金−イリジウム焼成電
極であれば、通過流量毎分1リットル当たり、0.3〜
0.6Aとするとよい。電解電流値が上記の値よりも低
い時には塩素濃度が0.5ppmより少なくなり、上記
の値よりも高い時には塩素濃度が1.0ppmを越えて
しまう。
To obtain the above chlorine concentration and chlorine generation amount,
When the electrolysis current is controlled to a constant current, if the electrodes 21 and 21 are platinum electrodes, the flow rate is 0.8 per 1 liter per minute.
~ 1.6 A, if the electrodes 21, 21 are platinum-iridium firing electrodes, 0.3 ~ per liter of passing flow rate per minute
It should be 0.6A. When the electrolytic current value is lower than the above value, the chlorine concentration is less than 0.5 ppm, and when it is higher than the above value, the chlorine concentration exceeds 1.0 ppm.

【0033】ところで、殺菌槽20の電極21,21に
定電流制御で連続通電を行うと、一般に、当初は電圧値
が低下するが、ある時間を経過すると上昇する。これ
は、陽極におけるカルシウム等のスケールの除去が当初
なされるものの、しばらくすれば、陰極でのカルシウム
の付着硬化が大きくなって電圧が上昇すると考えられ、
この点に対処するには、たとえば15分毎に電流の極性
を反転させることが好ましい。特に電極21,21が白
金メッキ電極である場合には、印加1分後には発生塩素
濃度が半分に、2分後に2割ぐらいになってしまうこと
がわかった。このために、電極21,21が白金メッキ
電極である場合には、印加電圧(電流)の極性の反転を
2分以内で行うとよい。菌数5×105/mlの浴用水2
00リットルを、100×80×15mmの大きさの殺
菌槽20(白金めっき電極間距離3mm)に流量1リッ
トル/minで循環させ、1.5Aの電流で極性反転の
時間間隔を変えて電解を行って、電解後の浴用水中の菌
数を測定したところ、極性反転の時間間隔を1分毎とし
た時は電解後の菌数が2×104/ml(殺菌率96
%)、極性反転間隔を2分毎とした時は電解後の菌数が
5×104/ml(殺菌率91%)であったのに対して、
極性反転間隔を3分毎とした時は電解後の菌数が2×1
5/ml(殺菌率68%)、極性反転間隔を4分毎とし
た時は電解後の菌数が3×105/ml(殺菌率43%)
となり、2分以内に極性を反転させた場合と比較して菌
数において1桁の違いが出た。
By the way, when the electrodes 21, 21 of the sterilization tank 20 are continuously energized by constant current control, the voltage value generally decreases at first, but increases after a certain period of time. It is considered that although the scale of calcium or the like in the anode is initially removed, after a while, the adhesion hardening of calcium in the cathode becomes large and the voltage increases,
To address this point, it is preferable to reverse the polarity of the current every 15 minutes, for example. In particular, when the electrodes 21 and 21 were platinum-plated electrodes, it was found that the chlorine concentration generated was reduced to half after 1 minute of application and to about 20% after 2 minutes. For this reason, when the electrodes 21 and 21 are platinum-plated electrodes, the polarity of the applied voltage (current) may be reversed within 2 minutes. Bath water with a bacterial count of 5 × 10 5 / ml 2
00 liters were circulated at a flow rate of 1 liter / min in a sterilization tank 20 (distance between platinum-plated electrodes 3 mm) having a size of 100 × 80 × 15 mm, and electrolysis was performed at a current of 1.5 A while changing the time interval of polarity reversal. When the number of bacteria in the bath water after electrolysis was measured, the number of bacteria after electrolysis was 2 × 10 4 / ml (sterilization rate 96
%), When the polarity reversal interval was set to every 2 minutes, the number of bacteria after electrolysis was 5 × 10 4 / ml (sterilization rate 91%),
When the polarity reversal interval is every 3 minutes, the number of bacteria after electrolysis is 2 x 1
0 5 / ml (sterilization rate 68%), when the polarity reversal interval is every 4 minutes, the number of bacteria after electrolysis is 3 × 10 5 / ml (sterilization rate 43%)
Therefore, there was a difference of one digit in the number of bacteria compared with the case where the polarity was reversed within 2 minutes.

