JPH10300570A - Pyroelectric infrared ray detection element - Google Patents

Pyroelectric infrared ray detection element

Info

Publication number
JPH10300570A
JPH10300570A JP11316897A JP11316897A JPH10300570A JP H10300570 A JPH10300570 A JP H10300570A JP 11316897 A JP11316897 A JP 11316897A JP 11316897 A JP11316897 A JP 11316897A JP H10300570 A JPH10300570 A JP H10300570A
Authority
JP
Japan
Prior art keywords
substrate
litao
single crystal
region
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11316897A
Other languages
Japanese (ja)
Inventor
Chomei Matsushima
朝明 松嶋
Hiroyuki Yagyu
博之 柳生
Yoshihiro Matsumura
吉浩 松村
Motoo Igari
素生 井狩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP11316897A priority Critical patent/JPH10300570A/en
Publication of JPH10300570A publication Critical patent/JPH10300570A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an infrared ray detection element wherein a popcorn noise is reduced. SOLUTION: Relating to the element, an electrode 2 which is an infrared ray detection region is so formed as to face both sides of substrate 1 of single crystal LiTaO3 . Relating to the substrate 1 of single crystal LiTaO3 between facing electrodes 2, the orientation of a spontaneous polarization is a single single-division structure region 1a, while the orientation of the spontaneous polarization is a random multi-division structure region 1b, relating to such region as other than the single-division structure region 1a of the substrate 1 of single crystal LiTaO3 .

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、焦電型赤外線検出
素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pyroelectric infrared detecting element.

【0002】[0002]

【従来の技術】従来の赤外線検出素子においては、焦電
材料としてジルコニウム(Zr)を添加したチタン酸鉛
(Pb(Zr,Ti)O3:PZT(米国のクレバイト社の登録
商標)や、ランタン(La)を添加したチタン酸鉛(Pb
(La,Ti)O3)等の圧電セラミック材料やそれらと同じ
仲間の複合酸化膜等が広く使われている。
In conventional infrared detecting element, lead titanate (Pb (Zr was added zirconium (Zr) as the pyroelectric material, Ti) O 3: PZT (registered trademark of the Kurebaito Inc.) and, lanthanum (La) -added lead titanate (Pb
Piezoelectric ceramic materials such as (La, Ti) O 3 ) and composite oxide films of the same family as those are widely used.

【0003】焦電型赤外線検出素子は、焦電基板を分極
処理することにより得られた焦電体の表面及び裏面に対
向するように赤外線検出部としての電極が形成された構
成である。
The pyroelectric infrared detecting element has a structure in which an electrode serving as an infrared detecting unit is formed so as to face the front and back surfaces of a pyroelectric body obtained by subjecting a pyroelectric substrate to polarization processing.

【0004】ここで、焦電型赤外線検出素子の検出原理
について説明する。図7は、焦電型赤外線検出素子の検
出原理を示す模式図であり、(a)は赤外線入射前の電
極2形成領域における平衡状態を示し、(b)は赤外線
入射時の電極2形成領域における状態を示し、(c)は
赤外線入射後の電極2形成領域における平衡状態を示
す。焦電体7内の自発分極により生じている電荷は、図
7(a)に示すように、空気中のイオンや電子等の浮遊
電荷により電気的に中和されており、図7(b)に示す
ように、焦電体7に赤外線が入射されると結晶内部の温
度が上昇し、格子間隔が広がり、そのために電気分極の
大きさが変化する。
Here, the detection principle of the pyroelectric infrared detecting element will be described. 7A and 7B are schematic diagrams showing the detection principle of the pyroelectric infrared detecting element, wherein FIG. 7A shows an equilibrium state in the electrode 2 forming region before infrared rays are incident, and FIG. And (c) shows an equilibrium state in the electrode 2 formation region after infrared rays are incident. The charge generated by the spontaneous polarization in the pyroelectric body 7 is electrically neutralized by floating charges such as ions and electrons in the air as shown in FIG. As shown in (2), when infrared rays are incident on the pyroelectric body 7, the temperature inside the crystal rises, the lattice spacing increases, and the magnitude of the electric polarization changes.

【0005】この分極の変化に対応し、焦電体7の電極
2が形成された領域の表面では、電荷の平行状態が崩
れ、出力が発生する。このときの電圧を測定し、赤外線
を検出する。その後、図7(c)に示すように、通常は
空気中の浮遊電荷により焦電体7の電極2が形成された
領域の表面の電荷は中和され、平衡状態となる。
In response to the change in the polarization, the parallel state of the charges is broken on the surface of the area where the electrode 2 of the pyroelectric body 7 is formed, and an output is generated. The voltage at this time is measured, and infrared rays are detected. Thereafter, as shown in FIG. 7 (c), the electric charge on the surface of the area where the electrode 2 of the pyroelectric body 7 is formed is usually neutralized by the floating electric charge in the air, and the equilibrium state is established.

【0006】このため、上述の圧電セラミック材料等に
おいても当然ながら分極方向を一定に揃えておくことが
必要である。
For this reason, it is, of course, necessary to keep the polarization direction constant even in the above-mentioned piezoelectric ceramic material and the like.

【0007】[0007]

【発明が解決しようとする課題】これらの焦電型赤外線
検出素子は、優れた感度特性を示し、現実に幅広く商品
化されているが、使用環境の温度変化により突発的なノ
イズ(ポプコンノイズ)が発生するといった問題があ
る。このポプコンノイズの原因はいろいろ研究されてき
たが、未だに原因は解明されていない。
These pyroelectric infrared detectors have excellent sensitivity characteristics and are actually widely commercialized. However, sudden noise (popcon noise) due to temperature changes in the use environment. There is a problem that occurs. Various causes of this popcon noise have been studied, but the cause has not been elucidated yet.

