JP2000077733A - Laminated piezoelectric element - Google Patents

Laminated piezoelectric element

Info

Publication number
JP2000077733A
JP2000077733A JP10241339A JP24133998A JP2000077733A JP 2000077733 A JP2000077733 A JP 2000077733A JP 10241339 A JP10241339 A JP 10241339A JP 24133998 A JP24133998 A JP 24133998A JP 2000077733 A JP2000077733 A JP 2000077733A
Authority
JP
Japan
Prior art keywords
electrodes
piezoelectric element
stress relaxation
laminated
relaxation layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10241339A
Other languages
Japanese (ja)
Inventor
Motoyuki Miyata
素之 宮田
Osamu Shiono
修 塩野
Mitsuo Hayashibara
光男 林原
Hideo Suzuki
秀夫 鈴木
Seiji Watabiki
誠次 綿引
Tomio Ishida
富雄 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10241339A priority Critical patent/JP2000077733A/en
Publication of JP2000077733A publication Critical patent/JP2000077733A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve reliability of a laminated piezoelectric element extending over a long period even under a high temperature, by a method wherein piezoelectric materials having a piezoelectricity and internal electrodes having a conductivity are alternately laminated to form integrally the piezoelectric materials, and the internal electrodes and stress relaxation layers are respectively formed on the vertical side surfaces of the laminated material in the lamination direction. SOLUTION: Piezoelectric materials 1 having a piezoelectricity and internal electrodes 2 having a conductivity are alternately laminated to form integrally the materials 1, the external electrodes 2 is connected to and the eternal electrodes 2 every other layer, and lead wires 4 are respectively connected with these electrodes 3. Moreover, stress relaxation layers 5, which are provided mixedly an inorganic porous material containing an silicon oxide as its main component with a conductive material containing conductive grains, such as silver grains palladium grains, are respectively formed between the materials 1 and the electrodes 3, between the electrodes 2 and the electrodes 3 and between insulating layers 8 formed on the electrodes 2 and the electrodes 3. As a result, even in the case where a laminated piezoelectric element is used extending over a long period under a high voltage, the reliability of the piezoelectric element can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アクチュエータ又
はセンサーなどとして用いる積層型圧電素子に関する。
The present invention relates to a laminated piezoelectric element used as an actuator or a sensor.

【0002】[0002]

【従来の技術】電気的エネルギーと機械的エネルギーを
相互に変換可能な圧電素子の構造として、圧電材と内部
電極を交互に積層した積層型圧電素子が報告されてい
る。
2. Description of the Related Art As a structure of a piezoelectric element capable of mutually converting electrical energy and mechanical energy, a laminated piezoelectric element in which piezoelectric materials and internal electrodes are alternately laminated has been reported.

【0003】一例として、特開平6−232466 号公報では
内部電極と外部電極の間にガラスフリットを含有する導
電部を形成することが報告されている。
As an example, JP-A-6-232466 reports that a conductive portion containing glass frit is formed between an internal electrode and an external electrode.

【0004】[0004]

【発明が解決しようとする課題】特開平6−232466 号公
報に記載の積層型圧電素子では、内部電極と外部電極の
間に形成した導電部のガラスフリット量を徐々に変化さ
せた多層とすることにより、両者の間を好適に接合して
いるが、高温下で長期間に渡って使用する場合、上記多
層が均質化して単層となり、室温近傍で使用する場合に
較べて破壊しやすくなるという問題がある。
The multilayer piezoelectric element described in JP-A-6-232466 has a multilayer structure in which the amount of glass frit of a conductive portion formed between an internal electrode and an external electrode is gradually changed. Thereby, the two are suitably joined, but when used for a long time at high temperature, the multilayer is homogenized to become a single layer, and it is easier to break as compared to when used near room temperature. There is a problem.

【0005】本発明は高温下でも信頼性の高い圧電素子
を提供することを目的とする。
An object of the present invention is to provide a piezoelectric element having high reliability even at high temperatures.

