JPH0891928A - Piezoelectric ceramic and its production - Google Patents

Piezoelectric ceramic and its production

Info

Publication number
JPH0891928A
JPH0891928A JP6235145A JP23514594A JPH0891928A JP H0891928 A JPH0891928 A JP H0891928A JP 6235145 A JP6235145 A JP 6235145A JP 23514594 A JP23514594 A JP 23514594A JP H0891928 A JPH0891928 A JP H0891928A
Authority
JP
Japan
Prior art keywords
piezoelectric
solid solution
solution composition
component solid
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6235145A
Other languages
Japanese (ja)
Other versions
JP2570629B2 (en
Inventor
Katsuhiro Yoshida
勝洋 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP6235145A priority Critical patent/JP2570629B2/en
Publication of JPH0891928A publication Critical patent/JPH0891928A/en
Application granted granted Critical
Publication of JP2570629B2 publication Critical patent/JP2570629B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE: To obtain a piezoelectric ceramic capable of improving lowering of insulation resistance in high temperature region while keeping good piezoelectric characteristic of three-component composition by replacing a part of PbTiO3 of Pb(Ni1/3 Nb2/3 )O3 (hereinafter referred to as PNN)-PbTiO3 (as PT)-PbZrO3 (as PZ)-based three-component solid solution composition with MnZrO3 . CONSTITUTION: This method is to obtain preferable piezoelectric ceramics using a laminate piezoelectric actuator capable of improving deterioration of insulation resistance under high temperature circumference (e.g. 120150 deg.C) without impairing good vertical effect piezoelectric stain characteristics of PNN-PT-PZ-based three-component solid solution composition and usable even at high temperature. These piezoelectric ceramics are produced by using, e.g. PbO, NiO, Nb2 O5 , TiO3 , ZrO2 and MnZrO3 , weighing these components so as to afford a prescribed composition ratio, carrying out wet mixing of these components by a ball mill, filtering and drying the resultant slurry, pre-baking the powder and re-powdering the pre-baked material, processing the material into a green sheet, carrying out screen printing of an electrically conductive paste having a prescribed pattern on the green sheet, laminating the sheets (by 22 layers) and baking the laminate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、圧電セラミックス及び
その製造方法に関し、特に、ニッケルニオブ酸鉛(Pb
(Ni1/3 Nb2/3 )O3 )とチタン酸鉛(PbTiO
3 )とジルコン酸鉛(PbZrO3 )とから成る3成分
固溶体組成物を基礎として得られる4成分系の圧電セラ
ミックスであって、例えば積層構造の圧電アクチュエー
タ素子に用いて好適な圧電セラミックス及びその製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to piezoelectric ceramics and a method for manufacturing the same, and more particularly, to lead nickel niobate (Pb).
(Ni 1/3 Nb 2/3 ) O 3 ) and lead titanate (PbTiO 3
3 ) and lead zirconate (PbZrO 3 ), which is a four-component piezoelectric ceramic obtained on the basis of a three-component solid solution composition, which is suitable for use in, for example, a piezoelectric actuator element having a laminated structure, and its production. Regarding the method.

【0002】[0002]

【従来の技術】圧電性を示すセラミックスの電気・機械
エネルギー変換作用を利用した装置には、例えばフィル
ターや圧電磁器トランス或いは超音波モータなどのよう
な、圧電アクチュエータ素子(以下、圧電アクチュエー
タと記す)に交番電界を与えたときの機械的共振に伴な
う変位を利用するものや、圧電式インクジェットプリン
タヘッドや圧電リレーなどのような、印加電界に対して
リジッドに生じる変位をオン・オフ制御して利用する装
置あるいは、LSI製造用露光装置のXーYステージや
マスフローコントローラの弁の開閉装置などのような、
リジッド変位をサーボ駆動して用いる装置など様々な装
置があり、その利用形態も多様である。
2. Description of the Related Art A device utilizing the electric / mechanical energy conversion function of ceramics showing piezoelectricity is, for example, a piezoelectric actuator element (hereinafter referred to as a piezoelectric actuator) such as a filter, a piezoelectric ceramic transformer or an ultrasonic motor. ON / OFF control of displacement that occurs rigidly with respect to the applied electric field, such as those that use displacement due to mechanical resonance when an alternating electric field is applied to, and piezoelectric inkjet printer heads and piezoelectric relays. Such as an XY stage of an exposure apparatus for LSI manufacturing or a valve opening / closing device of a mass flow controller,
There are various devices such as a device that uses a rigid displacement by servo-driving, and there are various usage forms.

