JP4468510B2 - Piezoelectric element and multilayer piezoelectric actuator - Google Patents

Piezoelectric element and multilayer piezoelectric actuator Download PDF

Info

Publication number
JP4468510B2
JP4468510B2 JP10114199A JP10114199A JP4468510B2 JP 4468510 B2 JP4468510 B2 JP 4468510B2 JP 10114199 A JP10114199 A JP 10114199A JP 10114199 A JP10114199 A JP 10114199A JP 4468510 B2 JP4468510 B2 JP 4468510B2
Authority
JP
Japan
Prior art keywords
piezoelectric element
dielectric constant
piezoelectric
internal electrode
element substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10114199A
Other languages
Japanese (ja)
Other versions
JP2000294843A (en
Inventor
幹弥 篠原
淑雄 秋宗
克彦 鬼塚
誠 東別府
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP10114199A priority Critical patent/JP4468510B2/en
Publication of JP2000294843A publication Critical patent/JP2000294843A/en
Application granted granted Critical
Publication of JP4468510B2 publication Critical patent/JP4468510B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、圧電素子及びこれを用いた積層型圧電アクチュエータに係り、更に詳細には、縦効果を利用した積層型圧電アクチュエータであって、例えば、自動車用エンジンの燃料噴射弁、光学装置等の精密位置決め装置及び防振台の除振マウント等のアクチュエータとして使用される積層型圧電アクチュエータに関するものである。
【0002】
【従来の技術】
従来、電歪効果を応用して大きな変位量を得るために、圧電セラミックス板と内部電極層を交互に積層した、積層型の圧電アクチュエータの構造が提案されている。このような積層型圧電アクチュエータの従来例には、特開昭62−299093号公報に開示されているものがあり、その構成を図5に示す。
【0003】
図5において、この積層型圧電アクチュエータは、予め焼成・加工され両面にAg等の焼成内部電極層105が形成された圧電素子基板101(図5(c))と、ステンレス等の金属板102(図5(b))とを交互に積層することにより形成されている。
かかる金属板102は3つの舌状片部103を有するが、圧電素子基板101を挟んで隣接する金属板102同士は、垂直軸回りに位相が約60゜ずれて配置されている。即ち、ある一つの金属板102の3つの舌状片部103が、隣り合う他の金属板102の3つの舌状片部103のそれぞれの間に位置している(図5(c)参照)。そして、この金属板102のうち同位相にある金属板102、即ち一つおきに配置された金属板102の舌状片部103は、帯状金属板104に溶接又は半田付けすること等により互いに電気接続されている(図5(a)参照)。
かかる構成を有する積層型圧電アクチュエータでは、上記帯状金属板104に電圧を印加すると、個々の圧電素子基板101に電界が印加され、各圧電素子が歪を発生して、アクチュエータとして機能する。
【0004】
【発明が解決しようとする課題】
このような従来の積層型圧電アクチュエータにおいては、積層体を構成する個々の圧電素子基板の両面に電界を印加するために、内部電極層105を印刷焼成して作成しており、その形状を図6(a)に示す。この場合、この内部電極層は、上述の積層体側面に設けられた帯状金属板104と電気的に接触しないように、圧電素子基板101の周辺部に余白部分を残して被覆・形成する必要がある。
このような形状の内部電極層に電界を印加すると、圧電素子基板101において、内部電極層105で被覆された部分のみに電歪が発生する(図6(b)参照)。
【0005】
しかしながら、この状態で印加電圧が大きくなると、圧電素子基板の内部電極層周辺から余白部分にかけての領域で、印加される電圧の降下が急峻になり、その結果、電歪が発生しない余白部分と内部電極層下部の境界に引っ張り応力が発生する。従って、かかる積層型圧電アクチュエータを長時間駆動させると、上記内部電極層の周囲に繰り返し応力が印加され、この部位から亀裂106が発生し、圧電素子が疲労破壊に至るという課題があった(図6(b)参照)。
【0006】
また、この課題に対処すべく、特開平2−35785号公報には、内部電極層周囲の形状を図7(a)及び(b)に示すように変形し、圧電素子に印加される電界が、内部電極層から電界の印加されない周囲部にかけて緩やかに消失するようにすることが提案されている。
しかしながら、図7(a)のように内部電極層105の周囲を鋸状の形状とすると、鋸の頂点の部分に圧電素子101の周囲に向かう電界が集中し、内部電極層材料に含まれる金属イオンが圧電素子基板の周囲に向かってエレクトロマイグレーションを起こし、積層体側面に設置された帯状金属板104と短絡を生じ易くなるという課題がある。
【0007】
一方、図7(b)のように、2〜3重の極めて幅の狭い電極パターンを通常1mm程度の幅しかない内部電極層105bの周囲に形成する場合には、上記電極パターンの領域を0.5mm以下とする必要があり、圧電素子基板101の両面に形成する内部電極層の位置を精密にあわせなければならないという製造上の課題があり、精密な位置合わせが必要ないように上記電極パターン領域を広く取ると、その分内部電極層面積が縮小し、圧電素子基板の有効利用率が低下するという課題があった。
【0008】
本発明は、このような従来技術の有する課題に鑑みてなされたものであり、特異な形状の内部電極を用いることなく、圧電素子基板の内部電極周囲部位に印加される電界が、内部電極周辺部で連続的に小さくなり、繰り返し駆動させても圧電素子基板に亀裂が発生しない、信頼性の高い圧電素子及びこれを用いた積層型圧電アクチュエータを提供することを目的としている。
【0009】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意検討を行った結果、圧電素子基板よりも比誘電率の低い低誘電率層、圧電素子基板と内部電極層の周辺部との間に介在するように、低誘電率層を圧電素子基板上に形成することにより、上記課題が解決できることを見出し、本発明を完成するに至った。
【0010】
即ち、本発明の圧電素子は、圧電素子基板を内部電極層で挟持して成る圧電素子において、上記圧電素子基板より比誘電率の低い低誘電率層、上記圧電素子基板と上記内部電極層の周辺部との間に介在するように、上記低誘電率層を上記圧電素子基板上に形成して成ることを特徴とする。
【0011】
また、本発明の圧電素子の好適形態は、上記低誘電率層の比誘電率が10〜2000の範囲にあることを特徴とする。
【0012】
更に、本発明の積層型圧電アクチュエータは、上述の如き複数枚の圧電素子と、上記圧電素子の間に挟持されて該圧電素子に電気接続された、接続用突起を有する複数枚の金属板とを積層した積層体と、
この積層体の上下端部に接合され、相互に平行な端面を有する圧電板とを具備し、
上記金属板の接続用突起を2以上の方向に上記圧電素子の間より交互に突出させ、この接続用突起を上記積層体の積層方向に沿って折曲して、同一方向に突出させた他の接続用突起に接合して成る、ことを特徴とする。
【0013】
【作用】
本発明においては、積層型圧電アクチュエータの圧電素子基板と内部電極層の周辺部との間に、この圧電素子基板よりも比誘電率の低い低誘電率層介在するように、低誘電率層を圧電素子基板上に形成した。従って、内部電極層の周辺部において、圧電素子に印加される電圧が好適に低減される。
【0014】
即ち、内部電極層の周辺部とその下部の圧電素子基板面の間には、圧電素子よりも比誘電率が十分に低い低誘電率層が存在する。該低誘電率層は、印刷焼成工法で作製できる10μm程度の厚さの膜に形成しても、厚さ数百μmの圧電素子と同等の静電容量となるような、低い比誘電率を有するものである。そのため、この領域に印加された電界は、低誘電率層と圧電素子に分配され、圧電素子には全電圧の1/2程度しか印加されない。
このように、内部電極層と電極周囲の余白部の境界に、上記低誘電率層を介在させた領域を設けることにより、圧電素子に印加される電界は、内部電極層周辺でいったん1/2程度に低下してから、余白部で0となるため、この領域での引っ張り応力は緩和され、繰り返し電界を印加しても、疲労破壊の発生を回避することができる。
【0015】
【発明の実施の形態】
以下、本発明の圧電素子及び積層型圧電アクチュエータを、図面を参照して若干の実施形態により詳細に説明する。
【0016】
図1は、本発明の積層型圧電アクチュエータの一実施形態を示す斜視図であり、図2は、このアクチュエータの部分断面図である。
図2において、このアクチュエータでは、板状の圧電素子基板1と金属板2が交互に積層されており、積層体3を構成している。圧電素子基板1と金属板2との間には内部電極層4が設けられており、両者を接合するとともに圧電素子基板1の表面と金属板2を電気的に接合している。また、内部電極層4の周辺部と圧電素子基板1の間には、低誘電率層5が形成されて、本発明の圧電素子を構成しており、内部電極層周辺で圧電素子に印加される電圧を緩和している。
【0017】
図3は、本発明の積層型圧電アクチュエータにおける金属板や圧電素子の構成を示した平面図である。
金属板2は、図3(a)に示す構造をしており、円板部6と接続用突起7から成る。
また、圧電素子基板1の一方の表面には、同図(b)に示すように、内部電極層周辺部に相当する部位に、円弧状の低誘電率層5aと5a’が形成され、その上に内部電極層4が被覆形成されている(図3(c)参照)。
この一方、圧電素子基板1の他方の表面には、低誘電率層5bと5b’とが、一方の表面に形成された低誘電率層に対して90°回転変位した位置に形成されており、更に内部電極層が被覆されている(図3(d)参照)。
更に、このアクチュエータにおいては、図3(e)に示すように、金属板2と圧電素子基板1は、接続用突起7が低誘電率層の形成されない部位に位置するように配置される。
【0018】
そして、本発明のアクチュエータでは、上述のような金属板や圧電素子を積層して積層体を形成するが、その際、図1(b)に示すように、隣接する金属板の接続用突起8a、8a’及び8b、8b’が当該積層体の軸の回りに90°変位した位置にくるようにする。このように金属板2を配置することにより、積層された金属板2では一層飛びに同じ電圧を印加できるようになっている。
即ち、図2において、積層体3の外周から突出した金属板2の接続用突起7は、積層方向に沿って折り曲げられ、一層おきに溶接や半田等により電気的に接続され、外部電極8を構成する。なお、この場合、「積層方向」とは、図1(a)の鉛直方向、特に鉛直下向き方向を指すものとする。
【0019】
更に、本発明のアクチュエータでは、図1(a)に示したように、外部電極8aと8bに、リード線9aと9bが接続され、このリード線に電圧を印加することにより、積層体3の個々の圧電素子に電圧が印加されるように構成される。
なお、積層体3の上下端部(図1(a)では頂部と底部)には、不活性板10が接着剤により接合される。
【0020】
次に、上述した各種構成部品の材質や寸法等について説明する。
圧電素子基板1としては、チタン酸ジルコン酸鉛Pb(ZrTi)O、(PZT)を主成分とする焼結体が挙げられるが、これに限定されるものではなく、圧電性を有するセラミックスであればよく、圧電定数d33の大きなものを使うことが好ましい。また、圧電素子基板1の形状は、円形でも矩形でもよい。
【0021】
また、上記圧電素子基板は、その厚さを0.2mm〜0.6mmとすることが好ましい。
本発明のアクチュエータでは、予め焼結した素子基板を積層する関係上、板状に成形・焼結したり、ブロック体を焼結後に板状に切り出し加工したりするが、0.2mm未満では、非現実的であり、0.6mmを超えると、高い駆動電圧が必要になって電源が高価になるので好ましくない。
【0022】
金属板は、電気抵抗が低く、また後述する導電性接着剤の焼成温度より融点の高いものであることが好ましい。
かかる金属の具体例としては、銀、真鍮、銅、燐青銅及びステンレス等を挙げることができるが、これらに限定されるものではない。
また、上記金属板の厚さは、金属板自体は電歪を発生しないので、積層型圧電アクチュエータの効率の面からなるべく薄い方が好ましいが、積層体を構成したときに、隣接する圧電素子において、内部電極層の下層に低誘電率層を有する部位が接触しないように、20μm以上の厚さであることが好ましい。
【0023】
なお、金属板の円板部6(図3(a)参照)の直径は、積層体の作製時に低誘電率層5aと5a’に重ならない範囲で、なるべく大きな値とすることが好ましく、この場合、円弧状の低誘電率層の内径より0.6mm以上小さく設定することが好ましい。
【0024】
また、低誘電率層の被覆領域は、円弧形状の場合、その外径が圧電素子基板1の周囲に0.3mm以上の余白が残る範囲とすることが好ましい。
印刷焼成により作製する都合上、印刷誤差により圧電素子基板の側面に達しないのを確実にするためである。
なお、円弧の幅は、電圧緩和領域の確保のため、0.5〜2mmの範囲とすると効果的である。
【0025】
また、上記圧電素子基板の同一面に2個所設置される低誘電率層5aと5a’の間隔L(図3(b)参照)は、金属板2の接続用突起7と重ならないよう、接続用突起の幅よりも0.5mm以上広く確保することが好ましい。更に、上部の内部電極層4も印刷焼成にて作製するため、低誘電率層は5〜20μm程度の厚さであることが好ましい。
【0026】
更に、低誘電率層は、その比誘電率が、10〜2000の範囲であることが好ましい。理由は以下の通りである。
図2において、内部電極層4の下部に低誘電率層5が設置された部位は、一般に誘電率の高い圧電素子を低誘電率層で両側から挟んだ構成となっている。
ここで、図4に示すように、異なる比誘電率ε、εを有する誘電体を三層に重ねて電界を印加したとすると、全誘電体層において電束密度Dは等しいから、各誘電体中の電界E,Eの比は、次の(1)式に示すように、各々の比誘電率の逆数の比に等しい。
【0027】
【数1】