【0006】[0006]

【課題を解決するための手段】上記目的を達成する第1
の特徴は、圧電性を有する圧電材と導電性を有する内部
電極を交互に積層一体化してなる積層型圧電素子におい
て、積層方向に垂直な側面に応力緩和層を形成すること
である。
A first aspect of the present invention for achieving the above object is as follows.
The feature of the present invention is that a stress relaxation layer is formed on a side surface perpendicular to the laminating direction in a laminated piezoelectric element in which piezoelectric materials having piezoelectricity and internal electrodes having conductivity are alternately laminated and integrated.

【0007】上記目的を達成する第2の特徴は、圧電性
を有する圧電材と導電性を有する内部電極とを交互に積
層一体化してなる積層型圧電素子において、積層方向に
垂直な側面に形成する応力緩和層が無機質多孔体と導電
性物質が混在した構造を有することである。
A second feature of achieving the above object is that a laminated piezoelectric element in which piezoelectric materials having piezoelectricity and internal electrodes having conductivity are alternately laminated and integrated is formed on a side surface perpendicular to the laminating direction. The stress relaxation layer has a structure in which an inorganic porous material and a conductive substance are mixed.

【0008】上記目的を達成する第3の特徴は、圧電性
を有する圧電材と導電性を有する内部電極とを交互に積
層一体化してなる積層型圧電素子において、積層方向に
垂直な側面に形成する応力緩和層の厚さが100μmよ
り小さいことである。
A third feature of achieving the above object is that a laminated piezoelectric element in which piezoelectric materials having piezoelectricity and internal electrodes having conductivity are alternately laminated and integrated is formed on a side surface perpendicular to the laminating direction. The thickness of the stress relaxation layer is smaller than 100 μm.

【0009】上記目的を達成する第4の特徴は、圧電性
を有する圧電材と導電性を有する内部電極とを交互に積
層一体化してなる積層型圧電素子において、積層方向に
垂直な側面に形成する応力緩和層を構成する導電性物質
に導電性を有する粒子が含まれていることである。
A fourth feature of achieving the above object is that a laminated piezoelectric element in which piezoelectric materials having piezoelectricity and internal electrodes having conductivity are alternately laminated and integrated is formed on a side surface perpendicular to the laminating direction. In other words, the conductive material constituting the stress relaxation layer contains conductive particles.

【0010】上記目的を達成する第5の特徴は、圧電性
を有する圧電材と導電性を有する内部電極とを交互に積
層一体化してなる積層型圧電素子において、積層方向に
垂直な側面に形成する応力緩和層を構成する導電性物質
に含まれている導電性を有する粒子の粒径が5μmより
小さいことである。
A fifth feature of achieving the above object is that a laminated piezoelectric element in which piezoelectric materials having piezoelectricity and conductive internal electrodes are alternately laminated and integrated is formed on a side surface perpendicular to the laminating direction. The particle size of the conductive particles contained in the conductive material constituting the stress relaxation layer is smaller than 5 μm.

【0011】上記目的を達成する第6の特徴は、上記第
1から5の特徴に記載の積層型圧電素子を用いたエンジ
ン用燃料供給装置である。
According to a sixth aspect of the present invention, there is provided a fuel supply device for an engine using the laminated piezoelectric element according to the first to fifth aspects.

【0012】[0012]