【0003】上記の各種装置に用いられる圧電アクチュ
エータは構造の上から、単純型素子と複合型素子とに大
別される。単純型素子は強誘電体の電界誘起歪みをその
まま利用するものであって、単板の圧電セラミックスか
ら成る単板構造素子あるいはそれらを積層した積層構造
素子のように、強誘電体における圧電縦効果を利用する
ものと、単管、分離管あるいはハニカム管のように横効
果を利用するものとに分類される。一方、複合型素子と
は、強誘電体自身の誘起歪みをそのまま利用するのでは
なく、例えばユニモルフ、バイモルフ、切り欠き、尺取
り虫構造などのように他の弾性材料などと組み合せ、変
位量を空間的、時間的に拡大するものである。これら各
種の圧電アクチュエータの中でも積層構造の圧電アクチ
ュエータ(以下、積層圧電アクチュエータと記す)は他
のアクチュエータと比較して、変位発生量は小さいもの
の、発生力が大きい、応答速度が速い、耐久性に
富む、電気・機械エネルギー変換効率が高い、ヒス
テリシスが小さいなどの多くの特長を持つことから用途
が広く、その性能改善のための研究・開発が活発に行わ
れている。本発明は、このような積層圧電アクチュエー
タの材料として好適な圧電セラミックスに拘わるもので
ある。
Piezoelectric actuators used in the above-mentioned various devices are roughly classified into simple type elements and composite type elements because of their structure. The simple type element uses the electric field-induced strain of the ferroelectric material as it is, and the piezoelectric vertical effect in the ferroelectric material is used, such as a single plate structure element made of a single plate of piezoelectric ceramics or a laminated structure element in which they are laminated. Are used, and those using the lateral effect such as a single tube, a separation tube or a honeycomb tube are classified. On the other hand, the composite element does not use the induced strain of the ferroelectric itself as it is, but combines it with other elastic materials such as unimorph, bimorph, notch, worm structure, etc. , It expands in time. Among these various types of piezoelectric actuators, a piezoelectric actuator having a laminated structure (hereinafter, referred to as a laminated piezoelectric actuator) has a smaller displacement generation amount than other actuators, but has a large generated force, a high response speed, and durability. Since it has many features such as richness, high efficiency of electrical / mechanical energy conversion, and small hysteresis, it is widely used and research and development for improving its performance are being actively conducted. The present invention relates to piezoelectric ceramics suitable as a material for such a laminated piezoelectric actuator.

【0004】上述したように、積層圧電アクチュエータ
は他のアクチュエータに比べて発生変位量が比較的小さ
いことから、従来、その発生変位量を大きくすることが
大きな技術課題であって、そのための研究・開発が、構
造面および材料面から進められている。この構造のアク
チュエータが、セラミックコンデンサの実用化過程で培
われた薄膜多層技術を利用しているのは、各層の圧電セ
ラミックスを可能な限り薄膜化して一層当りの印加電界
を増大させることにより、同一駆動電圧に対する発生変
位量を大きくすると共に、電界誘起歪みが比較的大きく
ヒステリシスの小さい圧電縦効果を利用するためであ
る。一方、材料面からも当然、電気・機械エネルギー変
換効率が高く発生歪みの大きなセラミックスが選ばれる
がそれと共に、主成分が同一のセラミックスでも、組成
比を変化させたり微量の添加物を加えるなどして、用途
に適した特性を示すようにすることが試みられる。
As described above, since the laminated piezoelectric actuator has a relatively small amount of displacement generated as compared with other actuators, increasing the amount of displacement generated has been a major technical problem in the past. Development is progressing in terms of structure and materials. The actuator of this structure uses the thin-film multilayer technology cultivated in the practical process of ceramic capacitors because the piezoelectric ceramics of each layer are made as thin as possible to increase the applied electric field per layer. This is because the amount of displacement generated with respect to the drive voltage is increased and the piezoelectric vertical effect, which has a relatively large electric field induced strain and a small hysteresis, is used. On the other hand, from the viewpoint of materials, of course, ceramics with high electrical / mechanical energy conversion efficiency and large strain are selected, but along with this, even for ceramics with the same main component, changing the composition ratio or adding a small amount of additives, etc. Therefore, it is attempted to exhibit properties suitable for the application.

