JPH10298629A - Method for melting extra-low carbon steel having high cleanliness - Google Patents

Method for melting extra-low carbon steel having high cleanliness

Info

Publication number
JPH10298629A
JPH10298629A JP10555897A JP10555897A JPH10298629A JP H10298629 A JPH10298629 A JP H10298629A JP 10555897 A JP10555897 A JP 10555897A JP 10555897 A JP10555897 A JP 10555897A JP H10298629 A JPH10298629 A JP H10298629A
Authority
JP
Japan
Prior art keywords
slag
molten steel
concentration
treatment
ladle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10555897A
Other languages
Japanese (ja)
Inventor
Yukari Tago
ユカリ 田子
Makoto Fukagawa
信 深川
Takayuki Nishi
隆之 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP10555897A priority Critical patent/JPH10298629A/en
Publication of JPH10298629A publication Critical patent/JPH10298629A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a melting method for a steel having high cleanliness and extra-low carbon concn. which suitably secures the necessary dissolved oxygen to decarburization and at the same time, restrains the formation of Al2 O3 in the decarburizing treatment of molten steel and in succession to this, deoxidizing treatment by using a vacuum degassing apparatus. SOLUTION: Firstly, a part of slag reforming agent is added into the tapping steel stream at the time of tapping from a converter to a ladle or the slag in the ladle and low grade oxide concn. in the slag is lowered and the oxygen concn. in the molten steel coexisting with the above oxide is adjusted to the necessary concn. to the decarburizing reaction. Thereafter, the decarburizing treatment and Al deoxidizing treatment are executed in order, and further, at least in one side of before and after the Al deoxidizing treatment, the difficult-to-collapse slag reforming agent having the difficult-to-collapse to the molten steel and easy-to-react to the slag, is added into a vacuum vessel and uniformly dispersed and arrived to the slag on the ladle accompanied with the molten steel stream.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高清浄度でかつ極低
炭素濃度の鋼の溶製方法に関し、さらに詳しくは介在物
の生成を効率良く抑制することができる溶製方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a smelting method for steel having a high cleanliness and an extremely low carbon concentration, and more particularly to a smelting method capable of efficiently suppressing the formation of inclusions.

【0002】[0002]

【従来の技術】自動車の外装材として、表面欠陥が少な
くかつ成形性(特に深絞り性)が良好な鋼板が要求され
ている。これらの要求に対応するため、製鋼工程では鋼
の高清浄化と極低炭素化が必要となっている。
2. Description of the Related Art As an exterior material for an automobile, a steel sheet having few surface defects and good formability (particularly, deep drawability) is required. In order to meet these demands, the steelmaking process requires high-purity steel and ultra-low carbon.

【0003】通常、極低炭素化のための脱炭方法では、
製鋼炉より出鋼された炭素濃度0.03重量%(以下組
成を示す「重量%」は、単に「%」と表示する)程度の
未脱酸溶鋼に真空脱ガス処理を施し、溶鋼中の溶存酸素
)と炭素()との反応である→CO↑を利
用して炭素濃度を0.001〜0.006%へ低下させ
るのが一般的である。この反応を促進するための溶鋼中
の溶存酸素濃度は化学量論的には0.04%程度で十分
であるが、実際には0.06%程度と過剰に存在する。
[0003] Usually, in the decarburization method for extremely low carbon,
A vacuum degassing process is applied to undeoxidized molten steel having a carbon concentration of about 0.03% by weight (hereinafter, “% by weight” indicating the composition is simply expressed as “%”) from a steelmaking furnace. Generally, the carbon concentration is reduced to 0.001 to 0.006% by utilizing C + O → CO ↑, which is a reaction between dissolved oxygen ( O 2 ) and carbon ( C ). The dissolved oxygen concentration in molten steel for promoting this reaction is stoichiometrically about 0.04%, which is sufficient, but is actually about 0.06% in excess.

【0004】このように溶鋼中の溶存酸素が高いレベル
で存在する場合には、共存するスラグ中の低級酸化物
(FeO+MnO)濃度も10%程度と同様に高い。こ
のようなスラグ中低級酸化物濃度が高い状態は、真空脱
炭処理完了後の溶鋼中炭素が低下した後も継続し、この
ままでは脱酸処理で添加したアルミニウム(以下、Al
と記す)の残留物とスラグ中の低級酸化物が反応してA
23を生成し、このAl23が残留して鋼板の清浄度
を著しく低下させるという問題が生じる。
[0004] When the dissolved oxygen in the molten steel is present at a high level, the lower oxide (FeO + MnO) concentration in the coexisting slag is as high as about 10%. Such a state in which the concentration of the lower oxides in the slag is high continues even after the carbon in the molten steel after the completion of the vacuum decarburization treatment is reduced, and the aluminum added by the deoxidation treatment (hereinafter, Al)
) Reacts with the lower oxides in the slag to form A
l 2 O 3 is generated, and this Al 2 O 3 remains to cause a problem of significantly lowering the cleanliness of the steel sheet.

【0005】この問題を解決する方法として、これまで
いくつかの技術の提案がなされてきた。例えば、特開昭
60−152611号公報では、出鋼時、スラグ改質剤
を添加する際に、スラグ改質剤のスラグ中での均一分散
混合を図る目的で、スラグ改質剤とともにCaCO3
のガス発生物質を併用添加し、スラグ中の低級酸化物を
効率良く低減して、Al23系介在物の生成を抑制する
技術が提案されている。また、特開平6−256837
号公報では、転炉から取鍋への出鋼中または出鋼直後の
取鍋内スラグに、スラグの脱酸に必要な量のうちの一部
だけを添加し、その残りの分のスラグ脱酸剤を前記真空
脱ガス処理装置による脱炭処理の後の取鍋内スラグに添
加する2段階添加の技術が提案されている。
[0005] As a method for solving this problem, several techniques have been proposed so far. For example, Japanese Patent Application Laid-Open No. 60-152611 discloses that, when a slag modifier is added at the time of tapping, CaCO 3 is added together with the slag modifier in order to uniformly disperse and mix the slag modifier in the slag. A technique has been proposed in which a gas generating substance such as is added in combination to efficiently reduce lower oxides in the slag and suppress the generation of Al 2 O 3 -based inclusions. Also, JP-A-6-256837
In the official gazette, only part of the amount required for deoxidation of slag is added to the slag in the ladle during or immediately after tapping from the converter to the ladle, and the remaining slag is removed. A two-stage addition technique has been proposed in which an acid agent is added to slag in a ladle after decarburization treatment by the vacuum degassing device.

