JPH1029880A - High purity refractory and its production - Google Patents

High purity refractory and its production

Info

Publication number
JPH1029880A
JPH1029880A JP8204303A JP20430396A JPH1029880A JP H1029880 A JPH1029880 A JP H1029880A JP 8204303 A JP8204303 A JP 8204303A JP 20430396 A JP20430396 A JP 20430396A JP H1029880 A JPH1029880 A JP H1029880A
Authority
JP
Japan
Prior art keywords
refractory
impurities
sintered body
heat treatment
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8204303A
Other languages
Japanese (ja)
Inventor
Taiji Kojima
泰治 小島
Shigeki Niwa
茂樹 丹羽
Yutaka Okada
裕 岡田
Toshiyuki Suzuki
利幸 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP8204303A priority Critical patent/JPH1029880A/en
Publication of JPH1029880A publication Critical patent/JPH1029880A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a high purity refractory capable of displaying a desired electrical characteristic without being damaged when used as a tool material for mounting at the time of burning an electronic component by reducing impurity such as SiO2 in an oxide based refractory such as Al2 O3 and ZrO2 . SOLUTION: In the high purity refractory, a refractory compact or sintered body containing mainly SiO2 , Fe2 O3 and alkali or alkaline earth metal oxide as impurities is subjected to a heat treatment under a reducing atmosphere to highly purify at least a surface substantially. The heat treatment is executed preferably at 1,200-1,600 deg.C. Further, at least hydrogen is preferably incorporated as the reductive atmosphere.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高純度耐火物及び
その製造方法に関し、詳しくは耐火物成形体または焼結
体を還元雰囲気下で加熱処理して不純物が除去され高純
度化されてなる高純度耐火物及びその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-purity refractory and a method for producing the same, and more particularly, to a high-purity refractory molded or sintered body which is subjected to a heat treatment in a reducing atmosphere to remove impurities and to purify the product. The present invention relates to a high-purity refractory and a method for producing the same.

【0002】[0002]

【従来の技術】フェライト、コンデンサ−等のセラミッ
ク電子部品は、約1200〜1500℃、または製品に
よっては1650℃以上に加熱焼成されることにより必
要な各電気的特性が発現されるものである。これらセラ
ミック電子部品の焼成は、一般にアルミナやジルコニア
等耐火物焼結体の焼成道具材上に載置して行われる。こ
の焼成道具材の耐火物焼結体に、シリカ(SiO2 )、
酸化ナトリウム(Na2O)や酸化カリウム(K2 O)
等のアルカリ金属酸化物、カルシア(CaO)等のアル
カリ土類金属酸化物、酸化鉄(Fe23 )等の不純物
が含まれていると、道具材上に載置された電子部品と上
記不純物とが焼成中に反応するおそれがある。不純物と
電子部品とが反応した場合は、焼成した電子部品が所望
の電気的特性が得られない等で電子部品の品質低下や製
造歩留の低下を招くことになる。特に、近年、電子部品
は、各種用途の拡大に伴い、より高性能のものが要求さ
れるようになっている。そのため上記のような焼成道具
材による品質低下は好ましくなく、焼成道具材の耐火物
焼結体の高純度化が求められている。
2. Description of the Related Art Ceramic electronic components such as ferrites and capacitors exhibit necessary electrical characteristics by being heated and fired at about 1200 to 1500 ° C., or 1650 ° C. or higher depending on the product. The firing of these ceramic electronic components is generally carried out by placing them on a firing tool of a refractory sintered body such as alumina or zirconia. Silica (SiO 2 ),
Sodium oxide (Na 2 O) and potassium oxide (K 2 O)
If impurities such as an alkali metal oxide such as an alkali earth metal oxide such as calcia (CaO) and iron oxide (Fe 2 O 3 ) are contained, the electronic component mounted on the tool material and the above There is a possibility that impurities and react during firing. When the impurities react with the electronic component, the quality of the electronic component is reduced and the production yield is reduced because the fired electronic component does not have desired electrical characteristics. In particular, in recent years, electronic components have been required to have higher performance with the expansion of various uses. Therefore, the quality reduction by the firing tool material as described above is not preferable, and the refractory sintered body of the firing tool material is required to be highly purified.

【0003】上記したように電子部品の焼成用道具材の
不純物は、極力低減させる必要がある。上記耐火物中に
含有される不純物を除去する方法としては、例えば、
高純度の原料を用いる方法であり、高純度化された市販
の原料粉末を入手したり、原料粉末を酸処理してFe2
3 不純物を除去する方法が提案され、また、特公昭6
2−27005号公報では、炭化けい素粉末をフッ化水
素ガスで処理しその中に含まれるシリカ分を除去する方
法が提案されている。また、原料粉末から所定形状の
耐火物成形体を形成し、耐火物成形体を熱処理して不純
物を飛散除去する方法であり、例えば、原料粉末から所
定形状の耐火物成形体とした後、その耐火物成形体を大
気中で1750℃以上の高温で繰り返し熱処理し、上記
したシリカ、アルカリ金属酸化物、アルカリ土類金属酸
化物、酸化鉄等の不純物を揮発除去して高純度化する方
法が提案されている。
[0003] As described above, it is necessary to minimize impurities in the firing tool material for electronic components. As a method of removing impurities contained in the refractory, for example,
This method uses a high-purity raw material, such as obtaining a highly purified commercial raw material powder, or treating the raw material powder with an acid to obtain Fe 2
A method for removing O 3 impurities has been proposed.
Japanese Patent Application Laid-Open No. 2-27005 proposes a method of treating silicon carbide powder with hydrogen fluoride gas to remove silica contained therein. Further, it is a method of forming a refractory molded body of a predetermined shape from the raw material powder, heat-treating the refractory molded body to scatter and remove impurities, for example, after forming a refractory molded body of a predetermined shape from the raw material powder, A method of repeatedly heat-treating a refractory molded body in the atmosphere at a high temperature of 1750 ° C. or higher to volatilize and remove impurities such as silica, alkali metal oxides, alkaline earth metal oxides, and iron oxides described above to achieve high purity. Proposed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
高純度化された原料粉末を用いる方法は、市販の高純度
原料粉末は極めて高価であり工業的実用性に乏しく、一
方、原料粉末の純度化を自ら実施使用する場合は、その
ための所定の処理装置を要し操作も煩雑となるおそれが
あり、実用的でない。また、高純度化された原料粉末
は、助剤となり得る不純物が少ないため低中温度での焼
結が難しく、また得られる耐火物の強度も低くなる傾向
があり好ましくない。更に、耐火物成形体を大気中17
50℃以上の高温で熱処理して不純物を減少させる方法
は、高純度原料粉末を使用する方法よりは実用的である
が、熱処理時に耐火物の焼結が進み、異常変形や耐スポ
−リング性の低下を招くおそれがある。また、不純物除
去が耐火物の表面のみで行われ、複数回の使用が可能に
内部まで高純度化することが難しい。
However, in the method using the above-mentioned highly purified raw material powder, the commercially available high-purity raw material powder is extremely expensive and poor in industrial practicality. When the device is used and used by itself, a predetermined processing device for the process is required, and the operation may be complicated, which is not practical. In addition, highly purified raw material powder is not preferable because it has a small amount of impurities that can serve as an auxiliary agent, so that sintering at low and medium temperatures is difficult and the strength of the obtained refractory tends to be low. Further, the refractory molded body is placed in the atmosphere 17
The method of reducing impurities by heat treatment at a high temperature of 50 ° C. or more is more practical than the method using high-purity raw material powder, but the sintering of refractory proceeds during heat treatment, resulting in abnormal deformation and spalling resistance. May be reduced. In addition, impurities are removed only on the surface of the refractory, and it is difficult to purify the inside of the refractory so that it can be used plural times.

