JPH1030859A - Absorption type heat pump - Google Patents
Absorption type heat pumpInfo
- Publication number
- JPH1030859A JPH1030859A JP18765696A JP18765696A JPH1030859A JP H1030859 A JPH1030859 A JP H1030859A JP 18765696 A JP18765696 A JP 18765696A JP 18765696 A JP18765696 A JP 18765696A JP H1030859 A JPH1030859 A JP H1030859A
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- heat pump
- absorption
- vapor
- mesh surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、水−アンモニアを
作動媒体とした吸収式ヒートポンプに係り、特に、発生
したアンモニア蒸気に含まれる水分を除去し、冷媒の濃
度を高めるために用いる精留器の効率向上に配慮した吸
収式ヒートポンプに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption heat pump using water-ammonia as a working medium, and more particularly to a rectifier used for removing water contained in generated ammonia vapor and increasing the concentration of refrigerant. The present invention relates to an absorption heat pump that takes into account the improvement of the efficiency of the heat pump.
【0002】[0002]
【従来の技術】図6に、一般的な水−アンモニアを作動
媒体(吸収液)とした吸収式ヒートポンプの構成を示
す。図示の吸収式ヒートポンプは、吸収液(強溶液)を
冷媒蒸気と弱溶液に分離する再生器ユニット31と、該
再生ユニット31で分離された冷媒蒸気を凝縮液化する
凝縮器32と、該凝縮器32で生成された液冷媒46を
冷媒熱交換器33と膨張弁34を介して導入し、熱媒体
との熱交換により蒸発させる蒸発器35と、該蒸発器3
5で蒸発した冷媒蒸気を前記冷媒熱交換器33を介して
導入し弱溶液に吸収させる吸収ユニット36と、を含ん
で構成されている。2. Description of the Related Art FIG. 6 shows the structure of a general absorption heat pump using water-ammonia as a working medium (absorbing liquid). The illustrated absorption heat pump includes a regenerator unit 31 for separating an absorption liquid (strong solution) into a refrigerant vapor and a weak solution, a condenser 32 for condensing and liquefying the refrigerant vapor separated by the regeneration unit 31, and the condenser An evaporator 35 that introduces the liquid refrigerant 46 generated at 32 through a refrigerant heat exchanger 33 and an expansion valve 34 and evaporates by heat exchange with a heat medium;
And an absorption unit 36 for introducing the refrigerant vapor evaporated in 5 through the refrigerant heat exchanger 33 and absorbing the refrigerant vapor into a weak solution.
【0003】吸収式ヒートポンプの再生器ユニット31
は、上方から順に配置された分縮器42、精留器41、
弱溶液熱交換器40及び再生入熱器39と、それらを内
装した再生器ユニット容器38とを含んで構成され、弱
溶液熱交換器40の下端入り口は再生器ユニット容器3
8の底部に接続されている。また、前記凝縮器32は冷
却流体流路をなす熱交換器45を管側流路、冷媒流路を
胴側流路とする管胴型で、再生器ユニット容器38の上
端部は、前記凝縮器32の胴側流路の上端部に接続され
ている。The regenerator unit 31 of the absorption heat pump
Is a decomposing device 42, a rectifying device 41 arranged in order from the top,
The weak solution heat exchanger 40 and the regenerative heat input device 39 are configured to include the regenerator unit container 38 in which the weak solution heat exchanger 40 and the regenerative heat input device 39 are provided.
8 is connected to the bottom. The condenser 32 is a tube-body type having a heat exchanger 45 forming a cooling fluid flow path as a tube side flow path and a refrigerant flow path as a body side flow path. It is connected to the upper end of the body-side flow path of the vessel 32.
【0004】吸収ユニット36は、上方から順に配置さ
れた吸収液散布装置51、吸収熱回収熱交換部52及び
吸収熱放熱部53と、それらを内装した吸収ユニット容
器50と、を含んで構成され、吸収ユニット容器50底
部は溶液循環ポンプ37を介して分縮器42の上端(入
側)に接続されている。溶液循環ポンプ37の出側は分
縮器42の上端(入側)に、溶液循環ポンプ37の吸い
込み側は吸収ユニット容器50底部に、それぞれ接続さ
れている。また、吸収熱回収熱交換部52の上端(出
側)は再生器ユニット容器38の精留器41の中段位置
に接続され、吸収熱回収熱交換部52の下端(入り側)
は、分縮器42の下端(出側)に接続されている。さら
に、前記再生器ユニット31の弱溶液熱交換器40の上
端(出側)には減圧弁57が接続され、減圧弁57の出
側は吸収液散布装置51に接続されている。[0004] The absorption unit 36 is configured to include an absorption liquid dispersing device 51, an absorption heat recovery heat exchange unit 52, an absorption heat radiation unit 53 arranged in order from the top, and an absorption unit container 50 in which these are housed. The bottom of the absorption unit container 50 is connected to the upper end (input side) of the decomposer 42 via the solution circulation pump 37. The outlet side of the solution circulation pump 37 is connected to the upper end (inlet side) of the separator 42, and the suction side of the solution circulation pump 37 is connected to the bottom of the absorption unit container 50. The upper end (outside) of the absorption heat recovery heat exchange section 52 is connected to the middle position of the rectifier 41 of the regenerator unit container 38, and the lower end (entrance side) of the absorption heat recovery heat exchange section 52 is provided.
Is connected to the lower end (outside) of the decompressor 42. Further, a pressure reducing valve 57 is connected to the upper end (outlet side) of the weak solution heat exchanger 40 of the regenerator unit 31, and the outlet side of the pressure reducing valve 57 is connected to the absorbent dispersion device 51.