【0006】[0006]

【発明が解決しようとする課題】しかし、上記の従来技
術には以下の問題点がある。
However, the above prior art has the following problems.

【0007】特開昭60−152611号公報で開示さ
れている方法では、出鋼段階で還元によって一度にスラ
グ中の低級酸化物濃度を目標濃度まで下げる。出鋼段階
で低級酸化物濃度を2〜3%とした場合、Al23の生
成抑制の点では有効であるが、一方では共存する溶鋼中
の酸素濃度が低すぎて脱炭不足となり、極低炭素鋼を溶
製するのが困難となる。
In the method disclosed in Japanese Patent Application Laid-Open No. 60-152611, the concentration of lower oxides in the slag is reduced to a target concentration at a time by reduction in the tapping stage. When the lower oxide concentration is set to 2 to 3% in the tapping stage, it is effective in suppressing the formation of Al 2 O 3 , but on the other hand, the oxygen concentration in the coexisting molten steel is too low, resulting in insufficient decarburization. It becomes difficult to melt ultra-low carbon steel.

【0008】すなわち、脱炭処理前の取鍋内の溶鋼中溶
存酸素濃度とスラグ中低級酸化物濃度の間には、図1に
示すほぼ正の相関が成立する。この相関関係から見て、
低級酸化物濃度2〜3%に相当する溶鋼中酸素濃度は
0.03%程度であり、出鋼時炭素濃度は通常0.03
%程度なので、達成できる溶鋼中の炭素濃度は0.01
%程度となり、本発明方法で目的とする炭素濃度0.0
01〜0.006%の極低炭素鋼の溶製は困難である。
脱炭反応中はスラグ中の低級酸化物からの酸素の補給は
起こらない。したがって図1に示す関係は成立せず、ス
ラグ中低級酸化物は脱炭処理前の濃度がそのままで推移
する。酸素の不足分を別途上吹きランス等で補填する方
法も考えられるが、この時同時にスラグが酸化を受けて
スラグ中低級酸化物濃度が上昇して所期の目的が果たせ
ない結果となる。
That is, a substantially positive correlation shown in FIG. 1 is established between the dissolved oxygen concentration in the molten steel in the ladle before the decarburization treatment and the lower oxide concentration in the slag. From this correlation,
The oxygen concentration in molten steel corresponding to the lower oxide concentration of 2 to 3% is about 0.03%, and the carbon concentration during tapping is usually 0.03%.
%, The achievable carbon concentration in molten steel is 0.01%
%, The target carbon concentration of the method of the present invention of 0.0
It is difficult to melt 01-0.006% ultra low carbon steel.
During the decarburization reaction, oxygen is not replenished from the lower oxides in the slag. Therefore, the relationship shown in FIG. 1 does not hold, and the concentration of the lower oxides in the slag changes before the decarburization treatment. A method of separately supplementing the oxygen deficiency with a top blowing lance or the like is also conceivable, but at this time, the slag is simultaneously oxidized and the concentration of lower oxides in the slag rises, so that the intended purpose cannot be achieved.

【0009】また、特開平6−256387号公報で開
示されている方法によれば、スラグ改質剤を出鋼時と脱
炭処理完了後の2段に分けて添加するので、脱炭処理前
にスラグを還元することによって生じる脱炭用の溶鋼中
溶存酸素が不足するという問題は解消される。しかし、
一方では、脱炭処理後にスラグ中低級酸化物の全量を濃
度2〜3%以下へ低減するため多量のスラグ改質剤を要
し、かつスラグの流動性が低いため、スラグを機械的に
撹拌するかまたはガス環流動力で撹拌するような強制的
な撹拌を行う必要が生じ、このため処理時間の延長、溶
鋼温度の低下、生産コストの上昇などの問題が生じて得
策な方法とは言えない。
According to the method disclosed in Japanese Patent Application Laid-Open No. 6-256687, the slag modifier is added in two stages, at the time of tapping and after the completion of the decarburization treatment. The problem of insufficient oxygen dissolved in molten steel for decarburization caused by reducing slag is solved. But,
On the other hand, a large amount of slag modifier is required to reduce the total amount of lower oxides in the slag to a concentration of 2 to 3% or less after the decarburization treatment, and the slag is mechanically stirred because the fluidity of the slag is low. Or forced agitation such as stirring with gas ring fluidity, which causes problems such as longer processing time, lower molten steel temperature, and higher production cost, and cannot be said to be a viable method. .

【0010】本発明の目的は、上記従来技術の問題点を
改善し、真空脱ガス装置を使用した溶鋼の脱炭処理およ
びこれに続く脱酸処理において、脱炭に必要な溶存酸素
を適正に確保すると同時にAl23の形成を抑制し、清
浄度が高くかつ極低炭素濃度の鋼の溶製方法を提供する
ことにある。
An object of the present invention is to solve the above-mentioned problems of the prior art, and to appropriately remove dissolved oxygen necessary for decarburization in a decarburization treatment of molten steel using a vacuum degassing device and a subsequent deoxidation treatment. It is another object of the present invention to provide a method of melting steel having high cleanliness and an extremely low carbon concentration while ensuring the formation of Al 2 O 3 while securing the same.

