JPH10303475A - Piezoelectric element - Google Patents

Piezoelectric element

Info

Publication number
JPH10303475A
JPH10303475A JP9106233A JP10623397A JPH10303475A JP H10303475 A JPH10303475 A JP H10303475A JP 9106233 A JP9106233 A JP 9106233A JP 10623397 A JP10623397 A JP 10623397A JP H10303475 A JPH10303475 A JP H10303475A
Authority
JP
Japan
Prior art keywords
piezoelectric
piezoelectric element
conductive layer
strain
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9106233A
Other languages
Japanese (ja)
Inventor
Hiroaki Makino
浩明 牧野
Takao Tani
孝夫 谷
Nobuo Kamiya
信雄 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP9106233A priority Critical patent/JPH10303475A/en
Priority to US08/961,147 priority patent/US5935485A/en
Publication of JPH10303475A publication Critical patent/JPH10303475A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture a piezoelectric element which relaxes the microscopic internal strain that the sintered piezoelectric material has. SOLUTION: This is a piezoelectric element consisting of a piezoelectric substance which includes a pair of external electrodes and piezoelectric material and conductive material arranged between the external electrodes, and the piezoelectric material and the conductive material are laminar as a piezoelectric layer and a conductive layer, respectively, and the piezoelectric layers and the conductive layers are stacked alternately in the direction of connecting the external electrodes in a pair with each other, and besides the conductive layer is insulated from the internal electrode, and also, the thickness is 1 μor under, and this piezoelectric element relaxes the internal strain, and a large quantity of strain can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、焼結圧電材料内の
微視的な内部ひずみを緩和した圧電素子に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piezoelectric element in which microscopic internal strain in a sintered piezoelectric material is alleviated.

【0002】[0002]

【従来の技術】近年、電磁駆動部品に変わる小型で効率
のよいアクチュエータとして圧電素子が注目されてい
る。圧電素子はジルコン酸チタン酸鉛(PZT)等の材
料に代表される強誘電体に高電界を加え分極した素子で
ある。この素子に分極と同じ方向に電界を加えると電界
に比例してひずみ、分極と逆方向に電界を加えると逆向
きにひずむ。この電界の印加によるひずみを取り出して
アクチュエータとして利用することができる。このアク
チュエータに利用するために、高ひずみ性能を有する圧
電材料の開発が望まれている。このためにPZT系圧電
材料では、特性改善のため例えばドナー元素の添加、リ
ラクサとの複合化等の組成改良が進められてきた。
2. Description of the Related Art In recent years, piezoelectric elements have attracted attention as small and efficient actuators replacing electromagnetically driven components. A piezoelectric element is an element obtained by applying a high electric field to a ferroelectric substance typified by a material such as lead zirconate titanate (PZT) and polarizing the ferroelectric substance. When an electric field is applied to the element in the same direction as the polarization, the element is distorted in proportion to the electric field, and when an electric field is applied in the direction opposite to the polarization, the element is distorted in the opposite direction. The strain caused by the application of the electric field can be taken out and used as an actuator. For use in this actuator, development of a piezoelectric material having high strain performance is desired. For this reason, in the PZT-based piezoelectric material, composition improvement such as addition of a donor element and combination with a relaxer has been promoted to improve characteristics.

【0003】また一方で、圧電材料の組成の改良だけで
なく、高ひずみ性能を有する圧電素子とするため多数の
圧電板を層状に積み重ねて構成した積層型圧電素子が提
案されてもいる。積層型圧電素子は、圧電材料層と電極
層とが交互に積層され、前記電極層間に電圧が印加され
ることによる前記圧電材料層のひずみを圧電材料層の積
層枚数分加算して取り出す。このような圧電材料と電極
とが交互に積層された積層型圧電素子としては一体焼成
型圧電素子が知られている。この一体焼成型圧電素子
は、一層の圧電材料の厚さを数10μmと薄くできるの
で、実際の素子の駆動電圧を数10Vと低くできる利点
を有している。
On the other hand, there has been proposed a laminated piezoelectric element in which a large number of piezoelectric plates are stacked in layers in order not only to improve the composition of the piezoelectric material but also to provide a piezoelectric element having high strain performance. In the laminated piezoelectric element, a piezoelectric material layer and an electrode layer are alternately laminated, and the strain of the piezoelectric material layer due to the application of a voltage between the electrode layers is added and taken out by the number of the laminated piezoelectric material layers. As a laminated piezoelectric element in which piezoelectric materials and electrodes are alternately laminated, an integrally fired piezoelectric element is known. This integrally fired piezoelectric element has an advantage that the driving voltage of the actual element can be reduced to several tens of volts because the thickness of one layer of piezoelectric material can be reduced to several tens of μm.