【0005】蒸発器35は、熱媒体流路をなす熱交換器
48を管側流路、冷媒流路を胴側流路とする管胴型で、
前記凝縮器32の胴側流路の下端(出側)は、冷媒熱交
換器33の加熱流体流路及び膨張弁34を介して蒸発器
35の胴側流路頂部に内装された冷媒散布装置47に接
続されている。また、蒸発器35の胴側流路は冷媒熱交
換器33の被加熱流体流路を介して吸収ユニット容器5
0の下部に接続されている。[0005] The evaporator 35 is a tube-body type having a heat exchanger 48 forming a heat medium flow path as a tube side flow path and a refrigerant flow path as a body side flow path.
The lower end (outside) of the body-side flow path of the condenser 32 is connected to the heating fluid flow path of the refrigerant heat exchanger 33 and the expansion-valve 34, and is provided at the top of the body-side flow path of the evaporator 35. 47. The body side flow path of the evaporator 35 is connected to the absorption unit container 5 via the heated fluid flow path of the refrigerant heat exchanger 33.
0 is connected to the lower part.
【0006】再生器ユニット31は、溶液循環ポンプ3
7から分縮器42、吸収熱回収熱交換部52を経て供給
される冷媒濃度の高い吸収液(強溶液)55を、冷媒蒸
気と弱溶液(冷媒濃度の低い溶液)に分離し、冷媒蒸気
44を凝縮器32の胴側流路に、弱溶液を自身が内装し
た弱溶液熱交換器40に、それぞれ送り出す。[0006] The regenerator unit 31 includes a solution circulating pump 3
7 is separated into a refrigerant vapor and a weak solution (a solution having a low refrigerant concentration) 55 having a high refrigerant concentration and supplied through a decomposer 42 and an absorption heat recovery heat exchange section 52. The weak solution is sent out to the body side flow path of the condenser 32 and the weak solution is sent out to the weak solution heat exchanger 40 in which the weak solution is housed.
【0007】凝縮器32は再生器ユニット31から胴側
流路内に送りこまれた冷媒蒸気を、管側流路(熱交換器
45)に通流される熱媒体で冷却凝縮して液冷媒とす
る。生成された液冷媒は冷媒熱交換器33の加熱流体流
路及び膨張弁34を通って蒸発器35に内装された冷媒
散布装置47に導かれ、熱交換器48の伝熱壁外表面に
滴下される。熱交換器48の伝熱壁外表面に滴下された
液冷媒は、熱交換器48内を流れる熱媒体の熱を奪って
蒸発する。蒸発した冷媒蒸気は、冷媒熱交換器33の被
加熱流体流路を経て吸収ユニット容器50の底部に導入
される。[0007] The condenser 32 cools and condenses the refrigerant vapor sent from the regenerator unit 31 into the body side flow path with the heat medium passed through the tube side flow path (heat exchanger 45) to form a liquid refrigerant. . The generated liquid refrigerant passes through the heating fluid flow path of the refrigerant heat exchanger 33 and the expansion valve 34, is guided to the refrigerant dispersion device 47 provided in the evaporator 35, and drops on the outer surface of the heat transfer wall of the heat exchanger 48. Is done. The liquid refrigerant dropped on the outer surface of the heat transfer wall of the heat exchanger 48 removes heat of the heat medium flowing in the heat exchanger 48 and evaporates. The evaporated refrigerant vapor is introduced into the bottom of the absorption unit container 50 via the fluid passage to be heated of the refrigerant heat exchanger 33.
【0008】吸収ユニット容器50の底部に溜った吸収
液(強溶液)43aは溶液循環ポンプ37により昇圧さ
れ、再生器ユニット31の分縮器42を通って昇温さ
れ、さらに吸収ユニット36の吸収熱回収熱交換部52
の下部入口からその熱交換流路内に導入される。吸収熱
回収熱交換部52を通った吸収液(強溶液)55は、再
生器ユニット31の精留器41の中段に導入される。再
生器ユニット31の精留器41の中段に導入された吸収
液(強溶液)は、再生器ユニット31の再生処理によ
り、冷媒蒸気と弱溶液に分離される。分離されて再生器
ユニット容器38の底部に溜った弱溶液は、弱溶液熱交
換器40と減圧弁57を経て吸収ユニット36の頭頂部
に設けられた吸収液散布装置51に供給される。The absorption liquid (strong solution) 43 a stored at the bottom of the absorption unit container 50 is pressurized by the solution circulating pump 37, is heated through the decompressor 42 of the regenerator unit 31, and is further absorbed by the absorption unit 36. Heat recovery heat exchange section 52
Is introduced into the heat exchange channel from the lower inlet of the heat exchanger. The absorption liquid (strong solution) 55 that has passed through the absorption heat recovery heat exchange section 52 is introduced into the middle stage of the rectifier 41 of the regenerator unit 31. The absorption liquid (strong solution) introduced into the middle stage of the rectifier 41 of the regenerator unit 31 is separated into refrigerant vapor and a weak solution by the regeneration processing of the regenerator unit 31. The weak solution separated and collected at the bottom of the regenerator unit container 38 is supplied to the absorbent dispersion device 51 provided at the top of the absorption unit 36 via the weak solution heat exchanger 40 and the pressure reducing valve 57.