【0034】また、殺菌槽20の電極21,21に電気
を流さない状態が長く続くと、電極21,21の表面に
生物膜ができてしまう。しかも、電極21表面に付着し
たスケールは、長時間放置すると逆電洗浄によっても溶
出しにくくなってしまう。たとえば、100×80×1
5mmの大きさの殺菌槽20(白金−イリジウム焼成電
極間距離3mm)に流量3リットル/minで200リ
ットルの抑揚水を循環させるとともに、1.5Aの電流
を流すことで0.78ppmの塩素濃度を発生させるこ
とができる殺菌槽20に対して2時間電解を行った後、
96時間電流を流すことなく放置した後に電解を再開し
たところ、殺菌槽20の出口での有効塩素濃度が0.3
7ppmに落ちてしまう。
If the electrodes 21, 21 of the sterilization tank 20 are kept in a non-energized state for a long time, biofilms are formed on the surfaces of the electrodes 21, 21. Moreover, if the scale attached to the surface of the electrode 21 is left for a long time, it becomes difficult for the scale to be eluted even by reverse electrolysis cleaning. For example, 100x80x1
By circulating 200 liters of suppression water at a flow rate of 3 liters / min in a sterilization tank 20 of 5 mm size (distance between platinum-iridium firing electrodes 3 mm), a chlorine concentration of 0.78 ppm is obtained by passing a current of 1.5 A. After performing electrolysis for 2 hours on the sterilization tank 20 capable of generating
When the electrolysis was restarted after being left without a current for 96 hours, the effective chlorine concentration at the outlet of the sterilization tank 20 was 0.3.
It falls to 7ppm.

【0035】しかし、24時間毎に5分間の逆電洗浄を
行った時には、4日目の96時間後の塩素濃度は0.7
9ppmであり、また72時間後に1分間だけ逆電洗浄
を行った時にも、4日目の96時間後の塩素濃度は0.
75ppmであったことから、少なくとも72時間以内
に1分以上電流を流すようにしておくことが電極21の
性能保持の点で好ましい。
However, when reverse electrolysis was carried out for 5 minutes every 24 hours, the chlorine concentration after 96 hours on the 4th day was 0.7.
It was 9 ppm, and the chlorine concentration on the 4th day after 96 hours was 0.
Since it was 75 ppm, it is preferable from the viewpoint of maintaining the performance of the electrode 21 that the current is made to flow for at least 1 minute within at least 72 hours.

【0036】電極21,21への印加電圧を一定にする
定電圧制御とする時には、水質による浴用水の電気伝導
度の違いで電流値が変化するとともに塩素発生量が大き
く変化してしまう。すなわち、入浴によって汗が浴用水
中に溶け込むと、汗の中の塩分NaClが溶けることに
より浴用水中の塩素イオン濃度が増加して電気伝導率が
高くなる。水の抵抗値が低下するわけであり、定電圧制
御の場合には、より多くの電流が流れてしまうことにな
る。そして、電流値に比例して塩素発生量が増加すると
ともに、塩素イオン濃度も増加しているために、定電流
の場合においても塩素発生量が増加する。この点につい
て調べたところ、水質の変化によって増加する定電圧電
解時の電極間電流値と、その水を一定電流値で電解する
ことにより発生する塩素量とは比例関係にあり、従っ
て、定電圧制御では、入浴による塩素イオンの増加に伴
う電流値の増加に対して塩素発生量が二次的に増加する
ことを見いだした。塩素イオン濃度増加による塩素発生
量の増加に、発生した塩素による塩素イオン濃度の増加
で生じる電気伝導度増加で電流値が大きくなって塩素発
生量がさらに増加することが相乗して、塩素発生量がき
わめて多くなってしまうのである。
When the constant voltage control is performed so that the voltage applied to the electrodes 21 and 21 is constant, the current value changes and the chlorine generation amount largely changes due to the difference in the electric conductivity of the bath water due to the water quality. That is, when the perspiration dissolves into the bath water by taking a bath, the salt NaCl in the perspiration dissolves to increase the chloride ion concentration in the bath water and increase the electrical conductivity. Since the resistance value of water decreases, more current will flow in the case of constant voltage control. Then, since the chlorine generation amount increases in proportion to the current value and the chlorine ion concentration also increases, the chlorine generation amount increases even in the case of constant current. When this point was investigated, there was a proportional relationship between the interelectrode current value during constant voltage electrolysis, which increases due to changes in water quality, and the amount of chlorine generated by electrolyzing the water at a constant current value. In the control, it was found that the chlorine generation amount increased secondarily with the increase of the current value accompanying the increase of chloride ion by bathing. The chlorine generation amount increases due to the increase in chlorine generation amount due to the increase in chlorine ion concentration, and the increase in the electric current caused by the increase in chlorine ion concentration due to the generated chlorine causes the current value to increase. Is extremely large.