【0004】[0004]

【発明が解決しようとする課題】一般に焼結圧電材料に
は微視的な内部ひずみが存在し、これが圧電材料が本質
的に有する特性の発現を阻害している。この内部ひずみ
を緩和するために、本発明者らが先に出願した特願平8
−290762号では、金属粒子を圧電材料中に分散さ
せている。この金属粒子を圧電材料中に分散させた圧電
材料は、金属粒子を分散させていない圧電材料よりも高
い電界誘起ひずみ性能を示した。しかしながら、分散さ
れた金属粒子は圧電材料の粒界のみに点在しているの
で、微視的内部ひずみの緩和効果は小さかった。また、
金属粒子の分散量を増加させて緩和効果を高くしようと
すると、金属粒子同士の間隔が狭くなり絶縁破壊が起こ
るので、分散量にも限度があり、緩和効果にも限界があ
った。
Generally, a sintered piezoelectric material has microscopic internal strain, which hinders the manifestation of characteristics inherent to the piezoelectric material. In order to alleviate this internal strain, Japanese Patent Application No. Hei 8
In -290762, metal particles are dispersed in a piezoelectric material. The piezoelectric material in which the metal particles were dispersed in the piezoelectric material exhibited higher electric-field-induced strain performance than the piezoelectric material in which the metal particles were not dispersed. However, since the dispersed metal particles are scattered only at the grain boundaries of the piezoelectric material, the effect of relaxing the microscopic internal strain was small. Also,
If an attempt is made to increase the relaxation effect by increasing the dispersion amount of the metal particles, the spacing between the metal particles becomes narrower and dielectric breakdown occurs, so that the dispersion amount is limited and the relaxation effect is also limited.

【0005】また、圧電材料と電極とが交互に積層され
た一体焼成圧電素子は、電極層が内部に存在するので微
視的な内部ひずみを緩和できる。しかし、この内部電極
層は1〜5μmと厚くまた数μmオーダの凹凸を有す
る。さらに内部電極層が柔らかいと、特に圧縮応力下で
は圧電材料が発生する電界誘起ひずみを吸収してしま
い、本来のひずみを発現できないでいた。また、内部電
極層に凹凸が存在すると、圧電材料が伸張したときにこ
のひずみを吸収してしまい、やはり本来の性能を発生し
ていなかった。
In addition, in an integrally fired piezoelectric element in which piezoelectric materials and electrodes are alternately laminated, microscopic internal strain can be reduced because the electrode layer is present inside. However, this internal electrode layer is as thick as 1 to 5 μm and has irregularities on the order of several μm. Furthermore, if the internal electrode layer is soft, the electric field induced strain generated by the piezoelectric material is absorbed particularly under a compressive stress, and the original strain cannot be exhibited. In addition, when the internal electrode layer has irregularities, the distortion is absorbed when the piezoelectric material is expanded, and the original performance has not been generated.