【0011】[0011]

【課題を解決するための手段】本発明の要旨は、転炉か
ら取鍋への出鋼時の出鋼流または取鍋内の低炭素未脱酸
溶鋼上のスラグに、スラグ改質剤を添加してスラグ中の
低級酸化物の濃度を調整し、その後溶鋼環流式の真空脱
ガス処理装置を用いて脱炭処理した後、Al脱酸処理前
後の少なくとも一方で、真空槽内の溶鋼中に、溶鋼に対
しては難崩壊性を有しかつスラグに対しては易反応性を
有するスラグ改質剤を添加することを特徴とする清浄度
の高い極低炭素鋼の溶製方法にある。
SUMMARY OF THE INVENTION The gist of the present invention is that a slag modifier is added to a tapping flow when tapping from a converter to a ladle or slag on low-carbon, non-deoxidized molten steel in the ladle. After adding and adjusting the concentration of the lower oxide in the slag, and then decarburizing using a molten steel reflux type vacuum degassing device, at least one of before and after Al deoxidation treatment, the molten steel in the vacuum chamber In addition, there is provided a method for producing ultra-low carbon steel having high cleanliness, characterized by adding a slag modifier having a property of being hardly collapsible to molten steel and having a high reactivity to slag. .

【0012】まず、転炉から取鍋への出鋼時の出鋼流ま
たは取鍋内のスラグに、スラグ改質剤を添加してスラグ
中の低級酸化物の濃度を、これと共存する溶鋼中の酸素
濃度が脱炭反応に必要な濃度になるように、必要最少限
の濃度に調整する。
First, a slag modifier is added to a tapping flow at the time of tapping from a converter to a ladle or slag in a ladle to determine the concentration of lower oxides in the slag and the molten steel coexisting therewith. The concentration of oxygen is adjusted to the minimum necessary concentration so that the oxygen concentration therein becomes the concentration required for the decarburization reaction.

【0013】その後脱炭処理した後Al脱酸処理を行う
のであるが、前記脱炭処理完了後Al脱酸を行う前か、
Al脱酸処理が完了した時点、またはその両方の時点で
真空槽内の溶鋼中に、溶鋼に対しては難崩壊性を有しか
つスラグに対しては易反応性を有するスラグ改質剤を添
加して、これを溶鋼流と同伴させて真空槽外の取鍋上の
スラグへ均一に分散到達させる。この処理により溶鋼と
接するスラグ下面のスラグ中低級酸化物濃度の低減が可
能となり、この結果、介在物の生成を抑制することが可
能となる。
After that, Al deoxidation treatment is performed after decarburization treatment. Before completion of Al deoxidation after completion of the decarburization treatment,
At the time when the Al deoxidation treatment is completed, or at both times, a slag modifier that is hardly collapsible for molten steel and easily reactive for slag is added to molten steel in a vacuum chamber. It is added and is accompanied by the molten steel stream to uniformly disperse and reach the slag on the ladle outside the vacuum chamber. By this treatment, the lower oxide concentration in the slag on the lower surface of the slag in contact with the molten steel can be reduced, and as a result, the generation of inclusions can be suppressed.

【0014】[0014]

【発明の実施の形態】極低炭素濃度でかつAl23系脱
酸生成物の少ない鋼の溶製にあたっての要点は次の通り
である。
BEST MODE FOR CARRYING OUT THE INVENTION The essential points in melting steel having an extremely low carbon concentration and a small amount of Al 2 O 3 -based deoxidation products are as follows.

【0015】出鋼した溶鋼中の炭素濃度と脱炭処理後目
標炭素濃度との差を脱炭量とする。脱炭に必要な酸素と
しては溶鋼中に溶存する酸素を利用するが、通常出鋼後
の溶存酸素は必要以上に濃度が高いので低下させる必要
がある。溶存酸素濃度は図1に示すようにスラグ中低級
酸化物と正の相関関係にあるので、この関係を利用し
て、スラグ中低級酸化物濃度をスラグ改質剤を添加する
ことによって所定の濃度に調整し、溶鋼中の溶存酸素を
脱炭反応に必要最低限の濃度まで低下させる。
The difference between the carbon concentration in the molten steel and the target carbon concentration after the decarburization treatment is defined as the decarburization amount. Oxygen dissolved in molten steel is used as oxygen required for decarburization, but usually the dissolved oxygen after tapping has an excessively high concentration and needs to be reduced. Since the dissolved oxygen concentration is positively correlated with the lower oxide in the slag as shown in FIG. 1, by utilizing this relationship, the concentration of the lower oxide in the slag can be adjusted to a predetermined concentration by adding a slag modifier. To reduce the dissolved oxygen in the molten steel to the minimum concentration required for the decarburization reaction.

【0016】ただし、溶存酸素は脱炭反応によって低下
するものの、スラグ中低級酸化物は脱炭処理後もそのま
まの濃度で残って、脱酸処理後の残留Alと反応して
Al23 を生成する。このため、スラグ中低級酸化物
の濃度をさらに低下させる必要がある。
However, although the dissolved oxygen is reduced by the decarburization reaction, the lower oxides in the slag remain at the same concentration after the decarburization treatment and react with the residual Al after the deoxidation treatment.
Produces Al 2 O 3 . For this reason, it is necessary to further reduce the concentration of the lower oxide in the slag.

【0017】そこで、脱炭処理後、これに続く脱酸処理
の前後の少なくとも一方で、さらに一段とスラグ中低級
酸化物濃度を下げるためにスラグ改質剤を真空槽内の溶
鋼に添加する。浸漬管を用いる真空処理装置は、スラグ
の撹拌は十分に行えないが溶鋼は十分に撹拌できる。し
たがって、スラグ改質剤を溶鋼流に同伴させて搬送すれ
ば、スラグ改質剤は真空槽外の取鍋の上方に浮上して、
スラグと溶鋼の接触する面にスラグ改質剤を均一に分散
到達させることが可能となる。
Therefore, after the decarburizing treatment, at least one of before and after the subsequent deoxidizing treatment, a slag modifier is further added to the molten steel in the vacuum chamber in order to further lower the concentration of lower oxides in the slag. The vacuum processing apparatus using the immersion tube cannot sufficiently agitate the slag, but can sufficiently agitate the molten steel. Therefore, if the slag modifier is transported along with the molten steel stream, the slag modifier floats above the ladle outside the vacuum tank,
The slag modifier can be uniformly dispersed on the surface where the slag and the molten steel come into contact.