Figure 0004468510
【0028】
また、印加電圧Vは、各誘電体中の電界E,Eにそれぞれの膜厚d,dを乗じて和をとった値となる((2)式)。
【0029】
【数2】
Figure 0004468510
【0030】
そこで、圧電素子の比誘電率εのKε倍の比誘電率εなる低誘電率層を用いたとき、圧電素子に全電圧VのK倍の電圧が加わるとすると、簡単な計算により、両者は次の(3)式の関係にあることがわかる。
【0031】
【数3】
Figure 0004468510
【0032】
ここで、本発明の目的は、積層型圧電アクチュエータにおいて、圧電素子の内部電極層周辺から余白にかけての領域で、圧電素子に印加される電圧の降下が急峻になるのを抑制するものである。
従って、内部電極層4の下部に低誘電率層5が設置された部位の圧電素子に印加される電圧は、全電圧V0.25〜0.75であることが好ましいといえる。
【0033】
また、上述した圧電素子の好適厚さ0.2〜0.6mmと低誘電率層の厚さ5〜20μmを前提として、上記式(3)で計算すると、低誘電率層の比誘電率εは、圧電素子の比誘電率εの0.5〜60%の範囲にあることが好ましい。更に、圧電素子としてPZTセラミックスを使用する場合は、その比誘電率は通常2000〜5000の範囲にあるので、上述の如く、低誘電率層の比誘電率εは、10〜2000の範囲にあることが好ましい。
【0034】
上記誘電率層は、ε≦100の範囲ではTiO系の微粉末を、ε≦2000の範囲ではBaTiO系の微粉末を、ガラスフリットに適切な混合比に混合して印刷焼成することにより、作製可能である。
また、誘電体粉末を混合するガラスフリットは、PbO−SiO−Bを主成分とし、軟化点等の耐熱性が600℃以上のものが好ましい。600℃未満のものでは、後述するように、上層に内部電極層を印刷焼成する際に、焼成温度(300〜600℃)で溶融してしまうからである。
【0035】
なお、内部電極層の直径は、その周辺部分が低誘電率層上に位置するように、低誘電率層がなす円弧の外径よりも小さく設定されることが好ましい。
内部電極層に使用する導電性接着層用ペーストは、Ag等の金属粉末とガラス粉末を含有し、上記金属板が溶融しない温度(300〜600℃程度)でガラス粉末が溶融するものであることが好ましく、該ガラス粉末としてはZnO−SiO−B等が用いられるが、これに限定されるものではない。
【0036】
次に、本実施形態の積層型圧電アクチュエータの製造方法の一例について説明する。
まず、圧電アクチュエータ用材料として適している円板状のPZT系焼結体の両面をラッピング研磨して、直径14mm、厚さ0.3mmの圧電セラミック板(圧電素子基板1)を製造する。
次に、粒径3μm以下のBaTiO粉末をPbO、ZnO、SiO及びBを主成分とするガラス粉末中に、体積含有率40%となるように混合して、適切な樹脂バインダ溶剤を添加してペーストを作製し、圧電素子基板1の表面に図3(b)に示す形状を750℃で印刷・焼成して、厚さ10μmの低誘電率層5を形成する。
【0037】
低誘電率層は、円弧状の形状とし、外径を13mm、内径を11mm、2個所の円弧状パターンの間隔Lを3mmとして、圧電素子基板1のそれぞれの面(表裏面)で90°回転変位した配置とする(図3(b)、(c)及び(d)参照)。
更に、該圧電素子基板1の両面に、Ag等の金属粉末とガラス粉末を含有するペーストを印刷乾燥して直径12mm、厚さ10μmの厚膜とし、520℃で焼成して内部電極層4を作製する(図3(e)参照)。また、この際、内部電極層4の周辺部幅0.5mmの領域が、低誘電率層5に重なるようにする。
【0038】
一方、厚さ30μmのAg薄板を、2個所に幅2×長さ5.5mmの接続用突起部7を有する直径9mmの円板状に打ち抜き、図3(a)に示すような金属板2を製造する。
得られた金属板2を、低誘電率層5aと5bの間隔Lに接続用突起7が位置するように、圧電素子基板1上に重ねる(図3(e)参照)。
【0039】
この圧電素子基板1と金属板2の組み合わせを99枚用い、図1と図2に示すように、圧電素子基板1と金属板2を交互に積層して、金属板2の接続用突起7が一層おきに同じ位置(真上又は真下)に来るように、90゜ずつずらして配置された積層体3を組み上げる(図1及び図2参照)。
また、積層体3の上下端部(頂面及び底面)には、内部電極層4の形成に使用したAgペーストを予め印刷焼成した不活性板10を配設する(図1(a)参照)。
次いで、上述のようにして組み上げた積層体3を、適切な荷重で加圧しながら、520℃、30分で内部電極層を再溶融させ接合する。
【0040】
次に、積層体3の外周側面に突出した接続用突起7を積層体の軸方向(積層方向)に折り曲げ、一層おいた隣の接続用突起部7に半田で接合して、外部電極8を形成する(図2参照)。
このように、積層体3の外周側面の4個所に外部電極8を形成することにより、積層体を構成する100枚の金属板2は、外部電極8aと8a’により電気的に接続された50枚の金属板2と、外部電極8bと8b’により電気的に接続され、上記金属板50枚とは圧電素子1を隔てて絶縁されている他方の50枚の金属板2との2組に分けられる(図1(a))。
【0041】
更に、外部電極8aと8bの上にリード線9aと9bを半田により接合し、積層体3の外周側面をシリコーン樹脂で被覆し、脱泡処理を行い、外部電極と積層体側面の間隙に樹脂を完全に充填させた後、硬化させる。そして、積層体3の上下単板(不活性板10)を研削加工することにより、上下面の平行度を調整する。
しかる後、かかる積層体3を80℃のシリコーンオイル中に浸漬し、直流電源の正極にリード線9aを、負極に9bを接続し、圧電素子基板1に3kV/mmの電界を30分間印加して圧電素子基板1を分極処理し、本実施形態の積層型圧電アクチュエータを得る。
【0042】
【実施例】
(実施例)
上述の製造工程により得られた積層型圧電アクチュエータに、分極時の電界と同方向に500Vの直流電圧を印加したところ、40μm以上の変位が得られ、アクチュエータとして正常に機能することを確認した。
更に、本実施例の積層型圧電アクチュエータ10個を、湿度95%の環境で、0Vから500Vの交流電界を50Hzの周波数で印加し、1×10回連続駆動したが、圧電素子に亀裂は発生せず、全て正常に動作した。
【0043】
(比較例)
低誘電率層5を設けず、圧電素子基板1の表面に内部電極層4を直接作製した以外は、すべて実施例と同じ構成を採用して本例の積層型圧電アクチュエータを製造した。
得られたアクチュエータに、3kV/mmの電界を30分間印加して分極した結果、500Vの直流電圧により40μmの変位が得られた。
しかし、実施例と同様の条件下で、0Vから500Vの交流電界を50Hzの周波数で印加して1×10回連続駆動した結果、10個のうち7個に短絡が発生して駆動しなくなった。
また、短絡したアクチュエータの積層体側面を観察した結果、亀裂が発生している圧電素子が認められ、この部位を切断して観察したところ、内部電極層の周囲に亀裂が発生し、破断面で短絡が発生していた。
【0044】
以上、本発明を好適実施形態及び実施例により詳細に説明したが、本発明はこれらに限定されるものではなく、本発明の要旨の範囲内において種々の変形実施が可能である。
例えば、金属板の接続用突起7は2本のみならず、3本以上とすることが可能であり、これに対応して、低誘電率層の間隔Lの個数を調整すればよい。
また、積層体3の形状は円柱状に限定されるものではなく、多角柱状であってもよく、かかる形状に対応して、低誘電率層のパターン形状や間隔Lの個数を調整すればよい。
【0045】
【発明の効果】
以上説明したように、本発明によれば、圧電素子基板よりも比誘電率の低い低誘電率層、圧電素子基板と内部電極層の周辺部との間に介在するように、低誘電率層を圧電素子基板上に形成することとしたため、特異な形状の内部電極を用いることなく、圧電素子基板の内部電極周囲部位に印加される電界が、内部電極周辺部で連続的に小さくなり、繰り返し駆動させても圧電素子基板に亀裂が発生しない、信頼性の高い圧電素子及びこれを用いた積層型圧電アクチュエータを提供することができる。
【0046】
即ち、本発明の積層型圧電アクチュエータは、印刷内部電極層の周辺部と圧電素子基板との間に、圧電素子基板よりも比誘電率の低い低誘電率層介在するように、低誘電率層を圧電素子基板上に形成したことにより、低誘電率層下部の圧電素子に印加される電界が緩和され、圧電素子の内部電極層周辺部から周囲の余白部へかけての印加電界の変化が穏やかになるため、特異な形状の内部電極層を採用することなく、従来圧電素子に亀裂が発生していたような駆動電圧で長時間駆動させても、圧電素子の内部電極層周囲部に亀裂が発生することのない、信頼性が高い積層型圧電アクチュエータが得られる。
【図面の簡単な説明】
【図1】 本発明の積層型圧電アクチュエータの一実施例を示す斜視図及び上部端面図である。
【図2】図1に示す積層型圧電アクチュエータの部位Aを軸方向に切断した部分断面図である。
【図3】 図1に示す積層型圧電アクチュエータに使用される部品の形状を示す平面図である。
【図4】比誘電率εの誘電体を比誘電率εなる誘電体で挟んだ積層構造の誘電体において、各誘電体に印加される電界の分布を示す説明図である。
【図5】従来の積層型圧電アクチュエータの一例を示す斜視図である。
【図6】従来の積層型圧電アクチュエータを構成する圧電素子に電圧が印加された状態を示す横断面図及び縦断面図であって、内部電極層の形状及び印加電圧により電歪が発生した状態を示す。
【図7】図6に示す内部電極層の部位Aの従来例を示す部分平面図である。
【符号の説明】
1 圧電素子基板
2 金属板
3 積層体
4 内部電極層
5 低誘電率層
6 円板部
7 接続用突起部
8a、8a’、8b、8b’ 外部電極
9a、9b リード線
10 不活性板
101 圧電素子基板
102 金属板
103 舌状片部
104 帯状金属板
105 内部電極層
106 亀裂
A 積層型圧電アクチュエータの部位[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a piezoelectric element and a laminated piezoelectric actuator using the piezoelectric element, and more particularly to a laminated piezoelectric actuator using a longitudinal effect, such as a fuel injection valve of an automobile engine, an optical device, etc. The present invention relates to a laminated piezoelectric actuator used as an actuator for a precision positioning device and a vibration isolation mount for a vibration isolation table.
[0002]
[Prior art]
Conventionally, in order to obtain a large amount of displacement by applying the electrostrictive effect, a structure of a stacked piezoelectric actuator in which piezoelectric ceramic plates and internal electrode layers are alternately stacked has been proposed. A conventional example of such a multilayer piezoelectric actuator is disclosed in Japanese Patent Application Laid-Open No. 62-299093, and its configuration is shown in FIG.
[0003]
In FIG. 5, this multilayer piezoelectric actuator includes a piezoelectric element substrate 101 (FIG. 5 (c)) that has been pre-fired and processed and formed with a fired internal electrode layer 105 such as Ag on both surfaces, and a metal plate 102 (such as stainless steel). It is formed by alternately laminating FIG.
The metal plate 102 has three tongue-shaped pieces 103, and the metal plates 102 adjacent to each other with the piezoelectric element substrate 101 interposed therebetween are arranged with a phase shift of about 60 ° around the vertical axis. That is, the three tongue-like piece portions 103 of a certain metal plate 102 are positioned between the three tongue-like piece portions 103 of other adjacent metal plates 102 (see FIG. 5C). . The metal plates 102 in the same phase among the metal plates 102, that is, the tongue-like pieces 103 of the metal plates 102 arranged every other one, are electrically connected to each other by welding or soldering to the belt-like metal plate 104. They are connected (see FIG. 5A).
In the multilayer piezoelectric actuator having such a configuration, when a voltage is applied to the band-shaped metal plate 104, an electric field is applied to each piezoelectric element substrate 101, and each piezoelectric element generates a strain and functions as an actuator.
[0004]
[Problems to be solved by the invention]
In such a conventional multilayer piezoelectric actuator, the internal electrode layer 105 is formed by printing and firing in order to apply an electric field to both surfaces of each piezoelectric element substrate constituting the multilayer body. It is shown in 6 (a). In this case, it is necessary to cover and form the internal electrode layer leaving a blank portion at the periphery of the piezoelectric element substrate 101 so as not to be in electrical contact with the band-shaped metal plate 104 provided on the side surface of the laminate. is there.