【0008】原因が解明されていないために、工業的に
は完成品である素子をノイズ試験にかけ、ポプコンノイ
ズの発生しない素子を選別しているといった状況であ
り、必然と素子のコストアップとなっている。
Since the cause has not been clarified, industrially completed devices are subjected to a noise test to select devices that do not generate popcon noise, which inevitably increases the cost of the devices. ing.

【0009】焦電型赤外線検出素子の研究,開発及び製
造に関わる者にとってはこのポプコンノイズの原因解明
及びその対策を施し、ポプコンノイズが発生しない焦電
型赤外線検出素子を再現性良く量産できることが長年の
夢である。
[0009] For those involved in the research, development and manufacture of pyroelectric infrared detectors, it is necessary to elucidate the cause of this popcon noise and take countermeasures to mass-produce pyroelectric infrared detectors that do not generate popcon noise with good reproducibility. It is a dream for many years.

【0010】本発明は、上記の点に鑑みて成されたもの
であり、その目的とするところは、ポプコンノイズを低
減することのできる焦電型赤外線検出素子を提供するこ
とにある。
[0010] The present invention has been made in view of the above points, and an object of the present invention is to provide a pyroelectric infrared detection element capable of reducing popcon noise.

【0011】[0011]

【課題を解決するための手段】請求項1記載の発明は、
分極処理されて成る単結晶LiTaO3基板と、該単結晶LiTa
O3基板の両面に対向するように形成された電極とを有し
て成る焦電型赤外線検出素子において、前記単結晶LiTa
O3基板における前記電極の形成領域を自発分極の方向が
一定である単分極構造とし、前記単結晶LiTaO3基板にお
ける前記電極の形成領域以外を、自発分極の方向がラン
ダムである多分域構造としたことを特徴とするものであ
る。
According to the first aspect of the present invention,
Polarized single-crystal LiTaO 3 substrate, and the single-crystal LiTa
An electrode formed so as to face both sides of an O 3 substrate, wherein the single-crystal LiTa
The region where the electrode is formed on the O 3 substrate has a unipolar structure in which the direction of spontaneous polarization is constant, and the region other than the region where the electrode is formed on the single crystal LiTaO 3 substrate has a multi-domain structure in which the direction of the spontaneous polarization is random. It is characterized by having done.

【0012】請求項2記載の発明は、請求項1記載の焦
電型赤外線検出素子において、自発分極の方向が一定で
ある前記単結晶LiTaO3基板の温度を一旦LiTaO3のキュリ
ー点以上に上昇させて、前記単結晶LiTaO3基板を強誘電
体から常誘電体に転移させた後に、前記電極に電界を印
加しながら温度を下げることにより、前記単結晶LiTaO3
基板における前記電極の形成領域以外を、自発分極の方
向がランダムである多分域構造としたことを特徴とする
ものである。
According to a second aspect of the present invention, in the pyroelectric infrared detecting element according to the first aspect, the temperature of the single-crystal LiTaO 3 substrate, in which the direction of spontaneous polarization is constant, is once increased to the Curie point of LiTaO 3 or more. Then, after the single-crystal LiTaO 3 substrate is changed from a ferroelectric to a paraelectric, the temperature is lowered while applying an electric field to the electrode, thereby obtaining the single-crystal LiTaO 3.
A region other than the electrode formation region on the substrate has a multi-domain structure in which the direction of spontaneous polarization is random.

【0013】請求項3記載の発明は、請求項1記載の焦
電型赤外線検出素子において、自発分極の方向が一定で
ある前記単結晶LiTaO3基板における前記多分域構造領域
となる箇所にAlマスクを形成した後、前記単結晶LiTa
O3基板を安息香酸中に入れてプロトン置換処理を行い、
一定時間熱処理を行って分極反転させることにより、前
記単結晶LiTaO3基板における前記電極の形成領域以外
を、自発分極の方向がランダムである多分域構造とした
ことを特徴とするものである。
According to a third aspect of the present invention, there is provided the pyroelectric infrared detecting element according to the first aspect, wherein an Al mask is provided on the single-crystal LiTaO 3 substrate where the direction of the spontaneous polarization is constant, where the multi-domain structure region is formed. After forming the single crystal LiTa
O 3 substrate is put in benzoic acid to perform proton substitution treatment,
By subjecting the single crystal LiTaO3 substrate to a region other than the electrode formation region, a spontaneous polarization direction is random in a multi-domain structure by performing a heat treatment for a certain time to invert the polarization.

【0014】請求項4記載の発明は、請求項1記載の焦
電型赤外線検出素子において、自発分極の方向が一定で
ある前記単結晶LiTaO3基板における前記多分域構造領域
となる箇所にAlマスクを形成した後、イオン注入法に
よりプロトンイオンを注入し、アニール処理を行うこと
により、前記単結晶LiTaO3基板における前記電極の形成
領域以外を、自発分極の方向がランダムである多分域構
造としたことを特徴とするものである。
According to a fourth aspect of the present invention, there is provided the pyroelectric infrared detecting element according to the first aspect, wherein an Al mask is provided on the single-crystal LiTaO 3 substrate where the direction of the spontaneous polarization is constant, where the multi-domain structure region is formed. After the formation, proton ions are implanted by an ion implantation method, and annealing is performed to obtain a multi-domain structure in which the direction of spontaneous polarization is random except for the region where the electrode is formed on the single-crystal LiTaO 3 substrate. It is characterized by the following.