【0037】このために、ここでは定電圧制御とするに
あたり、電極21,21間に流れる電流値に対して二次
式の逆数に比例するように印加時間を制御している。定
電圧での電流値をA、望む塩素発生量をc、定電圧制御
の際の電流値Aで生じた塩素発生量の電流1A当たりの
量をaA+b(ppm/A)、印加時間比をTとする
と、電流値Aの2次式の逆数に比例するように、 T=c/(A(aA+b)) の式で求めた印加時間比T(ただしT≧1の時はT=1
とする)で電解を行うのである。つまり、電極間に定電
圧(24V)をかけた時、浴用水の電気伝導度の増加に
よって電流値が増加すると図6(a)に示すように塩素濃
度(図6の場合、電流1Aあたりの塩素濃度)も増加し
てしまうわけであるが、印加時間比Tを上述のようにコ
ントロールすることで、図6(b)に示すように、電流値
が増加しても塩素濃度をほぼ一定に保つことができるも
のである。ちなみに、濁度0.46であり且つ電気伝導
度が170μSの浴用水200リットルと330μSの
浴用水200リットルを調整し、100×80×15m
mの大きさの殺菌槽20(白金−イリジウム焼成電極間
距離3mm、印加電圧24V)に流量3リットル/mi
nで循環させて2時間殺菌を行うと、上記印加時間の制
御をしないものでは、低電気伝導度の浴用水については
24時間後の殺菌率92%、濁度0.44となり、高電
気伝導度の浴用水については24時間後の殺菌率98
%、濁度1.38となり、高電気伝導度の浴用水に関し
て生物浄化のための微生物に影響を与えてしまったが、
上記印加時間の制御を行う(望む塩素発生量c=0.7
5ppm、a=0.5、b=0.15)と、低電気伝導
度の浴用水については24時間後の殺菌率93%、濁度
0.45となり、高電気伝導度の浴用水については24
時間後の殺菌率91%、濁度0.42となった。電気伝
導度の影響を受けることなく殺菌浄化を行うことができ
る。
Therefore, in the constant voltage control, the application time is controlled so as to be proportional to the reciprocal of the quadratic equation with respect to the current value flowing between the electrodes 21 and 21. The current value at constant voltage is A, the desired chlorine generation amount is c, the amount of chlorine generation amount generated at the current value A during constant voltage control per 1 A of current is aA + b (ppm / A), and the application time ratio is T Then, in order to be proportional to the reciprocal of the quadratic equation of the current value A, the application time ratio T obtained by the equation T = c / (A (aA + b)) (however, when T ≧ 1, T = 1
And) to electrolyze. That is, when a constant voltage (24 V) is applied between the electrodes and the current value increases due to an increase in the electrical conductivity of the bath water, the chlorine concentration (in the case of FIG. 6, per 1 A of current is increased as shown in FIG. 6 (a)). The chlorine concentration also increases, but by controlling the application time ratio T as described above, as shown in FIG. 6 (b), the chlorine concentration remains almost constant even if the current value increases. It is something that can be kept. By the way, 200 liters of bath water having a turbidity of 0.46 and an electric conductivity of 170 μS and 200 liters of bath water of 330 μS were adjusted to 100 × 80 × 15 m.
Flow rate of 3 liters / mi in a sterilization tank 20 of m size (platinum-iridium firing electrode distance 3 mm, applied voltage 24 V).
When it is circulated at n and sterilized for 2 hours, in the case where the above application time is not controlled, the sterilization rate after 24 hours is 92% and the turbidity is 0.44 for the bath water with low electric conductivity, and the high electric conductivity The degree of sterilization after 24 hours for bath water is 98
%, The turbidity was 1.38, which affected the microorganisms for biological purification with regard to the bath water with high electrical conductivity.
The above application time is controlled (desired chlorine generation amount c = 0.7).
5 ppm, a = 0.5, b = 0.15), the bath water with low electric conductivity had a sterilization rate of 93% after 24 hours and the turbidity was 0.45, and the bath water with high electric conductivity was 24
The sterilization rate after 91 hours was 91%, and the turbidity was 0.42. Sterilization and purification can be performed without being affected by electric conductivity.