When an electric field is applied to the internal electrode layer having such a shape, electrostriction occurs only in a portion of the piezoelectric element substrate 101 covered with the internal electrode layer 105 (see FIG. 6B).
[0005]
However, when the applied voltage increases in this state, the applied voltage drops sharply in the region from the periphery of the internal electrode layer of the piezoelectric element substrate to the blank portion, and as a result, the blank portion and the internal portion where no electrostriction occurs. Tensile stress is generated at the lower boundary of the electrode layer. Therefore, when such a multilayer piezoelectric actuator is driven for a long time, a stress is repeatedly applied around the internal electrode layer, a crack 106 is generated from this portion, and there is a problem that the piezoelectric element causes fatigue failure (see FIG. 6 (b)).
[0006]
In order to deal with this problem, Japanese Patent Laid-Open No. 2-35785 discloses that the shape around the internal electrode layer is deformed as shown in FIGS. It has been proposed that the internal electrode layer gradually disappears from the periphery to which no electric field is applied.
However, if the periphery of the internal electrode layer 105 has a saw-like shape as shown in FIG. 7A, the electric field toward the periphery of the piezoelectric element 101 is concentrated at the top of the saw, and the metal contained in the internal electrode layer material. There is a problem in that ions cause electromigration toward the periphery of the piezoelectric element substrate, and easily cause a short circuit with the belt-like metal plate 104 installed on the side surface of the laminate.
[0007]
On the other hand, as shown in FIG. 7B, in the case where a two- to three-fold extremely narrow electrode pattern is formed around the internal electrode layer 105b having a width of only about 1 mm, the area of the electrode pattern is set to 0. .5 mm or less, and there is a manufacturing problem that the positions of the internal electrode layers formed on both surfaces of the piezoelectric element substrate 101 must be precisely adjusted. When the area is widened, there is a problem that the area of the internal electrode layer is reduced correspondingly and the effective utilization rate of the piezoelectric element substrate is reduced.
[0008]
The present invention has been made in view of such problems of the prior art, and an electric field applied to a portion around the internal electrode of the piezoelectric element substrate without using an internal electrode having a specific shape is generated around the internal electrode. It is an object of the present invention to provide a highly reliable piezoelectric element and a stacked piezoelectric actuator using the same that are continuously reduced in size and do not crack even when repeatedly driven.
[0009]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have found that a low dielectric constant layer having a relative dielectric constant lower than that of the piezoelectric element substrate is interposed between the piezoelectric element substrate and the peripheral portion of the internal electrode layer. as to by Rukoto to form a low dielectric constant layer on the piezoelectric element on the substrate, it found that the above problems can be solved, and have completed the present invention.
[0010]
That is, the piezoelectric element of the present invention is a piezoelectric element formed by sandwiching a piezoelectric element substrate between internal electrode layers, wherein the low dielectric constant layer having a relative dielectric constant lower than that of the piezoelectric element substrate is the piezoelectric element substrate and the internal electrode layer. The low dielectric constant layer is formed on the piezoelectric element substrate so as to be interposed between the peripheral portion and the peripheral portion of the piezoelectric element substrate .
[0011]
In a preferred embodiment of the piezoelectric element of the present invention, the low dielectric constant layer has a relative dielectric constant in the range of 10 to 2,000.
[0012]
Furthermore, the multilayer piezoelectric actuator of the present invention includes a plurality of piezoelectric elements as described above, and a plurality of metal plates having connection protrusions sandwiched between the piezoelectric elements and electrically connected to the piezoelectric elements. A laminate obtained by laminating
A piezoelectric plate bonded to the upper and lower ends of the laminate and having end faces parallel to each other;
The projections for connection of the metal plate are alternately projected in two or more directions from between the piezoelectric elements, and the projections for connection are bent along the stacking direction of the laminated body and protruded in the same direction. It is characterized by being joined to the connection projection.
[0013]
[Action]
In the present invention, the low dielectric constant layer is arranged such that a low dielectric constant layer having a lower relative dielectric constant than the piezoelectric element substrate is interposed between the piezoelectric element substrate of the multilayer piezoelectric actuator and the peripheral portion of the internal electrode layer. Was formed on the piezoelectric element substrate . Therefore, the voltage applied to the piezoelectric element is suitably reduced in the peripheral portion of the internal electrode layer.
[0014]
That is, a low dielectric constant layer having a dielectric constant sufficiently lower than that of the piezoelectric element exists between the peripheral portion of the internal electrode layer and the piezoelectric element substrate surface below the internal electrode layer. Even if the low dielectric constant layer is formed on a film having a thickness of about 10 μm that can be manufactured by a printing and firing method, the low dielectric constant has a low relative dielectric constant so as to have a capacitance equivalent to that of a piezoelectric element having a thickness of several hundred μm. It is what you have. Therefore, the electric field applied to this region is distributed to the low dielectric constant layer and the piezoelectric element, and only about 1/2 of the total voltage is applied to the piezoelectric element.
As described above, by providing the region where the low dielectric constant layer is interposed at the boundary between the internal electrode layer and the margin around the electrode, the electric field applied to the piezoelectric element is temporarily reduced to 1/2 around the internal electrode layer. Since the margin is 0 after the reduction, the tensile stress in this region is relaxed, and the occurrence of fatigue failure can be avoided even when the electric field is repeatedly applied.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a piezoelectric element and a multilayer piezoelectric actuator according to the present invention will be described in detail with reference to the drawings with some embodiments.