【0005】本発明は、上記のようなセラミック電子部
品等被焼成物の特性に多大な影響を及ぼす焼成用道具材
等に用いられる高純度が要求される耐火物を、従来より
低い温度で、簡便、且つ、効率的に高純度化して提供す
ることを目的とする。発明者らは、この目的のため、特
に、不純物含有の耐火物原料粉末を用いて製造された所
定形状の耐火物成形体または不純物を含有する焼結体
を、還元雰囲気下で比較的低温度で熱処理することによ
り、ジルコニアやアルミナを主成分とする耐火物自体に
は影響することなくSiO2 等の不純物のみを、その表
面に被焼成物、特にセラミック電子部品を載置して焼成
処理しても所望の電気的特性を損なうことなく充分にそ
の特性発現させることができ、且つ、繰り返し使用でき
る耐久性を兼ね備える程度まで除去されることを見出し
本発明に到った。
According to the present invention, a refractory requiring high purity, which is used for a firing tool or the like which has a great effect on the characteristics of a fired object such as a ceramic electronic component as described above, is produced at a lower temperature than before. It is an object of the present invention to simply and efficiently provide a highly purified product. For this purpose, the present inventors, in particular, a refractory molded body of a predetermined shape manufactured using the impurity-containing refractory raw material powder or a sintered body containing an impurity, at a relatively low temperature in a reducing atmosphere. By heat treatment, without affecting the refractory itself mainly composed of zirconia or alumina, only the impurities such as SiO 2 , the object to be fired, especially the ceramic electronic component is placed on the surface thereof and fired. However, it has been found that the desired electrical characteristics can be sufficiently expressed without deteriorating the electrical characteristics, and the electrical characteristics can be removed to such an extent that it has the durability that can be used repeatedly.

【0006】[0006]

【課題を解決するための手段】本発明によれば、主にS
iO2 、Fe23 、アルカリまたはアルカリ土類金属
酸化物を不純物として含有してなる耐火物成形体または
焼結体が、還元雰囲気下加熱処理され、少なくとも表面
が実質的に高純度化されてなることを特徴とする高純度
耐火物が提供される。本発明の高純度耐火物において、
加熱処理が1200〜1600℃に保持されて行われる
ことが好ましく、また、還元雰囲気として少なくとも水
素が含有されることが好ましい。また、成形体または焼
結体が高純度化されてZrO2 及びY23 からなる成
分含有率が99.5重量%以上の部分安定化ジルコニア
からなるものにすることができる。または、成形体また
は焼結体が高純度化されてAl23 成分含有率が9
9.5重量%以上のものとすることができる。
According to the present invention, mainly S
A refractory molded body or sintered body containing iO 2 , Fe 2 O 3 , alkali or alkaline earth metal oxide as impurities is subjected to heat treatment in a reducing atmosphere to at least substantially purify the surface. A high-purity refractory characterized by comprising: In the high-purity refractory of the present invention,
The heat treatment is preferably performed while maintaining the temperature at 1200 to 1600 ° C., and it is preferable that at least hydrogen is contained as a reducing atmosphere. Further, the compact or sintered body can be highly purified to be made of partially stabilized zirconia having a content of 99.5% by weight or more of ZrO 2 and Y 2 O 3 . Alternatively, the compact or sintered body is highly purified and the content of the Al 2 O 3 component is 9
It can be at least 9.5% by weight.

【0007】また、本発明によれば、主にSiO2 、F
23 、アルカリまたはアルカリ土類金属酸化物を不
純物として含有してなる耐火物成形体または焼結体を、
少なくとも水素を含有してなる還元雰囲気下、温度12
00〜1600℃で加熱処理し、該耐火物成形体または
焼結体の少なくとも表面を実質的に高純度化することを
特徴とする高純度耐火物の製造方法が提供される。
According to the present invention, SiO 2 , F
e 2 O 3 , an alkali or alkaline earth metal oxide as an impurity,
Temperature 12 under a reducing atmosphere containing at least hydrogen
A method for producing a high-purity refractory is provided, wherein the method comprises a heat treatment at 00 to 1600 ° C. to substantially purify at least the surface of the refractory molded body or sintered body.