【0015】請求項5記載の発明は、請求項1記載の焦
電型赤外線検出素子において、自発分極の方向が一定で
ある前記単結晶LiTaO3基板における前記多分域構造領域
となる箇所に、レーザビームを照射することにより、前
記単結晶LiTaO3基板における前記多分域構造領域となる
箇所の温度を一旦LiTaO3のキュリー点以上に上昇させ
て、単結晶LiTaO3基板の温度を下げることにより、前記
単結晶LiTaO3基板における前記電極の形成領域以外を、
自発分極の方向がランダムである多分域構造としたこと
を特徴とするものである。
According to a fifth aspect of the present invention, there is provided the pyroelectric infrared detecting element according to the first aspect, wherein a laser is provided in the single-crystal LiTaO 3 substrate where the direction of the spontaneous polarization is constant, where the multi-domain structure region is formed. By irradiating the beam, by raising the temperature of the single-crystal LiTaO 3 substrate in the region to be the multi-domain structure region once to the Curie point of LiTaO 3 or more, and lowering the temperature of the single-crystal LiTaO 3 substrate, Except for the electrode formation region on the single crystal LiTaO 3 substrate,
It has a multi-domain structure in which the direction of spontaneous polarization is random.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施形態について
図面に基づき説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0017】=実施形態1= 図1は、本発明の一実施形態に係る焦電型赤外線検出素
子を示す略断面図である。本実施形態に係る焦電型赤外
線検出素子は、単結晶タンタル酸リチウム(LiTaO3)基
板1の両面に対向するように赤外線検出領域となる電極
2が形成されており、対向する電極2間の単結晶LiTaO3
基板1は、自発分極の方向が単一の単分域構造領域1a
とされ、単結晶LiTaO3基板1における単分域構造領域1
a以外の箇所は自発分極の方向がランダムの多分域構造
領域1bとされた構成である。なお、本実施形態におい
ては、単結晶LiTaO3基板1における単分域構造領域1a
以外の箇所が、自発分極の方向が逆方向となるように複
数配列した構成である。
Embodiment 1 FIG. 1 is a schematic sectional view showing a pyroelectric infrared detecting element according to an embodiment of the present invention. In the pyroelectric infrared detecting element according to the present embodiment, an electrode 2 serving as an infrared detecting region is formed so as to face both surfaces of a single crystal lithium tantalate (LiTaO 3 ) substrate 1. Single crystal LiTaO 3
The substrate 1 has a single domain structure region 1a having a single direction of spontaneous polarization.
And the single-domain structure region 1 in the single-crystal LiTaO 3 substrate 1
Parts other than a have a configuration in which the direction of spontaneous polarization is a random domain structure region 1b. In this embodiment, the single-domain structure region 1a in the single-crystal LiTaO 3 substrate 1 is used.
Other parts are arranged in a plurality so that the direction of spontaneous polarization is opposite.

【0018】以下、本実施形態に係る赤外線検出素子の
製造工程について説明する。図2は、本実施形態に係る
焦電型赤外線検出素子の多分域化のための熱処理装置を
示す模式図である。先ず、焦電性を有する単結晶LiTaO3
基板1の表面と裏面との間に電圧を供給して、単結晶Li
TaO3基板1の表面及び裏面間に高電界を印加し、単結晶
LiTaO3基板1内の電気分極方向を揃える(ポーリング処
理)。
Hereinafter, the manufacturing process of the infrared detecting element according to the present embodiment will be described. FIG. 2 is a schematic diagram showing a heat treatment apparatus for multi-domaining the pyroelectric infrared detection element according to the present embodiment. First, pyroelectric single crystal LiTaO 3
A voltage is supplied between the front surface and the back surface of the substrate 1 so that the single crystal Li
Applying a high electric field between the front and back surfaces of the TaO 3 substrate 1
The electric polarization directions in the LiTaO 3 substrate 1 are aligned (polling processing).

【0019】続いて、単結晶LiTaO3基板1を所望の厚み
にし、ダイシング等により所望の寸法形状に加工し、単
結晶LiTaO3基板1の表面及び裏面に対向するようにアル
ミニウム(Al)等から成る赤外線検出部としての電極
2を形成する。
Subsequently, the single crystal LiTaO 3 substrate 1 is formed into a desired thickness, processed into a desired size and shape by dicing or the like, and is made of aluminum (Al) or the like so as to face the front and back surfaces of the single crystal LiTaO 3 substrate 1. The electrode 2 is formed as an infrared detecting section.

【0020】次に、加工された単結晶LiTaO3基板1を電
気炉3に入れ、雰囲気温度を強誘電性がなくなるキュリ
ー点である650℃まで上げ、30分保持する。その
後、対向する電極2間に5kV/cmの電界を印加しな
がら室温まで冷却することにより、対向する電極2間の
単結晶LiTaO3基板1を、自発分極の方向が単一の単分域
構造領域1aとし、単結晶LiTaO3基板1における単分域
構造領域1a以外の箇所を自発分極の方向がランダムの
多分域構造領域1bとする。
Next, the processed single-crystal LiTaO 3 substrate 1 is placed in an electric furnace 3, and the ambient temperature is raised to 650 ° C., which is the Curie point at which ferroelectricity disappears, and held for 30 minutes. Thereafter, by cooling to room temperature while applying an electric field of 5 kV / cm between the opposing electrodes 2, the single crystal LiTaO 3 substrate 1 between the opposing electrodes 2 is converted into a single domain structure having a single spontaneous polarization direction. A region other than the single-domain structure region 1a in the single-crystal LiTaO 3 substrate 1 is defined as a multi-domain structure region 1b in which the direction of spontaneous polarization is random.