【0005】そのような圧電セラミックスとして、従
来、Pb(Ni1/3 Nb2/3 )O3 ーPbTiO3 ーP
bZrO3 系(以下、Pb(Ni1/3 Nb2/3 )O3
PNNで、PbTiO3 をPTで、PbZrO3 をPZ
で表し、PNNーPTーPZ系と称する)セラミックス
が知られている。この圧電セラミックスは、例えば特開
平2ー71569号公報に記載されているように、電気
・機械エネルギー変換効率が高く積層圧電アクチュエー
タ用のセラミックスとして適しているが、特に、内野研
二編著、JME材料科学シリーズ「セラミストのための
電気物性入門」、第128〜130頁、内田光鶴圃に記
載されているように、菱面体晶強誘電相と正方晶強誘電
相との間のモルフォトロピック相境界近辺の組成比であ
るときに良好な圧電特性を示し、縦効果の圧電定数d33
が大きいことが知られている。
As such a piezoelectric ceramic, Pb (Ni 1/3 Nb 2/3 ) O 3 -PbTiO 3 -P has hitherto been used.
bZrO 3 system (hereinafter, Pb (Ni 1/3 Nb 2/3 ) O 3 is PNN, PbTiO 3 is PT, PbZrO 3 is PZ.
, And is called PNN-PT-PZ system) ceramics are known. This piezoelectric ceramic has a high electric-mechanical energy conversion efficiency and is suitable as a ceramic for a laminated piezoelectric actuator, as described in, for example, Japanese Patent Application Laid-Open No. 2-71569. In particular, Kenji Uchino, JME Material Science. Near the morphotropic phase boundary between rhombohedral and tetragonal ferroelectric phases, as described in the series "Introduction to Electrical Properties for Ceramicists", pages 128-130, Mitsutsuru Uchida. exhibits good piezoelectric properties when a composition ratio, the longitudinal effect piezoelectric constant d 33
Is known to be large.

【0006】上記のPNNーPTーPZ系セラミックス
はNiO、Nb2 5 、PbO、TiO3 およびZrO
2 の5種類の金属酸化物を主原料とし、これら主原料を
配合した後、湿式ボールミルなどで粉砕、混合し、乾燥
後これを仮焼し、更に湿式ボールミルなどで再粉砕する
ことで得られるものであるが、上述したように、上記主
原料に更に微量の元素またはその酸化物などを添加した
り或いは、それら元素やその酸化物で特定主原料の一部
を置換したりすることにより、セラミックスとしての圧
電特性や機械的強度あるいは電気的特性を改良できるこ
とが良く知られている。例えば、特開昭63ー2992
84号公報には、上記5つの主原料に更にFe2 3
添加して得られた、機械的強度の高いPNNーPTーP
Z系セラミックスが開示されている。又、特開平3ー1
90176号公報には、Mn及び周期律表第Va族元素
を添加することにより、圧電フィルタ用に機械的強度を
改善したセラミックスが開示されている。
The above PNN-PT-PZ ceramics are NiO, Nb 2 O 5 , PbO, TiO 3 and ZrO.
It is obtained by using 5 kinds of metal oxides of 2 as main raw materials, mixing these main raw materials, pulverizing and mixing with a wet ball mill etc., drying and calcining this, and further re-pulverizing with a wet ball mill etc. However, as described above, by adding a trace amount of elements or oxides thereof to the main raw material, or by substituting a part of the specific main raw material with those elements or oxides thereof, It is well known that piezoelectric properties, mechanical strength or electrical properties of ceramics can be improved. For example, JP-A-63-2992
No. 84, PNN-PT-P having high mechanical strength obtained by further adding Fe 2 O 3 to the above five main raw materials.
Z-based ceramics are disclosed. Also, Japanese Patent Laid-Open No. 3-1
Japanese Patent No. 90176 discloses a ceramic having improved mechanical strength for a piezoelectric filter by adding Mn and a Group Va element of the periodic table.

【0007】ところで、上述した積層圧電アクチュエー
タは近年、益々その用途が広がり、それに伴って、従来
のような常温、常圧の良好な使用環境のみならず、高
温、高圧あるいは刺激性ガス、腐食性ガス中などのよう
な悪環境下でも用いられるようになってきている。例え
ば、ロボットハンド先端に圧電クランパーを取り付けて
マニピュレータとしたとき、その圧電クランパーの変位
発生源として利用されたアクチュエータは、120〜1
50℃というような高温の作業環境中に置かれることが
ある。ところがこのような高温のもとでは、アクチュー
エータの圧電材料であるPNNーPTーPZ系のセラミ
ックスの絶縁抵抗が著しく劣化する。
By the way, in recent years, the above-mentioned laminated piezoelectric actuator has been more and more widely used, and along with it, not only the conventional use environment of normal temperature and normal pressure but also high temperature, high pressure or irritating gas, corrosiveness. It has come to be used even in a bad environment such as in gas. For example, when a piezoelectric clamper is attached to the tip of the robot hand to form a manipulator, the actuator used as the displacement generation source of the piezoelectric clamper is 120 to 1
It may be placed in a high temperature work environment such as 50 ° C. However, under such a high temperature, the insulation resistance of the PNN-PT-PZ ceramics, which is the piezoelectric material of the actuator, is significantly deteriorated.