【0008】本発明は上記のように構成されて、シリカ
等の酸化物の不純物を含有する耐火物原料粉末で形成さ
れた成形体または不純物を含有する焼結体を、還元雰囲
気下で比較的低温の1200〜1600℃で加熱処理す
ることから、シリカ等の不純物をガス化して除去するこ
とができると共に、ジルコニアやアルミナ等の耐火物の
主成分である酸化物を飛散させることがない。従って、
得られる耐火物は、加熱処理時に変形することなく、ま
た耐スポーリング性の低下もないことから、良好な十分
に純度化された高純度耐火物であり、耐久性に優れ、特
にセラミック電子部品の焼成用道具材として繰り返し用
いても電気的特性を損なうことなくその特性を良好に発
現させることができる。なお、本発明において、所定の
不純物を含有する成形体は、不純物含有の原料粉末を用
いて成形されるものであり、予め焼成され焼結体となし
た後に、引き続き、本発明の還元ガス雰囲気中の加熱処
理が行われることを意味する。成形体は、焼成時には十
分に焼結して緻密化され、その後の加熱処理により電子
部品の焼成用道具材として繰り返し使用できる耐久性の
高い高純度耐火物となる。
According to the present invention, a compact formed from a refractory raw material powder containing impurities of an oxide such as silica or a sintered body containing impurities is relatively reduced under a reducing atmosphere. Since the heat treatment is performed at a low temperature of 1200 to 1600 ° C., impurities such as silica can be gasified and removed, and oxides which are main components of refractories such as zirconia and alumina are not scattered. Therefore,
The refractory obtained is a good and highly purified high-purity refractory which is not deformed during the heat treatment and has no decrease in spalling resistance. Even if it is repeatedly used as a firing tool material, the characteristics can be satisfactorily exhibited without impairing the electric characteristics. In the present invention, the compact containing the predetermined impurity is formed by using the impurity-containing raw material powder. It means that the inside heat treatment is performed. The molded body is sufficiently sintered and densified at the time of firing, and becomes a highly durable high-purity refractory that can be repeatedly used as a firing tool for electronic components by a subsequent heat treatment.

【0009】[0009]

【発明の実施の形態】以下、本発明について詳しく説明
する。本発明において、高純度化処理される耐火物成形
体または焼結体は、従来から所定の耐火物を形成する原
料として用いられているSiO2 、アルカリ金属、アル
カリ土類金属、Fe23 等の不純物が含まれる原料粉
末を用いて形成された成形体、または、そのような成形
体を焼成してそのままSiO2 等の酸化物不純物が残存
含有されている焼結体である。本発明において、高純度
化処理される成形体は、高純度化処理に先立ち、予め焼
成して焼結させる。成形や焼成は、従来公知の一般的な
方法で行うことができる。原料粉末中に含有される不純
物は、焼成時に焼結助剤として作用するため、焼結が容
易であり高強度の耐火物焼結体を得ることができ好まし
い。即ち、本発明の高純度耐火物は、好ましくは、原料
粉末中に上記不純物を含有するものを積極的に用いて、
最終的に不純物含有量が低減されているものである。本
発明の高純度耐火物を構成する主成分としては、部分安
定化または安定化ジルコニア(ZrO2 )、アルミナ
(Al23 )等の酸化物、炭化けい素等の非酸化物が
挙げられる。特に、電子部品焼成用道具材として従来か
ら用いられているイットリア(Y23 )とZrO2
主成分含有率が約99.5重量%未満で、SiO2 、F
23 、CaO、K2 O、Na2 O等の不純物が0.
5重量%以上含有される安定化ジルコニア、または、不
純物として主にSiO2 、酸化鉄を約0.5重量%以上
含有し、主成分のAl23 が99.5重量%未満であ
るアルミナが好適である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. In the present invention, the refractory molded body or sintered body subjected to the high-purification treatment is made of SiO 2 , alkali metal, alkaline earth metal, Fe 2 O 3 which has been conventionally used as a raw material for forming a predetermined refractory. Or a sintered body containing an oxide impurity such as SiO 2 which remains after sintering such a molded body as it is. In the present invention, the molded body to be subjected to the high-purification treatment is fired and sintered in advance before the high-purification treatment. Molding and baking can be performed by a conventionally known general method. Since impurities contained in the raw material powder act as a sintering aid during firing, sintering is easy and a high-strength refractory sintered body can be obtained, which is preferable. That is, the high-purity refractory of the present invention is preferably, by positively using those containing the above impurities in the raw material powder,
Finally, the impurity content is reduced. The main components constituting the high-purity refractory of the present invention include oxides such as partially stabilized or stabilized zirconia (ZrO 2 ) and alumina (Al 2 O 3 ), and non-oxides such as silicon carbide. . In particular, the content of the main components of yttria (Y 2 O 3 ) and ZrO 2 , which are conventionally used as electronic component firing tools, is less than about 99.5% by weight, and SiO 2 , F 2
impurities such as e 2 O 3 , CaO, K 2 O, and Na 2 O.
Stabilized zirconia containing 5% by weight or more, or alumina containing mainly SiO 2 or iron oxide as an impurity in an amount of about 0.5% by weight or more and Al 2 O 3 of less than 99.5% by weight as a main component Is preferred.