【0006】[0006]

【課題を解決するための手段】本発明は、上記実情に鑑
みてなされたものであり、圧電材料の微視的な内部ひず
みが緩和された高いひずみ性能を有する圧電素子を提供
することを目的とする。すなわち、本発明の圧電素子は
一対の外部電極と該外部電極間に配置され圧電材料と導
電材料とを含む圧電体とからなる圧電素子であって、該
圧電材料および該導電材料はそれぞれ圧電層および導電
層として層状であり、該圧電層および該導電層は一対の
該外部電極を結ぶ方向に交互に積層され/かつ該導電層
は該外部電極とは絶縁されるとともにその厚さは1μm
以下であることを特徴とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to provide a piezoelectric element having high strain performance in which microscopic internal strain of a piezoelectric material is alleviated. And That is, the piezoelectric element of the present invention is a piezoelectric element including a pair of external electrodes and a piezoelectric body disposed between the external electrodes and including a piezoelectric material and a conductive material, wherein the piezoelectric material and the conductive material are each a piezoelectric layer. And a layer as a conductive layer, wherein the piezoelectric layer and the conductive layer are alternately laminated in a direction connecting the pair of external electrodes / and the conductive layer is insulated from the external electrode and has a thickness of 1 μm.
It is characterized by the following.

【0007】[0007]

【発明の実施の形態】本発明の圧電素子は内部の圧電材
料内に導電層を有し、導電層は圧電素子に電圧を印加す
るために形成された外部電極と平行して形成され、外部
電極とは絶縁されているものである。また、導電層の厚
さは薄く、1μm以下である。導電層の厚さが1μm以
上では、導電層が電界誘起ひずみを吸収し、圧電素子の
変位性能が低下する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A piezoelectric element according to the present invention has a conductive layer in an internal piezoelectric material, and the conductive layer is formed in parallel with an external electrode formed for applying a voltage to the piezoelectric element. The electrodes are insulated. Further, the thickness of the conductive layer is thin and is 1 μm or less. When the thickness of the conductive layer is 1 μm or more, the conductive layer absorbs electric field-induced strain, and the displacement performance of the piezoelectric element is reduced.

【0008】圧電材料内部の導電層は、圧電材料の粒界
に発生する電荷の不均一を導電層内に分散させることに
より、微視的な内部ひずみを緩和する。この内部ひずみ
の緩和によって、圧電材料が本来有している電界誘起に
よる変位性能を発現できるようになり、例えば単位駆動
電圧あたりの変位量が向上する。なお、本発明による導
電層は外部より電圧を印加される電極ではない。従っ
て、本発明の圧電素子は従来の積層型圧電素子と異な
る。
[0008] The conductive layer inside the piezoelectric material reduces microscopic internal strain by dispersing nonuniformity of electric charge generated at the grain boundary of the piezoelectric material in the conductive layer. By alleviating the internal strain, the displacement performance due to the electric field induced by the piezoelectric material can be exhibited, and for example, the displacement amount per unit drive voltage is improved. The conductive layer according to the present invention is not an electrode to which a voltage is externally applied. Therefore, the piezoelectric element of the present invention is different from the conventional laminated piezoelectric element.

【0009】[0009]

【実施例】以下、実施例により具体的に説明する。な
お、圧電材料にはPZTを、導電層にはPtを用いた。 (PZTグリーンシートの作成)市販のPZT粉末(富
士チタン(株)、PE510)を5重量部のバインダ
(PVB)と微量の可塑剤および消泡材を添加し、有機
溶媒(トルエン)中に分散させたスラリーを作成した。
このスラリーをドクターブレード法により約50μmの
厚さに成形しグリーンシートを作成した。
The present invention will be specifically described below with reference to examples. Note that PZT was used for the piezoelectric material and Pt was used for the conductive layer. (Preparation of PZT green sheet) Commercially available PZT powder (Fuji Titanium Co., Ltd., PE510) was added to 5 parts by weight of a binder (PVB), trace amounts of a plasticizer and a defoaming material, and dispersed in an organic solvent (toluene) A slurry was prepared.
This slurry was formed into a thickness of about 50 μm by a doctor blade method to form a green sheet.