[0016]
FIG. 1 is a perspective view showing an embodiment of the multilayer piezoelectric actuator of the present invention, and FIG. 2 is a partial sectional view of this actuator.
In FIG. 2, in this actuator, plate-like piezoelectric element substrates 1 and metal plates 2 are alternately laminated to constitute a laminate 3. An internal electrode layer 4 is provided between the piezoelectric element substrate 1 and the metal plate 2, and both are joined and the surface of the piezoelectric element substrate 1 and the metal plate 2 are electrically joined. Also, a low dielectric constant layer 5 is formed between the peripheral portion of the internal electrode layer 4 and the piezoelectric element substrate 1 to constitute the piezoelectric element of the present invention, and is applied to the piezoelectric element around the internal electrode layer. The voltage is relaxed.
[0017]
FIG. 3 is a plan view showing a configuration of a metal plate or a piezoelectric element in the multilayer piezoelectric actuator of the present invention.
The metal plate 2 has a structure shown in FIG. 3A and includes a disc portion 6 and a connection projection 7.
Further, as shown in FIG. 2B, arc-shaped low dielectric constant layers 5a and 5a ′ are formed on one surface of the piezoelectric element substrate 1 at a portion corresponding to the peripheral portion of the internal electrode layer. An internal electrode layer 4 is formed on the top (see FIG. 3C).
On the other hand, on the other surface of the piezoelectric element substrate 1, low dielectric constant layers 5b and 5b ′ are formed at positions that are rotated and displaced by 90 ° with respect to the low dielectric constant layer formed on one surface. Further, the internal electrode layer is covered (see FIG. 3D).
Further, in this actuator, as shown in FIG. 3 (e), the metal plate 2 and the piezoelectric element substrate 1 are arranged so that the connection protrusions 7 are located at a portion where the low dielectric constant layer is not formed.
[0018]
In the actuator of the present invention, the metal plate or piezoelectric element as described above is laminated to form a laminated body. At that time, as shown in FIG. , 8a ′ and 8b, 8b ′ are positioned 90 ° displaced around the axis of the laminate. By arranging the metal plate 2 in this way, the same voltage can be applied to the stacked metal plates 2 in a single layer.
That is, in FIG. 2, the connection projections 7 of the metal plate 2 protruding from the outer periphery of the laminate 3 are bent along the stacking direction and electrically connected by welding, soldering, etc. every other layer. Constitute. In this case, the “stacking direction” refers to the vertical direction in FIG.
[0019]
Furthermore, in the actuator of the present invention, as shown in FIG. 1A, lead wires 9a and 9b are connected to the external electrodes 8a and 8b, and a voltage is applied to the lead wires, whereby the laminate 3 A voltage is applied to each piezoelectric element.
Note that an inert plate 10 is bonded to the upper and lower ends of the laminate 3 (top and bottom in FIG. 1A) by an adhesive.
[0020]
Next, the materials and dimensions of the various components described above will be described.
Examples of the piezoelectric element substrate 1 include a sintered body mainly composed of lead zirconate titanate Pb (ZrTi) O 3 and (PZT). However, the piezoelectric element substrate 1 is not limited to this and is made of ceramic having piezoelectricity. sufficient if, it is preferable to use a large piezoelectric constant d 33. The shape of the piezoelectric element substrate 1 may be circular or rectangular.
[0021]
The piezoelectric element substrate preferably has a thickness of 0.2 mm to 0.6 mm.
In the actuator of the present invention, the pre-sintered element substrate is laminated and formed into a plate shape or sintered, or the block body is cut into a plate shape after sintering, but if less than 0.2 mm, It is unrealistic, and if it exceeds 0.6 mm, a high drive voltage is required and the power supply becomes expensive, which is not preferable.
[0022]
The metal plate preferably has a low electric resistance and a melting point higher than the firing temperature of the conductive adhesive described later.
Specific examples of such metals include, but are not limited to, silver, brass, copper, phosphor bronze, and stainless steel.
Further, the metal plate itself does not generate electrostriction. Therefore, the thickness of the metal plate is preferably as thin as possible from the viewpoint of the efficiency of the multilayer piezoelectric actuator. The thickness is preferably 20 μm or more so that the portion having the low dielectric constant layer does not contact the lower layer of the internal electrode layer.
[0023]
The diameter of the disk portion 6 (see FIG. 3A) of the metal plate is preferably as large as possible as long as it does not overlap the low dielectric constant layers 5a and 5a ′ during the production of the laminate. In this case, it is preferable to set the inner diameter of the arc-shaped low dielectric constant layer to be smaller by 0.6 mm or more.
[0024]
Further, in the case where the low dielectric constant layer has a circular arc shape, it is preferable that the outer diameter of the low dielectric constant layer is in a range where a margin of 0.3 mm or more remains around the piezoelectric element substrate 1.
This is to ensure that the side surface of the piezoelectric element substrate is not reached due to a printing error for the convenience of manufacturing by printing and baking.
Note that it is effective that the width of the arc is in the range of 0.5 to 2 mm in order to secure the voltage relaxation region.
[0025]
Further, the connection L is made so that the interval L (see FIG. 3B) between the low dielectric constant layers 5a and 5a ′ installed at two places on the same surface of the piezoelectric element substrate does not overlap with the connection protrusion 7 of the metal plate 2. It is preferable to secure 0.5 mm or more wider than the width of the projection. Furthermore, since the upper internal electrode layer 4 is also produced by printing and firing, the low dielectric constant layer is preferably about 5 to 20 μm thick.
[0026]
Further, the low dielectric constant layer preferably has a relative dielectric constant in the range of 10 to 2000. The reason is as follows.
In FIG. 2, the portion where the low dielectric constant layer 5 is disposed below the internal electrode layer 4 generally has a structure in which a piezoelectric element having a high dielectric constant is sandwiched between the low dielectric constant layers from both sides.