【0010】本発明の加熱処理は、還元雰囲気下で12
00〜1600℃で所定時間保持することにより行うこ
とができる。還元雰囲気としては、通常、水素ガスと窒
素ガスとの混合ガスが用いられる。水素ガスに比し窒素
ガスは安価であり、工業的には窒素ガス混合比率が多い
方が好ましい。通常、水素−窒素の混合ガスで水素濃度
25〜75容量%であるガスが使用される。水素ガスが
25容量%未満では還元効果が小さいため好ましくな
い。また、窒素ガスの代わりにアルゴンガスを用いても
よい。更に、還元雰囲気として、当初から水素ガスを混
入させることなく、例えば、アンモニア(NH3 )ガス
等の所定の焼成条件で水素ガスを発生するものを用いる
こともできる。NH3 は、1000℃以上でN2 とH2
に分解する。また、炭化水素や一酸化炭素等の自身が酸
化され易いガスを用いてもよい。更に、NH3 ガスと炭
化水素とを同時に混入させる等、H2 ガス、NH3
ス、炭化水素、塩素(Cl2 )ガス等の還元性ガスを併
用してもよいし、また、N2 ガス、Arガスの希釈用ガ
スを併用してもよい。本発明において、高純度化加熱処
理される耐火物成形体と焼結体とは、加熱処理における
上記還元雰囲気下とする時期を選択する必要がある。耐
火物成形体の場合は、前記したように予め焼成させた後
に高純度化処理するため、高純度化加熱処理する同一炉
内において、従来の耐火物の製法と同様の脱バインダー
工程及び焼結工程を経た後、所定の加熱処理温度で炉内
雰囲気を還元雰囲気として処理する。炉内雰囲気を当初
より還元雰囲気下で加熱した場合は、焼結助剤となる不
純物が揮発してしまい、所定密度の高純度耐火物が得ら
れないためである。一方、耐火物焼結体においては、加
熱処理炉内雰囲気を当初より上記の還元雰囲気として処
理することができる。
The heat treatment of the present invention is carried out under a reducing atmosphere.
It can be performed by holding at 00 to 1600 ° C. for a predetermined time. As the reducing atmosphere, a mixed gas of hydrogen gas and nitrogen gas is usually used. Nitrogen gas is inexpensive compared to hydrogen gas, and industrially, it is preferable that the nitrogen gas mixture ratio is large. Usually, a mixed gas of hydrogen and nitrogen having a hydrogen concentration of 25 to 75% by volume is used. If the hydrogen gas content is less than 25% by volume, the reducing effect is small, which is not preferable. Further, an argon gas may be used instead of the nitrogen gas. Further, as the reducing atmosphere, a gas that generates hydrogen gas under predetermined firing conditions such as ammonia (NH 3 ) gas without mixing hydrogen gas from the beginning can be used. NH 3 is N 2 and H 2 at 1000 ° C. or higher.
Decompose into Further, a gas such as hydrocarbon or carbon monoxide which is easily oxidized may be used. Further, a reducing gas such as H 2 gas, NH 3 gas, hydrocarbon, chlorine (Cl 2 ) gas or the like may be used in combination, such as mixing NH 3 gas and hydrocarbon simultaneously, or N 2 gas. , Ar gas may be used in combination. In the present invention, it is necessary to select a time when the refractory molded body and the sintered body to be subjected to the high-purity heat treatment are brought into the above-mentioned reducing atmosphere in the heat treatment. In the case of a refractory molded body, since it is preliminarily baked as described above and then subjected to high purification treatment, the same debinding step and sintering as in the conventional refractory manufacturing method are performed in the same furnace where high purification heat treatment is performed. After the step, the atmosphere in the furnace is treated as a reducing atmosphere at a predetermined heat treatment temperature. This is because, if the furnace atmosphere is heated under a reducing atmosphere from the beginning, impurities serving as sintering agents volatilize, and a high-purity refractory having a predetermined density cannot be obtained. On the other hand, in the refractory sintered body, the atmosphere in the heat treatment furnace can be treated as the above-described reducing atmosphere from the beginning.

【0011】本発明の高純度化の加熱処理は、上記還元
雰囲気中で、約1100℃以上で、1750℃未満、好
ましくは約1200〜1600℃で加熱処理される。加
熱温度が1100℃未満であると不純物が充分に除去で
きない。一方、1750℃以上であると前記の通り、被
焼成耐火物成形体または焼結体の焼結が進み過ぎ、変形
したり、耐スポーリング性が低下するため好ましくな
い。本発明の加熱処理は、上記還元雰囲気中で上記加熱
温度で約3〜10時間保持して行うことができる。保持
時間は、処理温度及び雰囲気ガス中の還元性の強弱に応
じて上記範囲から適宜選択することができる。上記した
ように、本発明の還元雰囲気下で所定に加熱処理するこ
とにより、被加熱処理体中に存在する不純物、例えば、
SiO2 は、SiO2 +H2 →SiO(ガス)+H2
の反応によりガスとなって飛散除去され、1500℃の
還元雰囲気で約5時間保持する加熱処理により、SiO
2 含有率が0.2重量%から0.04重量%まで減少さ
せることができる。
The high-purity heat treatment of the present invention is carried out in the reducing atmosphere at a temperature of about 1100 ° C. or more and less than 1750 ° C., preferably about 1200 to 1600 ° C. If the heating temperature is lower than 1100 ° C., impurities cannot be sufficiently removed. On the other hand, if the temperature is 1750 ° C. or higher, as described above, the sintering of the fired refractory molded body or the sintered body proceeds excessively, and is deformed or the spalling resistance is unfavorably reduced. The heat treatment of the present invention can be performed by holding at the above-mentioned heating temperature in the above-mentioned reducing atmosphere for about 3 to 10 hours. The holding time can be appropriately selected from the above range according to the processing temperature and the strength of the reducing property in the atmosphere gas. As described above, by performing a predetermined heat treatment under the reducing atmosphere of the present invention, impurities present in the object to be heated, for example,
SiO 2 is SiO 2 + H 2 → SiO (gas) + H 2 O
The gas is scattered and removed as a gas by the reaction of the above.
2 The content can be reduced from 0.2% to 0.04% by weight.

【0012】また、本発明の高純度耐火物は、特に、セ
ラミック電子部品の焼成用の道具材に用いることから、
セラミック電子部品の焼成温度1200〜1500℃に
おいて被焼成物に不都合が生じなければ、内部に不純物
が残存してもよい。従って、本発明の加熱処理において
は、得られる高純度耐火物上にセラミック電子部品等被
焼成物を載置して所定の焼成温度で処理しても被焼成物
の特性に悪影響を与えない程度に、また、繰り返し使用
できる程度に少なくとも表面の不純物が除去され実質的
に高純度となっていればよい。通常、表面から約2mm
までの深さで上記の不純物が除去されていればよい。ま
た、上記のセラミック電子部品の焼成道具材として適用
されるY23 安定化ジルコニアやアルミナであれば、
不純物が0.5重量%未満に除去されればよい。
In addition, since the high-purity refractory of the present invention is used as a tool for firing ceramic electronic parts,
If there is no inconvenience in the object to be fired at a firing temperature of 1200 to 1500 ° C. for the ceramic electronic component, impurities may remain inside. Therefore, in the heat treatment of the present invention, even if the object to be fired such as a ceramic electronic component is placed on the obtained high-purity refractory and treated at a predetermined firing temperature, the properties of the object to be fired are not adversely affected. In addition, at least impurities on the surface should be removed to such an extent that they can be used repeatedly, so that they have substantially high purity. Usually about 2 mm from the surface
It is only necessary that the above-described impurities have been removed at a depth of up to. In addition, if Y 2 O 3 stabilized zirconia or alumina is used as a firing tool material for the ceramic electronic component,
What is necessary is just to remove impurities to less than 0.5% by weight.