【0010】(実施例1)グリーンシート上にPtをイ
オンコーターを用いて約0.2μmの厚さで蒸着した。
このPtが蒸着されたグリーンシートを40×40mm
に切断し、これを20層積層し、熱プレスでの一体化に
よりPtの内部導電層を形成した。脱脂後、1200℃
で2時間保持し焼結した後に、切断、加工し15×15
×0.8mmの板状圧電素子を作成した。板状圧電素子
の上面および下面にPtをイオンコーティングして外部
電極とした。さらに100℃のシリコーン油中で3kV
/mmの電界を10分間印加して分極し、圧電素子を作
成した。この素子の内部導電層の厚さは0.2μmであ
り、圧電層の厚さは40μmであった。
Example 1 Pt was deposited on a green sheet to a thickness of about 0.2 μm using an ion coater.
This Pt-deposited green sheet is 40 × 40 mm
This was laminated into 20 layers, and an internal conductive layer of Pt was formed by integration by hot pressing. After degreasing, 1200 ° C
After sintering for 2 hours, cut and processed to 15 × 15
A 0.8 mm plate-like piezoelectric element was prepared. The upper and lower surfaces of the plate-like piezoelectric element were ion-coated with Pt to form external electrodes. 3kV in 100 ° C silicone oil
/ Mm electric field was applied for 10 minutes to polarize, thereby producing a piezoelectric element. The thickness of the internal conductive layer of this device was 0.2 μm, and the thickness of the piezoelectric layer was 40 μm.

【0011】(実施例2)グリーンシート上にスクリー
ン印刷により内部導電層となるPtペーストを印刷し
た。ただし、Ptペースト中のPt粒子の平均粒径は
0.2μmであり、印刷厚さが約0.5μmとなるよう
にペースト粘度を調製した。後は実施例1と同様に40
×40mmに切断、20層に積層、熱プレスにより一体
化してPdの内部導電層を形成した。脱脂後、1200
℃で2時間保持し焼結した後に、切断、加工し15×1
5×0.8mmの板状圧電素子を作成した。板状圧電素
子の上面および下面にPtをイオンコーティングして外
部電極とした。さらに100℃のシリコーン油中で3k
V/mmの電界を10分間印加して分極し、圧電素子を
作成した。この素子の内部導電層の厚さは0.5μmで
あり、圧電層の厚さは40μmであった。
(Example 2) A Pt paste to be an internal conductive layer was printed on a green sheet by screen printing. However, the average viscosity of the Pt particles in the Pt paste was 0.2 μm, and the paste viscosity was adjusted so that the print thickness was about 0.5 μm. After that, as in the case of the first embodiment, 40
It was cut into a size of × 40 mm, laminated into 20 layers, and integrated by hot pressing to form an internal conductive layer of Pd. After degreasing, 1200
After holding for 2 hours at ℃ and sintering, cut and processed to 15 × 1
A 5 × 0.8 mm plate-like piezoelectric element was prepared. The upper and lower surfaces of the plate-like piezoelectric element were ion-coated with Pt to form external electrodes. 3k in 100 ℃ silicone oil
An electric field of V / mm was applied for 10 minutes to polarize, thereby producing a piezoelectric element. The thickness of the internal conductive layer of this device was 0.5 μm, and the thickness of the piezoelectric layer was 40 μm.

【0012】(比較例1)グリーンシート上にスクリー
ン印刷により内部導電層となるPtペーストを印刷し
た。この時のPtペースト中のPt粒子は粒径が粗く、
その平均粒径は1μmである。また、印刷厚さが3μm
となるようにPtペースト粘度を調製した。後は実施例
1と同様に40×40mmに切断、20層に積層、熱プ
レスにより一体化してPtの内部導電層を形成した。脱
脂後、1200℃で2時間保持し焼結した後に、切断、
加工し15×15×0.8mmの板状圧電素子を作成し
た。板状圧電素子の上面および下面にPtをイオンコー
ティングして外部電極とした。さらに100℃のシリコ
ーン油中で3kV/mmの電界を10分間印加して分極
し、圧電素子を作成した。この素子の内部導電層の厚さ
は3μmであり、圧電層の厚さは40μmであった。
Comparative Example 1 A Pt paste to be an internal conductive layer was printed on a green sheet by screen printing. The Pt particles in the Pt paste at this time have a coarse particle size,
Its average particle size is 1 μm. The printing thickness is 3μm
The viscosity of the Pt paste was adjusted to be as follows. After that, as in Example 1, it was cut into 40 × 40 mm, laminated into 20 layers, and integrated by hot pressing to form an internal conductive layer of Pt. After degreasing, holding at 1200 ° C for 2 hours and sintering, cutting,
This was processed to form a 15 × 15 × 0.8 mm plate-shaped piezoelectric element. The upper and lower surfaces of the plate-like piezoelectric element were ion-coated with Pt to form external electrodes. Furthermore, an electric field of 3 kV / mm was applied in silicone oil at 100 ° C. for 10 minutes to polarize, thereby producing a piezoelectric element. The thickness of the internal conductive layer of this device was 3 μm, and the thickness of the piezoelectric layer was 40 μm.