【0009】このように構成された装置の動作につい
て、以下に説明する。吸収ユニット容器50の頭頂部に
導入された吸収液(弱溶液)は、吸収液散布装置51に
より容器内部(胴側)に散布される。散布された吸収液
は、吸収熱回収熱交換部52の伝熱壁の外表面を伝って
流れ落ち、あるいは空間を落下する。その過程で、吸収
液は吸収放熱部53を通過してきた冷媒蒸気と接触して
これを吸収し、これにより吸収液の冷媒濃度が徐々に高
められる。冷媒蒸気の吸収により発生する吸収熱は、吸
収熱回収熱交換部52の内部を流れる吸収液(強溶液)
に取り込まれ、再生作用に必要な熱の一部として利用さ
れる。[0009] The operation of the device thus constructed will be described below. The absorbing liquid (weak solution) introduced to the top of the absorbing unit container 50 is sprayed inside the container (body side) by the absorbing liquid spraying device 51. The sprayed absorbing liquid flows down along the outer surface of the heat transfer wall of the absorption heat recovery heat exchange section 52 or falls down in space. In the process, the absorbing liquid comes into contact with and absorbs the refrigerant vapor passing through the absorbing and radiating section 53, whereby the refrigerant concentration of the absorbing liquid is gradually increased. The absorption heat generated by the absorption of the refrigerant vapor is the absorption liquid (strong solution) flowing inside the absorption heat recovery heat exchange unit 52.
And is used as part of the heat required for the regeneration action.
【0010】吸収熱回収熱交換部52の領域を通過した
吸収液は、吸収熱放熱部53の伝熱壁の外表面を伝って
流れ落ち、あるいは空間を落下する。その過程で、吸収
液は吸収容器内に導入された冷媒蒸気と接触してこれを
吸収し、これにより吸収液の冷媒濃度が更に高められ
る。この時に発生する吸収熱は、吸収熱放熱部53の熱
交換流路内を流れる熱媒体に取り込まれる。吸収熱放熱
部53を通過した吸収液は低温でかつ冷媒濃度の高い吸
収液(強溶液)となって吸収ユニット容器50の底部に
溜る。The absorbing liquid that has passed through the area of the absorption heat recovery heat exchange section 52 flows down the outer surface of the heat transfer wall of the absorption heat radiation section 53 or falls down in the space. In the process, the absorbing liquid comes into contact with and absorbs the refrigerant vapor introduced into the absorption container, thereby further increasing the refrigerant concentration of the absorbing liquid. The absorbed heat generated at this time is taken into the heat medium flowing in the heat exchange channel of the absorbed heat radiating section 53. The absorption liquid that has passed through the absorption heat radiation section 53 becomes an absorption liquid (strong solution) having a low temperature and a high refrigerant concentration, and accumulates at the bottom of the absorption unit container 50.
【0011】吸収ユニット容器50の底部に溜った吸収
液(強溶液)は、溶液循環ポンプ37によって昇圧さ
れ、分縮器42の熱交換流路内に導入されて昇温された
後、上述した吸収熱回収熱交換部52の下部入口から吸
収熱回収熱交換部52の熱交換流路に導入される。熱交
換流路に導入された吸収液(強溶液)は上部に向かって
流れ、上部出口に近づくにつれて上述した吸収熱により
加熱されて昇温し、飽和温度に達すると沸騰を開始し、
さらに温度を上げながら冷媒濃度を低下させていく。The absorption liquid (strong solution) accumulated at the bottom of the absorption unit container 50 is pressurized by the solution circulation pump 37, introduced into the heat exchange flow path of the decomposer 42 and heated, and then described above. The heat is introduced into the heat exchange channel of the absorption heat recovery heat exchange section 52 from the lower entrance of the absorption heat recovery heat exchange section 52. The absorbing liquid (strong solution) introduced into the heat exchange flow path flows toward the upper part, and is heated by the above-mentioned absorption heat to approach the upper outlet and rises in temperature, and starts boiling when reaching the saturation temperature,
Further, the refrigerant concentration is decreased while increasing the temperature.
【0012】吸収熱回収熱交換部52において沸騰によ
り気液二相流となった吸収液は、吸収熱回収熱交換部5
2の上部出口から再生器ユニット31の精留器41に送
られる。精留器41に導入された二相流の吸収液は、蒸
気(アンモニア蒸気と水蒸気の混合体)と吸収液に分離
される。蒸気は精留器41の濃縮段41bを上昇する過
程で冷媒濃度を高め、分縮器42において低温の吸収液
(強溶液)との熱交換を行って更に水分が凝縮除去され
て冷媒蒸気の純度が高められたのち、凝縮器32に供給
される。再生器ユニット31の最上部においては、分縮
器42により一部の冷媒蒸気が凝縮されて精留器41に
流下し、そこで上昇してくる蒸気と接触し蒸気の冷媒純
度を高めるという働きをする。In the absorption heat recovery heat exchange section 52, the absorbing liquid which has become a gas-liquid two-phase flow by boiling is absorbed by the absorption heat recovery heat exchange section 5.
2 is sent to the rectifier 41 of the regenerator unit 31 from the upper outlet. The two-phase flow absorbing liquid introduced into the rectifier 41 is separated into vapor (a mixture of ammonia vapor and water vapor) and the absorbing liquid. The vapor increases the refrigerant concentration in the process of ascending the concentration stage 41b of the rectifier 41, and performs heat exchange with the low-temperature absorbent (strong solution) in the decomposer 42 to further condense and remove moisture, thereby removing the refrigerant vapor. After the purity is increased, it is supplied to the condenser 32. In the uppermost part of the regenerator unit 31, a part of the refrigerant vapor is condensed by the decomposer 42 and flows down to the rectifier 41, where it contacts the rising vapor to increase the refrigerant purity of the vapor. I do.