【0013】[0013]

【実施例】以下、本発明を実施例に基づき更に詳細に説
明する。但し、本発明は下記実施例により制限されるも
のでない。 実施例1 耐火物原料粉末として、市販の純度99.2重量%のA
23 粉末(不純物として主にSiO2 を0.25重
量%、Fe23 0.15重量%含有)を用い、一軸金
型成形法により厚さ8mmで310×310(mm)の
平板成形体を作製した。その後、大気雰囲気下、168
0℃で3時間加熱して焼成しAl23耐火物焼結体を
得た。得られた焼結体から試料を切り出し、湿式分析に
よりSiO2 等の不純物の含有量を測定した。その結
果、SiO2 含有量は0.25重量%であった。また、
各作製した焼結体を、それぞれ表1に示した水素(H
2 )及び窒素(N2 )の混合比率の還元ガス雰囲気下で
1500℃で5時間加熱処理した。加熱処理した焼結体
から同様に試料を切り出してSiO2 含有量を同様に測
定した。また、実験No.3及び4の本願発明の耐火物
については、不純物としてSiO2 量とSiO2 以外の
不純物量をそれぞれ測定した。それらの結果を表1に示
した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in more detail with reference to embodiments. However, the present invention is not limited by the following examples. Example 1 Commercially available A having a purity of 99.2% by weight was used as a refractory raw material powder.
Using l 2 O 3 powder (containing mainly 0.25% by weight of SiO 2 and 0.15% by weight of Fe 2 O 3 as impurities), a thickness of 310 × 310 (mm) with a thickness of 8 mm was obtained by a uniaxial molding method. A flat plate was produced. Then, under air atmosphere, 168
The resultant was heated at 0 ° C. for 3 hours and fired to obtain an Al 2 O 3 refractory sintered body. A sample was cut out from the obtained sintered body, and the content of impurities such as SiO 2 was measured by wet analysis. As a result, the content of SiO 2 was 0.25% by weight. Also,
Each of the produced sintered bodies was subjected to hydrogen (H
Heat treatment was performed at 1500 ° C. for 5 hours in a reducing gas atmosphere having a mixture ratio of 2 ) and nitrogen (N 2 ). A sample was similarly cut out from the heat-treated sintered body, and the SiO 2 content was measured in the same manner. Experiment No. About 3 and refractories of 4 of the present invention, SiO 2 amount and the amount of impurities other than SiO 2 were measured respectively as an impurity. The results are shown in Table 1.

【0014】上記実施例1から明らかなように、所定の
不純物を含有するアルミナ原料粉末から成形されたAl
23 成形体を焼成処理して焼結させ、得られた焼結体
を還元ガス雰囲気下で加熱処理することにより不純物が
低減された焼結体の高純度アルミナ耐火物が得られるこ
とが分かる。また、還元ガス雰囲気としてH2 ガスとN
2 ガスの混合ガスのH2 ガス比率が大きくなるにつれS
iO2 等の不純物含有量が小さくなる。しかし、実験番
号5及び6でH2 ガスが75容量%を超えるとコストが
嵩み実用的でなくなる。H2 ガスが25〜75容量%の
場合は、コスト的に問題がなくSiO2 等の不純物含有
量も低減され好ましいことが分かる。
As is evident from the above-mentioned Example 1, the Al powder formed from the alumina raw material powder containing the predetermined impurities was formed.
And calcined for 2 O 3 formed body by sintering, that a high-purity alumina refractory sintered body which impurities are reduced by the resulting sintered body to heat treatment under a reducing gas atmosphere to obtain I understand. In addition, H 2 gas and N
As the H 2 gas ratio of the mixed gas of the two gases increases, S
The content of impurities such as iO 2 is reduced. However, if the H 2 gas exceeds 75% by volume in Experiment Nos. 5 and 6, the cost increases and it becomes impractical. When the H 2 gas content is 25 to 75% by volume, there is no problem in terms of cost and the content of impurities such as SiO 2 is reduced, which is preferable.

【0015】[0015]

【表1】 [Table 1]

【0016】実施例2 実施例1と同様にして作製したAl23 主成分の各焼
結体を、H2 ガス25容量%のH2 −N2 混合ガス雰囲
気下で、加熱温度を表2に示したように変化させて5時
間加熱処理した。加熱処理した焼結体のSiO2 等の不
純物含有量を実施例1と同様にして測定した。また、本
発明の耐火物(実験No.10〜12)についてはSi
2 量とSiO2 以外の不純物量をそれぞれ測定した。
それらの結果を表2に示した。なお、実験No.14は
大気雰囲気下で行った。
[0016] Each sintered body of Example 1 Similarly Al 2 O 3 produced by main component, H 2 gas 25 volume% H 2 -N 2 in a mixed gas atmosphere, the table heating temperature Heat treatment was carried out for 5 hours while changing as shown in FIG. The content of impurities such as SiO 2 in the heat-treated sintered body was measured in the same manner as in Example 1. The refractory of the present invention (Experiment Nos. 10 to 12) was made of Si.
The amounts of O 2 and impurities other than SiO 2 were measured.
Table 2 shows the results. Note that the experiment No. 14 was performed in an air atmosphere.