【0021】なお、本実施形態に用いた電気炉3内の雰
囲気は空気であったが、単結晶LiTaO3基板1の厚みが非
常に薄く、比表面積が比較的小さい場合には、単結晶Li
TaO3基板1表面からのLiの蒸発を防止するため、LiTaO3
粉末中に単結晶LiTaO3基板1を入れて処理するようにし
ても良い。
Although the atmosphere in the electric furnace 3 used in the present embodiment was air, if the thickness of the single-crystal LiTaO 3 substrate 1 is very small and the specific surface area is relatively small, the single-crystal LiTaO 3
In order to prevent Li from evaporating from the surface of the TaO 3 substrate 1, LiTaO 3
The processing may be performed by placing the single crystal LiTaO 3 substrate 1 in the powder.

【0022】多分域化を施した後、フッ酸と硝酸の混合
液で素子のエッチング処理をし、単結晶LiTaO3基板1の
分極状態を観察したところ、電極2以外の領域において
は、分極方向が素子面から観て+,−方向の分域が約2
〜5μmの大きさでランダムに配置されていることが観
察された。また、電極2を除去した後観察すると、その
領域内においては分極方向が揃っていることを確認し
た。
After multi-domaining, the device was etched with a mixed solution of hydrofluoric acid and nitric acid, and the polarization state of the single crystal LiTaO 3 substrate 1 was observed. Is approximately 2 in the + and-directions as viewed from the element surface.
It was observed that they were randomly arranged in a size of 55 μm. Further, observation after removing the electrode 2 confirmed that the polarization directions were uniform in that region.

【0023】上述のようにして多分域化処理を施した素
子に電気回路等を実装した後、ノイズ特性を調べたとこ
ろ、ポプコンノイズが発生しないことがわかった。な
お、ノイズ試験における温度条件は図3に示すとおりで
あり、この時の温度勾配は1.0℃/分であった。
After mounting an electric circuit or the like on the element subjected to the multi-domain processing as described above, the noise characteristics were examined. As a result, it was found that no popcon noise was generated. The temperature conditions in the noise test were as shown in FIG. 3, and the temperature gradient at this time was 1.0 ° C./min.

【0024】本発明者らは、多年にわたり研究を重ね、
ポプコンノイズの発生は以下のように説明できるとの結
論に達した。従来の技術において述べたように、焦電型
赤外線検出素子に赤外線が入射されると、焦電材料内の
結晶の変化に伴い自発分極の大きさが変化し、その変化
に対応するため(中和を保つため)、余剰電荷を空気中
のイオン等で中和しようとするが、温度変化が大きすぎ
ると分極の大きさの変化の方が大きく、素子表面におい
ては空気中のイオン等による中和では対応できなくな
り、その結果、素子の電極が形成されていない箇所の表
面上に中和できない余剰電荷ができることになる。この
余剰電荷が何らかの原因により(例えば、温度変化によ
る焦電材料の膨張または収縮による圧電効果の発生をき
っかけとして)、素子の電極が形成された箇所に伝搬
し、ポプコンノイズとして観測される。
The present inventors have been conducting research for many years,
We concluded that the generation of popcon noise can be explained as follows. As described in the related art, when infrared light is incident on the pyroelectric infrared detection element, the magnitude of spontaneous polarization changes with the change in the crystal in the pyroelectric material, and the size of the spontaneous polarization changes. In order to maintain the sum), an attempt is made to neutralize the surplus charge with ions and the like in the air. However, if the temperature change is too large, the change in the magnitude of the polarization is larger, and on the element surface, the change due to the ions and the like in the air is caused. The sum cannot cope with it, and as a result, an excess charge that cannot be neutralized is formed on the surface of the portion where the electrode of the element is not formed. Due to some cause (for example, triggered by the generation of a piezoelectric effect due to expansion or contraction of the pyroelectric material due to a temperature change), the surplus charge propagates to the portion where the electrode of the element is formed, and is observed as popcon noise.

【0025】従って、本実施形態においては、単結晶Li
TaO3基板1における電極2を形成した領域以外を多分域
化することにより、基板表面に発生する余剰電荷をすば
やく中和することができ、ポプコンノイズの発生を防止
することができる。
Therefore, in this embodiment, the single crystal Li
By making the TaO 3 substrate 1 a region other than the region where the electrode 2 is formed, the surplus electric charges generated on the substrate surface can be quickly neutralized, and the occurrence of popcon noise can be prevented.

【0026】なお、本実施形態においては、単結晶LiTa
O3基板1の単分域化の方法として、単結晶LiTaO3基板1
の表面及び裏面間に高電界を印加することにより単結晶
LiTaO3基板1内の電気分極方向を揃えるようにしたが、
これに限定される必要はなく、例えば、400℃の温度
から素子の電極2形成領域に電子ビームを当てながら冷
却していくことにより単分域化するようにしてもよい。
In this embodiment, the single-crystal LiTa
As a method of dividing the O 3 substrate 1 into single domains, a single-crystal LiTaO 3 substrate 1
Single crystal by applying a high electric field between the front and back
The direction of electric polarization in the LiTaO 3 substrate 1 was aligned.
The invention is not limited to this. For example, a single domain may be formed by cooling from a temperature of 400 ° C. while applying an electron beam to the electrode 2 formation region of the element.