【0013】一方、分離された吸収液は、精留器41の
回収段41aを下降する過程で、下方から上昇してくる
蒸気と接触して冷媒濃度が減少し、弱溶液熱交換器40
の外表面、再生入熱器39の外表面を通過すると冷媒濃
度の低い吸収液(弱溶液)となって再生器ユニット容器
38の底部に集まる。再生器ユニット容器38の底部に
集まった吸収液(弱溶液)は、前述したように弱溶液熱
交換器40の内部流路、減圧弁57を経て吸収ユニット
36の頭頂部の吸収液散布装置51に供給される。再生
器ユニット容器38の底部に集まった吸収液(弱溶液)
はまた、再生入熱器39により加熱されて蒸気(アンモ
ニア蒸気と水蒸気の混合体)を発生させ、この蒸気は精
留器41の回収段41aを上昇する過程で流下する吸収
液と接触して冷媒濃度を高める。On the other hand, in the process of moving down the recovery stage 41a of the rectifier 41, the separated absorbent contacts the vapor rising from below, the refrigerant concentration decreases, and the weak solution heat exchanger 40
When passing through the outer surface of the regenerator / heat input device 39 and the outer surface of the regenerative heat input device 39, the liquid becomes an absorbent having a low refrigerant concentration (weak solution) and collects at the bottom of the regenerator unit container 38. The absorbing liquid (weak solution) collected at the bottom of the regenerator unit container 38 passes through the internal flow path of the weak solution heat exchanger 40 and the pressure reducing valve 57 as described above, and the absorbing liquid spraying device 51 at the top of the absorbing unit 36. Supplied to Absorbent liquid (weak solution) collected at the bottom of the regenerator unit container 38
Further, the steam is heated by the regeneration heat input device 39 to generate steam (a mixture of ammonia vapor and steam), and this steam comes into contact with the absorbing liquid flowing down in the process of ascending the recovery stage 41a of the rectifier 41. Increase the refrigerant concentration.
【0014】このようにして吸収工程と再生工程が繰返
し行われ、その過程で蒸発器35または吸収放熱部53
から系外に冷熱または温熱が取り出される。Thus, the absorption step and the regeneration step are repeated, and in the process, the evaporator 35 or the absorption / radiation section 53
From the system, cold or warm heat is taken out of the system.
【0015】効率の高いGAXサイクルでは、上述のよ
うに、吸収熱回収熱交換部52において吸収熱回収熱交
換部52内を流れるアンモニア濃度の高い吸収液を沸騰
させ、熱回収を行っている。この場合、再生器での最高
温度が高く、精留操作に掛かる負荷が大きくなってく
る。In the high-efficiency GAX cycle, as described above, the absorption liquid having a high ammonia concentration flowing in the absorption heat recovery heat exchange section 52 is boiled in the absorption heat recovery heat exchange section 52 to perform heat recovery. In this case, the maximum temperature in the regenerator is high, and the load on the rectification operation increases.
【0016】一般的な精留器の構造としては、図6に示
す棚段構造のものや、ラシヒリング等の充填材を挿入し
たものが用いられる。As a structure of a general rectifier, a structure having a shelf structure shown in FIG. 6 or a structure in which a filler such as a Raschig ring is inserted is used.
【0017】[0017]
【発明が解決しようとする課題】しかしながら、棚段に
おいては吸収液と蒸気の流量の組合せの最適値の範囲が
狭く、容量制御などによって流量が変化した場合に精留
作用が不十分になる等の問題があった。また、それを解
決するために、特開平5−280830号公報記載のも
のでは、棚段に流量調整機能を持たせた構成にしてあ
る。しかしこれらの付加機能は装置を複雑なものしてし
まう。However, the range of the optimum value of the combination of the flow rates of the absorbing liquid and the vapor is narrow in the tray, and the rectification operation becomes insufficient when the flow rate is changed by the capacity control or the like. There was a problem. Further, in order to solve this, in Japanese Patent Application Laid-Open No. Hei 5-280830, the shelf is provided with a flow rate adjusting function. However, these additional functions complicate the device.
【0018】一方、ラシヒリング等の充填材を挿入した
ものは構成が簡単であるため、精留操作にはよく用いら
れるが、これも液流量が少なくなった場合、液の分散が
不十分となり気液の接触が悪くなるという問題を抱えて
いた。On the other hand, the one in which a filler such as a Raschig ring is inserted has a simple structure and is often used for rectification operations. There was a problem that the contact of the liquid became poor.
【0019】本発明の目的は、吸収式ヒートポンプの吸
収液流量、蒸気流量がが変化しても、安定した気液の接
触面積を確保して精留効果を維持するにある。An object of the present invention is to secure a stable gas-liquid contact area and maintain the rectification effect even when the flow rate of the absorption liquid and the flow rate of the vapor of the absorption heat pump change.
【0020】[0020]
【課題を解決するための手段】本発明は上記の目的を達
成するために、冷媒と吸収剤とを混合した吸収液から発
生させた蒸気を精留して冷媒成分を濃縮する精留器部を
有する再生器ユニットと、前記濃縮冷媒蒸気を凝縮させ
る凝縮器と、該凝縮器で凝縮させた液冷媒を蒸発させる
蒸発器と、該蒸発器で蒸発した冷媒蒸気を吸収液に吸収
する吸収器ユニットと、を含んで構成された吸収式ヒー
トポンプにおいて、前記精留器を、その気液接触部の液
体流下面として、上下方向に沿って配置された網目面を
有して構成したことを特徴とする。SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a rectifying section for rectifying a vapor generated from an absorbing liquid in which a refrigerant and an absorbent are mixed to concentrate a refrigerant component. , A condenser for condensing the concentrated refrigerant vapor, an evaporator for evaporating the liquid refrigerant condensed in the condenser, and an absorber for absorbing the refrigerant vapor evaporated in the evaporator into an absorbent. And a unit, wherein the rectifier has a mesh surface arranged vertically along a liquid flow lower surface of the gas-liquid contact portion thereof. And
【0021】下方から上昇して来る蒸気と気液接触して
蒸気を精留する液体は、網目面に沿って流下しつつ網目
面の毛細管効果によって網目面全体に広がり、網目面の
両側を気液接触面として精留作用を行う。液体流量が低
下しても毛細管効果によって網目面全体に広がり、網目
面の両側が気液接触面になるので、ひろい気液接触面積
を確保できる。The liquid that rectifies the vapor by gas-liquid contact with the vapor rising from below spreads over the entire mesh surface by the capillary effect of the mesh surface while flowing down along the mesh surface, and the gas flows on both sides of the mesh surface. Performs rectification as a liquid contact surface. Even if the liquid flow rate decreases, it spreads over the entire mesh surface due to the capillary effect, and both sides of the mesh surface become gas-liquid contact surfaces, so that a wide gas-liquid contact area can be secured.