【0017】上記実施例2より明らかなように、実験N
o.10〜12の還元ガス雰囲気下1200〜1600
℃で加熱処理することによりSiO2 等の不純物含有量
が十分低減されることが分かる。1100℃以下ではS
iO2 の低減が十分でなく、1750℃では変形や耐ス
ポーリング性が低下するため好ましくないことが分か
る。また、実験No.14は、従来の高温による不純物
をガス飛散させる方法と同様であり、SiO2 含有量の
低減も十分でなく、変形等の不都合が生じることが分か
る。
As is clear from the above-mentioned Example 2, the experiment N
o. 1200 to 1600 under a reducing gas atmosphere of 10 to 12
It can be understood that the content of impurities such as SiO 2 is sufficiently reduced by performing the heat treatment at ° C. S below 1100 ° C
It can be seen that the reduction of iO 2 is not sufficient, and deformation and spalling resistance at 1750 ° C. are unfavorable. Experiment No. No. 14 is the same as the conventional method of dispersing impurities due to high temperature, and it can be seen that the content of SiO 2 is not sufficiently reduced and disadvantages such as deformation occur.

【0018】[0018]

【表2】 [Table 2]

【0019】実施例3 実施例1と同様にして作製したAl23 主成分の各焼
結体を、加熱処理雰囲気をNH3 とN2 の混合ガスとし
て、表3に示したように混合比率を変化させて、150
0℃で5時間加熱処理した。加熱処理した焼結体のSi
2 等の不純物含有量を実施例1と同様にして測定し
た。また、実験No.19、21及び23の本発明の耐
火物についてはSiO2 量とSiO2 以外の不純物量を
それぞれ測定した。それらの結果を表3に示した。
Example 3 Each sintered body of the main component of Al 2 O 3 produced in the same manner as in Example 1 was mixed as shown in Table 3 with the heat treatment atmosphere being a mixed gas of NH 3 and N 2. Change the ratio to 150
Heat treatment was performed at 0 ° C. for 5 hours. Heat-treated sintered body Si
The content of impurities such as O 2 was measured in the same manner as in Example 1. Experiment No. For 19, 21 and refractory of the present invention 23 were measured amount of SiO 2 and SiO 2 than impurity amounts, respectively. Table 3 shows the results.

【0020】[0020]

【表3】 [Table 3]

【0021】実施例3から明らかなように、加熱温度1
500℃でNH3 とN2 の混合ガスで、NH3 が32容
量%以上において、SiO2 等の不純物含有量が十分低
減され還元効果が得られることが分かる。この場合、1
500℃において、例えばNH3 濃度32容量%の混合
ガスは、アンモニアが分解してH2 濃度約24容量%、
2 濃度約76容量%の混合ガスになるものと推定され
る。N2 ガスのみでは全く効果がなく、また、NH3
高濃度であれば、その分、分解ガス雰囲気中のH2 ガス
濃度が増加して還元性が高まる。例えば、NH3 濃度1
00%の場合、分解ガスはH2 が75容量%、N2 が2
5容量%となる。更に、H2 の比率を高めたい場合は、
コスト高になるがH2 ガスを添加混合すればよい。上記
実施例1及び3より明らかなように、H2 ガスとN2
スの混合ガスを用いた場合と、NH3 を用いて分解ガス
化した場合とで効果に格別な差がないことが分かる。N
3 濃度が30%容量以下の場合は、効果がない。
As apparent from Example 3, the heating temperature was 1
It can be seen that when the mixed gas of NH 3 and N 2 is at a temperature of 500 ° C. and the NH 3 is 32% by volume or more, the content of impurities such as SiO 2 is sufficiently reduced and the reduction effect can be obtained. In this case, 1
At 500 ° C., for example, a mixed gas having an NH 3 concentration of 32% by volume is obtained by decomposing ammonia to a H 2 concentration of about 24% by volume
It is estimated that the mixed gas will have a N 2 concentration of about 76% by volume. The N 2 gas alone has no effect, and when the concentration of NH 3 is high, the concentration of H 2 gas in the decomposition gas atmosphere increases and the reducibility increases. For example, NH 3 concentration 1
If 00% decomposition gas H 2 is 75 volume% N 2 2
5% by volume. Furthermore, if you want to increase the ratio of H 2 ,
Although the cost increases, H 2 gas may be added and mixed. As is clear from Examples 1 and 3, there is no particular difference in the effect between the case where the mixed gas of the H 2 gas and the N 2 gas is used and the case where the mixed gas is converted into the decomposed gas using NH 3. . N
When the H 3 concentration is 30% or less by volume, there is no effect.

【0022】[0022]

【表4】 [Table 4]

【0023】実施例4 耐火物原料粉末として、市販のY23 8重量%でZr
2 91.0重量%の部分安定化ZrO2 粉末(不純物
1.0重量%含有し、そのうちSiO2 が0.35重量
%含有)を用いた以外は、実施例1と同様にして一軸金
型成形法により厚さ3mmで110×110(mm)の
平板成形体を作製した。その後、大気雰囲気下、165
0℃で3時間加熱して焼成しZrO2 耐火物焼結体を得
た。得られた焼結体から試料を切り出し、実施例1と同
様に測定したSiO2 等の不純物のSiO2 含有量は
0.35重量%であった。各作製した焼結体を、それぞ
れ表4に示したH2 及びN2 の混合比率の還元ガス雰囲
気下で1500℃で5時間加熱処理した。加熱処理した
焼結体から同様に試料を切り出してSiO2 等の不純物
含有量を同様に測定した。また、実験No.26及び2
7の本発明の耐火物についてはSiO2 量とSiO2
外の不純物量をそれぞれ測定した。それらの結果を表4
に示した。
Example 4 As a refractory raw material powder, a commercially available Y 2 O 3 containing 8% by weight of Zr was used.
Uniaxial metal was manufactured in the same manner as in Example 1 except that 91.0% by weight of O 2 and partially stabilized ZrO 2 powder (containing 1.0% by weight of impurities and 0.35% by weight of SiO 2 thereof) were used. A flat molded body having a thickness of 3 mm and a size of 110 × 110 (mm) was produced by a molding method. Then, under air atmosphere, 165
The mixture was heated at 0 ° C. for 3 hours and fired to obtain a ZrO 2 refractory sintered body. A sample was cut out from the obtained sintered body, and the SiO 2 content of impurities such as SiO 2 measured in the same manner as in Example 1 was 0.35% by weight. Each of the produced sintered bodies was subjected to a heat treatment at 1500 ° C. for 5 hours in a reducing gas atmosphere having a mixture ratio of H 2 and N 2 shown in Table 4. A sample was similarly cut out from the heat-treated sintered body, and the content of impurities such as SiO 2 was measured in the same manner. Experiment No. 26 and 2
Measured amount of SiO 2 and SiO 2 than impurity amounts respectively for 7 refractory of the present invention. Table 4 shows the results.
It was shown to.