【0018】スラグは必ずしも全て改質する必要はな
く、溶鋼と接している部分が溶鋼を汚染しないようにこ
の部分だけのスラグ改質を行えば良い。これにより、ス
ラグ改質剤の節減も可能となる。前述の従来技術(特開
平6−256837号公報の発明)のように、スラグ全
量を改質しようとすると、大量のスラグ改質剤が必要に
なること、またスラグを撹拌するために専用のスラグ撹
拌装置が必要になる等のコスト要因が増えて得策でな
い。
It is not necessary that the slag be entirely reformed, and the slag may be reformed only in such a portion so that the portion in contact with the molten steel does not contaminate the molten steel. As a result, the slag modifier can be saved. As described in the prior art (the invention of Japanese Patent Application Laid-Open No. 6-256837), when attempting to reform the entire amount of slag, a large amount of slag modifier is required, and a special slag is required for stirring the slag. This is not advisable because cost factors such as the necessity of a stirrer increase.

【0019】難崩壊性スラグ改質剤は、溶鋼中では難崩
壊性を有し、スラグとは易反応性を有する化学組成と形
状にする必要がある。
The hard-to-disintegrate slag modifier has a hard-to-disintegrate property in molten steel and needs to have a chemical composition and a shape that is easily reactive with slag.

【0020】難崩壊性スラグ改質剤の添加の時期は、A
l脱酸処理前後の少なくとも一方で良い。
The time of addition of the hard-to-disintegrate slag modifier is
1 At least one of before and after the deoxidation treatment is good.

【0021】本発明方法を、RH真空脱ガス装置にて行
う場合を例に説明する。
The case where the method of the present invention is performed in an RH vacuum degassing apparatus will be described as an example.

【0022】図2は本発明方法を実施するためのRH装
置の縦断面の概略図である。
FIG. 2 is a schematic view of a longitudinal section of an RH device for carrying out the method of the present invention.

【0023】まず、転炉などで溶製した未脱酸の溶鋼1
を取鍋2へ出鋼する。この時、取鍋内へ不可避的に流出
したスラグ3は低級酸化物を高濃度で含んでおり、また
溶鋼中の溶存酸素濃度も高い。そこで、出鋼時の出鋼流
または取鍋内スラグに金属AlまたはAl合金を含有す
るスラグ改質剤を添加し、スラグ中の低級酸化物濃度を
低減する。この時の溶鋼中の溶存酸素濃度は目標とする
脱炭量に見合う溶存酸素量に調整する。
First, undeoxidized molten steel 1 produced in a converter or the like
Tapping into ladle 2 At this time, the slag 3 which has inevitably flowed into the ladle contains a low concentration of a low oxide and has a high dissolved oxygen concentration in the molten steel. Therefore, a slag modifier containing metal Al or an Al alloy is added to the tapping flow during tapping or the slag in the ladle to reduce the concentration of lower oxides in the slag. At this time, the dissolved oxygen concentration in the molten steel is adjusted to a dissolved oxygen amount corresponding to a target decarburization amount.

【0024】次に、脱炭処理を行う。上昇管4aと下降
管4bの2本の浸漬管を取鍋2内の溶鋼1に浸漬し、真
空槽5を排気して減圧しながら溶鋼を真空槽に引き上
げ、上昇管4a側からArガスを吹き込んで溶鋼1を環
流させ、→CO↑反応の進行を図って脱炭を行
う。
Next, a decarburization treatment is performed. The two immersion tubes, the riser tube 4a and the downcomer tube 4b, are immersed in the molten steel 1 in the ladle 2, the vacuum tank 5 is evacuated and the molten steel is pulled up into the vacuum tank while reducing the pressure, and Ar gas is supplied from the riser tube 4a side. The molten steel 1 is recirculated by blowing, and the decarburization is performed by promoting the C + O → CO ↑ reaction.

【0025】脱炭処理完了後、例えばAl用シューター
6から真空槽内の溶鋼に脱酸に必要なAlを添加し、溶
鋼を脱酸処理する。引き続き、脱酸処理時に生成した脱
酸生成物(主にAl23)を、合体、浮上させるために
必要な所定時間の環流処理を行う。
After the decarburization process is completed, for example, Al necessary for deoxidation is added to the molten steel in the vacuum chamber from the Al shooter 6 to deoxidize the molten steel. Subsequently, a recirculation treatment is performed for a predetermined time necessary for uniting and floating the deoxidation products (mainly Al 2 O 3 ) generated during the deoxidation treatment.

【0026】その後、溶鋼環流を継続しながら、難崩壊
性スラグ改質剤用シューター7から真空槽1内の溶鋼
に、溶鋼中では難崩壊性を保ちかつスラグとは易反応性
のあるスラグ改質剤8を添加する。溶鋼中で難崩壊性の
特性を有するスラグ改質剤は、取鍋と真空槽間を環流す
る溶鋼の流れに同伴して、下降管4bより取鍋内溶鋼に
排出される。排出されたこのスラグ改質剤は、溶鋼中に
分散した後徐々に浮上して最終的に取鍋中のスラグへ到
達する。ここで、改質剤中のAl、CaO成分が取鍋中
のスラグの下面、すなわち溶鋼と接する部分のスラグ中
の低級酸化物濃度を低減する作用を発揮するので、スラ
グが改質される。これで、脱酸処理時に残留した溶鋼中
のAlと取鍋内スラグ中の低級酸化物との反応が回避さ
れるので、Al23の生成が抑制できる。
Then, while continuing the molten steel recirculation, the slag modifier in the vacuum tank 1 is supplied from the shooter 7 for the hardly collapsible slag modifier to the molten steel in the vacuum chamber 1 while maintaining the hardly collapsible property in the molten steel and easily reacting with the slag. Add the filler 8. The slag modifier having the property of being hardly collapsible in the molten steel is discharged from the downcomer pipe 4b to the molten steel in the ladle along with the flow of the molten steel flowing between the ladle and the vacuum tank. The discharged slag modifier is dispersed in the molten steel and then gradually floats to finally reach the slag in the ladle. Here, the Al and CaO components in the modifier exhibit the effect of reducing the lower oxide concentration in the lower surface of the slag in the ladle, that is, the portion of the slag in contact with the molten steel, so that the slag is reformed. This avoids the reaction between the Al in the molten steel remaining during the deoxidizing treatment and the lower oxide in the slag in the ladle, so that the generation of Al 2 O 3 can be suppressed.