【0022】網目面を構成する材料は、金属だけでな
く、プラスチック、セラミックなどを用いてもよい。ま
た、網目面を、金属、プラスチック、セラミックのうち
のいずれかで構成された網の複数の組合せで形成しても
よい。網目面を金網で形成する場合、平織金網や畳織金
網など比較的目の詰まったものが、毛細管効果を生じや
すい。The material constituting the mesh surface may be not only metal but also plastic, ceramic or the like. Further, the mesh surface may be formed by a combination of a plurality of meshes formed of any of metal, plastic, and ceramic. When the mesh surface is formed by a wire mesh, relatively closed ones, such as a plain woven wire mesh and a tatami woven wire mesh, easily cause a capillary effect.
【0023】網目面は筒状に形成してもよいし、平板状
に形成してもよい。筒状にした場合は、筒の半径を変
え、複数の筒を同心状に配置するのが望ましく、平板状
に形成した場合は、平行に複数枚配置するのがよい。The mesh surface may be formed in a cylindrical shape or a flat plate shape. In the case of a cylindrical shape, it is desirable to change the radius of the tube and to arrange a plurality of tubes concentrically, and in the case of a plate shape, it is preferable to arrange a plurality of tubes in parallel.
【0024】網目面を筒状に形成した場合も平板状に形
成した場合も、網目面の上端を液体を一時貯溜する皿状
の液分配装置底面の開口に挿入固定し、液分配装置に一
時貯溜された液体が該開口を経て網目面に流下するよう
に構成するのがよい。このように構成することで、液分
配装置に一時貯溜された液体が網目面全体に広がりやす
くなる。Regardless of whether the mesh surface is formed in a cylindrical shape or a flat plate shape, the upper end of the mesh surface is inserted and fixed in an opening at the bottom of a dish-shaped liquid distribution device for temporarily storing liquid, and is temporarily fixed to the liquid distribution device. It is preferable that the stored liquid flow down to the mesh surface through the opening. With this configuration, the liquid temporarily stored in the liquid distribution device easily spreads over the entire mesh surface.
【0025】[0025]
【発明の実施の形態】以下、本発明の実施例を図面を参
照して説明する。図1に、本発明を適用した吸収式ヒー
トポンプの構成を示す。図示のヒートポンプが前記図6
に示したヒートポンプと異なるのは、再生器ユニット3
1に内装された精留器41の構成のみであるので、他の
構成については図6と同一の符号を付し、説明を省略す
る。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a configuration of an absorption heat pump to which the present invention is applied. The heat pump shown in FIG.
Is different from the heat pump shown in FIG.
Since only the structure of the rectifier 41 provided in 1 is provided, the other structures are denoted by the same reference numerals as in FIG. 6 and the description thereof is omitted.
【0026】精留器41は、分縮器42の下に配置され
た液分散装置41Dと、吸収ユニット36から吸収液
(強溶液)55が供給される位置に配置された同じく皿
状の液分散装置41Cと、円筒状に形成され液分散装置
41Dの下方に軸線を上下方向にして同心状に配置され
た金網板41Fと、同じく円筒状に形成され液分散装置
41Cの下方に軸線を上下方向にして同心状に配置され
た金網板41Eと、を含んで構成されている。液分散装
置41Dと金網板41Fが濃縮部41bを、液分散装置
41Cと金網板41Eが回収部41aを、それぞれ構成
している。The rectifying device 41 includes a liquid dispersing device 41D disposed below the condensing device 42 and a dish-like liquid disposed at a position where the absorbing liquid (strong solution) 55 is supplied from the absorbing unit 36. A dispersing device 41C, a wire mesh plate 41F formed in a cylindrical shape and disposed concentrically below the liquid dispersing device 41D with the axis up and down, and an axial line formed vertically below the liquid dispersing device 41C also formed in a cylindrical shape. And a wire mesh plate 41E concentrically arranged in the direction. The liquid dispersion device 41D and the wire mesh plate 41F constitute a concentration unit 41b, and the liquid dispersion device 41C and the wire mesh plate 41E constitute a recovery unit 41a.
【0027】金網は図2に示す平織金網を用いてある
が、畳織金網等比較的目の詰まったものであればよい。
これらの金網を複数枚重ね合わせ、圧着または焼結によ
って密着させ金網板とした。これを半径の異なる複数の
円筒に加工した後、所定の長さに切断し、同心状に配置
して液分散装置の下面に結合した。The wire mesh is a plain weave wire mesh shown in FIG. 2, but any wire mesh such as a tatami weave wire mesh may be used as long as it is relatively tight.