【0008】上述のように、積層圧電アクチュエータに
用いられるPNNーPTーPZ系セラミックスには、圧
電定数d33が大きいことのみならず、加えて、高温での
絶縁抵抗劣化が小さいことが要求されるようになってき
ている。このような要求に対する一般的な解答として、
従来、上記の3成分系固溶体にMnを添加すると絶縁特
性が改善されることが知られている。
As described above, the PNN-PT-PZ ceramics used for the laminated piezoelectric actuator are required not only to have a large piezoelectric constant d 33 but also to have a small deterioration of insulation resistance at high temperatures. Is becoming more common. As a general answer to such a request,
It has been conventionally known that the addition of Mn to the above three-component solid solution improves the insulating property.

【0009】[0009]

【発明が解決しようとする課題】上述したように、PN
NーPTーPZ系3成分固溶体組成物、特にその相図上
でモルフォトロピック相境界近辺の組成比のセラミック
スは、縦効果の圧電定数d33が大きく、積層圧電アクチ
ュエータ用の圧電材料として好適である。更に、Mnを
添加すると、120〜150℃というような高温の環境
下での絶縁抵抗の劣化が小さくなるので、Mnの添加
は、積層圧電アクチュエータの使用温度範囲の高温領域
への拡張という観点から、その用途拡大に貢献するもの
であるといえる。
As described above, the PN
N-PT-PZ-based three-component solid solution composition, especially ceramics having a composition ratio near the morphotropic phase boundary in its phase diagram has a large longitudinal effect piezoelectric constant d 33 and is suitable as a piezoelectric material for a laminated piezoelectric actuator. is there. Furthermore, since the deterioration of the insulation resistance under a high temperature environment of 120 to 150 ° C. is reduced when Mn is added, the addition of Mn reduces the operating temperature range of the laminated piezoelectric actuator to a high temperature region. , It can be said to contribute to the expansion of its applications.

【0010】ところが、PNNーPTーPZ系の3成分
固溶体組成物に単純にMnを添加した圧電セラミックス
では、圧電定数d33が低下するという副作用が起る。す
なわち、この観点からは、PNNーPTーPZ系圧電セ
ラミックスへのMnの単純添加は、積層圧電アクチュエ
ータの特性を損いその用途を狭める可能性がある。
However, the piezoelectric ceramic in which Mn is simply added to the PNN-PT-PZ-based three-component solid solution composition has a side effect of decreasing the piezoelectric constant d 33 . That is, from this viewpoint, the simple addition of Mn to the PNN-PT-PZ-based piezoelectric ceramics may impair the characteristics of the laminated piezoelectric actuator and narrow its application.

【0011】従って、本発明は、PNNーPTーPZ系
3成分固溶体組成物の良好な縦効果圧電歪み特性を損う
ことなくその高温環境下での絶抵抗劣化を改善し、高温
でも使用可能な、積層圧電アクチュエータに用いて好適
な圧電セラミックスを提供することを目的とするもので
ある。
[0011] Therefore, the present invention improves the deterioration of the puncture resistance in a high temperature environment without impairing the good longitudinal effect piezoelectric strain characteristics of the PNN-PT-PZ-based three-component solid solution composition, and can be used even at high temperatures. It is another object of the present invention to provide a piezoelectric ceramic suitable for use in a laminated piezoelectric actuator.

【0012】本発明の他の目的は、上記のような高温用
圧電セラミックスの製造方法を提供することである。
Another object of the present invention is to provide a method for manufacturing the above high temperature piezoelectric ceramics.

【0013】[0013]

【課題を解決するための手段】本発明の圧電セラミック
スは、モル分率xのニッケルニオブ酸鉛とモル分率yの
チタン酸鉛とモル分率zのジルコン酸鉛とを主成分とす
る3成分固溶体組成物を{Pb(Ni1/3 Nb2/3 )O
3 x (PbTiO3 y (PbZrO3 z(但し、
x+y+z=1)で表現するとき、前記3成分固溶体組
成物におけるPbTiO3 の一部がモル分率γのMnZ
rO3 で置換された、{Pb(Ni1/3Nb2/3
3 x (PbTiO3 (y- r)(PbZrO3
z (MnZrO3r で表される4成分固溶体組成物か
らなる圧電セラミックスである。
The piezoelectric ceramic of the present invention contains lead nickel niobate with a mole fraction x, lead titanate with a mole fraction y, and lead zirconate with a mole fraction z as main components. Add the component solid solution composition to {Pb (Ni 1/3 Nb 2/3 ) O
3 } x (PbTiO 3 ) y (PbZrO 3 ) z (however,
x + y + z = 1), a part of PbTiO 3 in the three-component solid solution composition has a molar fraction γ of MnZ.
substituted with rO 3 , {Pb (Ni 1/3 Nb 2/3 )
O 3} x (PbTiO 3) (y- r) (PbZrO 3)
z (MnZrO 3) is a piezoelectric ceramic composed of 4 components solid solution composition represented by r.