【発明の実施の形態】図1は、本発明の実施例の積層型
圧電素子の構成を示す模式断面図である。本実施例の積
層型圧電素子では圧電性を有する圧電材1と外部電極3
の間、導電性を有する内部電極2と外部電極3との間、
内部電極2上に形成された絶縁層8と外部電極3との間
に応力緩和層5が形成されている。さらに詳細には図2
に示すように、応力緩和層5が3次元的に連続した空隙
を有する無機質多孔体6と導電性物質7が混在した構造
を有している。導電性物質7は無機質多孔体6の3次元
的に連続した空隙に存在し、3次元的に導電経路を有す
るため、本実施例の応力緩和層は導電性を損なうことは
ない。本実施例ではこのような応力緩和層を有している
ため、従来材の課題であった変形量や熱膨張係数差に起
因した残留応力を、応力緩和層を構成する無機質多孔質
自体の変形、又は導電性物質による滑り変形などにより
緩和することができる。また無機質多孔体と導電性物質
を交互に積層した積層構造を形成することにより、多孔
体間での導電性物質による滑りも発生してより残留応力
を緩和することができる。応力緩和層の厚さは、構成す
る無機質多孔体や導電性物質の物性により異なるため一
概には言えないが100μmより小さいことが望まし
い。応力緩和層の厚さがこれ以上になると、応力緩和層
と圧電材の熱膨張係数差に起因する残留応力が大きくな
り、両者の界面で剥離を起こすためである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic sectional view showing the structure of a laminated piezoelectric element according to an embodiment of the present invention. In the laminated piezoelectric element of the present embodiment, the piezoelectric material 1 having piezoelectricity and the external electrode 3
Between the conductive internal electrode 2 and the external electrode 3,
The stress relaxation layer 5 is formed between the insulating layer 8 formed on the internal electrode 2 and the external electrode 3. More specifically, FIG.
As shown in (1), the stress relaxation layer 5 has a structure in which an inorganic porous body 6 having three-dimensionally continuous voids and a conductive substance 7 are mixed. Since the conductive substance 7 exists in the three-dimensionally continuous voids of the inorganic porous body 6 and has a three-dimensionally conductive path, the stress relaxation layer of the present embodiment does not impair the conductivity. In the present embodiment, since such a stress relaxation layer is provided, the residual stress caused by the amount of deformation and the difference in thermal expansion coefficient, which were problems of the conventional material, is reduced by the deformation of the inorganic porous material constituting the stress relaxation layer. Or by sliding deformation due to a conductive substance. In addition, by forming a laminated structure in which the inorganic porous body and the conductive substance are alternately laminated, slippage due to the conductive substance between the porous bodies also occurs, and the residual stress can be further reduced. Since the thickness of the stress relaxation layer varies depending on the physical properties of the inorganic porous material and the conductive material, it cannot be unconditionally determined, but is preferably smaller than 100 μm. This is because, when the thickness of the stress relaxation layer is more than this, residual stress due to the difference in thermal expansion coefficient between the stress relaxation layer and the piezoelectric material increases, and peeling occurs at the interface between the two.

【0013】本実施例の積層型圧電素子は、従来の積層
型圧電素子に較べて高温での動作が可能であるため、例
えば自動車用エンジンの燃料供給装置などに用いること
ができる。
The multi-layer piezoelectric element of this embodiment can operate at a higher temperature than a conventional multi-layer piezoelectric element, and can be used, for example, in a fuel supply device for an automobile engine.

【0014】応力緩和層の例として、酸化ケイ素を主成
分とする無機質多孔体と銀粒子やパラジウム粒子などの
導電粒子を含んだ導電性物質が混在したものが挙げられ
る。このような応力緩和層の形成方法として、例えばゾ
ルーゲル法が挙げられる。すなわち銀粒子やパラジウム
粒子などの導電粒子を含んだゾル溶液と酸化ケイ素を含
んだゾル溶液を塗布し、これを加熱して応力緩和層を形
成する。ゾル状態からゲル状態への変化の際、ゲル溶液
中の溶媒成分が除去され、酸化ケイ素を主成分とする無
機質多孔体と銀粒子やパラジウム粒子などの導電粒子を
含んだ導電性物質が混在した応力緩和層が形成される。
また、導電粒子を含んだゾル溶液と酸化ケイ素を含んだ
ゾル溶液を交互に塗布することにより、銀粒子やパラジ
ウム粒子などの導電粒子を含んだ導電性物質とケイ素を
主成分とする多孔体が交互に積層した構造も形成でき
る。加熱温度はゾル溶液の成分や銀粒子,パラジウム粒
子などの導電粒子の種類や量により異なるため、一概に
は言えないが、概ね500℃以下である。また各ゾル溶
液に適した所定の波長の光を照射したのち加熱すること
により、加熱温度を低下することもできる。
As an example of the stress relaxation layer, a material in which an inorganic porous material containing silicon oxide as a main component and a conductive material containing conductive particles such as silver particles and palladium particles are mixed. As a method of forming such a stress relaxation layer, for example, a sol-gel method can be mentioned. That is, a sol solution containing conductive particles such as silver particles and palladium particles and a sol solution containing silicon oxide are applied and heated to form a stress relaxation layer. During the change from the sol state to the gel state, the solvent component in the gel solution was removed, and an inorganic porous body mainly composed of silicon oxide and a conductive substance containing conductive particles such as silver particles and palladium particles were mixed. A stress relaxation layer is formed.
Also, by alternately applying a sol solution containing conductive particles and a sol solution containing silicon oxide, a conductive material containing conductive particles such as silver particles and palladium particles and a porous body mainly containing silicon are formed. Alternately laminated structures can also be formed. Since the heating temperature varies depending on the components of the sol solution and the types and amounts of conductive particles such as silver particles and palladium particles, it cannot be said unconditionally, but is generally 500 ° C. or less. The heating temperature can also be reduced by irradiating each sol solution with light having a predetermined wavelength suitable for heating.