A plurality of these wire meshes were overlaid and brought into close contact with each other by crimping or sintering to form a wire mesh plate. This was processed into a plurality of cylinders having different radii, then cut to a predetermined length, arranged concentrically, and joined to the lower surface of the liquid dispersion device.
【0028】図1においては、液分散装置41Dと金網
板41F、液分散装置41Cと金網板41Eが、切り離
された形で示されているが、これは金網板41F、41
Eの形状を判り易くするために、切り離した形で描いた
ものであり、実際は接続されている。液分散装置と金網
板の接続部の状態を図3に示す。金網板の上部には切欠
き加工がされており、その突出部が液分散装置の底面に
形成された溝状の開口に挿入固定されている。また、図
1、3には示されていないが、液分散装置の底面には、
図4に示すように、底面を貫通する複数の短管49が装
着されており、蒸気の上下方向の流路をなしている。In FIG. 1, the liquid dispersing device 41D and the wire mesh plate 41F, and the liquid dispersing device 41C and the wire mesh plate 41E are shown in a separated form.
In order to make the shape of E easy to understand, it is drawn in a separated form, and is actually connected. FIG. 3 shows the state of the connection between the liquid dispersion device and the wire mesh plate. A notch is formed in the upper part of the wire mesh plate, and its protruding portion is inserted and fixed in a groove-shaped opening formed in the bottom surface of the liquid dispersion device. Although not shown in FIGS. 1 and 3, on the bottom surface of the liquid dispersion device,
As shown in FIG. 4, a plurality of short pipes 49 penetrating the bottom face are mounted, and form a vertical flow path for steam.
【0029】上記構成の再生器ユニット31において、
分縮器42の外面で凝縮した液体はそこから滴下して分
縮器42の下方に配置された液分散装置41Dに集ま
る。液分散装置41Dに集まった液体は、液分散装置4
1Dの底面の開口に挿入された金網板41Fに滲みこ
み、金網板41F全体に広がって下降していく。金網板
41Fは金網を数枚重ね合わされ、互いに密着されるこ
とで毛細管効果が顕著になり、吸収液は金網板41Fに
吸い込まれるように浸透していく。蒸気は金網板と金網
板の間、金網板と再生器ユニット容器38内周面の間を
上昇し、金網板41Fを下降している吸収液と接触して
精留作用を受け、アンモニア濃度を高めていく。濃縮部
41bを通過した吸収液は回収部41aの液分散装置4
1Cに集められる。液分散装置41Cに集められた吸収
液は、吸収熱回収熱交換部52を通過し熱回収して温度
が上昇した吸収液(強溶液)と混合される。混合された
吸収液は、同様に、液分散装置41Cから回収部41a
の金網板41Eに浸透し、金網板41Eに沿って下降し
ていく。この下降過程で、下降する吸収液は再生入熱器
39での加熱により発生する蒸気と接触し、アンモニア
を放出して自身のアンモニア濃度を低下させていく。In the regenerator unit 31 having the above configuration,
The liquid condensed on the outer surface of the condensing device 42 drops from there and collects in the liquid dispersion device 41D disposed below the condensing device 42. The liquid collected in the liquid dispersion device 41D is supplied to the liquid dispersion device 4D.
It seeps into the wire mesh plate 41F inserted into the opening on the bottom surface of the 1D, spreads over the wire mesh plate 41F, and descends. The wire mesh plate 41F is formed by laminating several wire meshes, and the capillarity effect becomes remarkable when they are brought into close contact with each other, so that the absorbing liquid permeates so as to be sucked into the wire mesh plate 41F. The vapor rises between the wire mesh plate and the wire mesh plate and between the wire mesh plate and the inner peripheral surface of the regenerator unit container 38, and comes into contact with the absorbing liquid descending the wire mesh plate 41F to be subjected to rectification to increase the ammonia concentration. Go. The absorbent passed through the concentrating unit 41b is supplied to the liquid dispersing device 4 of the collecting unit 41a.
Collected in 1C. The absorption liquid collected in the liquid dispersion device 41C passes through the absorption heat recovery heat exchange unit 52, and is mixed with the absorption liquid (strong solution) whose temperature has been raised by heat recovery. Similarly, the mixed absorbing liquid is supplied from the liquid dispersion device 41C to the collecting section 41a.
And descends along the wire mesh plate 41E. In this descending process, the descending absorbing liquid comes into contact with steam generated by heating in the regenerative heat input device 39, releases ammonia, and lowers its own ammonia concentration.
【0030】上述のように、精留器の吸収液流路(流下
面)に金網板を使うので、吸収液は毛細管効果により金
網板に浸透して広がりながら下降するから、金網板の両
面とも吸収液で濡れた状態となり、吸収液の流量が少な
くなっても、気液の接触面積を流量の減少の割合に比べ
大きい値に維持できる。したがって、流下する吸収液の
流量、上昇する蒸気の量が変化しても、一定の気液接触
面積を維持できる流量範囲が広くなり、安定した精留効
果が得られる。As described above, since the wire mesh plate is used for the absorption liquid flow path (the lower surface of the flow) of the rectifier, the absorption liquid penetrates the wire mesh plate and spreads down by the capillary effect, and descends. Even when the state becomes wet with the absorbing liquid and the flow rate of the absorbing liquid decreases, the gas-liquid contact area can be maintained at a value larger than the rate of decrease in the flow rate. Therefore, even if the flow rate of the absorbing liquid flowing down and the amount of steam rising change, the flow rate range in which a constant gas-liquid contact area can be maintained is widened, and a stable rectification effect can be obtained.