【0027】=実施形態2= 図4は、本発明の他の実施形態に係る焦電型赤外線検出
素子の多分域化の方法を示す模式図である。なお、本実
施形態においては、単結晶LiTaO3基板1の単分域化まで
の工程は実施形態1と同様であるのでここでは説明を省
略する。電極2と電極2に電気的に接続されて成る電気
配線部4が形成された単結晶LiTaO3基板1の所望領域の
表面に、1W/cm2の熱が加わるようにレーザ照射を
行う。レーザビーム4が照射された領域においては、単
結晶LiTaO3基板1の温度は約600℃に上昇している。
Embodiment 2 = FIG. 4 is a schematic diagram showing a method for multi-domaining a pyroelectric infrared detecting element according to another embodiment of the present invention. In the present embodiment, the steps up to the single domainization of the single-crystal LiTaO 3 substrate 1 are the same as those in the first embodiment, and thus the description is omitted here. Laser irradiation is performed so that heat of 1 W / cm 2 is applied to the surface of the desired region of the single-crystal LiTaO 3 substrate 1 on which the electrode 2 and the electric wiring portion 4 electrically connected to the electrode 2 are formed. In the region irradiated with the laser beam 4, the temperature of the single crystal LiTaO 3 substrate 1 has risen to about 600 ° C.

【0028】このため、単結晶LiTaO3基板1の温度がキ
ュリー点以上となり、局部的に結晶変態がおこり、強誘
電性は消失する。その後、温度が下がると同時に強誘電
性は再び現れるが、単結晶LiTaO3基板1内の電気的エネ
ルギーを最小にするため、分極方向がランダムな多分域
構造となる。
As a result, the temperature of the single crystal LiTaO 3 substrate 1 becomes equal to or higher than the Curie point, crystal transformation occurs locally, and the ferroelectricity disappears. Thereafter, the ferroelectricity reappears at the same time as the temperature is lowered, but in order to minimize the electric energy in the single-crystal LiTaO 3 substrate 1, a multi-domain structure having a random polarization direction is formed.

【0029】このようにして、レーザビーム5をスキャ
ンしながら所望の領域を多分域構造とする。なお、本実
施形態における1点当たりのレーザビーム5の照射時間
は0.45秒であった。
In this way, a desired region is formed into a multi-domain structure while scanning the laser beam 5. The irradiation time of the laser beam 5 per point in this embodiment was 0.45 seconds.

【0030】従って、本実施形態においても、実施形態
1と同様に、単結晶LiTaO3基板1における電極2を形成
した領域以外を多分域化することにより、基板表面に発
生する余剰電荷をすばやく中和することができ、ポプコ
ンノイズの発生を防止することができる。
Therefore, also in the present embodiment, as in the first embodiment, the region other than the region where the electrode 2 is formed on the single-crystal LiTaO 3 substrate 1 is divided into multiple domains, so that the excess charge generated on the substrate surface can be quickly eliminated. And the occurrence of popcon noise can be prevented.

【0031】=実施形態3= 図5は、本発明の他の実施形態に係る焦電型赤外線検出
素子の製造工程の一部を示す略断面図である。なお、本
実施形態においては、単結晶LiTaO3基板1の単分域化ま
での工程は実施形態1と同様であるのでここでは説明を
省略する。本実施形態においては、電極2が形成されて
成る単結晶LiTaO3基板1の両面にアルミニウム(Al)
膜を蒸着形成し、多分域構造を形成する所望の領域にフ
ォトリソグラフィ技術及びエッチング技術により所望の
Alマスク6を形成する(図5(a))。
Embodiment 3 = FIG. 5 is a schematic sectional view showing a part of a manufacturing process of a pyroelectric infrared detecting element according to another embodiment of the present invention. In the present embodiment, the steps up to the single domainization of the single-crystal LiTaO 3 substrate 1 are the same as those in the first embodiment, and thus the description is omitted here. In this embodiment, aluminum (Al) is formed on both surfaces of a single crystal LiTaO 3 substrate 1 on which electrodes 2 are formed.
A film is formed by vapor deposition, and a desired Al mask 6 is formed by photolithography and etching in a desired region where a multi-domain structure is to be formed (FIG. 5A).

【0032】続いて、約220℃の安息香酸中に上記の
基板を入れ、プロトン置換を行った後、熱処理を行い、
分極反転を生じさせ、Alマスク6を除去する(図5
(b))。
Subsequently, the substrate is placed in benzoic acid at about 220 ° C., and after performing proton substitution, heat treatment is performed.
Polarization inversion occurs, and the Al mask 6 is removed (FIG. 5).
(B)).

【0033】この分極反転機構はまだ明らかになってい
ないが、以下のように推測されている。単結晶LiTaO3
板1中のLiイオンの一部がH+イオンと置換することに
よりLiの減少が起こり、その部分のキュリー点が低下す
る。その後、熱処理を行えば、冷却時の焦電電圧により
分極反転が起こる。
Although this polarization inversion mechanism has not been elucidated yet, it is speculated as follows. When a part of the Li ions in the single crystal LiTaO 3 substrate 1 is replaced with H + ions, Li decreases, and the Curie point of that part decreases. Thereafter, if heat treatment is performed, polarization reversal occurs due to the pyroelectric voltage during cooling.

【0034】従って、本実施形態においても、実施形態
1と同様に、単結晶LiTaO3基板1における電極2を形成
した領域以外を多分域化することにより、基板表面に発
生する余剰電荷をすばやく中和することができ、ポプコ
ンノイズの発生を防止することができる。
Therefore, also in this embodiment, as in the first embodiment, the region other than the region where the electrode 2 is formed on the single crystal LiTaO 3 substrate 1 is divided into multiple domains, so that the excess charge generated on the substrate surface can be quickly eliminated. And the occurrence of popcon noise can be prevented.