【0027】難崩壊性スラグ改質剤とは、溶鋼中で容易
に溶鋼と反応したり、形状が壊れないものを意味する。
The hard-to-disintegrate slag modifier means one which does not easily react with molten steel in molten steel and does not break its shape.

【0028】基本成分は、取鍋中スラグの低級酸化物を
還元するための金属Alと溶鋼による侵食を防止するた
めのCaOである。ただし、その他にも取鍋中スラグの
融点調整成分としてCaF2、Al23およびSiO2
含んでいても良いし、金属Alの代替としてAl灰(A
l精錬時の副産物)の使用も可能である。
The basic components are metal Al for reducing the lower oxides of the slag in the ladle and CaO for preventing erosion by molten steel. However, in addition, CaF 2 , Al 2 O 3 and SiO 2 may be contained as melting point adjusting components of the slag in the ladle, and Al ash (A
l Refining by-product) can also be used.

【0029】基本構造は、溶鋼による侵食を防止するC
aOが外殻となり、中心部が金属Alとなる。形状は特
に限定しないが、量産の観点からペレットまたはブリケ
ットの形が望ましい。図3に、難崩壊性スラグ改質剤の
断面の一例を示す。(a)は金属Al粉末とCaO粉末
を混合し圧縮成形したブリケット、(b)はCaOで
(a)を内包したペレット、および(c)はCaOで金
属Al粒を内包したペレットである。造り易さの点から
言えば(a)が最も望ましい。しかし、(b)と(c)
は外殻がCaOなので特に問題はないが、(a)の場合
は表層部に一部のAlが露出するため、溶鋼に浸漬して
からスラグへ到達するまでの間に、これが溶鋼に溶出し
て崩壊する可能性がある。しかし、Al含有量が80%
以下であればスラグへ到達する以前に崩壊することはな
いので、Al含有量を80%以下とするのがよい。
The basic structure is C for preventing erosion by molten steel.
aO becomes the outer shell, and the center becomes metal Al. Although the shape is not particularly limited, a pellet or briquette shape is desirable from the viewpoint of mass production. FIG. 3 shows an example of a cross section of the hard-to-disintegrate slag modifier. (A) is a briquette formed by mixing and compressing metal Al powder and CaO powder, (b) is a pellet containing (a) in CaO, and (c) is a pellet containing metal Al particles in CaO. (A) is the most desirable in terms of ease of fabrication. However, (b) and (c)
There is no particular problem because the outer shell is CaO, but in the case of (a), since some Al is exposed in the surface layer, this elutes into the molten steel between immersion in the molten steel and reaching the slag. Could collapse. However, the Al content is 80%
Since it does not collapse before reaching the slag, the Al content is preferably set to 80% or less.

【0030】強度は、ハンドリングに耐える強さを持て
ば良い。圧壊強度で示せば、20kg以上が一つの基準
となる。図3の(a)に示したブリケット型のように、
原料を圧縮力で成形すれば未焼成でも20kgの圧壊強
度の発現は可能である。しかし、図3の(b)および
(c)に示したペレット型の場合は、中心核の表面に付
着する原料同志の結合力は一緒に添加するバインダーの
凝集力だけに依存するので、結合強度は弱く圧壊強度は
20kg未満となる。したがって、核の表面に微粉原料
をコーティングするペレット型の成形の場合は、樹脂等
のバインダーを用いて事前に焼成して強度発現を図るの
がよい。
The strength only needs to be strong enough to withstand handling. In terms of crushing strength, one standard is 20 kg or more. Like the briquette type shown in FIG.
If the raw material is molded with a compressive force, a crushing strength of 20 kg can be exhibited even when the raw material is not fired. However, in the case of the pellet type shown in FIGS. 3B and 3C, the bonding strength of the raw materials adhering to the surface of the central nucleus depends only on the cohesive strength of the binder added together, so that the bonding strength is high. Is weak and the crushing strength is less than 20 kg. Therefore, in the case of a pellet-type molding in which the fine powder material is coated on the surface of the core, it is preferable to preliminarily bake using a binder such as a resin to achieve the strength.

【0031】サイズは、外形10mm以下が望ましい。
すなわち、ブリケットでは長辺長さ、ペレットでは直径
が10mm以下が望ましい。10mmを超えると、溶鋼
中の改質剤の浮上速度が速く、下降管から排出されてす
ぐに浮上して下降管周辺のスラグに到達するのみで、取
鍋内のスラグ全面に均一に分散到達しないからである。
The size is desirably 10 mm or less in outer shape.
That is, it is desirable that the briquette has a long side length and the pellet has a diameter of 10 mm or less. If it exceeds 10 mm, the floating speed of the modifier in the molten steel is high, it is discharged from the downcomer and rises immediately to reach the slag around the downcomer, and evenly distributed over the entire slag in the ladle. Because it does not.