【0015】次に、本実施例材と比較材との特性を評価
した結果を示す。
Next, the results of evaluating the characteristics of the material of the present example and the comparative material are shown.

【0016】本実施例材は、まずチタン酸ジルコン酸塩
(PZT)を主成分とする圧電セラミックス粉末に有機
バインダーを添加し、これを有機溶媒中に分散させてス
ラリ−を作り、テープキャスト法により膜厚約150μ
mのセラミックスシートを作る。このセラミックスシー
トに銀とパラジウム粉末を混合したペーストをスクリー
ン印刷で形成した。このシートを所定の枚数積層し、最
後に上記ペーストを印刷していないセラミックスシート
を乗せて熱加圧して一体化した。これを所定の寸法に切
断後、加熱焼成して積層体を作製した。積層体の積層方
向に垂直な4つの側面のうち、平行する2つの側面に露
出している内部電極上にガラスペーストを塗布加熱して
一層毎に交互に絶縁層を形成した。絶縁層形成後の側面
に銀粒子とパラジウム粒子を20%含んだゾル溶液と酸
化ケイ素を20%含んだゾル溶液を交互に塗布後、20
0℃で30分加熱して応力緩和層を形成した。その後応
力緩和層上に外部電極及びリード線を形成した。外部電
極には無機高温接着剤を、リード線には銅線を用い、無
機高温接着剤で接合した。
In this embodiment, an organic binder is first added to a piezoelectric ceramic powder containing zirconate titanate (PZT) as a main component, and this is dispersed in an organic solvent to form a slurry. About 150μ
Make m ceramic sheet. A paste in which silver and palladium powders were mixed was formed on the ceramic sheet by screen printing. A predetermined number of the sheets were laminated, and finally, a ceramic sheet on which the above-mentioned paste was not printed was placed thereon, and the sheets were integrated by applying heat and pressure. This was cut into a predetermined size and then heated and fired to produce a laminate. Of the four side surfaces perpendicular to the stacking direction of the stacked body, a glass paste was applied and heated on the internal electrodes exposed on the two parallel side surfaces to alternately form an insulating layer for each layer. After alternately applying a sol solution containing 20% of silver particles and palladium particles and a sol solution containing 20% of silicon oxide to the side surface after forming the insulating layer,
Heating was performed at 0 ° C. for 30 minutes to form a stress relaxation layer. Thereafter, external electrodes and lead wires were formed on the stress relaxation layer. An inorganic high-temperature adhesive was used for the external electrodes, and a copper wire was used for the lead wires, and they were joined with the inorganic high-temperature adhesive.

【0017】図3のように、本実施例材に対する比較材
は、本実施例と同様にして作製した積層体の側面に絶縁
層を形成した後、応力緩和層を形成せずに外部電極及び
リード線を形成した。
As shown in FIG. 3, a comparative material for the present embodiment is obtained by forming an insulating layer on the side surface of a laminate manufactured in the same manner as in the present embodiment, and then forming the external electrode and the external electrode without forming a stress relaxation layer. Lead wires were formed.