【0038】なお、印加時間比Tの制御にあたっては、
印加時間と休止時間との1サイクル時間を、殺菌槽20
内での滞留時間(前記滞留槽Rを有するものにおいては
殺菌槽20内での滞留時間+滞留槽R内での滞留時間)
以下、好ましくは滞留時間の半分以下とすることが望ま
しい。
In controlling the application time ratio T,
The cycle time of the application time and the rest time is the sterilization tank 20.
Retention time inside (retention time in sterilization tank 20 + retention time in retention tank R in the case of having the above-mentioned retention tank R)
Hereafter, it is desirable to set the residence time to half or less.

【0039】[0039]

【発明の効果】以上のように本発明の浴用水の浄化殺菌
方法においては、有効塩素の濃度を0.5ppm以上で
且つ1.0ppm以下とするとともに、総塩素発生量を
浴用水1リットルに対して1時間当たり1.0mg以下
としているために、微生物を用いた浄化手段に悪影響を
与えることなく、殺菌を行うことができ、長期にわたる
浴用水の使用が可能となる。
As described above, in the method for purifying and sterilizing bath water of the present invention, the concentration of available chlorine is 0.5 ppm or more and 1.0 ppm or less, and the total chlorine generation amount is 1 liter of bath water. On the other hand, since the amount is 1.0 mg or less per hour, sterilization can be performed without adversely affecting the purification means using microorganisms, and long-term bath water can be used.

【0040】そして、上記殺菌手段として、隔膜を介す
ることなく対向する対の電極を納めた殺菌槽を有する電
解装置を用いた時には、上記濃度(発生量)の塩素を容
易に得ることができるものであり、少なくとも72時間
以内に1分以上電流が電流に流されるようにしておく
と、電極表面に生物膜が生じたりカルシウム等のスケー
ルが付着しても、電極の性能を回復させることができ、
これに伴って、殺菌能力の維持が容易となる。
When an electrolysis device having a sterilization tank containing a pair of electrodes facing each other without a diaphragm is used as the sterilization means, it is possible to easily obtain chlorine in the above concentration (generation amount). Therefore, if the current is applied to the current for at least 1 minute within at least 72 hours, the performance of the electrode can be recovered even if a biofilm is formed on the electrode surface or scale such as calcium is attached. ,
Along with this, it becomes easy to maintain the sterilization ability.

【0041】また、電解電流を定電流制御する場合に
は、電極が白金電極であれば、通過流量毎分1リットル
当たり、0.8〜1.6A、電極が白金−イリジウム電
極であれば、通過流量毎分1リットル当たり、0.3〜
0.6Aとすると、微生物を用いた浄化手段に悪影響を
与えることなく殺菌を行うことができるものを得ること
ができる。そして、連続通電に際して2分以内に電流の
極性が反転されるようにしておくと、電極が白金メッキ
電極であっても電極表面をきれいに保つことができて、
所要の殺菌能力を常に得ることができる。
When the electrolysis current is controlled to a constant current, if the electrode is a platinum electrode, the flow rate is 0.8 to 1.6 A per liter per minute, and if the electrode is a platinum-iridium electrode, Flow rate of 0.3 ~ per liter per minute
When it is set to 0.6 A, it is possible to obtain a product that can be sterilized without adversely affecting the purification means using microorganisms. If the polarity of the current is reversed within 2 minutes during continuous energization, the electrode surface can be kept clean even if the electrode is a platinum-plated electrode.
The required sterilization capacity can always be obtained.