【0013】(比較例2)内部に導電層が存在しない素
子であり、グリーンシートを40×40mmに切断した
後、これを20層積層し、熱プレスにより一体化した後
に、脱脂し、1200℃で2時間保持し焼結した後に、
切断、加工し15×15×0.8mmの板状圧電素子を
作成した。板状圧電素子の上面および下面にPtをイオ
ンコーティングして外部電極とした。さらに100℃の
シリコーン油中で3kV/mmの電界を10分間印加し
て分極し、圧電素子を作成した。
(Comparative Example 2) This is an element having no conductive layer inside, and after cutting a green sheet into 40 × 40 mm, 20 layers are laminated, integrated by hot pressing, degreased, and 1200 ° C. After sintering for 2 hours,
By cutting and processing, a plate-shaped piezoelectric element of 15 × 15 × 0.8 mm was prepared. The upper and lower surfaces of the plate-like piezoelectric element were ion-coated with Pt to form external electrodes. Furthermore, an electric field of 3 kV / mm was applied in silicone oil at 100 ° C. for 10 minutes to polarize, thereby producing a piezoelectric element.

【0014】(試料の評価)作成した圧電素子の変位性
能を微小変位測定装置により、常温、大気中で、圧縮応
力20MPaとし、周波数0.1Hz、0〜1kVの電
圧を印加して測定した。この測定結果を図1に示す。本
発明の実施例と比較例1を比較すると、比較例のひずみ
量は実施例と比べて低い。これは導電層の厚さが3μm
と厚く、内部ひずみだけでなく必要とするひずみをも導
電層が吸収し、ひずみ量が低下するためである。
(Evaluation of Sample) The displacement performance of the prepared piezoelectric element was measured by a micro-displacement measuring apparatus at room temperature and in the air at a compressive stress of 20 MPa, applying a voltage of 0.1 Hz and a voltage of 0 to 1 kV. FIG. 1 shows the measurement results. When the example of the present invention is compared with the comparative example 1, the strain amount of the comparative example is lower than that of the example. This means that the thickness of the conductive layer is 3 μm
This is because the conductive layer absorbs not only internal strain but also required strain, and the amount of strain is reduced.

【0015】比較例2は、導電材が存在しない圧電素子
の例である。導電材が存在しないため内部ひずみの緩和
がなく、大きなひずみ量が得られない。しかし、比較例
1の厚い導電層を有するものよりは大きなひずみ量が得
られる。
Comparative Example 2 is an example of a piezoelectric element having no conductive material. Since there is no conductive material, internal strain is not relaxed, and a large strain cannot be obtained. However, a larger amount of strain is obtained than that of Comparative Example 1 having a thick conductive layer.