【0018】この積層型圧電素子は図3に示すように内
部電極2が一層おきに外部電極3に接続されており、さ
らにこの外部電極3にリード線4が接続されている。リ
ード線4間に電圧を印加すると、お互いに隣接する内部
電極2間に異符号の電荷が誘起され内部電極2間の圧電
材1に電圧がかかり積層方向に変位を生じる。この圧電
材1の変形に対して、側面に形成されている外部電極3
はほとんど変形しないため、両者の間で変形量に起因し
た残留応力が形成される。またこの積層型圧電素子を高
温下で使用する場合、圧電材1と外部電極3,内部電極
2と外部電極3,絶縁層8と外部電極3との熱膨張係数
差に起因した残留応力が両者の間で発生し、室温近傍で
利用する場合に較べて容易に破壊を招く恐れがある。
As shown in FIG. 3, the laminated piezoelectric element has an internal electrode 2 connected to an external electrode 3 every other layer, and a lead wire 4 connected to the external electrode 3. When a voltage is applied between the lead wires 4, charges having different signs are induced between the internal electrodes 2 adjacent to each other, and a voltage is applied to the piezoelectric material 1 between the internal electrodes 2 to cause displacement in the laminating direction. In response to the deformation of the piezoelectric material 1, the external electrodes 3
Is hardly deformed, so that a residual stress is formed between the two due to the amount of deformation. When the laminated piezoelectric element is used at a high temperature, residual stress caused by a difference in thermal expansion coefficient between the piezoelectric material 1, the external electrode 3, the internal electrode 2, the external electrode 3, and the insulating layer 8 and the external electrode 3 is reduced. Between them, and there is a possibility that destruction may easily occur as compared with the case where the device is used near room temperature.

【0019】評価方法としては、150℃に加熱したシ
リコンオイル中に本実施例材,比較材を浸積し、周波数
100Hzの正弦波で100V印加して各素子を駆動さ
せた。その結果、比較材は繰り返し数106 回以下で破
壊したのに対して、本実施例材は108 回以上でも異常
は見られなかった。
As an evaluation method, the material of this example and the comparative material were immersed in silicon oil heated to 150 ° C., and 100 V was applied with a sine wave having a frequency of 100 Hz to drive each element. As a result, while the comparative material was broken after the number of repetitions was 10 6 times or less, the material of this example showed no abnormality even after 10 8 times or more.

【0020】本実施例材を評価試験後、TEM(透過型
電子顕微鏡)を用いて応力緩和層を観察したところ、図
2に模式的に示したように3次元的に連続した空隙を有
する酸化ケイ素を主成分とする多孔体と銀粒子やパラジ
ウム粒子を含んだ導電性物質が混在した構造を示してい
た。この応力緩和層の厚さは10μm以下であった。ち
なみに銀粒子とパラジウム粒子を含んだゾル溶液と酸化
ケイ素を含んだゾル溶液の塗布量を増やして、応力緩和
層の厚さが100μm以上の素子を作製したところ、1
50℃に加熱したシリコンオイル中に投入した直後に圧
電材と外部電極との間で剥離を起こし、評価するに至ら
なかった。
After an evaluation test of the material of this example, the stress relaxation layer was observed using a TEM (transmission electron microscope). As a result, as shown schematically in FIG. It showed a structure in which a porous body containing silicon as a main component and a conductive substance containing silver particles and palladium particles were mixed. The thickness of this stress relaxation layer was 10 μm or less. By the way, by increasing the coating amount of the sol solution containing silver particles and palladium particles and the sol solution containing silicon oxide, an element having a stress relaxation layer having a thickness of 100 μm or more was produced.
Immediately after being introduced into silicon oil heated to 50 ° C., peeling occurred between the piezoelectric material and the external electrode, and the evaluation was not completed.