【0042】電極への印加電圧を一定する定電圧制御と
する時には、電極間の電流値に応じて印加時間を制御す
ると、浴用水の水質(電気伝導度の違い)にかかわら
ず、塩素濃度を所定値に保ちやすいものであり、殊に印
加時間を電流値の2次式の逆数に比例するものとするこ
とで、塩素濃度を確実に一定に保つことができる。ま
た、印加時間と印加休止時間とからなる1サイクル時間
を、殺菌槽における浴用水の滞留時間以内とすると、濃
度むらが生じることがないものとなる。
When constant voltage control is performed so that the voltage applied to the electrodes is constant, if the application time is controlled according to the current value between the electrodes, the chlorine concentration can be controlled regardless of the water quality of the bath water (difference in electrical conductivity). It is easy to keep the predetermined value, and in particular, by making the application time proportional to the reciprocal of the quadratic equation of the current value, the chlorine concentration can be surely kept constant. Further, if one cycle time consisting of the application time and the application rest time is within the retention time of the bath water in the sterilization tank, the concentration unevenness will not occur.

【0043】また、本発明の浴用水の浄化殺菌方法の第
2の特徴とするところによれば、殺菌手段に流れる浴用
水の流量が循環させている流量よりも少なくなるため
に、殺菌手段における薬品濃度(塩素濃度)が殺菌に必
要な濃度としても、浴槽内の浴用水全体における薬品濃
度は低く保つことができるものであり、このために薬品
(塩素)が浄化手段に影響を与えることが殆どなく、従
って浄化及び殺菌を共に確実に行えるものである。
Further, according to the second feature of the method for purifying and sterilizing bath water of the present invention, the flow rate of the bath water flowing through the sterilizing means becomes smaller than the circulating flow rate. Even if the chemical concentration (chlorine concentration) is the concentration required for sterilization, the chemical concentration in the whole bath water in the bathtub can be kept low, and therefore the chemical (chlorine) may affect the purification means. There is little, and therefore both purification and sterilization can be ensured.

【0044】この時、バイパス路中で且つ殺菌手段の下
流側に設けた滞留槽に殺菌手段に通した浴用水を滞留さ
せたならば、薬品濃度が高い状態が状態がしばし継続さ
れるために、殺菌効率がより高くなって、殺菌運転時間
を短くすることができる。浴槽に浴用水を戻すにあた
り、エジェクターにて気泡を発生させたならば、浴用水
と空気との接触時間が長くなって薬品濃度が低下するた
めに、浄化手段に与える影響をより小さくすることがで
きる。
At this time, if the bath water passed through the sterilizing means is retained in the retention tank provided in the bypass passage and on the downstream side of the sterilizing means, the state where the chemical concentration is high is maintained for a while. The sterilization efficiency becomes higher and the sterilization operation time can be shortened. If air bubbles are generated by the ejector when returning the bath water to the bathtub, the contact time between the bath water and air will increase and the chemical concentration will decrease, so the effect on the purification means can be made smaller. it can.

【0045】浴槽内の浴用水を浄化手段に送るにあた
り、活性炭フィルターまたは活性炭含有フィルターに通
した時にも、活性炭による薬品の吸着により、やはり浄
化手段への影響をより少なくすることができる。そして
本発明の殺菌用電解装置においては、循環路との接続部
である流入口及び流出口を電極の上端よりも上方位置に
配しているために、電極間を流れる水(浴用水)の流量
が少なくなり、小電流で所要の塩素を発生させることが
できるものであり、効率の良い殺菌を行うことができ
る。
When the bath water in the bathtub is sent to the purifying means, even when it is passed through the activated carbon filter or the activated carbon-containing filter, the adsorption of the chemicals by the activated carbon can reduce the influence on the purifying means. In the sterilization electrolysis apparatus of the present invention, since the inlet and the outlet that are the connecting portions with the circulation path are arranged above the upper ends of the electrodes, water flowing between the electrodes (bath water) Since the flow rate is reduced and the required chlorine can be generated with a small current, efficient sterilization can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明一実施例の配管図である。FIG. 1 is a piping diagram of an embodiment of the present invention.