【0014】上記の圧電セラミックスは、前記4成分固
溶体組成物製造の出発原料としてMnZrO3 を用いる
ことを特徴とする製造方法によって製造される。
The above-mentioned piezoelectric ceramics are manufactured by a manufacturing method characterized by using MnZrO 3 as a starting material for manufacturing the four-component solid solution composition.

【0015】[0015]

【実施例】次に、本発明の好適な実施例について説明す
る。本発明の一実施例として、3成分のモル比が相図上
で菱面体晶強誘電相と正方晶強誘電相との間のモルフォ
トロピック相境界線上にあるPNNーPTーPZ系固溶
体組成物のPTの一部を、MnZrO3 で置換した4成
分系セラミックスを用いて、積層セラミックコンデンサ
型のチップを作成し、そのチップの絶縁抵抗と歪み量の
温度特性から、セラミックスの比抵抗と縦効果圧電定数
33の温度特性を求めた。
Next, preferred embodiments of the present invention will be described. As one embodiment of the present invention, a PNN-PT-PZ solid solution composition in which the molar ratio of the three components is on the morphotropic phase boundary line between the rhombohedral ferroelectric phase and the tetragonal ferroelectric phase on the phase diagram Of PT of PT was replaced with MnZrO 3 to form a multilayer ceramic capacitor type chip, and from the temperature characteristics of the chip's insulation resistance and strain amount, the specific resistance and longitudinal effect of the ceramics were calculated. The temperature characteristic of the piezoelectric constant d 33 was obtained.

【0016】本実施例では出発原料として、PbO,N
iO,Nb2 5 ,TiO3 ,ZrO2 ,MnZrO3
を用い、これらの原料を表1に示した組成比になるよう
に精密秤量した。各原料の純度は全て98%以上であ
る。
In this embodiment, as starting materials, PbO, N
iO, Nb 2 O 5 , TiO 3 , ZrO 2 , MnZrO 3
Using, the raw materials were precisely weighed so that the composition ratios shown in Table 1 were obtained. The purity of each raw material is 98% or more.

【0017】次に、秤量した各原料をボールミルで湿式
粉砕混合し、粉末スラリーを濾過、乾燥した後、予焼
し、更に予焼粉を湿式ポールミルで再粉砕した。予焼条
件は、温度850℃、時間2時間である。
Next, the weighed raw materials were wet pulverized and mixed in a ball mill, the powder slurry was filtered, dried and then pre-fired, and the pre-baked powder was re-pulverized in a wet pole mill. The pre-baking conditions are a temperature of 850 ° C. and a time of 2 hours.

【0018】上記の再粉砕粉をグリーンシートに加工
し、そのグリーンシート上に内部電極となるべき所定パ
ターンの導電性ペーストをスクリーン印刷した。グリー
ンシートの厚さは、75μmである。
The re-pulverized powder was processed into a green sheet, and a conductive paste having a predetermined pattern to be an internal electrode was screen-printed on the green sheet. The thickness of the green sheet is 75 μm.

【0019】上記の導電性ペースト印刷済みのグリーン
シートを積層し、未焼成の積層セラミック型のチップを
作成した。積層数は22層である。
The green sheets printed with the above conductive paste were laminated to prepare an unfired laminated ceramic type chip. The number of laminated layers is 22 layers.

【0020】次いで、未焼成チップを加熱してチップ中
に含まれる成形用バインダを焼き飛ばした(脱バイン
ダ)後、脱バインダ後のチップを焼成した。脱バインダ
の温度は300〜400℃である。焼成条件は、昇温速
度100℃/h、保持温度1100℃、保持時間2時間
である。
Next, the unfired chips were heated to burn off the molding binder contained in the chips (debinding), and then the chips after the binder removal were baked. The temperature of the binder removal is 300 to 400 ° C. The firing conditions are a temperature rising rate of 100 ° C./h, a holding temperature of 1100 ° C., and a holding time of 2 hours.