【0031】なお、上記実施例では金網板は円筒状とし
たが、円筒状でなくて平板状にして複数枚を平行に吊り
下げるように設置してもよく、また、金網板間の間隔
(ピッチ)も吸収液、蒸気の計画流量に応じて自由に設
定してよい。Although the wire mesh plate is cylindrical in the above embodiment, the wire mesh plate may be formed in a flat plate shape instead of a cylindrical shape so that a plurality of the metal wire plates are suspended in parallel. The pitch) may also be set freely according to the planned flow rates of the absorbing liquid and steam.
【0032】また、金網の代わりにプラスチック、セラ
ミックなどを用いて、毛細管効果を発揮する網目を形成
したもので網目面を構成してもよいし、それら異なる材
料で形成された網を組み合わせて吸収液の流下面を構成
してもよい。The mesh surface may be formed by forming a mesh exhibiting a capillary effect by using a plastic, ceramic, or the like instead of the wire mesh, or a combination of nets formed of these different materials may be used. The flow lower surface of the liquid may be configured.
【0033】[0033]
【発明の効果】本発明によれば、精留器で流下しつつ気
液接触して精留作用を行う吸収液の流下面を毛細管効果
を有する網目面で構成したので、吸収液の流量変動があ
っても気液接触面積の変動をすくなくすることができ、
精留作用を安定に維持することができる。According to the present invention, since the lower surface of the absorbing liquid which performs the rectifying action by gas-liquid contact while flowing down in the rectifier is constituted by a mesh surface having a capillary effect, the flow rate fluctuation of the absorbing liquid Even if there is, fluctuation of the gas-liquid contact area can be reduced,
The rectification action can be maintained stably.
【図1】本発明の実施例の全体構成を示す系統図であ
る。FIG. 1 is a system diagram showing an overall configuration of an embodiment of the present invention.
【図2】図1に示す実施例の部分の詳細を示す平面図で
ある。FIG. 2 is a plan view showing details of a portion of the embodiment shown in FIG. 1;
【図3】図1に示す実施例の部分の詳細を示す斜視図で
ある。FIG. 3 is a perspective view showing details of a part of the embodiment shown in FIG. 1;
【図4】図1に示す実施例の部分の詳細を示す平面図で
ある。FIG. 4 is a plan view showing details of a part of the embodiment shown in FIG. 1;
【図5】従来技術の例を示す斜視図である。FIG. 5 is a perspective view showing an example of the related art.
【図6】従来技術の例を示す系統図である。FIG. 6 is a system diagram showing an example of the related art.
31 再生器ユニット 32 凝縮器 33 冷媒熱交換器 34 膨張弁 35 蒸発器 36 吸収ユ
ニット 37 溶液循環ポンプ 38 再生器
ユニット容器 39 再生入熱器 40 弱溶液
熱交換器 41 精留器 41a 精留
器の回収段 41b 精留器の濃縮段 41C 回収
段の液分散装置 41D 濃縮段の液分散装置 41E 回収
段の金網板 41F 濃縮段の金網板 42 分縮器 43a 吸収液(強溶液) 44 冷媒蒸
気 45 熱交換器 46 液冷媒 47 冷媒散布装置 48 熱交換
器 49 短管 50 吸収ユ
ニット容器 51 吸収液散布装置 52 吸収熱
回収熱交換部 53 吸収放熱部 55 吸収液
(強溶液) 57 減圧弁31 Regenerator unit 32 Condenser 33 Refrigerant heat exchanger 34 Expansion valve 35 Evaporator 36 Absorption unit 37 Solution circulation pump 38 Regenerator unit container 39 Regeneration heat input device 40 Weak solution heat exchanger 41 Rectifier 41a Rectifier Recovery stage 41b Concentration stage of rectifier 41C Liquid dispersion device of recovery stage 41D Liquid dispersion device of concentration stage 41E Wire mesh plate of recovery stage 41F Wire mesh plate of concentration stage 42 Decompressor 43a Absorbent (strong solution) 44 Refrigerant vapor 45 Heat exchanger 46 Liquid refrigerant 47 Refrigerant dispersing device 48 Heat exchanger 49 Short tube 50 Absorbing unit container 51 Absorbing liquid dispersing device 52 Absorbing heat recovery heat exchanging unit 53 Absorbing and radiating unit 55 Absorbing liquid (strong solution) 57 Pressure reducing valve
Claims (9)
生させた吸収液蒸気を精留して冷媒成分を濃縮する精留
器部を有する再生器ユニットと、前記濃縮冷媒蒸気を凝
縮させる凝縮器と、該凝縮器で凝縮させた液冷媒を蒸発
させる蒸発器と、該蒸発器で蒸発した冷媒蒸気を吸収液
に吸収する吸収器ユニットと、を含んで構成された吸収
式ヒートポンプにおいて、前記精留器が、その気液接触
部の液体流下面として、上下方向に沿って配置された網
目面を有してなることを特徴とする吸収式ヒートポン
プ。1. A regenerator unit having a rectifier unit for rectifying a refrigerant component by rectifying an absorbent vapor generated from an absorbent mixture of a refrigerant and an absorbent, and condensing the concentrated refrigerant vapor. A condenser, an evaporator that evaporates the liquid refrigerant condensed in the condenser, and an absorber unit that absorbs the refrigerant vapor evaporated in the evaporator into an absorbent, in an absorption heat pump configured to include: An absorption type heat pump, wherein the rectifier has a mesh surface arranged along a vertical direction as a liquid flow lower surface of the gas-liquid contact portion.
ックのうちのいずれかで構成された網からなることを特
徴とする請求項1に記載の吸収式ヒートポンプ。2. The absorption heat pump according to claim 1, wherein the mesh surface is made of a mesh made of any one of metal, plastic, and ceramic.