【0032】難崩壊性スラグ改質剤の添加は、溶鋼の脱
炭処理後、脱酸処理前後の少なくとも一方でよいが、脱
酸処理後に行う方のがもっと望ましい。その理由は、脱
炭処理後は脱酸処理後に比べ溶鋼中の溶存酸素が高く、
先に示したブリケット型の難崩壊性スラグ改質剤のよう
に一部のAlが露出していると、溶鋼中にAlが溶解し
これが溶存酸素と反応して、取鍋内スラグに到達する前
にAlが消費され、結果的にスラグ改質剤の改質効率が
低下するためである。したがって、難崩壊性スラグ改質
剤の添加時期は、より溶鋼中溶存酸素の低い脱酸処理後
が望ましい。
The addition of the hard-to-disintegrate slag modifier may be at least one of before and after the decarburizing treatment of the molten steel, but more preferably after the deoxidizing treatment. The reason is that the dissolved oxygen in the molten steel is higher after decarburization than after deoxidation,
If a portion of Al is exposed as in the briquette-type hard-to-disintegrate slag modifier shown above, Al dissolves in the molten steel and reacts with dissolved oxygen to reach the slag in the ladle. This is because Al is consumed before, and as a result, the reforming efficiency of the slag modifier is reduced. Therefore, the timing of adding the hard-to-disintegrate slag modifier is desirably after the deoxidation treatment with lower dissolved oxygen in the molten steel.

【0033】図4に難崩壊性スラグ改質剤添加時期とス
ラグ改質効率の関係を示した。図4には、平均値と同時
にデータのバラツキも含めて表示した。
FIG. 4 shows the relationship between the timing of adding the hard-to-disintegrate slag modifier and the slag reforming efficiency. FIG. 4 shows the average value as well as the data variation.

【0034】ここでスラグ改質効率とは次式で表される
還元剤として添加した改質剤中のAlの反応効率を意味
している。
Here, the slag reforming efficiency means the reaction efficiency of Al in the modifying agent added as a reducing agent represented by the following formula.

【0035】(スラク゛改質効率)=(スラク゛中の低級酸化物を
還元したAl重量)/(改質剤中Al重量)
(Slurry reforming efficiency) = (weight of Al reduced from lower oxide in slurry) / (weight of Al in modifier)

【0036】[0036]

【実施例】【Example】

(本発明例)転炉にて溶製した炭素濃度0.03%の未
脱酸溶鋼250tを取鍋へ出鋼した。この際、スラグス
トッパーの使用により流出スラグ量を溶鋼1t当たり約
10kgに抑制し、かつ、スラグ中低級酸化物(FeO
+MnO)濃度の目標を6%として、出鋼流に対しスラ
グ改質剤(組成:Al 40%、CaCO3 60%)を
1.5kg/溶鋼t添加した。この時、溶鋼中の溶存酸
素の濃度は0.045%となった。ここで使用したスラ
グ改質剤は通常の形状のもので、特に成形等の事前処理
は行っていない。
(Example of the present invention) 250t of undeoxidized molten steel having a carbon concentration of 0.03% produced in a converter was tapped into a ladle. At this time, the amount of slag flowing out is suppressed to about 10 kg per ton of molten steel by using a slag stopper, and a low-grade oxide (FeO
+ MnO) concentration was set at 6%, and a slag modifier (composition: Al 40%, CaCO 3 60%) was added to the tapping flow at a rate of 1.5 kg / t. At this time, the concentration of dissolved oxygen in the molten steel was 0.045%. The slag modifier used here has a normal shape, and is not particularly subjected to pretreatment such as molding.

【0037】得られた溶鋼をRH真空脱ガス装置で真空
脱炭処理を行い、炭素濃度0.0025%まで脱炭した
後、金属Al添加による溶鋼の脱酸処理を行い、溶鋼中
の溶存酸素濃度を0.001%とした。この時点でスラ
グ中低級酸化物の濃度は6%とまだ高いレベルにあり、
溶鋼中のAlとの反応によるAl23の生成を抑制する
のは困難である。
The obtained molten steel is subjected to vacuum decarburization treatment with an RH vacuum degassing apparatus to decarbonize the carbon steel to a carbon concentration of 0.0025%, and then to deoxidization of the molten steel by adding metal Al to obtain dissolved oxygen in the molten steel. The concentration was 0.001%. At this point, the concentration of lower oxides in the slag is still at a high level of 6%,
It is difficult to suppress the production of Al 2 O 3 due to the reaction with Al in the molten steel.

【0038】そこで、引き続き、スラグ中低級酸化物濃
度を2%に低減するため、真空槽上部に設置されたシュ
ーターより、あらかじめブリケット状に成形した難崩壊
性スラグ改質剤(組成:CaO 50%、Al 50%)
を0.25kg/溶鋼t真空槽内へ添加した後、RH環
流処理を約10分間行いスラグ改質剤の取鍋内スラグへ
の均一な分散到達を図った。
Then, in order to continuously reduce the concentration of lower oxides in the slag to 2%, a brittle slag modifier (composition: CaO 50% , Al 50%)
Was added into a vacuum tank of 0.25 kg / molten steel t, and then RH reflux treatment was performed for about 10 minutes to achieve uniform dispersion of the slag modifier to the slag in the ladle.

【0039】上記の一連の処理において、転炉出鋼前、
RH処理前、RH処理後に溶鋼およびスラグのサンプリ
ングを行い、溶鋼中酸素濃度、溶鋼中炭素濃度およびス
ラグ中低級酸化物濃度の推移を調査した。
In the above-described series of processes, before starting the converter,
Before and after the RH treatment, the molten steel and the slag were sampled, and changes in the oxygen concentration in the molten steel, the carbon concentration in the molten steel, and the lower oxide concentration in the slag were investigated.

【0040】得られた溶鋼を連続鋳造し、鋳片の定常部
分よりサンプルを採取して5μm以上の介在物をミクロ
検鏡法によりカウントして調査した。
The obtained molten steel was continuously cast, a sample was taken from a steady portion of the slab, and inclusions having a size of 5 μm or more were counted and examined by a microscopic method.

【0041】(比較例1)脱酸処理後の難崩壊性スラグ
改質剤の添加は行わず、その他は本発明例と同一の条件
で溶鋼の脱炭処理および脱酸処理を行った。
(Comparative Example 1) A decarburizing treatment and a deoxidizing treatment of molten steel were performed under the same conditions as those of the present invention except that the hardly decayable slag modifier after the deoxidizing treatment was not added.