【0021】上述の工程により得た焼成チップの比抵抗
および縦効果圧電定数d33を、表にして図1に示す。
又、グラフ化して、図2及び図3に示す。図1〜図3に
おいて、試料番号No.1(PNN38.5PT25.9PZ
35.6)は、モルフォトロピック相境界線上に位置する組
成比のセラミックス(社団法人日本セラミック協会編、
「セラミック工学ハンドブック」、技報堂出版、第19
10頁、図6(a)に示される相図参照)であり、Mn
ZrO3 によるPTの置換を行わない試料である。試料
番号No.2は、試料番号No.1におけるPTを全体
に対するモル分率が0.05%のMnZrO3 で置換し
て、PTのモル分率を25.85%とした試料である。
更に試料番号No.3は、MnZrO3 による置換量を
増加させ、全体の0.10%のMnZrO3 でPTを置
換し、PTのモル分率を25.8%とした試料である。
いずれの試料も、PNNおよびPZの全体に対するモル
分率は一定である。
The specific resistance and the longitudinal effect piezoelectric constant d 33 of the fired chips obtained by the above steps are tabulated and shown in FIG.
Also, a graph is shown in FIGS. 2 and 3. 1 to 3, the sample number No. 1 (PNN 38.5 PT 25.9 PZ
35.6 ) is a ceramic with a composition ratio located on the morphotropic phase boundary (edited by the Japan Ceramic Association,
"Ceramic Engineering Handbook", Gihodo Publishing, No. 19
Page 10; see the phase diagram shown in FIG.
This is a sample in which PT is not replaced by ZrO 3 . Sample No. 2 is the sample number No. This is a sample in which the PT in 1 was replaced with MnZrO 3 having a mole fraction of 0.05% with respect to the whole, and the mole fraction of PT was 25.85%.
Further, the sample number No. Sample No. 3 was a sample in which the amount of substitution with MnZrO 3 was increased, PT was substituted with 0.10% MnZrO 3 of the whole, and the mole fraction of PT was 25.8%.
The mole fraction of PNN and PZ in the whole sample is constant.

【0022】図1及び図2を参照すると、MnZrO3
による置換量を0.05%(No.2)、0.1%(N
o.3)と増加するに従って、測定した全温度領域(2
5〜150℃)で比抵抗の絶対値が増大し、又、温度上
昇に伴う比抵抗の低下が小さくなる。特に、高温領域
(120〜150℃)におけるMnZrO3 置換の効果
は著しく、上記高温領域で120℃での比抵抗と150
℃での比抵抗とを比較した場合、No.1では約1/
6.5に低下するのに対して、No.2及びNo.3で
は、約1/2.5にしかならず、その絶対値も1010Ω
・cm以上と、十分実用的なレベルにある。
Referring to FIGS. 1 and 2, MnZrO 3
The replacement amount by 0.05% (No. 2), 0.1% (N
o. 3) as the total temperature range (2
5 to 150 ° C.), the absolute value of the specific resistance increases, and the decrease in specific resistance due to the temperature rise decreases. In particular, the effect of MnZrO 3 substitution in the high temperature region (120 to 150 ° C.) is remarkable, and the specific resistance at 120 ° C. and 150
When compared with the specific resistance at ° C. 1 is about 1 /
No. 6 decreases to 6.5. 2 and No. At 3, it is only about 1 / 2.5, and its absolute value is 10 10 Ω.
・ It is at a practical level, at least cm.

【0023】一方、図1及び図3を参照すると、No.
1〜No.3の圧電定数d33の温度特性曲線は全温度領
域でよく一致している。すなわち、PNNーPTーPZ
系セラミックスにMnを単純に添加したときに起る圧電
定数d33の低下は殆ど見られず、MnZrO3 による置
換操作を施したセラミックスでも良好な圧電特性を維持
していることが分る。
On the other hand, referring to FIG. 1 and FIG.
1-No. The temperature characteristic curve of the piezoelectric constant d 33 of 3 is in good agreement in the entire temperature region. That is, PNN-PT-PZ
Almost no decrease in the piezoelectric constant d 33 that occurs when Mn is simply added to the system ceramics, and it can be seen that the ceramics that have been subjected to the substitution operation with MnZrO 3 also maintain good piezoelectric characteristics.