【0021】応力緩和層を構成する導電性物質が良好な
潤滑作用を示し、残留応力低減に有効に作用するために
は、導電性物質のなかに微細な導電性を有する粒子が含
まれていることが望ましい。上記の評価実験でも、発明
材中の導電性物質には粒径が1μmより小さな銀粒子と
パラジウム粒子が含まれていた。比較のため、5μmよ
り大きい銀粒子とパラジウム粒子を含んだゾル溶液を用
いて、同様にして導電性物質中に5μmより大きい銀粒
子とパラジウム粒子を含んだ素子を作製,評価したとこ
ろ、繰り返し数106 回以下で破壊が発生した。
In order for the conductive material constituting the stress relieving layer to exhibit a good lubricating effect and effectively work to reduce the residual stress, fine particles of the conductive material are contained in the conductive material. It is desirable. Also in the above evaluation experiment, the conductive material in the invention material contained silver particles and palladium particles having a particle size smaller than 1 μm. For comparison, a device containing silver particles and palladium particles larger than 5 μm in a conductive material was similarly prepared using a sol solution containing silver particles and palladium particles larger than 5 μm, and evaluated. the following breakdown has occurred 10 6 times.

【0022】また、本実施例の積層型圧電素子をガソリ
ンエンジンの燃料供給装置に組み込み、ガソリン噴射用
アクチュエータとしての評価試験も行った。試験は12
0℃中、エンジンの回転数500〜10000rpm に対
応してガソリン噴射挙動を調べた。その結果、従来用い
られている電磁式アクチュエータに較べて、全ての回転
数領域で入力信号に対するガソリン噴射応答速度が1/
5以下に低減され、本実施例材がエンジンの燃料供給装
置部品として優れた特性を示すことが明らかとなった。
Further, the laminated piezoelectric element of this embodiment was incorporated into a fuel supply device of a gasoline engine, and an evaluation test as an actuator for gasoline injection was performed. Exam 12
At 0 ° C., the gasoline injection behavior was examined at an engine speed of 500 to 10,000 rpm. As a result, the gasoline injection response speed with respect to the input signal in all the rotation speed ranges is reduced by a factor of 1 / compared with the conventionally used electromagnetic actuator.
It was clarified that the material of the present example exhibited excellent characteristics as a fuel supply device part for an engine.

【0023】[0023]

【発明の効果】本発明によれば高温下でも信頼性の高い
圧電素子を提供することができる。
According to the present invention, a highly reliable piezoelectric element can be provided even at a high temperature.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の積層型圧電素子の構造の模式
図。
FIG. 1 is a schematic view of the structure of a multilayer piezoelectric element according to an embodiment of the present invention.

【図2】本発明の実施例の積層型圧電素子の応力緩和層
近傍の構造の模式図。
FIG. 2 is a schematic diagram of a structure near a stress relaxation layer of the multilayer piezoelectric element according to the embodiment of the present invention.

【図3】比較例の積層型圧電素子の構造の模式図。FIG. 3 is a schematic diagram of a structure of a multilayer piezoelectric element of a comparative example.

【符号の説明】[Explanation of symbols]

1…圧電材、2…内部電極、3…外部電極、4…リード
線、5…応力緩和層、6…無機質多孔体、7…導電性物
質、8…絶縁層。
DESCRIPTION OF SYMBOLS 1 ... Piezoelectric material, 2 ... Internal electrode, 3 ... External electrode, 4 ... Lead wire, 5 ... Stress relaxation layer, 6 ... Inorganic porous body, 7 ... Conductive substance, 8 ... Insulating layer.