【図2】同上の殺菌槽を示すもので、(a)はその一例
の斜視図、(b)は他例の斜視図である。
2A and 2B show the same sterilization tank, wherein FIG. 2A is a perspective view of an example thereof, and FIG. 2B is a perspective view of another example thereof.

【図3】他の実施例の配管図である。FIG. 3 is a piping diagram of another embodiment.

【図4】作用説明図である。FIG. 4 is an operation explanatory view.

【図5】直列配置の場合の配管図である。FIG. 5 is a piping diagram in the case of serial arrangement.

【図6】(a)(b)は定電圧制御の際の浴用水の水質によっ
て変化する電流値に対する塩素濃度の関係を示す説明図
である。
6 (a) and 6 (b) are explanatory views showing the relationship between the chlorine concentration and the current value that changes depending on the water quality of the bath water during constant voltage control.

【図7】殺菌槽の比較例の斜視図である。FIG. 7 is a perspective view of a comparative example of a sterilization tank.

【符号の説明】[Explanation of symbols]

1 循環路 13 バイパス路 P ポンプ F 浄化手段 E 殺菌手段 1 Circulation path 13 Bypass path P Pump F Purification means E Sterilization means

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 1/50 540 C02F 1/50 540B 550 550D 550L 560 560B 560F 560H 560Z ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI Technical display location C02F 1/50 540 C02F 1/50 540B 550 550D 550L 560 560B 560F 560H 560Z