【0024】[0024]

【発明の効果】以上説明したように、本発明によれば、
PNNーPTーPZ系3成分固溶体組成物のPTの一部
をMnZrO3 で置換することにより、上記3成分組成
物の良好な圧電特性を維持したまま、120〜150℃
というような高温領域における絶縁抵抗の低下を改善で
きる。本発明の圧電セラミックスを積層圧電アクチュエ
ータ素子に適用すればその用途を更に拡大することがで
きるので、本発明の工業的価値は大きい。
As described above, according to the present invention,
By substituting a part of PT of the PNN-PT-PZ-based three-component solid solution composition with MnZrO 3 , 120 to 150 ° C. while maintaining good piezoelectric characteristics of the above three-component composition.
It is possible to improve the decrease in insulation resistance in the high temperature region. If the piezoelectric ceramics of the present invention is applied to a laminated piezoelectric actuator element, its application can be further expanded, so that the industrial value of the present invention is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例おける圧電セラミックスの組
成比と比抵抗および絶縁抵抗の温度特性との関係を表に
して示す図である。
FIG. 1 is a table showing the relationship between the composition ratio of piezoelectric ceramics and the temperature characteristics of specific resistance and insulation resistance in an example of the present invention.

【図2】本発明の一実施例による圧電セラミックス及び
従来のPNNーPTーPZ系3成分圧電セラミックスの
比抵抗の温度特性を表す図である。
FIG. 2 is a diagram showing the temperature characteristics of the specific resistance of the piezoelectric ceramic according to one embodiment of the present invention and the conventional PNN-PT-PZ-based three-component piezoelectric ceramic.

【図3】本発明の一実施例による圧電セラミックス及び
従来のPNNーPTーPZ系3成分圧電セラミックスの
圧電定数の温度特性を表す図である。
FIG. 3 is a diagram showing temperature characteristics of piezoelectric constants of a piezoelectric ceramic according to an embodiment of the present invention and a conventional PNN-PT-PZ-based three-component piezoelectric ceramic.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 モル分率xのニッケルニオブ酸鉛とモル
分率yのチタン酸鉛とモル分率zのジルコン酸鉛とを主
成分とする3成分固溶体組成物を{Pb(Ni1/3 Nb
2/3 )O3 x (PbTiO3 y (PbZrO3 z
(但し、x+y+z=1)で表すとき、前記3成分固溶
体組成物中のPbTiO3 の一部をモル分率γのMnZ
rO3 で置換した、{Pb(Ni1/3 Nb2/3 )O3
x (PbTiO3 (y-r) (PbZrO3 z (MnZ
rO3 r で表される4成分固溶体組成物からなる圧電
セラミックス。
1. A three-component solid solution composition mainly composed of lead nickel niobate having a mole fraction x, lead titanate having a mole fraction y, and lead zirconate having a mole fraction z is prepared as {Pb (Ni 1 / 3 Nb
2/3 ) O 3 } x (PbTiO 3 ) y (PbZrO 3 ) z
(However, when expressed as x + y + z = 1), a part of PbTiO 3 in the three-component solid solution composition is expressed as MnZ having a molar fraction γ.
Substituted with rO 3 , {Pb (Ni 1/3 Nb 2/3 ) O 3 }
x (PbTiO 3 ) (yr) (PbZrO 3 ) z (MnZ
rO 3 ) A piezoelectric ceramics composed of a four-component solid solution composition represented by r .
【請求項2】 請求項1記載の圧電セラミックスにおい
て、 前記3成分固溶体組成物の組成比が、菱面体晶強誘電相
と正方晶強誘電相との間のモルフォトロピック相境界近
辺の組成比であることを特徴とする圧電セラミックス。
2. The piezoelectric ceramic according to claim 1, wherein the composition ratio of the three-component solid solution composition is a composition ratio near a morphotropic phase boundary between a rhombohedral ferroelectric phase and a tetragonal ferroelectric phase. Piezoelectric ceramics characterized by being present.
【請求項3】 請求項2記載の圧電セラミックスにおい
て、 前記4成分固溶体組成物におけるMnZrO3 のモル分
率γが、組成物全体の0.05%以上で0.10%以下
の範囲内にあることを特徴とする圧電セラミックス。
3. The piezoelectric ceramic according to claim 2, wherein the molar fraction γ of MnZrO 3 in the four-component solid solution composition is in the range of 0.05% or more and 0.10% or less of the entire composition. Piezoelectric ceramics characterized by the above.
【請求項4】 請求項1、請求項2又は請求項3記載の
圧電セラミックスを製造する方法であって、前記4成分
固溶体組成物製造の出発原料としてMnZrO3 を用い
ることを特徴とする圧電セラミックスの製造方法。
4. The method for producing a piezoelectric ceramic according to claim 1, 2, or 3, wherein MnZrO 3 is used as a starting material for producing the four-component solid solution composition. Manufacturing method.
JP6235145A 1994-09-29 1994-09-29 Piezoelectric ceramics and manufacturing method thereof Expired - Lifetime JP2570629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6235145A JP2570629B2 (en) 1994-09-29 1994-09-29 Piezoelectric ceramics and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6235145A JP2570629B2 (en) 1994-09-29 1994-09-29 Piezoelectric ceramics and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0891928A true JPH0891928A (en) 1996-04-09
JP2570629B2 JP2570629B2 (en) 1997-01-08