フロントページの続き (72)発明者 林原 光男 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 鈴木 秀夫 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 綿引 誠次 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 石田 富雄 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内Continued on the front page (72) Inventor Mitsuo Hayashibara 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Hideo Suzuki 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Hitachi, Ltd.Hitachi Research Laboratories (72) Inventor Seiji Watabiki 7-1-1, Omikacho, Hitachi City, Ibaraki Prefecture Hitachi, Ltd.Hitachi Research Laboratory (72) Inventor Tomio Ishida Omikamachi, Hitachi City, Ibaraki Prefecture No. 1-1, within Hitachi Research Laboratory, Hitachi, Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】圧電性を有する圧電材と導電性を有する電
極を交互に積層してなる積層型圧電素子において、積層
方向に垂直な側面に応力緩和層を形成したことを特徴と
する積層型圧電素子。
1. A multilayer piezoelectric element comprising a piezoelectric material having piezoelectricity and an electrode having conductivity being alternately laminated, wherein a stress relaxation layer is formed on a side surface perpendicular to the laminating direction. Piezoelectric element.
【請求項2】請求項1に記載の積層型圧電素子におい
て、応力緩和層が無機質多孔体と導電性物質が混在した
ものであることを特徴とする積層型圧電素子。
2. The multi-layer piezoelectric element according to claim 1, wherein the stress relaxation layer is a mixture of an inorganic porous material and a conductive substance.
【請求項3】請求項1,2に記載の積層型圧電素子にお
いて、応力緩和層の厚さが100μmより小さいことを
特徴とする積層型圧電素子。
3. The multilayer piezoelectric element according to claim 1, wherein the thickness of the stress relaxation layer is less than 100 μm.
【請求項4】請求項1乃至3のいずれかに記載の積層型
圧電素子において、応力緩和層に導電性を有する粒子が
含まれていることを特徴とする積層型圧電素子。
4. A multi-layer piezoelectric element according to claim 1, wherein the stress relaxation layer contains particles having conductivity.
【請求項5】請求項1乃至4のいずれかに記載の積層型
圧電素子において、応力緩和層に含まれている導電性を
有する粒子の粒径が5μmより小さいことを特徴とする
積層型圧電素子。
5. The multi-layer piezoelectric element according to claim 1, wherein the conductive particles contained in the stress relaxation layer have a particle size smaller than 5 μm. element.
【請求項6】請求項1乃至5のいずれかに記載の積層型
圧電素子を有することを特徴とするエンジン用燃料供給
装置。
6. A fuel supply device for an engine, comprising the multilayer piezoelectric element according to claim 1.
JP10241339A 1998-08-27 1998-08-27 Laminated piezoelectric element Pending JP2000077733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10241339A JP2000077733A (en) 1998-08-27 1998-08-27 Laminated piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10241339A JP2000077733A (en) 1998-08-27 1998-08-27 Laminated piezoelectric element

Publications (1)

Publication Number Publication Date
JP2000077733A true JP2000077733A (en) 2000-03-14

Family

ID=17072841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10241339A Pending JP2000077733A (en) 1998-08-27 1998-08-27 Laminated piezoelectric element

Country Status (1)

Country Link
JP (1) JP2000077733A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003061022A2 (en) * 2002-01-17 2003-07-24 Epcos Ag Piezoelectric component and method for the production thereof
WO2005029603A1 (en) * 2003-09-24 2005-03-31 Kyocera Corporation Multilayer piezoelectric device
WO2005029602A1 (en) * 2003-09-24 2005-03-31 Kyocera Corporation Multilayer piezoelectric device
JP2005101207A (en) * 2003-09-24 2005-04-14 Kyocera Corp Laminated piezoelectric element and its manufacturing method, and injection device
JP2005183607A (en) * 2003-12-18 2005-07-07 Kyocera Corp Laminated piezoelectric device and injection equipment
JP2005268393A (en) * 2004-03-17 2005-09-29 Kyocera Corp Laminated piezoelectric element and injection apparatus using same
US6978525B2 (en) 2003-02-05 2005-12-27 Denso Corporation Method of manufacturing a lamination-type piezoelectric element
JP2006013437A (en) * 2004-05-27 2006-01-12 Kyocera Corp Laminated piezoelectric element, its manufacturing method, and injection device using it
US7205706B2 (en) 2004-08-30 2007-04-17 Denso Corporation Stacked piezoelectric element, production method thereof and electrically conducting adhesive
WO2009041476A1 (en) * 2007-09-27 2009-04-02 Kyocera Corporation Multilayer piezoelectric element, injector equipped with the same and fuel injection system
US7868524B2 (en) * 2005-01-26 2011-01-11 Epcos Ag Piezoelectric component