Here, as shown in FIG. 4, when an electric field is applied with three dielectric layers having different relative dielectric constants ε p and ε x , the electric flux density D is equal in all dielectric layers. The ratio of the electric fields E x and E p in the dielectric is equal to the ratio of the reciprocal of each relative dielectric constant, as shown in the following equation (1).
[0027]
[Expression 1]
Figure 0004468510
[0028]
Further, the applied voltage V T is a value obtained by multiplying the electric fields E x and E p in the dielectrics by the film thicknesses d x and d p (Equation (2)).
[0029]
[Expression 2]
Figure 0004468510
[0030]
Therefore, when a low dielectric constant layer having a relative dielectric constant ε x that is K ε times the relative dielectric constant ε p of the piezoelectric element is used, a voltage of K V times the total voltage V T is applied to the piezoelectric element. The calculation shows that both are in the relationship of the following equation (3).
[0031]
[Equation 3]
Figure 0004468510
[0032]
Here, an object of the present invention is to suppress a steep drop in the voltage applied to the piezoelectric element in the region from the periphery of the internal electrode layer of the piezoelectric element to the margin in the multilayer piezoelectric actuator.
Therefore, it can be said that the voltage applied to the piezoelectric element at the portion where the low dielectric constant layer 5 is disposed below the internal electrode layer 4 is preferably the total voltage V T 0.25 to 0.75.
[0033]
Further, assuming that the above-described piezoelectric element has a preferable thickness of 0.2 to 0.6 mm and a thickness of the low dielectric constant layer of 5 to 20 μm, the relative dielectric constant ε of the low dielectric constant layer is calculated by the above equation (3). x is preferably in the range of 0.5 to 60% of the relative dielectric constant ε p of the piezoelectric element. Further, when PZT ceramics are used as the piezoelectric element, the relative dielectric constant is usually in the range of 2000 to 5000, so that the relative dielectric constant ε x of the low dielectric constant layer is in the range of 10 to 2000 as described above. Preferably there is.
[0034]
The dielectric constant layer is printed and fired by mixing TiO-based fine powder in the range of ε x ≦ 100 and BaTiO 3 -based fine powder in the range of ε x ≦ 2000 in a mixing ratio suitable for the glass frit. Can be produced.
The glass frit mixed with the dielectric powder is preferably composed mainly of PbO—SiO 2 —B 2 O 3 and having a heat resistance such as a softening point of 600 ° C. or higher. When the temperature is lower than 600 ° C., as will be described later, when the internal electrode layer is printed and fired on the upper layer, it melts at the firing temperature (300 to 600 ° C.).
[0035]
The diameter of the internal electrode layer is preferably set smaller than the outer diameter of the arc formed by the low dielectric constant layer so that the peripheral portion thereof is located on the low dielectric constant layer.
The conductive adhesive layer paste used for the internal electrode layer contains a metal powder such as Ag and glass powder, and the glass powder melts at a temperature at which the metal plate does not melt (about 300 to 600 ° C.). ZnO—SiO 2 —B 2 O 3 or the like is used as the glass powder, but is not limited thereto.
[0036]
Next, an example of a manufacturing method of the multilayer piezoelectric actuator of this embodiment will be described.
First, both sides of a disk-shaped PZT sintered body suitable as a piezoelectric actuator material are lapped and polished to produce a piezoelectric ceramic plate (piezoelectric element substrate 1) having a diameter of 14 mm and a thickness of 0.3 mm.
Next, a BaTiO 3 powder having a particle size of 3 μm or less is mixed in a glass powder containing PbO, ZnO, SiO 2 and B 2 O 3 as main components so that the volume content is 40%, and an appropriate resin binder is obtained. A paste is prepared by adding a solvent, and the shape shown in FIG. 3B is printed and fired at 750 ° C. on the surface of the piezoelectric element substrate 1 to form a low dielectric constant layer 5 having a thickness of 10 μm.
[0037]
The low dielectric constant layer has an arc shape, an outer diameter of 13 mm, an inner diameter of 11 mm, an interval L between two arc-shaped patterns of 3 mm, and rotated by 90 ° on each surface (front and back surfaces) of the piezoelectric element substrate 1. It is set as the displaced arrangement | positioning (refer FIG.3 (b), (c) and (d)).
Further, a paste containing a metal powder such as Ag and glass powder is printed and dried on both surfaces of the piezoelectric element substrate 1 to form a thick film having a diameter of 12 mm and a thickness of 10 μm, and firing at 520 ° C. to form the internal electrode layer 4. It is manufactured (see FIG. 3 (e)). At this time, a region having a peripheral width of 0.5 mm of the internal electrode layer 4 is overlapped with the low dielectric constant layer 5.
[0038]
On the other hand, an Ag thin plate having a thickness of 30 μm is punched into a disk shape having a diameter of 9 mm and having connecting projections 7 having a width of 2 × length of 5.5 mm at two locations, and a metal plate 2 as shown in FIG. Manufacturing.
The obtained metal plate 2 is overlaid on the piezoelectric element substrate 1 so that the connection protrusions 7 are positioned at the distance L between the low dielectric constant layers 5a and 5b (see FIG. 3E).
[0039]
99 combinations of the piezoelectric element substrate 1 and the metal plate 2 are used, and the piezoelectric element substrates 1 and the metal plates 2 are alternately laminated as shown in FIGS. The laminated bodies 3 arranged so as to be shifted by 90 ° so as to come to the same position (directly above or directly below) every other layer are assembled (see FIGS. 1 and 2).
In addition, on the upper and lower end portions (top surface and bottom surface) of the laminate 3, an inert plate 10 in which the Ag paste used for forming the internal electrode layer 4 is printed and fired in advance is disposed (see FIG. 1A). .
Subsequently, the laminated body 3 assembled as described above is joined by remelting the internal electrode layer at 520 ° C. for 30 minutes while pressing with an appropriate load.
[0040]
Next, the connection protrusions 7 protruding from the outer peripheral side surface of the laminate 3 are bent in the axial direction (stacking direction) of the laminate, and joined to the adjacent connection protrusions 7 by soldering, and the external electrode 8 is attached. Form (see FIG. 2).
Thus, by forming the external electrodes 8 at four locations on the outer peripheral side surface of the multilayer body 3, the 100 metal plates 2 constituting the multilayer body are electrically connected by the external electrodes 8a and 8a ′. The two metal plates 2 are electrically connected by external electrodes 8b and 8b ', and the other 50 metal plates 2 are insulated from the 50 metal plates with the piezoelectric element 1 therebetween. They are divided (FIG. 1 (a)).