【0042】(比較例2)転炉にて溶製した炭素濃度
0.03%の溶鋼を完全脱酸して取鍋へ出鋼した。この
際、スラグストッパーの使用により流出スラグ量を溶鋼
1t当たり約10kgに抑制し、かつ、出鋼流に対しス
ラグ改質剤(組成:Al 40%、 CaCO3 60%)
を2kg/溶鋼t添加し、スラグ中低級酸化物(FeO
+MnO)濃度の目標値を2%とした。この時の溶鋼中
の溶存酸素濃度は0.003%であった。
(Comparative Example 2) Molten steel having a carbon concentration of 0.03% produced in a converter was completely deoxidized, and was discharged to a ladle. At this time, the amount of outflow slag is suppressed to about 10 kg per ton of molten steel by using a slag stopper, and a slag modifier (composition: Al 40%, CaCO 3 60%) is applied to the tapping flow.
Is added at 2 kg / t of molten steel, and a low-grade oxide (FeO
+ MnO) was set to a target value of 2%. At this time, the dissolved oxygen concentration in the molten steel was 0.003%.

【0043】RH真空脱ガス装置で得られた溶鋼の真空
脱炭処理を行った。溶鋼中の溶存酸素が不足するため、
真空槽上部に設置した上吹きランスより酸素上吹きを
0.01Nm3 /(溶鋼t・分)の供給速度で3分間行
い、溶鋼中炭素濃度を0.0025%とした。
The molten steel obtained by the RH vacuum degassing apparatus was subjected to vacuum decarburization treatment. Due to lack of dissolved oxygen in the molten steel,
Oxygen top blowing was performed at a supply rate of 0.01 Nm 3 / (t molten steel · minute) for 3 minutes from an upper blowing lance installed in the upper portion of the vacuum tank, and the carbon concentration in the molten steel was set to 0.0025%.

【0044】引き続き、金属Al添加による溶鋼脱酸処
理を行い、溶鋼中の溶存酸素濃度を0.001%とし
た。
Subsequently, the molten steel was deoxidized by adding metal Al, and the dissolved oxygen concentration in the molten steel was set to 0.001%.

【0045】溶鋼中酸素濃度、溶鋼中炭素濃度、スラグ
中低級酸化物濃度および鋳片中の介在物個数の調査を、
本発明例に準じて実施した。
Investigation of the oxygen concentration in the molten steel, the carbon concentration in the molten steel, the lower oxide concentration in the slag, and the number of inclusions in the slab were carried out.
It carried out according to the present invention example.

【0046】本発明例および比較例1、2ともに、各条
件でそれぞれ10チャージずつ処理を行い、その平均値
と同時にデータのバラツキも示して、結果を以下にまと
めた。図5に、本発明例と比較例1、2について、転炉
出鋼時からRH真空脱ガス処理終了後までのスラグ中低
級酸化物の濃度の推移を示す。
In each of the examples of the present invention and Comparative Examples 1 and 2, processing was performed for 10 charges for each condition, and the average value and the data variation were also shown. The results are summarized below. FIG. 5 shows the transition of the concentration of the lower oxides in the slag from the time of tapping the converter to the end of the RH vacuum degassing process for the present invention example and Comparative Examples 1 and 2.

【0047】本発明例ではスラグ改質剤の適量な添加に
応じて確実にスラグ中低級酸化物濃度順次が低下し、最
終的に目標とするスラグ中低級酸化物濃度2%の達成が
可能であることがわかる。
In the present invention, the lower oxide concentration in the slag is reduced sequentially in accordance with the addition of an appropriate amount of the slag modifier, and it is possible to finally achieve the target lower oxide concentration in the slag of 2%. You can see that there is.

【0048】これに対し、比較例1のスラグ中低級酸化
物濃度は、RH処理前では目標とした6%程度に調整さ
れるが、これ以降は低下できない。また、比較例2で
は、スラグ低級酸化物濃度はいったんは最終目標の2%
程度まで低下するものの、真空脱炭処理時のランスによ
る酸素上吹きの間にスラグの酸化が進行して、最終的に
は比較例1に近い値まで上昇し、目標を達成することが
できない。
On the other hand, the lower oxide concentration in the slag of Comparative Example 1 is adjusted to the target of about 6% before the RH treatment, but cannot be reduced thereafter. In Comparative Example 2, the slag lower oxide concentration was once at 2% of the final target.
Although it is reduced to a degree, oxidation of the slag proceeds during the oxygen overblowing by the lance during the vacuum decarburization treatment, and eventually increases to a value close to Comparative Example 1, and the target cannot be achieved.

【0049】図6に連続鋳造後の鋳片の介在物の状況を
示す。ここで、鋳片欠陥指数とは比較例1の鋳片の介在
物(5μm以上のサイズ)個数を1.0として指数化し
て表示したものである。本発明例における鋳片欠陥指数
は約0.4と、清浄度が最も良好であった。
FIG. 6 shows the state of inclusions in the slab after continuous casting. Here, the slab defect index is expressed as an index with the number of inclusions (sizes of 5 μm or more) of the slab of Comparative Example 1 as 1.0. The slab defect index in the present invention example was about 0.4, indicating that the cleanliness was the best.

【0050】[0050]

【発明の効果】本発明方法によれば、スラグ中低級酸化
物濃度を2%程度に低減することが可能であり、この結
果、従来法では得られなかった高清浄度の極低炭素鋼を
確実に、かつ、低コストで溶製することができる。
According to the method of the present invention, it is possible to reduce the concentration of low-grade oxides in slag to about 2%. As a result, it is possible to obtain ultra-low carbon steel of high cleanliness which cannot be obtained by the conventional method. It can be produced reliably and at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】RH真空脱ガス処理前のスラグ中低級酸化物と
溶鋼中酸素濃度との関係を示す図である。
FIG. 1 is a view showing a relationship between a lower oxide in slag and an oxygen concentration in molten steel before RH vacuum degassing treatment.

【図2】本発明を実施するための、RH真空脱ガス装置
の概略断面図である。
FIG. 2 is a schematic sectional view of an RH vacuum degassing apparatus for carrying out the present invention.