【0035】=実施形態4= 図6は、本発明の他の実施形態に係る焦電型赤外線検出
素子の製造工程の一部を示す略断面図である。なお、本
実施形態においては、単結晶LiTaO3基板1の単分域化ま
での工程は実施形態1と同様であるのでここでは説明を
省略する。本実施形態においては、電極2が形成されて
成る単結晶LiTaO3基板1の一方の面にアルミニウム(A
l)膜を蒸着形成し、多分域構造を形成する所望の領域
にフォトリソグラフィ技術及びエッチング技術により所
望のAlマスク6を形成する。
Embodiment 4 = FIG. 6 is a schematic sectional view showing a part of a manufacturing process of a pyroelectric infrared detecting element according to another embodiment of the present invention. In the present embodiment, the steps up to the single domainization of the single-crystal LiTaO 3 substrate 1 are the same as those in the first embodiment, and thus the description is omitted here. In the present embodiment, a single crystal LiTaO 3 substrate 1 on which an electrode 2 is formed is provided with aluminum (A) on one surface.
1) A film is formed by vapor deposition, and a desired Al mask 6 is formed by photolithography and etching in a desired region where a multi-domain structure is to be formed.

【0036】続いて、単結晶LiTaO3基板1のAlマスク
6を形成した面側から、イオン注入装置によりプロトン
イオン(H+)を注入する(図6(a))。なお、本実
施形態においては、ドーズ量は1×1015/cm2にな
るようにし、用いたイオン注入装置の注入エネルギーは
3MeVであり、イオン注入深さは100μm以上あり、
厚み方向への注入は問題なくできた。
Subsequently, proton ions (H + ) are implanted from the surface of the single-crystal LiTaO 3 substrate 1 on which the Al mask 6 is formed by an ion implanter (FIG. 6A). In this embodiment, the dose is set to 1 × 10 15 / cm 2 , the implantation energy of the ion implantation apparatus used is 3 MeV, the ion implantation depth is 100 μm or more,
The injection in the thickness direction was performed without any problem.

【0037】イオン注入後にAlマスク6を除去し、そ
の後にアニール処理を行うことにより単分域構造領域1
aを多分域構造領域1bに変える(図6(b))。
After the ion implantation, the Al mask 6 is removed and an annealing process is performed thereafter, whereby the single-domain structure region 1 is formed.
a is changed to the multi-domain structure region 1b (FIG. 6B).

【0038】従って、本実施形態においても、実施形態
1と同様に、単結晶LiTaO3基板1における電極2を形成
した領域以外を多分域化することにより、基板表面に発
生する余剰電荷をすばやく中和することができ、ポプコ
ンノイズの発生を防止することができる。
Therefore, also in the present embodiment, as in the first embodiment, the region other than the region where the electrode 2 is formed on the single-crystal LiTaO 3 substrate 1 is divided into multiple domains, so that the excess charge generated on the substrate surface can be quickly eliminated. And the occurrence of popcon noise can be prevented.

【0039】なお、イオン注入エネルギーが400keV
のイオン注入装置を用いた場合においても、イオン注入
深さは数μm程度しかないが、基板の表面及び裏面にA
lマスク6を形成し、基板の表面及び裏面からイオン注
入することにより基板表面から深さ方向に数μmの部分
のみを多分域構造にすることにより上述の実施形態と同
様の効果が得られる。このことは、基板表面の余剰電荷
の中和のためには、多分域構造が基板の表面から裏面ま
で続いている必要がなく、余剰電荷が中和されやすいよ
うに基板表面のごく近傍に反対の極性の電荷があればよ
いことを示している。
The ion implantation energy is 400 keV.
Although the ion implantation depth of only about several μm is used when using the ion implantation apparatus of
The same effect as in the above-described embodiment can be obtained by forming the l mask 6 and implanting ions from the front and back surfaces of the substrate to form a multi-domain structure only in a portion of several μm in the depth direction from the substrate surface. This means that the multi-domain structure does not need to continue from the front surface to the back surface of the substrate in order to neutralize the surplus electric charges on the substrate surface, and is opposed to the vicinity of the substrate surface so that the surplus electric charges are easily neutralized. It is shown that the charge having the polarity of?

【0040】[0040]

【発明の効果】請求項1乃至請求項5記載の発明は、分
極処理されて成る単結晶LiTaO3基板と、単結晶LiTaO3
板の両面に対向するように形成された電極とを有して成
る焦電型赤外線検出素子において、単結晶LiTaO3基板に
おける電極の形成領域を自発分極の方向が一定である単
分極構造とし、単結晶LiTaO3基板における電極の形成領
域以外を、自発分極の方向がランダムである多分域構造
としたので、基板表面に発生する余剰電荷をすばやく中
和することができ、ポプコンノイズを低減することので
きる焦電型赤外線検出素子を提供することができた。
According to the first to fifth aspects of the present invention, there is provided a single-crystal LiTaO 3 substrate which has been subjected to a polarization treatment, and electrodes formed so as to face both surfaces of the single-crystal LiTaO 3 substrate. in the pyroelectric infrared detector comprising, a formation region of the electrode in the single crystal LiTaO 3 substrate direction of the spontaneous polarization and single polarization structure is constant, the non-forming region of the electrode in the single crystal LiTaO 3 substrate, the direction of the spontaneous polarization Has a random multi-domain structure, so that a surplus charge generated on the substrate surface can be quickly neutralized, and a pyroelectric infrared detecting element capable of reducing popcon noise can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係る焦電型赤外線検出素
子を示す略断面図である。
FIG. 1 is a schematic sectional view showing a pyroelectric infrared detecting element according to an embodiment of the present invention.

【図2】本実施形態に係る焦電型赤外線検出素子の多分
域化のための熱処理装置を示す模式図である。
FIG. 2 is a schematic diagram showing a heat treatment apparatus for multi-domaining the pyroelectric infrared detection element according to the embodiment.

【図3】本実施形態に係る赤外線検出素子のポプコンノ
イズ試験のヒートサイクル条件を示す図である。
FIG. 3 is a diagram showing heat cycle conditions in a popcon noise test of the infrared detection element according to the embodiment.