ックのうちのいずれかで構成された網の組合せからなる
ことを特徴とする請求項1に記載の吸収式ヒートポン
プ。3. The absorption heat pump according to claim 1, wherein the mesh surface is made of a combination of meshes made of any of metal, plastic, and ceramic.
ックのうちのいずれか二つ以上で構成された網からなる
ことを特徴とする請求項1に記載の吸収式ヒートポン
プ。4. The absorption heat pump according to claim 1, wherein the mesh surface is formed of a mesh made of at least two of metal, plastic, and ceramic.
ックのうちのいずれか二つ以上で構成された網の組合せ
からなることを特徴とする請求項1に記載の吸収式ヒー
トポンプ。5. The absorption heat pump according to claim 1, wherein the mesh surface is made of a combination of meshes made of any two or more of metal, plastic, and ceramic.
徴とする請求項1乃至5のいずれかに記載の吸収式ヒー
トポンプ。6. The absorption heat pump according to claim 1, wherein the mesh surface is formed in a cylindrical shape.
特徴とする請求項1乃至5のいずれかに記載の吸収式ヒ
ートポンプ。7. The absorption heat pump according to claim 1, wherein the mesh surface is formed in a flat plate shape.
体を一時貯溜する皿状の液分配装置底面の開口に挿入固
定され、液分配装置に一時貯溜された液体が該開口を経
て網目面に流下するように構成されていることを特徴と
する請求項6に記載の吸収式ヒートポンプ。8. An upper end of a cylindrical mesh surface is inserted and fixed in an opening at the bottom of a dish-shaped liquid distribution device for temporarily storing liquid, and the liquid temporarily stored in the liquid distribution device passes through the opening. The absorption heat pump according to claim 6, wherein the heat pump is configured to flow down to a mesh surface.
液体を一時貯溜する皿状の液分配装置底面の開口に挿入
固定され、液分配装置に一時貯溜された液体が該開口を
経て網目面に流下するように構成されていることを特徴
とする請求項7に記載の吸収式ヒートポンプ。9. An upper end of a flat plate-shaped mesh surface is inserted and fixed in an opening at the bottom of a dish-shaped liquid distribution device for temporarily storing liquid, and the liquid temporarily stored in the liquid distribution device passes through the opening. The absorption heat pump according to claim 7, wherein the absorption heat pump is configured to flow down to a mesh surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18765696A JPH1030859A (en) | 1996-07-17 | 1996-07-17 | Absorption type heat pump |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18765696A JPH1030859A (en) | 1996-07-17 | 1996-07-17 | Absorption type heat pump |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1030859A true JPH1030859A (en) | 1998-02-03 |
Family
ID=16209907
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18765696A Pending JPH1030859A (en) | 1996-07-17 | 1996-07-17 | Absorption type heat pump |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1030859A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6357255B1 (en) * | 1998-09-24 | 2002-03-19 | Osaka Gas Co., Ltd. | Regenerator for use in ammonia absorption refrigerator |
CN107726672A (en) * | 2017-10-13 | 2018-02-23 | 中国科学院理化技术研究所 | Premixing continuous variable temperature distillation generator and absorption type circulating system |
-
1996
- 1996-07-17 JP JP18765696A patent/JPH1030859A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6357255B1 (en) * | 1998-09-24 | 2002-03-19 | Osaka Gas Co., Ltd. | Regenerator for use in ammonia absorption refrigerator |
CN107726672A (en) * | 2017-10-13 | 2018-02-23 | 中国科学院理化技术研究所 | Premixing continuous variable temperature distillation generator and absorption type circulating system |
CN107726672B (en) * | 2017-10-13 | 2020-06-12 | 中国科学院理化技术研究所 | Premixing continuous variable temperature distillation generator and absorption type circulating system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20010015077A1 (en) | Liquid desiccant air conditioner | |
EP1286121B1 (en) | Generator for use in an absorption chiller-heater | |
US6820440B2 (en) | Absorption-type air conditioner core structure | |
US6314752B1 (en) | Mass and heat transfer devices and methods of use | |
JP2000179975A (en) | Multistage evaporating and absorption type absorption cold and hot water machine and large temperature difference air conditioning system provided with same | |
JP3353101B2 (en) | Absorption heat pump | |
JPH1030859A (en) | Absorption type heat pump | |
JP2881593B2 (en) | Absorption heat pump | |
KR102198243B1 (en) | Generated and condensed heat exchanging apparatus with multilayer separated heat changing method for absorption chiller with improved arrangement of heat transfer tube | |
JPH0571827A (en) | Absorption freezer | |
CN108375238B (en) | Absorption refrigerator | |
KR101028820B1 (en) | Generator of absorption heat pump | |
JP2018124049A (en) | Absorption refrigerating machine | |
JPH09280692A (en) | Plate type evaporating and absorbing device for absorption refrigerating machine | |
JPH06241612A (en) | Absorption type chiller | |
JP3277349B2 (en) | Evaporation absorber for absorption refrigerator | |
KR0147749B1 (en) | Regenerator for absorptive airconditioner | |
KR0171283B1 (en) | Ammonia absorptive type airconditioner | |
KR100286833B1 (en) | Heat exchanger for regenerator of cool/heating system | |
KR0143852B1 (en) | Evaporator for absorptive airconditioner | |
KR20100026201A (en) | Rectifier for absorption chiller | |
JP2004211978A (en) | Regenerator of absorption refrigerating machine, and absorption refrigerating machine | |
KR0138193B1 (en) | Evaporating / heat conduction apparatus of absorptive airconditioner | |
KR100314470B1 (en) | Rectifier of Absorption Heat Pump Using Ammonia | |
KR100314471B1 (en) | Generator of absorption heat pump using ammonia |