【0024】上記実施例4から明らかなように、所定の
不純物を有する原料粉末から成形された部分安定化ジル
コニア成形体を焼成処理して焼結させて得られたジルコ
ニア焼結体においても、実施例1のAl23 焼結体と
同様に還元ガス雰囲気下での加熱処理により、不純物が
低減され高純度ジルコニア耐火物が得られることが分か
る。また、H2 ガス比率が大きくなるにつれ同様にSi
2 等の不純物含有量が少なくなることも分かる。
As is apparent from Example 4, the partially stabilized zirconia compact formed from the raw material powder having predetermined impurities is sintered and sintered to obtain a zirconia sintered body. It can be seen that, similarly to the Al 2 O 3 sintered body of Example 1, the heat treatment in a reducing gas atmosphere reduced impurities and provided a high-purity zirconia refractory. Similarly, as the H 2 gas ratio increases, the Si
It can also be seen that the content of impurities such as O 2 is reduced.

【0025】実施例5 実施例4と同様にして作製したZrO2 の各焼結体を、
実施例2と同様にH2ガス25容量%のH2 −N2 混合
ガス雰囲気下で、加熱温度を表5に示したように変化さ
せて5時間加熱処理した。加熱処理したZrO2 焼結体
のSiO2 等の不純物含有量を実施例1と同様にして測
定した。また、実験No.33〜35の本発明の耐火物
についてはSiO2 量とSiO2 以外の不純物量をそれ
ぞれ測定した。それらの結果を表5に示した。なお、実
験No.37は大気雰囲気下で行った。実施例5より明
らかなように、部分安定化ジルコニア焼結体において
も、実施例2と同様に、還元ガス雰囲気下で1200〜
1600℃で加熱処理することによりジルコニア焼結体
より不純物が良好に低減されることが分かる。
Example 5 Each sintered body of ZrO 2 produced in the same manner as in Example 4
In the same manner as in Example 2, heat treatment was performed for 5 hours in an H 2 -N 2 mixed gas atmosphere of 25% by volume of H 2 gas while changing the heating temperature as shown in Table 5. The content of impurities such as SiO 2 in the heat-treated ZrO 2 sintered body was measured in the same manner as in Example 1. Experiment No. The refractory of the present invention 33 to 35 were measured amount of SiO 2 and SiO 2 than impurity amounts, respectively. Table 5 shows the results. Note that the experiment No. 37 was performed in an air atmosphere. As is clear from Example 5, in the partially stabilized zirconia sintered body, as in Example 2, 1200-200
It can be seen that by performing the heat treatment at 1600 ° C., impurities are better reduced than in the zirconia sintered body.

【0026】[0026]

【表5】 [Table 5]

【0027】実施例6 上記実施例1〜5で加熱処理されて得られた本発明の高
純度耐火物(実験No.3、10、12、19、23、
26、27、33及び35)と、十分に高純度化されて
いない耐火物(実験No.7、9、30及び32)を、
それぞれ透磁率が1万クラスのMn−Zn系ソフトフェ
ライトの焼成用道具材として用いた。焼成温度は135
0℃であった。焼成によりソフトフェライト特性が正常
に発現されるか否か検査し、ソフトフェライト特性が発
現されなくなるまでの使用回数を表6に示した。表6の
結果から明らかなように、本発明の高純度耐火物を用い
た場合は少なくても5回以上、最大26回繰り返し用い
てソフトフェライト特性を発現させることができること
が分かる。一方、十分に高純度化されない耐火物を用い
た場合は、全くソフトフェライト特性が発現されないか
数回で使用できなくなることが分かる。
Example 6 The high-purity refractory of the present invention obtained by heat treatment in Examples 1 to 5 (Experiments No. 3, 10, 12, 19, 23,
26, 27, 33, and 35) and refractories that were not sufficiently purified (Experiment Nos. 7, 9, 30, and 32)
Each was used as a firing tool for Mn-Zn soft ferrite having a magnetic permeability of 10,000 classes. Firing temperature is 135
It was 0 ° C. It was inspected whether or not the soft ferrite characteristics were normally developed by firing. Table 6 shows the number of uses until the soft ferrite characteristics were not developed. As is clear from the results shown in Table 6, when the high-purity refractory of the present invention is used, the soft ferrite characteristics can be exhibited by repeatedly using at least 5 times or more and at most 26 times. On the other hand, when a refractory which is not sufficiently purified is used, it can be seen that soft ferrite characteristics are not exhibited at all or cannot be used several times.

【0028】[0028]

【表6】 [Table 6]

【0029】[0029]

【発明の効果】本発明は、積極的に不純物を含む原料粉
末を用いて成形された成形体、または、不純物を含有す
る焼結体を、還元ガス雰囲気中で加熱処理して安価に、
且つ、簡便に高純度耐火物を得ることができる。本発明
の高純度耐火物は、十分に不純物が除去され高純度化さ
れていることから、例えばソフトフェライト等不純物に
敏感な電子部品や不純物により不都合が生じるような製
品の焼成用道具材として好適に使用できる。また、不純
物を含有する原料粉末から得られた成形体は、還元ガス
雰囲気中の加熱処理に先立ち行う焼成時に焼結性に優れ
十分に緻密な焼結体となると同時に、その後の加熱処理
により不純物が除去されて高純度耐火物とすることがで
きる。
According to the present invention, a compact formed using a raw material powder containing impurities or a sintered body containing impurities is heat-treated in a reducing gas atmosphere at low cost.
In addition, a high-purity refractory can be easily obtained. Since the high-purity refractory of the present invention is sufficiently purified by removing impurities, it is suitable as a tool material for firing electronic components sensitive to impurities such as soft ferrite or a product in which impurities cause inconvenience. Can be used for In addition, the compact obtained from the raw material powder containing impurities becomes a sufficiently dense sintered body with excellent sinterability at the time of firing performed before the heat treatment in a reducing gas atmosphere, and at the same time, the impurity is reduced by the subsequent heat treatment. Is removed to obtain a high-purity refractory.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 利幸 愛知県刈谷市小垣江町南藤1番地 東芝セ ラミックス株式会社刈谷製造所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Toshiyuki Suzuki 1 Minami Fuji, Ogakie-cho, Kariya-shi, Aichi Prefecture Toshiba Ceramics Co., Ltd. Kariya Works