【図4】本発明の他の実施形態に係る焦電型赤外線検出
素子の多分域化の方法を示す模式図である。
FIG. 4 is a schematic diagram showing a method for multi-domaining a pyroelectric infrared detecting element according to another embodiment of the present invention.

【図5】本発明の他の実施形態に係る焦電型赤外線検出
素子の製造工程の一部を示す略断面図である。
FIG. 5 is a schematic cross-sectional view showing a part of a manufacturing process of a pyroelectric infrared detection element according to another embodiment of the present invention.

【図6】本発明の他の実施形態に係る焦電型赤外線検出
素子の製造工程の一部を示す略断面図である。
FIG. 6 is a schematic sectional view showing a part of a manufacturing process of a pyroelectric infrared detecting element according to another embodiment of the present invention.

【図7】焦電型赤外線検出素子の検出原理を示す模式図
であり、(a)は赤外線入射前の電極形成領域における
平衡状態を示し、(b)は赤外線入射時の電極形成領域
における状態を示し、(c)は赤外線入射後の電極形成
領域における平衡状態を示す。
FIGS. 7A and 7B are schematic diagrams illustrating the detection principle of a pyroelectric infrared detection element, wherein FIG. 7A shows an equilibrium state in an electrode formation area before infrared rays are incident, and FIG. (C) shows an equilibrium state in the electrode formation region after the infrared rays are incident.

【符号の説明】[Explanation of symbols]

1 単結晶LiTaO3基板 2 電極 3 電気炉 4 電気配線部 5 レーザビーム 6 Alマスク 7 焦電体DESCRIPTION OF SYMBOLS 1 Single crystal LiTaO 3 substrate 2 Electrode 3 Electric furnace 4 Electric wiring part 5 Laser beam 6 Al mask 7 Pyroelectric

フロントページの続き (72)発明者 井狩 素生 大阪府門真市大字門真1048番地松下電工株 式会社内Continued on the front page (72) Inventor Motoo Ikari 1048 Odakadoma, Kadoma City, Osaka Prefecture Matsushita Electric Works, Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 分極処理されて成る単結晶LiTaO3基板
と、該単結晶LiTaO3基板の両面に対向するように形成さ
れた電極とを有して成る焦電型赤外線検出素子におい
て、前記単結晶LiTaO3基板における前記電極の形成領域
を自発分極の方向が一定である単分極構造とし、前記単
結晶LiTaO3基板における前記電極の形成領域以外を、自
発分極の方向がランダムである多分域構造としたことを
特徴とする焦電型赤外線検出素子。
And 1. A single crystal LiTaO 3 substrate formed by polarization processing, the pyroelectric infrared detection element comprising an electrode formed so as to face both surfaces of the single crystal LiTaO 3 substrate, the single In the crystalline LiTaO 3 substrate, a region where the electrode is formed has a monopolar structure in which the direction of spontaneous polarization is constant, and other than the region in which the electrode is formed in the single crystal LiTaO 3 substrate, a multi-domain structure in which the direction of spontaneous polarization is random. A pyroelectric infrared detection element, characterized in that:
【請求項2】 自発分極の方向が一定である前記単結晶
LiTaO3基板の温度を一旦LiTaO3のキュリー点以上に上昇
させて、前記単結晶LiTaO3基板を強誘電体から常誘電体
に転移させた後に、前記電極に電界を印加しながら温度
を下げることにより、前記単結晶LiTaO3基板における前
記電極の形成領域以外を、自発分極の方向がランダムで
ある多分域構造としたことを特徴とする請求項1記載の
焦電型赤外線検出素子。
2. The single crystal in which the direction of spontaneous polarization is constant.
Once the temperature of the LiTaO 3 substrate is once raised to the Curie point of LiTaO 3 or more and the single crystal LiTaO 3 substrate is changed from a ferroelectric to a paraelectric, the temperature is lowered while applying an electric field to the electrode. 2. The pyroelectric infrared detecting element according to claim 1, wherein the single crystal LiTaO 3 substrate has a multi-domain structure in which the direction of spontaneous polarization is random except the region where the electrode is formed.
【請求項3】 自発分極の方向が一定である前記単結晶
LiTaO3基板における前記多分域構造領域となる箇所にA
lマスクを形成した後、前記単結晶LiTaO3基板を安息香
酸中に入れてプロトン置換処理を行い、一定時間熱処理
を行って分極反転させることにより、前記単結晶LiTaO3
基板における前記電極の形成領域以外を、自発分極の方
向がランダムである多分域構造としたことを特徴とする
請求項1記載の焦電型赤外線検出素子。
3. The single crystal wherein the direction of spontaneous polarization is constant.
In the LiTaO 3 substrate, A
After forming the l mask, the single crystal LiTaO 3 substrate subjected to proton substitution process put into benzoic acid by polarization inversion into certain time heat treatment, the single crystal LiTaO 3
2. The pyroelectric infrared detecting element according to claim 1, wherein a region other than the electrode forming region on the substrate has a multi-domain structure in which directions of spontaneous polarization are random.
【請求項4】 自発分極の方向が一定である前記単結晶
LiTaO3基板における前記多分域構造領域となる箇所にA
lマスクを形成した後、イオン注入法によりプロトンイ
オンを注入し、アニール処理を行うことにより、前記単
結晶LiTaO3基板における前記電極の形成領域以外を、自
発分極の方向がランダムである多分域構造としたことを
特徴とする請求項1記載の焦電型赤外線検出素子。
4. The single crystal wherein the direction of spontaneous polarization is constant.
In the LiTaO 3 substrate, A
After forming a mask, proton ions are implanted by an ion implantation method, and annealing is performed to obtain a multi-domain structure in which the direction of spontaneous polarization is random except for the region where the electrode is formed on the single crystal LiTaO 3 substrate. The pyroelectric infrared detecting element according to claim 1, wherein:
【請求項5】 自発分極の方向が一定である前記単結晶
LiTaO3基板における前記多分域構造領域となる箇所に、
レーザビームを照射することにより、前記単結晶LiTaO3
基板における前記多分域構造領域となる箇所の温度を一
旦LiTaO3のキュリー点以上に上昇させて、単結晶LiTaO3
基板の温度を下げることにより、前記単結晶LiTaO3基板
における前記電極の形成領域以外を、自発分極の方向が
ランダムである多分域構造としたことを特徴とする請求
項1記載の焦電型赤外線検出素子。
5. The single crystal wherein the direction of spontaneous polarization is constant
In the LiTaO 3 substrate where the multi-domain structure region is,
By irradiating a laser beam, the single crystal LiTaO 3
The temperature of the portion to be the multi-domain structure region on the substrate is once increased to a temperature equal to or higher than the Curie point of LiTaO 3 so that the single crystal LiTaO 3
By lowering the temperature of the substrate, said non-formation region of the electrode in the single crystal LiTaO 3 substrate, pyroelectric infrared according to claim 1, wherein the direction of spontaneous polarization is characterized in that a possibly zone structure is random Detection element.
JP11316897A 1997-04-30 1997-04-30 Pyroelectric infrared ray detection element Pending JPH10300570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11316897A JPH10300570A (en) 1997-04-30 1997-04-30 Pyroelectric infrared ray detection element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11316897A JPH10300570A (en) 1997-04-30 1997-04-30 Pyroelectric infrared ray detection element