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003061022A3 (en) * 2002-01-17 2003-12-24 Epcos Ag Piezoelectric component and method for the production thereof
WO2003061022A2 (en) * 2002-01-17 2003-07-24 Epcos Ag Piezoelectric component and method for the production thereof
US7208862B2 (en) 2002-01-17 2007-04-24 Epcos Ag Piezoelectric component and method for the production thereof
US6978525B2 (en) 2003-02-05 2005-12-27 Denso Corporation Method of manufacturing a lamination-type piezoelectric element
US7345403B2 (en) 2003-02-05 2008-03-18 Denso Corporation Lamination-type piezoelectric element and manufacturing method thereof
US7633214B2 (en) 2003-09-24 2009-12-15 Kyocera Corporation Multi-layer piezoelectric element
WO2005029603A1 (en) * 2003-09-24 2005-03-31 Kyocera Corporation Multilayer piezoelectric device
WO2005029602A1 (en) * 2003-09-24 2005-03-31 Kyocera Corporation Multilayer piezoelectric device
JP2005101207A (en) * 2003-09-24 2005-04-14 Kyocera Corp Laminated piezoelectric element and its manufacturing method, and injection device
US8004155B2 (en) 2003-09-24 2011-08-23 Kyocera Corporation Multi-layer piezoelectric element
US7936108B2 (en) 2003-09-24 2011-05-03 Kyocera Corporation Multi-layer piezoelectric element with electrodes made of glass and conductive material
US7791256B2 (en) 2003-09-24 2010-09-07 Kyocera Corporation Multi-layer piezoelectric element
JP2005183607A (en) * 2003-12-18 2005-07-07 Kyocera Corp Laminated piezoelectric device and injection equipment
JP4593911B2 (en) * 2003-12-18 2010-12-08 京セラ株式会社 Multilayer piezoelectric element and injection device
JP2005268393A (en) * 2004-03-17 2005-09-29 Kyocera Corp Laminated piezoelectric element and injection apparatus using same
JP2006013437A (en) * 2004-05-27 2006-01-12 Kyocera Corp Laminated piezoelectric element, its manufacturing method, and injection device using it
US7205706B2 (en) 2004-08-30 2007-04-17 Denso Corporation Stacked piezoelectric element, production method thereof and electrically conducting adhesive
US7868524B2 (en) * 2005-01-26 2011-01-11 Epcos Ag Piezoelectric component
WO2009041476A1 (en) * 2007-09-27 2009-04-02 Kyocera Corporation Multilayer piezoelectric element, injector equipped with the same and fuel injection system
US8421310B2 (en) 2007-09-27 2013-04-16 Kyocera Corporation Multi-layer piezoelectric element, ejection apparatus using the same and fuel ejection system

Similar Documents

Publication Publication Date Title
EP1732146B1 (en) Multilayer piezoelectric element
JP5050164B2 (en) Piezoelectric actuator unit and manufacturing method thereof
US7786652B2 (en) Multi-layer piezoelectric element
JP5669443B2 (en) Vibrating body, manufacturing method thereof, and vibration wave actuator
JPH04299588A (en) Electrostriction effect element
JP5050165B2 (en) Multilayer piezoelectric element and jetting apparatus using the same
JP2000077733A (en) Laminated piezoelectric element
WO2005011009A1 (en) Laminate type electronic component and production method therefor and laminate type piezoelectric element
JP2005101207A (en) Laminated piezoelectric element and its manufacturing method, and injection device
JP2951129B2 (en) Multilayer piezoelectric actuator and method of manufacturing the same
JP2994492B2 (en) Multilayer piezoelectric actuator and method of manufacturing the same
JPH10312933A (en) Laminated ceramic electronic parts
JP2003008092A (en) Laminated piezoelectric element and its manufacturing method as well as sealing material for laminated piezoelectric element
JP5153095B2 (en) Multilayer piezoelectric element and jetting apparatus using the same
JP4925563B2 (en) Multilayer piezoelectric element and jetting apparatus using the same
JP4468510B2 (en) Piezoelectric element and multilayer piezoelectric actuator
JPH1174576A (en) Laminated piezoelectric actuator
JPH04273183A (en) Piezoelectric effect element and electrostriction effect element and its manufacture
WO2023157523A1 (en) Laminate-type piezoelectric element and electronic device
JP2004039954A (en) Stacked piezoelectric actuator element
JP2001068750A (en) Laminated piezoelectric actuator
JP3080033B2 (en) Multilayer piezoelectric transformer
JP2001102649A (en) Laminated piezoelectric actuator
JP2005183607A (en) Laminated piezoelectric device and injection equipment
JP3946580B2 (en) Multilayer piezoelectric ceramic element