【図3】難崩壊性スラグ改質剤の断面の一例を示す図で
ある。
FIG. 3 is a view showing an example of a cross section of a hardly collapsible slag modifier.

【図4】難崩壊性スラグ改質剤を脱炭処理後に添加した
場合と、Al脱酸処理後に添加した場合について、スラ
グ改質効率の比較をした図である。
FIG. 4 is a diagram comparing slag reforming efficiencies when a hardly disintegratable slag modifier is added after decarburization treatment and when it is added after Al deoxidation treatment.

【図5】本発明例と比較例とを、転炉出鋼前からRH真
空脱ガス処理後にかけてのスラグ中低級酸化物の濃度推
移について比較したグラフである。
FIG. 5 is a graph comparing the present invention example and the comparative example with respect to the transition of the concentration of the lower oxides in the slag from before the converter tapping to after the RH vacuum degassing treatment.

【図6】本発明例と比較例とを、鋳片欠陥指数について
比較したグラフである。
FIG. 6 is a graph comparing the present invention example and a comparative example with respect to a slab defect index.

【符号の簡単な説明】[Brief description of reference numerals]

1:溶鋼 2:取鍋 3:スラグ 4a:上昇管 4b:下降管 5:真空槽 6:Al用シューター 7:難崩壊性スラグ改質剤用シューター 8:難崩壊性スラグ改質剤 1: molten steel 2: ladle 3: slag 4a: riser 4b: downcomer 5: vacuum tank 6: shooter for Al 7: shooter for hard-to-collapse slag modifier 8: hard-to-collapse slag modifier

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】転炉から取鍋への出鋼時の出鋼流または取
鍋内のスラグにスラグ改質剤を添加してスラグ中の低級
酸化物の濃度を調整し、その後溶鋼環流式の真空脱ガス
処理装置を用いて脱炭処理した後、アルミニウム脱酸処
理前後の少なくとも一方で、真空槽内の溶鋼中に、溶鋼
に対しては難崩壊性を有しかつスラグに対しては易反応
性を有するスラグ改質剤を添加することを特徴とする清
浄度の高い極低炭素鋼の溶製方法。
A slag modifier is added to a tapping flow at the time of tapping from a converter to a ladle or slag in a ladle to adjust the concentration of lower oxides in the slag. After decarburizing treatment using a vacuum degassing treatment device, at least one of before and after aluminum deoxidation treatment, in molten steel in a vacuum chamber, it is hardly collapsible with molten steel and slag with respect to slag A method for melting ultra-low carbon steel with high cleanliness, characterized by adding a slag modifier having easy reactivity.
JP10555897A 1997-04-23 1997-04-23 Method for melting extra-low carbon steel having high cleanliness Pending JPH10298629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10555897A JPH10298629A (en) 1997-04-23 1997-04-23 Method for melting extra-low carbon steel having high cleanliness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10555897A JPH10298629A (en) 1997-04-23 1997-04-23 Method for melting extra-low carbon steel having high cleanliness

Publications (1)

Publication Number Publication Date
JPH10298629A true JPH10298629A (en) 1998-11-10

Family

ID=14410887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10555897A Pending JPH10298629A (en) 1997-04-23 1997-04-23 Method for melting extra-low carbon steel having high cleanliness

Country Status (1)

Country Link
JP (1) JPH10298629A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003041315A (en) * 2001-07-31 2003-02-13 Nkk Corp Method for manufacturing high cleanliness steel
KR100452304B1 (en) * 1999-12-28 2004-10-08 주식회사 포스코 Manufacturing method of ultra-low-carbon steel with high cleanliness
JP2007031807A (en) * 2005-07-29 2007-02-08 Jfe Steel Kk Method for manufacturing ultra-low carbon steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100452304B1 (en) * 1999-12-28 2004-10-08 주식회사 포스코 Manufacturing method of ultra-low-carbon steel with high cleanliness
JP2003041315A (en) * 2001-07-31 2003-02-13 Nkk Corp Method for manufacturing high cleanliness steel
JP2007031807A (en) * 2005-07-29 2007-02-08 Jfe Steel Kk Method for manufacturing ultra-low carbon steel

Similar Documents

Publication Publication Date Title
JP2000129335A (en) Production of extra-low sulfur steel excellent in cleanliness
JP2012077354A (en) Method for melting/preparing low carbon aluminum killed steel excellent in cleanliness
TWI685577B (en) Smelting method of high manganese steel
JP5200380B2 (en) Desulfurization method for molten steel
JPH10298629A (en) Method for melting extra-low carbon steel having high cleanliness
JP3627755B2 (en) Method for producing high cleanliness ultra low carbon steel with extremely low S content
JP3172550B2 (en) Manufacturing method of high cleanliness steel
JP2002060831A (en) Method for producing clean steel
JPH09235611A (en) Production of extra-low sulfur pure iron having high cleanliness
JP2018100427A (en) Method for producing low sulfur steel
JP3289614B2 (en) Desulfurization method of molten steel
JP4352898B2 (en) Method of melting high cleanliness steel
JP6443192B2 (en) Slag reforming method using FeSi alloy grains
JPH0987732A (en) Method for refining molten steel
JP3742615B2 (en) Method of melting high cleanliness steel
JPH0925507A (en) Method for refining molten steel
JP3277763B2 (en) Refining method of ultra clean low carbon steel
JP2897639B2 (en) Refining method for extremely low sulfur steel
JPH10330829A (en) Method for melting high cleanliness extra-low carbon steel
JP4360239B2 (en) Method for desulfurization of molten steel in vacuum degassing equipment
JP2001049330A (en) Production of extra-low carbon steel excellent in cleanliness
JPH11293329A (en) Production of extra-low carbon silicon-killed steel excellent in cleaning property
JPH11158537A (en) Production of extra-low carbon steel excellent in cleanliness
JP3327062B2 (en) Melting method of ultra-low carbon / ultra low sulfur steel
JP2001098316A (en) Production of highly clean extra low carbon steel