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 浴槽内の浴用水を循環させるとともにこ
の循環のための循環路中に配した浄化手段及び殺菌手段
によって浴用水の浄化と殺菌とを行うにあたり、殺菌手
段によって発生させた有効塩素の濃度を0.5ppm以
上で且つ1.0ppm以下とするとともに、総塩素発生
量を浴用水1リットルに対して1時間当たり1.0mg
以下とすることを特徴とする浴用水の浄化殺菌方法。
1. Effective chlorine generated by a sterilizing means when circulating the bath water in a bathtub and purifying and sterilizing the bath water by the purifying means and sterilizing means arranged in a circulation path for this circulation. The concentration of 0.5ppm or more and 1.0ppm or less, and the total amount of chlorine generated is 1.0mg per hour for 1 liter of bath water.
A method for purifying and sterilizing bath water, comprising:
【請求項2】 殺菌手段として、隔膜を介することなく
対向する対の電極を納めた殺菌槽を有する電解装置を用
いることを特徴とする請求項1記載の浴用水の浄化殺菌
方法。
2. The method for purifying and sterilizing bath water according to claim 1, wherein as the sterilizing means, an electrolytic device having a sterilizing tank containing a pair of electrodes facing each other without a diaphragm is used.
【請求項3】 殺菌手段として、少なくとも72時間以
内に1分以上電流が電極に流される電解装置を用いるこ
とを特徴とする請求項1または請求項2記載の浴用水の
浄化殺菌方法。
3. The method for purifying and sterilizing bath water according to claim 1 or 2, wherein as the sterilizing means, an electrolytic device in which an electric current is passed through the electrodes for at least 1 minute within at least 72 hours is used.
【請求項4】 殺菌手段として、電極が白金電極であ
り、通過流量毎分1リットル当たり、0.8〜1.6A
で定電流制御されている電解装置を用いることを特徴と
する請求項1または請求項2記載の浴用水の浄化殺菌方
法。
4. As a sterilizing means, the electrode is a platinum electrode, and the passing flow rate is 0.8 to 1.6 A per liter per minute.
3. The method for purifying and sterilizing bath water according to claim 1 or 2, wherein an electrolysis device controlled by a constant current is used.
【請求項5】 電極への連続通電に際して2分以内に電
流の極性が反転される電解装置を用いることを特徴とす
る請求項4記載の浴用水の浄化殺菌方法。
5. The method for purifying and sterilizing bath water according to claim 4, wherein an electrolysis device in which the polarity of current is reversed within 2 minutes when the electrodes are continuously energized.
【請求項6】 殺菌手段として、電極が白金−イリジウ
ム電極であり、通過流量毎分1リットル当たり、0.3
〜0.6Aで定電流制御される電解装置を用いることを
特徴とする請求項1または請求項2記載の浴用水の浄化
殺菌方法。
6. As a sterilizing means, the electrode is a platinum-iridium electrode, and the passing flow rate is 0.3 per 1 liter per minute.
The method for purifying and sterilizing bath water according to claim 1 or 2, characterized in that an electrolysis device whose constant current is controlled at ˜0.6 A is used.
【請求項7】 殺菌手段として、電極への印加電圧が一
定とされているとともに、電極間の電流値に応じて印加
時間が制御されている電解装置を用いることを特徴とす
る請求項1または請求項2記載の浴用水の浄化殺菌方
法。
7. The sterilizing means is an electrolysis device in which the voltage applied to the electrodes is constant and the application time is controlled according to the current value between the electrodes. The method for purifying and sterilizing bath water according to claim 2.
【請求項8】 印加時間は電流値の2次式の逆数に比例
するものとしていることを特徴とする請求項7記載の浴
用水の浄化殺菌方法。
8. The method for purifying and sterilizing bath water according to claim 7, wherein the application time is proportional to the reciprocal of the quadratic equation of the current value.
【請求項9】 印加時間と印加休止時間とからなる1サ
イクル時間を、殺菌槽における浴用水の滞留時間以内と
していることを特徴とする請求項7記載の浴用水の浄化
殺菌方法。
9. The method for purifying and sterilizing bath water according to claim 7, wherein one cycle time consisting of the application time and the application rest time is set within the retention time of the bath water in the sterilization tank.
【請求項10】 浴槽内の浴用水を循環させるとともに
この循環のための循環路中に配した浄化手段及び殺菌手
段によって浴用水の浄化と殺菌とを行うにあたり、循環
路中に設けたバイパス路に設置した殺菌手段で殺菌を行
うことを特徴とする浴用水の浄化殺菌方法。
10. A bypass passage provided in the circulation passage for circulating the bath water in the bathtub and purifying and sterilizing the bath water by the purification means and sterilization means arranged in the circulation passage for this circulation. A method for purifying and sterilizing bath water, which comprises sterilizing with a sterilizing means installed in.
【請求項11】 バイパス路中で且つ殺菌手段の下流側
に設けた滞留槽に、殺菌手段に通した浴用水を滞留させ
ることを特徴とする請求項10記載の浴用水の浄化殺菌
方法。
11. The method for purifying and sterilizing bath water according to claim 10, wherein the bath water passed through the sterilizing means is retained in a retention tank provided in the bypass passage and on the downstream side of the sterilizing means.
【請求項12】 浴槽に浴用水を戻すにあたり、エジェ
クターにて気泡を発生させることを特徴とする請求項1
または請求項10記載の浴用水の浄化殺菌方法。
12. The bubble is generated by an ejector when the bath water is returned to the bathtub.
Alternatively, the method for purifying and sterilizing bath water according to claim 10.
【請求項13】 浴槽内の浴用水を浄化手段に送るにあ
たり、活性炭フィルターまたは活性炭含有フィルターに
通すことを特徴とする請求項1または請求項10記載の
浴用水の浄化殺菌方法。
13. The method for purifying and sterilizing bath water according to claim 1 or 10, wherein the bath water in the bathtub is passed through an activated carbon filter or an activated carbon-containing filter when being sent to the purification means.
【請求項14】 浴槽内の浴用水を循環させるための循
環路中に配される殺菌用電解装置であって、隔膜を介す
ることなく対向する対の電極を納めた殺菌槽を具備する
とともに、循環路との接続部である流入口及び流出口
が、殺菌槽における電極の上端よりも上方位置に配され
ていることを特徴とする殺菌用電解装置。
14. A sterilization electrolysis device arranged in a circulation path for circulating bath water in a bathtub, comprising a sterilization tank containing a pair of electrodes facing each other without a diaphragm, An electrolysis apparatus for sterilization, characterized in that an inflow port and an outflow port, which are connection parts with the circulation path, are arranged above the upper ends of the electrodes in the sterilization tank.
JP19092195A 1995-02-15 1995-07-26 Method for purifying and sterilizing bath water and electrolytic device for sterilization Withdrawn JPH08281280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19092195A JPH08281280A (en) 1995-02-15 1995-07-26 Method for purifying and sterilizing bath water and electrolytic device for sterilization