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 主にSiO2 、Fe23 、アルカリま
たはアルカリ土類金属酸化物を不純物として含有してな
る耐火物成形体または焼結体が、還元雰囲気下加熱処理
され、少なくとも表面が実質的に高純度化されてなるこ
とを特徴とする高純度耐火物。
1. A refractory molded body or sintered body mainly containing SiO 2 , Fe 2 O 3 , alkali or alkaline earth metal oxide as an impurity is subjected to heat treatment in a reducing atmosphere, and at least the surface thereof is heated. A high-purity refractory characterized by being substantially highly purified.
【請求項2】前記加熱処理が、温度1200〜1600
℃に保持される請求項1記載の高純度耐火物。
2. The method according to claim 1, wherein the heat treatment is performed at a temperature of 1200 to 1600.
The high-purity refractory according to claim 1, which is maintained at a temperature of ℃.
【請求項3】 前記還元雰囲気が少なくとも水素を含有
してなる請求項1または2記載の高純度耐火物。
3. The high-purity refractory according to claim 1, wherein the reducing atmosphere contains at least hydrogen.
【請求項4】 前記成形体または焼結体が高純度化され
てZrO2 及びY23 からなる成分含有率が99.5
重量%以上の部分安定化ジルコニアとなる請求項1、2
または3記載の高純度耐火物。
4. The molded body or sintered body is highly purified, and the content of a component composed of ZrO 2 and Y 2 O 3 is 99.5.
3. A partially stabilized zirconia of not less than% by weight.
Or a high-purity refractory according to 3.
【請求項5】 前記成形体または焼結体が高純度化され
てAl23 成分含有率が99.5重量%以上となる請
求項1、2または3記載の高純度耐火物。
5. The high-purity refractory according to claim 1, 2 or 3, wherein the compact or sintered body is highly purified so that the content of Al 2 O 3 component becomes 99.5% by weight or more.
【請求項6】 主にSiO2 、Fe23 、アルカリま
たはアルカリ土類金属酸化物を不純物として含有してな
る耐火物成形体または焼結体を、少なくとも水素を含有
してなる還元雰囲気下、温度1200〜1600℃で加
熱処理し、該耐火物成形体または焼結体の少なくとも表
面を実質的に高純度化することを特徴とする高純度耐火
物の製造方法。
6. A refractory molded body or sintered body mainly containing SiO 2 , Fe 2 O 3 , alkali or alkaline earth metal oxide as an impurity in a reducing atmosphere containing at least hydrogen. A method of producing a high-purity refractory by heat-treating at a temperature of 1200 to 1600 ° C. to substantially purify at least the surface of the refractory molded body or sintered body.
JP8204303A 1996-07-15 1996-07-15 High purity refractory and its production Pending JPH1029880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8204303A JPH1029880A (en) 1996-07-15 1996-07-15 High purity refractory and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8204303A JPH1029880A (en) 1996-07-15 1996-07-15 High purity refractory and its production

Publications (1)

Publication Number Publication Date
JPH1029880A true JPH1029880A (en) 1998-02-03

Family

ID=16488254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8204303A Pending JPH1029880A (en) 1996-07-15 1996-07-15 High purity refractory and its production

Country Status (1)

Country Link
JP (1) JPH1029880A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003048792A (en) * 2001-08-02 2003-02-21 Toshiba Ceramics Co Ltd Plasma resistant member for semiconductor manufacturing apparatus and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003048792A (en) * 2001-08-02 2003-02-21 Toshiba Ceramics Co Ltd Plasma resistant member for semiconductor manufacturing apparatus and method of manufacturing the same
JP4683783B2 (en) * 2001-08-02 2011-05-18 コバレントマテリアル株式会社 Method for manufacturing plasma-resistant member for semiconductor manufacturing apparatus

Similar Documents

Publication Publication Date Title
JP5596259B2 (en) Method for reducing density non-uniformity of sintered materials
Masaki Mechanical properties of Y-PSZ after aging at low temperature
JPS6324951B2 (en)
Lathabai et al. Reaction‐bonded mullite/zirconia composites
JP2981107B2 (en) Method for producing cordierite honeycomb ceramics
US7368076B2 (en) Method for producing a silicon nitride filter
EP1767885B1 (en) Kiln furniture for use in a non-oxidizing atmosphere
JPH1029880A (en) High purity refractory and its production
US4623498A (en) Method of improving quality of hot pressed Si3 N4 bodies
JP3145518B2 (en) Surface high-purity ceramics and manufacturing method thereof
EP0157366B1 (en) Method of producing high purity zirconia powder from zircon powder
EP0234905A2 (en) Production of silicon nitride sintered body
US3076716A (en) Production of granular zirconia products
JP2002121073A (en) Method of producing silicon nitride filter
JPS62265164A (en) Calcia magnesia base clinker and manufacture
JPH03213142A (en) Method for purifying particulate material
JPWO2004067147A1 (en) Manufacturing method of silicon nitride honeycomb filter
JPS62182154A (en) Calcia sintered body and manufacture
JP4228987B2 (en) Manufacturing method of silicon nitride honeycomb filter
JP2003221272A (en) Machinable ceramics having high density and high heat resistance and manufacturing method therefor
JPH08119719A (en) Brick containing carbon and aluminum silicon carbide
JP2003002759A (en) Ceramics porous body and production method therefor
JPH0577627B2 (en)
JPS62202873A (en) Ceramic sintered body and manufacture
CA1156687A (en) Refractory

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060413

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060817

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20071106