Family

ID=16981726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6235145A Expired - Lifetime JP2570629B2 (en) 1994-09-29 1994-09-29 Piezoelectric ceramics and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2570629B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6423245B1 (en) * 2000-08-31 2002-07-23 Murata Manufacturing Co. Ltd Piezoelectric ceramic composition for surface acoustic wave device and surface acoustic wave device
KR100420929B1 (en) * 2001-05-26 2004-03-02 한국과학기술연구원 High density piezoelectric thick film and manufacturing method thereof
JP2008166715A (en) * 2006-12-04 2008-07-17 Ngk Insulators Ltd Honeycomb type piezoelectric/electrostrictive element
JP2009005536A (en) * 2007-06-25 2009-01-08 National Institute Of Advanced Industrial & Technology High-strength, high-conductivity thin film and actuator manufacturing method using carbon nanotube
JP2009236577A (en) * 2008-03-26 2009-10-15 Kyocera Corp Piezoelectric sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6423245B1 (en) * 2000-08-31 2002-07-23 Murata Manufacturing Co. Ltd Piezoelectric ceramic composition for surface acoustic wave device and surface acoustic wave device
KR100420929B1 (en) * 2001-05-26 2004-03-02 한국과학기술연구원 High density piezoelectric thick film and manufacturing method thereof
JP2008166715A (en) * 2006-12-04 2008-07-17 Ngk Insulators Ltd Honeycomb type piezoelectric/electrostrictive element
JP2009005536A (en) * 2007-06-25 2009-01-08 National Institute Of Advanced Industrial & Technology High-strength, high-conductivity thin film and actuator manufacturing method using carbon nanotube
JP2009236577A (en) * 2008-03-26 2009-10-15 Kyocera Corp Piezoelectric sensor

Also Published As

Publication number Publication date
JP2570629B2 (en) 1997-01-08

Similar Documents

Publication Publication Date Title
KR100653146B1 (en) Piezoelectric porcelain and piezoelectric element
JP5348885B2 (en) Piezoelectric / electrostrictive porcelain composition and method for producing the same
EP2104152B1 (en) Piezoelectric ceramic and piezoelectric element employing it
JP4039029B2 (en) Piezoelectric ceramics, piezoelectric element, and multilayer piezoelectric element
US7598659B2 (en) Piezoelectric ceramic and method of manufacturing the same
KR100601068B1 (en) Piezoelectric porcelain and method for preparation thereof, and piezoelectric element
JP4782412B2 (en) Piezoelectric / electrostrictive body, piezoelectric / electrostrictive laminate, and piezoelectric / electrostrictive film type actuator
JP5651452B2 (en) Piezoelectric / electrostrictive ceramics sintered body
JP5021452B2 (en) Piezoelectric / electrostrictive porcelain composition and piezoelectric / electrostrictive element
JP5876974B2 (en) Method for producing piezoelectric / electrostrictive porcelain composition
JP5219388B2 (en) Piezoelectric ceramics and manufacturing method thereof
JP5462090B2 (en) Piezoelectric / electrostrictive ceramics sintered body
JP2570629B2 (en) Piezoelectric ceramics and manufacturing method thereof
JP2006245124A (en) Multilayer piezoelectric element
JP4782413B2 (en) Piezoelectric / electrostrictive body, piezoelectric / electrostrictive laminate, and piezoelectric / electrostrictive film type actuator
JP4355665B2 (en) Piezoelectric ceramic and piezoelectric element
JP2008260674A (en) Method for producing piezoelectric/electrostrictive ceramic composition
JP2008078267A (en) Piezoelectric ceramic, its manufacturing method, and piezoelectric/electrostrictive element
JP4998668B2 (en) Piezoelectric ceramic manufacturing method and piezoelectric element manufacturing method
JP2570644B2 (en) Piezoelectric ceramics
JP2005306720A (en) Piezoelectric ceramic and piezoelectric device
JP2002293624A (en) Piezoelectric ceramic, production method therefor and piezoelectric element
JP2003335579A (en) Piezoelectric ceramic material
JP2009114049A (en) Piezoelectric/electrostrictive ceramic composition and piezoelectric/electrostrictive element
JP5018602B2 (en) Piezoelectric ceramic composition, and piezoelectric ceramic and laminated piezoelectric element using the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960827