[0041]
Furthermore, the lead wires 9a and 9b are joined to the external electrodes 8a and 8b by soldering, the outer peripheral side surface of the laminate 3 is covered with silicone resin, defoaming treatment is performed, and the resin is placed in the gap between the external electrode and the side surface of the laminate Is completely filled and then cured. And the parallelism of an up-and-down surface is adjusted by grinding the upper-and-lower single board (inactive board 10) of the laminated body 3. FIG.
Thereafter, the laminate 3 is immersed in silicone oil at 80 ° C., the lead wire 9a is connected to the positive electrode of the DC power source, the negative electrode 9b is connected, and an electric field of 3 kV / mm is applied to the piezoelectric element substrate 1 for 30 minutes. Then, the piezoelectric element substrate 1 is polarized to obtain the multilayer piezoelectric actuator of this embodiment.
[0042]
【Example】
(Example)
When a DC voltage of 500 V was applied to the laminated piezoelectric actuator obtained by the above manufacturing process in the same direction as the electric field during polarization, a displacement of 40 μm or more was obtained, and it was confirmed that the actuator functions normally.
Furthermore, 10 laminated piezoelectric actuators of this example were continuously driven 1 × 10 8 times by applying an AC electric field of 0 V to 500 V at a frequency of 50 Hz in an environment of 95% humidity. It did not occur and everything worked fine.
[0043]
(Comparative example)
Except that the low dielectric constant layer 5 was not provided and the internal electrode layer 4 was directly formed on the surface of the piezoelectric element substrate 1, the same configuration as that of the example was adopted to manufacture the laminated piezoelectric actuator of this example.
As a result of applying an electric field of 3 kV / mm to the obtained actuator for 30 minutes for polarization, a displacement of 40 μm was obtained with a DC voltage of 500 V.
However, under the same conditions as in the example, an AC electric field of 0 V to 500 V was applied at a frequency of 50 Hz and continuously driven 1 × 10 7 times. As a result, 7 out of 10 were short-circuited and could not be driven. It was.
Also, as a result of observing the side surface of the short-circuited actuator laminate, a cracked piezoelectric element was found, and when this part was cut and observed, a crack occurred around the internal electrode layer, and the fracture surface A short circuit occurred.
[0044]
As mentioned above, although this invention was demonstrated in detail by suitable embodiment and an Example, this invention is not limited to these, A various deformation | transformation implementation is possible within the range of the summary of this invention.
For example, the number of the projections 7 for connecting the metal plate can be not only two but three or more, and the number of the low dielectric constant layer intervals L may be adjusted accordingly.
Moreover, the shape of the laminated body 3 is not limited to a cylindrical shape, and may be a polygonal column shape, and the pattern shape of the low dielectric constant layer and the number of intervals L may be adjusted in accordance with such a shape. .
[0045]
【The invention's effect】
As described above, according to the present invention, as low dielectric constant than the piezoelectric element substrate low dielectric layer is interposed between the peripheral portion of the piezoelectric element substrate and the internal electrode layers, a low dielectric constant Since the layer is formed on the piezoelectric element substrate, the electric field applied to the internal electrode peripheral portion of the piezoelectric element substrate is continuously reduced at the peripheral portion of the internal electrode without using an internal electrode having a specific shape, It is possible to provide a highly reliable piezoelectric element that does not cause cracks in the piezoelectric element substrate even when it is repeatedly driven, and a laminated piezoelectric actuator using the piezoelectric element.
[0046]
That is, the multilayer piezoelectric actuator of the present invention has a low dielectric constant so that a low dielectric constant layer having a lower relative dielectric constant than the piezoelectric element substrate is interposed between the periphery of the printed internal electrode layer and the piezoelectric element substrate. By forming the layer on the piezoelectric element substrate, the electric field applied to the piezoelectric element below the low dielectric constant layer is relaxed, and the applied electric field from the peripheral part of the internal electrode layer of the piezoelectric element to the surrounding margin part is reduced. Because the change is gentle, even if it is driven for a long time with a driving voltage like a crack in a conventional piezoelectric element without adopting an internal electrode layer with a unique shape, the periphery of the internal electrode layer of the piezoelectric element It is possible to obtain a highly reliable stacked piezoelectric actuator that does not crack.
[Brief description of the drawings]
FIG. 1 is a perspective view and an upper end view showing an embodiment of a laminated piezoelectric actuator of the present invention.
FIG. 2 is a partial cross-sectional view of a portion A of the multilayer piezoelectric actuator shown in FIG. 1 cut in the axial direction.
FIG. 3 is a plan view showing the shape of a part used in the multilayer piezoelectric actuator shown in FIG.
In Figure 4 across the dielectric of relative permittivity epsilon p in the dielectric constant epsilon x becomes dielectric dielectric laminated structure is an explanatory diagram showing a distribution of an electric field applied to the dielectric.
FIG. 5 is a perspective view showing an example of a conventional multilayer piezoelectric actuator.
FIGS. 6A and 6B are a transverse sectional view and a longitudinal sectional view showing a state in which a voltage is applied to a piezoelectric element constituting a conventional multilayer piezoelectric actuator, in which electrostriction is generated by the shape of the internal electrode layer and the applied voltage. Indicates.
7 is a partial plan view showing a conventional example of a portion A of the internal electrode layer shown in FIG. 6. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Piezoelectric element board | substrate 2 Metal plate 3 Laminate body 4 Internal electrode layer 5 Low dielectric constant layer 6 Disc part 7 Projection part 8a, 8a ', 8b, 8b' External electrode 9a, 9b Lead wire 10 Inactive board 101 Piezoelectric Element substrate 102 Metal plate 103 Tongue piece 104 Band-shaped metal plate 105 Internal electrode layer 106 Crack A Location of the laminated piezoelectric actuator