【0016】[0016]

【発明の作用効果】導電材料を圧電材料中に分散させる
と圧電材料の内部ひずみを緩和して大きなひずみ量を発
現できる。
When the conductive material is dispersed in the piezoelectric material, the internal strain of the piezoelectric material is relaxed and a large amount of strain can be exhibited.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本図は、実施例および比較例の各試料のひず
み量を示す図である。
FIG. 1 is a diagram showing the amount of strain of each sample of an example and a comparative example.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一対の外部電極と該外部電極間に配置さ
れ圧電材料と導電材料とを含む圧電体とからなる圧電素
子であって、 該圧電材料および該導電材料はそれぞれ圧電層および導
電層として層状であり、該圧電層および該導電層は一対
の該外部電極を結ぶ方向に交互に積層され、かつ該導電
層は該外部電極と絶縁されていることを特徴とする圧電
素子。
1. A piezoelectric element comprising a pair of external electrodes and a piezoelectric body disposed between the external electrodes and including a piezoelectric material and a conductive material, wherein the piezoelectric material and the conductive material are a piezoelectric layer and a conductive layer, respectively. A piezoelectric element, wherein the piezoelectric layer and the conductive layer are alternately stacked in a direction connecting the pair of external electrodes, and the conductive layer is insulated from the external electrode.
【請求項2】 前記導電層の厚さは1μm以下であるこ
とを特徴とする請求項1記載の圧電素子。
2. The piezoelectric element according to claim 1, wherein the thickness of the conductive layer is 1 μm or less.
JP9106233A 1996-10-31 1997-04-23 Piezoelectric element Pending JPH10303475A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP9106233A JPH10303475A (en) 1997-04-23 1997-04-23 Piezoelectric element
US08/961,147 US5935485A (en) 1996-10-31 1997-10-30 Piezoelectric material and piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9106233A JPH10303475A (en) 1997-04-23 1997-04-23 Piezoelectric element

Publications (1)

Publication Number Publication Date
JPH10303475A true JPH10303475A (en) 1998-11-13

Family

ID=14428414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9106233A Pending JPH10303475A (en) 1996-10-31 1997-04-23 Piezoelectric element

Country Status (1)

Country Link
JP (1) JPH10303475A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107123731A (en) * 2017-04-25 2017-09-01 成都新柯力化工科技有限公司 A kind of piezoelectric ceramic piece and preparation method by collecting noise generating

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107123731A (en) * 2017-04-25 2017-09-01 成都新柯力化工科技有限公司 A kind of piezoelectric ceramic piece and preparation method by collecting noise generating
CN107123731B (en) * 2017-04-25 2019-06-07 成都新柯力化工科技有限公司 A kind of piezoelectric ceramic piece and preparation method by collecting noise power generation

Similar Documents

Publication Publication Date Title
CN1246914C (en) Piezoelectric component
JP4039029B2 (en) Piezoelectric ceramics, piezoelectric element, and multilayer piezoelectric element
KR101694579B1 (en) Polymer composite piezoelectric body and method for producing same
JPH0412678A (en) Piezoelectric/electrostriction actuator
US4894580A (en) Chip-type resonator and method of manufacturing the same
JP2986706B2 (en) Piezoelectric element and piezoelectric actuator using the same
JP2000082852A (en) Multilayered piezoelectric actuator and manufacture thereof
JP2003258328A (en) Stacked piezoelectric actuator
JP2004146774A (en) Laminated piezoelectric element, actuator, and printing head
Bowen et al. Piezoelectric properties of internally electroded PZT multilayers
Yao et al. Improved preparation procedure and properties for a multilayer piezoelectric thick-film actuator
JP2951129B2 (en) Multilayer piezoelectric actuator and method of manufacturing the same
JP2000077733A (en) Laminated piezoelectric element
JPH10303475A (en) Piezoelectric element
JPH053349A (en) Laminated piezo-electric actuator and its manufacture
JPH11186625A (en) Piezoelectric element
JP2003008092A (en) Laminated piezoelectric element and its manufacturing method as well as sealing material for laminated piezoelectric element
JP2003309298A (en) Piezoelectric/electrostrictive element and its manufacturing method
JPH06181343A (en) Laminated displacement element and manufacture thereof
JP3178615B2 (en) Conductive electrode material
JP2826078B2 (en) Piezoelectric / electrostrictive film type actuator
JPH08195512A (en) Structure of electrode of piezoelectric ceramic element
JPH0891928A (en) Piezoelectric ceramic and its production
JPH0673387B2 (en) Piezoelectric displacement element
WO2024070626A1 (en) Lead-free piezoelectric composition, and piezoelectric element