Publications (1)

Publication Number Publication Date
JPH10300570A true JPH10300570A (en) 1998-11-13

Family

ID=14605287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11316897A Pending JPH10300570A (en) 1997-04-30 1997-04-30 Pyroelectric infrared ray detection element

Country Status (1)

Country Link
JP (1) JPH10300570A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1108997A2 (en) * 1999-12-17 2001-06-20 Matsushita Electric Works, Ltd. Infrared ray receiving element and infrared ray sensor using the same
WO2006082930A1 (en) * 2005-02-07 2006-08-10 Hochiki Corporation Heat detector and method for manufacturing heat detecting element
JP2006215000A (en) * 2005-02-07 2006-08-17 Hochiki Corp Method for manufacturing thermal sensing element
WO2011162319A1 (en) 2010-06-25 2011-12-29 パナソニック電工株式会社 Pyroelectric infrared sensor element and infrared sensor using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1108997A2 (en) * 1999-12-17 2001-06-20 Matsushita Electric Works, Ltd. Infrared ray receiving element and infrared ray sensor using the same
US6399947B2 (en) 1999-12-17 2002-06-04 Matsushita Electric Works, Ltd. Infrared ray receiving element and infrared ray sensor using the same
EP1108997A3 (en) * 1999-12-17 2003-10-08 Matsushita Electric Works, Ltd. Infrared ray receiving element and infrared ray sensor using the same
WO2006082930A1 (en) * 2005-02-07 2006-08-10 Hochiki Corporation Heat detector and method for manufacturing heat detecting element
JP2006215000A (en) * 2005-02-07 2006-08-17 Hochiki Corp Method for manufacturing thermal sensing element
GB2438985A (en) * 2005-02-07 2007-12-12 Hochiki Co Heat detector and method for manufacturing heat detecting element
GB2438985B (en) * 2005-02-07 2009-04-08 Hochiki Co Heat detector and method for manufacturing heat detecting element
US7896544B2 (en) 2005-02-07 2011-03-01 Hochiki Corporation Heat detector and method of manufacturing heat detecting element
WO2011162319A1 (en) 2010-06-25 2011-12-29 パナソニック電工株式会社 Pyroelectric infrared sensor element and infrared sensor using the same
US8487258B2 (en) 2010-06-25 2013-07-16 Panasonic Corporation Pyroelectric infrared detection element and infrared sensor using the same

Similar Documents

Publication Publication Date Title
McFee et al. Pyroelectric and nonlinear optical properties of poled polyvinylidene fluoride films
Chynoweth Radiation damage effects in ferroelectric triglycine sulfate
JPH05509204A (en) solid state electromagnetic radiation detector
US3794986A (en) Pyroelectric element of polymer film
US5008541A (en) Monolithic detection or infrared imaging structure and its production process
US6137553A (en) Display device and manufacturing method thereof
JPH10300570A (en) Pyroelectric infrared ray detection element
JPH07297377A (en) Semiconductor device and manufacture thereof
JPH02148831A (en) Laser annealing method
JP3159561B2 (en) Electrodes for crystalline thin films
CN114214732B (en) Method for improving polarization reversal phenomenon on surface of composite film and composite film
US20030138977A1 (en) Method for producing a ferroelectric layer
JP3261735B2 (en) Method for manufacturing dielectric element
JPS59114853A (en) Laminated integrated circuit element
JPH0621064A (en) Manufacture of semiconductor device
JPH09181369A (en) Oxide thin film structure, manufacture of thin film, and piezoelectric sensor-actuator
JP2004037291A (en) Pyroelectric infrared sensor
Schilling et al. Polarization profiles of electron-beam polarized VDF-TrFE copolymer films
JPH07111107A (en) Manufacture of thin film of ferroelectric substance
JP3545061B2 (en) Method for forming orientation film
Yaron et al. Improved stacked‐structure oxide by laser annealing
JPH05343345A (en) Manufacture of ferroelectric element
JPH0749997B2 (en) Pyroelectric infrared array element
JPH06215975A (en) Manufacture of ferroelectric thin film and ferroelectric thin film element having same
JPH0397271A (en) Image sensor