Claims (3)

圧電素子基板を内部電極層で挟持して成る圧電素子において、上記圧電素子基板より比誘電率の低い低誘電率層、上記圧電素子基板と上記内部電極層の周辺部との間に介在するように、上記低誘電率層を上記圧電素子基板上に形成して成ることを特徴とする圧電素子。In the piezoelectric element formed by sandwiching the piezoelectric element substrate in the internal electrode layer, a lower low dielectric layer having a relative dielectric constant than the piezoelectric element substrate is interposed between the peripheral portion of the piezoelectric element substrate and the internal electrode layer As described above, a piezoelectric element comprising the low dielectric constant layer formed on the piezoelectric element substrate . 上記低誘電率層の比誘電率が10〜2000の範囲にあることを特徴とする請求項1記載の圧電素子。2. The piezoelectric element according to claim 1, wherein the relative dielectric constant of the low dielectric constant layer is in the range of 10 to 2,000. 請求項1又は2記載の複数枚の圧電素子と、上記圧電素子の間に挟持されて該圧電素子に電気接続された、接続用突起を有する複数枚の金属板とを積層した積層体と、
この積層体の上下端部に接合され、相互に平行な端面を有する圧電板とを具備し、
上記金属板の接続用突起を2以上の方向に上記圧電素子の間より交互に突出させ、この接続用突起を上記積層体の積層方向に沿って折曲して、同一方向に突出させた他の接続用突起に接合して成る、ことを特徴とする積層型圧電アクチュエータ。
A laminate in which a plurality of piezoelectric elements according to claim 1 or 2 and a plurality of metal plates having connection protrusions sandwiched between the piezoelectric elements and electrically connected to the piezoelectric elements are laminated,
A piezoelectric plate bonded to the upper and lower ends of the laminate and having end faces parallel to each other;
The projections for connecting the metal plate are alternately projected from between the piezoelectric elements in two or more directions, and the projections for connection are bent along the stacking direction of the laminated body and protruded in the same direction. A laminated piezoelectric actuator characterized in that it is joined to a connecting projection.
JP10114199A 1999-04-08 1999-04-08 Piezoelectric element and multilayer piezoelectric actuator Expired - Fee Related JP4468510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10114199A JP4468510B2 (en) 1999-04-08 1999-04-08 Piezoelectric element and multilayer piezoelectric actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10114199A JP4468510B2 (en) 1999-04-08 1999-04-08 Piezoelectric element and multilayer piezoelectric actuator