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-27062 1995-02-15
JP2706295 1995-02-15
JP19092195A JPH08281280A (en) 1995-02-15 1995-07-26 Method for purifying and sterilizing bath water and electrolytic device for sterilization

Publications (1)

Publication Number Publication Date
JPH08281280A true JPH08281280A (en) 1996-10-29

Family

ID=26364942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19092195A Withdrawn JPH08281280A (en) 1995-02-15 1995-07-26 Method for purifying and sterilizing bath water and electrolytic device for sterilization

Country Status (1)

Country Link
JP (1) JPH08281280A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005514201A (en) * 2002-01-14 2005-05-19 ペー・ウント・ヴェー・インヴェスト・フェアメーゲンス・フェアヴァルトゥングスゲゼルシャフト・エム・ベー・ハー Water supply system, in particular a method for sterilization and cleaning of a water supply system in swimming and bathing pool units, and apparatus for carrying out the same
JP2008145011A (en) * 2006-12-07 2008-06-26 Sanyo Electric Co Ltd Sterilizing device for refrigerator
CN103359811A (en) * 2012-03-31 2013-10-23 中国石油化工股份有限公司 Fast monitoring method and monitoring device of sterilization effect of large underground clean-water reservoir

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005514201A (en) * 2002-01-14 2005-05-19 ペー・ウント・ヴェー・インヴェスト・フェアメーゲンス・フェアヴァルトゥングスゲゼルシャフト・エム・ベー・ハー Water supply system, in particular a method for sterilization and cleaning of a water supply system in swimming and bathing pool units, and apparatus for carrying out the same
JP2008145011A (en) * 2006-12-07 2008-06-26 Sanyo Electric Co Ltd Sterilizing device for refrigerator
CN103359811A (en) * 2012-03-31 2013-10-23 中国石油化工股份有限公司 Fast monitoring method and monitoring device of sterilization effect of large underground clean-water reservoir
CN103359811B (en) * 2012-03-31 2015-12-09 中国石油化工股份有限公司 Large Underground clean water basin sterilization effect quick monitoring method and monitoring device

Similar Documents

Publication Publication Date Title
US11420885B2 (en) Electrolysis method and device for water
EP3759053A1 (en) Electrolysis method and device for spas and pools
CA3178624A1 (en) Clean water for bathing and medical treatments
JP3870482B2 (en) Water purification equipment
JPH0615276A (en) Electrolytic disinfection of water and flowing water type water electrolytic disinfector
JPH08281280A (en) Method for purifying and sterilizing bath water and electrolytic device for sterilization
JP3843365B2 (en) Water purification method and mechanism
JP3918133B2 (en) Water purification method and purification device
JP2002219463A (en) Electrolytic disinfection method for water
EP1226094B1 (en) Device for electrolysis
JP2001232395A (en) Method and device for circulating/sterilizing hot water
JPH1190447A (en) Apparatus for circulating bath water
JP4771396B2 (en) Method and apparatus for sterilizing and purifying bath water
JPH1177055A (en) Bath water sterilization apparatus
JP3887969B2 (en) Water purification equipment
JPH10314748A (en) Sterilization apparatus
JP3906527B2 (en) Water purification equipment
JP3083416U (en) Electrochemical sterilizer
JPH0970586A (en) Water purifying device
JPH0647381A (en) Method for washing and sterilizing continuous electrolytic water conditioning apparatus and electrolytic water conditioning apparatus equipped with mechanism executing this method
JP2004243166A (en) Sterilization method of bath tub hot water and sterilization apparatus thereof
JPH11123383A (en) Water cleaning device
JPH11104645A (en) Water purifying apparatus
JPH11192487A (en) Circulating water purifying and sterilizing device and method therefor
JP2000093968A (en) Water cleaning apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021001