Publications (2)

Publication Number Publication Date
JP2000294843A JP2000294843A (en) 2000-10-20
JP4468510B2 true JP4468510B2 (en) 2010-05-26

Family

ID=14292817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10114199A Expired - Fee Related JP4468510B2 (en) 1999-04-08 1999-04-08 Piezoelectric element and multilayer piezoelectric actuator

Country Status (1)

Country Link
JP (1) JP4468510B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004002133A1 (en) * 2004-01-15 2005-08-04 Robert Bosch Gmbh Piezoelectric actuator
JP5153093B2 (en) * 2006-06-28 2013-02-27 京セラ株式会社 Multilayer piezoelectric element
JP5669443B2 (en) * 2010-05-31 2015-02-12 キヤノン株式会社 Vibrating body, manufacturing method thereof, and vibration wave actuator
JP6035773B2 (en) * 2012-02-22 2016-11-30 日本特殊陶業株式会社 Multilayer piezoelectric actuator and manufacturing method thereof
CN113794400B (en) * 2021-09-16 2023-08-04 黑龙江迪米电陶科技有限公司 Laminated piezoelectric ceramic high-speed deflection mirror structure and manufacturing process thereof

Also Published As

Publication number Publication date
JP2000294843A (en) 2000-10-20

Similar Documents

Publication Publication Date Title
JP4358220B2 (en) Multilayer piezoelectric element
JP5087914B2 (en) Multilayer piezoelectric element
JP4843948B2 (en) Multilayer piezoelectric element
KR20000052836A (en) Piezo electric actuator with a new type of contacting and a method for the production thereof
WO2007114002A1 (en) Piezoelectric actuator
JP5141046B2 (en) Multilayer piezoelectric element
JP4468510B2 (en) Piezoelectric element and multilayer piezoelectric actuator
JP2013211419A (en) Lamination type piezoelectric element and piezoelectric actuator
JP5429141B2 (en) Piezoelectric actuator and method for manufacturing piezoelectric actuator
JPH11186626A (en) Laminated piezoelectric actuator
JP2007019420A (en) Stacked piezoelectric element
JP2001210886A (en) Stacked type piezoelectric actuator
JP5068936B2 (en) Manufacturing method of multilayer piezoelectric element
JP3506614B2 (en) Multilayer piezoelectric actuator
JP4498300B2 (en) Method for manufacturing multilayer piezoelectric element and multilayer piezoelectric element
JP2000340849A (en) Stacked piezoelectric actuator
JPH1174576A (en) Laminated piezoelectric actuator
JPH11195818A (en) Laminated type piezoelectric actuator and manufacture therefor
JPH11135851A (en) Laminated piezo electric actuator
JPH04273183A (en) Piezoelectric effect element and electrostriction effect element and its manufacture
JP3250918B2 (en) Multilayer piezoelectric element
JP3377922B2 (en) Multilayer piezoelectric actuator
JP3968408B2 (en) Multilayer piezoelectric actuator
JP4373904B2 (en) Multilayer piezoelectric element
JP2006191149A (en) Manufacturing method of laminated type piezoelectric element, and the laminated type piezoelectric element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060405

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100225

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees