JPH10293011A - Method and device for evaluating anisotropic thin film - Google Patents

Method and device for evaluating anisotropic thin film

Info

Publication number
JPH10293011A
JPH10293011A JP10033097A JP10033097A JPH10293011A JP H10293011 A JPH10293011 A JP H10293011A JP 10033097 A JP10033097 A JP 10033097A JP 10033097 A JP10033097 A JP 10033097A JP H10293011 A JPH10293011 A JP H10293011A
Authority
JP
Japan
Prior art keywords
thin film
dielectric constant
incident
film sample
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10033097A
Other languages
Japanese (ja)
Other versions
JP2970585B2 (en
Inventor
Ichiro Hirozawa
一郎 廣沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP10033097A priority Critical patent/JP2970585B2/en
Publication of JPH10293011A publication Critical patent/JPH10293011A/en
Application granted granted Critical
Publication of JP2970585B2 publication Critical patent/JP2970585B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method and a device for evaluating anisotropic thin film by which the anisotropic dielectric constant and film thickness of a fine part and the tilt of main dielectric constant coordinate can be evaluated in even a sample in which the main dielectric constant coordinate is inclined against the sample surface or it is vertical to the sample surface. SOLUTION: A uniformly polarized light is converged by a lens 54 to be focused on the sample surface, and the incident angle of S and P polarization element intensity of reflection light enlarged by the lens 54 and the polarization dependency of incident light, or the incident angle of polarized reflection light and the polarization dependency of incident light are measured by both an analyzer (polarizing element) 57 and a 1/4 wavelength plate 56 or only an analyzer (polarizing element) 57, and one-dimensional or two-dimensional position sensitive optical detector 58. Then, in even a sample in which the main dielectric constant coordinate is inclined against the sample surface, the anisotropic dielectric constant and film thickness of fine part and the inclination of main dielectric constant coordinate can be determined.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】液晶表示素子において、液晶
分子に初期配向を与える液晶配向膜等、分子が配向して
光学的異方性をもった膜の異方性薄膜評価方法及び異方
性薄膜評価装置に関する。
BACKGROUND OF THE INVENTION In a liquid crystal display device, a method for evaluating an anisotropic thin film and a film having optical anisotropy by aligning molecules, such as a liquid crystal alignment film for giving initial alignment to liquid crystal molecules, and the like. It relates to an evaluation device.

【0002】[0002]

【従来の技術】異方性薄膜の評価法として複数の波長を
入射した際に発生する反射光強度の入射角依存性を測定
する方法(磯部「異方性薄膜の屈折率及び膜厚測定方
法」特開平05−005699号公報、磯部「異方性薄
膜の屈折率及び膜厚を測定する方法」特開平04−32
9333号公報)や、反射光強度の入射角及び入射方位
依存性から測定する方法(磯部「薄膜の屈折率膜厚測定
法」特開平03−065637号公報)、直線偏光した
入射光をレンズを用いて集光し、S偏光成分のみおよび
P偏光成分のみをもつ入射光による反射光強度の入射角
および入射方位依存性を能率的に測定する方法(宇川
「光学定数測定方法および測定装置」特開平08−15
2307号公報)、試料を面内回転させ反射光の偏光状
態の入射方位依存性から配向部の誘電率、膜厚及び主誘
電率座標の方向、無配向部の誘電率と膜厚を決定する方
法(広沢「異方性薄膜評価法及び評価装置」特願平08
−49320号)などが提案されている。
2. Description of the Related Art As a method for evaluating anisotropic thin films, a method for measuring the incident angle dependence of the intensity of reflected light generated when a plurality of wavelengths are incident (see Isobe, "Method for measuring refractive index and thickness of anisotropic thin films") JP-A-05-005699, Isobe, "Method for Measuring Refractive Index and Film Thickness of Anisotropic Thin Film"
No. 9333), a method of measuring from the dependence of the reflected light intensity on the incident angle and the incident azimuth (Isobe “Method of measuring the refractive index and thickness of a thin film”, Japanese Patent Application Laid-Open No. 03-066563). To efficiently measure the dependence of the intensity of the reflected light by the incident light having only the S-polarized component and the P-polarized component on the incident angle and the incident azimuth (Ukawa "Optical constant measuring method and measuring apparatus" Kaihei 08-15
No. 2307), the sample is rotated in a plane, and the dielectric constant, the thickness and the direction of the main dielectric constant coordinate of the oriented portion, and the dielectric constant and the thickness of the non-oriented portion are determined from the incident azimuth dependence of the polarization state of the reflected light. Method (Hirosawa "Evaluation method and evaluation apparatus for anisotropic thin films", Japanese Patent Application No. 08)
No. 49320) has been proposed.

【0003】特に、直線偏光した入射光をレンズを用い
て集光し、S偏光成分のみおよびP偏光成分のみをもつ
入射光による反射光強度の入射角および入射方位依存性
を能率的に測定する方法(宇川「光学定数測定方法およ
び測定装置」特開平−08152307号公報)は、高
い空間分解能をもつという優れた特徴をもつ。通常、試
料面上の光があたる領域を小さくして空間分解能を上げ
るには、入射光をレンズで集光する。しかし、レンズで
集光した場合は光線の試料に対する入射角に分散が発生
して、反射光の強度および偏光状態の入射角依存性の正
確な測定ができないため、空間分解能には制限がある。
−方、入射光をレンズで集光する方法では、図20に示
したようにレンズの周辺に近い部分を通過する光の方が
試料に対してより大きな入射角をもつため、大きな開口
数の短い焦点距離のレンズを用いることで入射角度に大
きな角度分散を実現し、更に反射光を同一のレンズで平
行光線化して1次元または2次元検出器で測定された反
射光強度プロファイルは反射光強度の入射角依存性をあ
らわすため、位置分解能が高い検出器を用いることで、
微小域においても反射光強度の入射角依存性を高精度で
測定することが可能となり、高い空間分解能を実現して
いる。
In particular, linearly polarized incident light is condensed using a lens, and the dependence of the intensity of the reflected light by the incident light having only the S-polarized component and only the P-polarized component on the incident angle and the incident direction is efficiently measured. The method (Ukawa "Optical constant measuring method and measuring apparatus", Japanese Patent Application Laid-Open No. 08152307) has an excellent feature of having high spatial resolution. Normally, in order to increase the spatial resolution by reducing the area on the sample surface to which light is applied, incident light is collected by a lens. However, when the light is condensed by a lens, the incident angle of the light beam with respect to the sample is dispersed, so that it is impossible to accurately measure the intensity of the reflected light and the dependence of the polarization state on the incident angle, so that the spatial resolution is limited.
On the other hand, in the method of condensing incident light with a lens, as shown in FIG. 20, light passing through a portion near the periphery of the lens has a larger incident angle with respect to the sample, so that a large numerical aperture is required. By using a lens with a short focal length, a large angle dispersion is achieved for the incident angle, and the reflected light intensity profile measured by a one-dimensional or two-dimensional detector after the reflected light is made parallel by the same lens is reflected light intensity. By using a detector with high position resolution to show the incident angle dependence of
Even in a very small area, it is possible to measure the incident angle dependence of the reflected light intensity with high accuracy, and realize a high spatial resolution.

【0004】この方法では、薄膜の屈折率、膜厚を決定
するにあたり入射光のS波成分とP波成分の反射強度の
入射角依存性が膜の屈折率や膜厚に依存することを利用
し、集光レンズには直線偏光した光を入射する。この
際、偏光方向と平行な動径方向でレンズに入射した光は
試料に入射する際にはP偏光成分のみをもち、これと垂
直な動径方向から試料に入射した光はS偏光成分をも
つ。そこでこれら2方向での反射光強度を測定すること
によりS偏光成分とP偏光成分の反射強度の入射角依存
性を測定できる。膜が異方性をもつ場合は入射光の直線
偏光の偏光方向を回転させることで、試料に入射するS
偏光およびP偏光成分の光の方位をかえて入射方位依存
性の測定を行なう。
This method utilizes the fact that the incident angle dependence of the reflection intensity of the S-wave component and the P-wave component of the incident light depends on the refractive index and the thickness of the film when determining the refractive index and the thickness of the thin film. Then, linearly polarized light is incident on the condenser lens. At this time, light that has entered the lens in a radial direction parallel to the polarization direction has only a P-polarized component when entering the sample, and light that has entered the sample in a radial direction perpendicular to this has an S-polarized component. Have. Thus, by measuring the reflected light intensities in these two directions, it is possible to measure the incident angle dependence of the reflected light intensity of the S-polarized light component and the P-polarized light component. If the film has anisotropy, by rotating the polarization direction of the linearly polarized light of the incident light, S
The incident azimuth dependency is measured by changing the azimuths of the polarized light and the P-polarized component.

【0005】薄膜が等方的な場合、及び異方的薄膜でも
3つの主誘電率座標軸のうち2つの軸が膜表面に平行な
場合(つまり1つの軸が膜表面に垂直な場合)、S偏光
成分の光が入射するとS偏光成分のみ、P偏光成分の光
が入射するとP偏光成分のみの反射光が得られるため、
反射光の偏光状態を測定する機能を必要としない。しか
し、主誘電率座標系が膜表面に対して傾きをもつ場合は
反射光がS偏光成分とP偏光成分の両方をもつ。
When the thin film is isotropic, and when two axes of the three principal permittivity coordinate axes are parallel to the film surface (that is, when one axis is perpendicular to the film surface) even in the anisotropic thin film, S When the light of the polarized light component is incident, only the S-polarized light component is obtained, and when the light of the P-polarized light component is incident, reflected light of only the P-polarized light component is obtained.
No function of measuring the polarization state of the reflected light is required. However, when the main dielectric constant coordinate system is inclined with respect to the film surface, the reflected light has both the S-polarized light component and the P-polarized light component.

【0006】ー方、試料を面内回転させて反射光の偏光
状態の入射方位依存性を測定して異方的な誘電率と膜厚
を決定する方法は、主誘電率座標が膜表面に対して傾き
をもつ異方性膜でも異方的な誘電率と膜厚および主誘電
率座標の膜表面に対する傾きを決定することができる
が、空間分解能を向上させることは困難である。また、
単軸異方性で光学軸が試料面に垂直である場合は入射方
位異方性が観測されないために異方的な誘電率や膜厚を
決定できない。
The method of determining the anisotropic dielectric constant and the film thickness by rotating the sample in-plane and measuring the incident azimuth dependence of the polarization state of the reflected light is based on the fact that the main dielectric constant coordinate is located on the film surface. In contrast, an anisotropic film having a slope can determine the anisotropic dielectric constant, the film thickness, and the slope of the main dielectric constant with respect to the film surface, but it is difficult to improve the spatial resolution. Also,
When the optical axis is perpendicular to the sample surface in uniaxial anisotropy, the anisotropic dielectric constant and film thickness cannot be determined because the incident azimuth anisotropy is not observed.

【0007】[0007]

【発明が解決しようとする課題】通常、物質の複素誘電
率には波長依存性があるため複数の波長における反射光
強度の入射角依存性の測定から異方的屈折率(誘電率)
を決定する方法は、誘電率の波長分散特性が既知な試料
の場合以外は適用が困難である。
Generally, since the complex dielectric constant of a substance has wavelength dependence, the anisotropic refractive index (dielectric constant) is determined from the measurement of the incident angle dependence of the reflected light intensity at a plurality of wavelengths.
Is difficult to apply except for a sample whose wavelength dispersion characteristic of dielectric constant is known.

【0008】これまでに提案されている反射光強度の入
射角及び入射方位依存性の測定から試料の異方的誘電率
と膜厚を求める方法や、レンズを用いて入射光を集光す
る方法では、S波成分主誘電率座標が膜表面に対して傾
きがある場合は、反射光はS偏光成分とP偏光成分の両
方を含むため、膜の異方的誘電率を正確に決定できな
い。更にこれまでの手法では、ラビング処理を施した液
晶配向膜のように、厚さが未知な異方的部分と等方的部
分の2層構造をした試料の異方的誘電率を求めることは
できない。
A method of obtaining an anisotropic dielectric constant and a film thickness of a sample from a measurement of the dependence of the reflected light intensity on an incident angle and an incident direction, and a method of condensing incident light using a lens have been proposed. In the case where the S-wave component main permittivity coordinate is inclined with respect to the film surface, the anisotropic permittivity of the film cannot be accurately determined because the reflected light includes both the S-polarized component and the P-polarized component. Further, in the conventional method, it is not possible to obtain an anisotropic dielectric constant of a sample having a two-layer structure of an anisotropic portion and an isotropic portion having unknown thickness, such as a liquid crystal alignment film subjected to a rubbing process. Can not.

【0009】一方、反射光の偏光状態の入射方位依存性
から異方的誘電率を決定する方法は、ラビング処理した
液晶配向膜のように、厚さが未知な異方的部分と等方的
部分の2層構造をした試料の異方的誘電率とそれぞれの
部分の厚さや、主誘電率座標の表面に対する傾きを測定
することができる。しかし、入射光を集光すると入射角
に分布が発生するために微小部分を評価することはでき
ない。さらに光学軸が表面に垂直な膜の場合は入射方位
依存性がないので、膜の異方的な誘電率を決定できな
い。
On the other hand, the method of determining the anisotropic dielectric constant from the dependence of the polarization state of the reflected light on the incident azimuth is based on the isotropic portion having an unknown thickness, such as a rubbed liquid crystal alignment film. It is possible to measure the anisotropic dielectric constant of the sample having the two-layer structure of the part, the thickness of each part, and the inclination of the main dielectric constant coordinate with respect to the surface. However, when the incident light is condensed, a minute portion cannot be evaluated because a distribution occurs at the incident angle. Further, in the case of a film whose optical axis is perpendicular to the surface, since there is no dependency on the incident azimuth, the anisotropic dielectric constant of the film cannot be determined.

【0010】本発明は一定の偏光状態の光が試料面で焦
点を結ぶようにレンズをもちいて集光し、同じレンズに
よって拡大された反射光のS、P偏光成分強度の入射角
依存性、または反射光の偏光状態の入射角依存性を偏光
子と1/4波長板および1次元または2次元の位置敏感
光検出器をもちいて測定することによって上記課題を解
決し、主誘電率座標が試料表面に対して傾きをもってい
る試料、主誘電率が試料表面に垂直な試料でも微小部の
異方的誘電率と膜厚、主誘電率座標の傾きの評価が可能
な方法と装置を提供することを目的としている。
The present invention condenses light having a certain polarization state using a lens so that the light is focused on the sample surface, and the incident angle dependence of the S and P polarization component intensities of the reflected light expanded by the same lens; Alternatively, the above problem is solved by measuring the incident angle dependence of the polarization state of reflected light using a polarizer, a quarter-wave plate, and a one-dimensional or two-dimensional position-sensitive photodetector. Provided is a method and an apparatus capable of evaluating the anisotropic dielectric constant, film thickness, and inclination of the main dielectric constant of a minute part even for a sample having a tilt with respect to the sample surface and a sample having a main dielectric constant perpendicular to the sample surface. It is intended to be.

【0011】即ち、本発明の目的は、主誘電率座標が試
料表面に対して傾きをもっている試料、主誘電率が試料
表面に垂直な試料でも微小部の異方的誘電率と膜厚、主
誘電率座標の傾きの評価が可能な異方性薄膜評価方法及
び異方性薄膜評価装置を提供することにある。
That is, an object of the present invention is to provide an anisotropic dielectric constant and a film thickness of a minute portion for a sample whose main dielectric constant is inclined with respect to the sample surface and a sample whose main dielectric constant is perpendicular to the sample surface. An object of the present invention is to provide an anisotropic thin film evaluation method and an anisotropic thin film evaluation device capable of evaluating the inclination of a dielectric constant coordinate.

【0012】[0012]

【課題を解決するための手段】本発明の異方性薄膜評価
方法は、単色で一定の偏光状態をもつ入射光の薄膜試料
面ヘの集光と、薄膜試料からの反射光の平行光線化とを
同一のレンズで行ない、反射光のS偏光成分強度とP偏
光成分強度の入射角および入射方位依存性を、1次元ま
たは2次元の検出器と検出器の上流に位置する偏光子と
を用いて、薄膜試料を測定点を中心に面内回転して測定
し、薄膜試料の異方層の誘電率と厚さと、主誘電率座標
の薄膜試料表面に対する傾斜角と、等方層の誘電率と厚
さとを決定する。
The anisotropic thin film evaluation method according to the present invention is directed to a method of condensing incident light having a monochromatic and constant polarization state on a thin film sample surface, and converting reflected light from the thin film sample into parallel rays. And the dependence of the S-polarized light component intensity and the P-polarized light component intensity of the reflected light on the incident angle and the incident azimuth are determined by using a one-dimensional or two-dimensional detector and a polarizer located upstream of the detector. The thin film sample is measured by rotating it in-plane around the measurement point, and the dielectric constant and thickness of the anisotropic layer of the thin film sample, the inclination angle of the main dielectric constant coordinates with respect to the thin film sample surface, and the dielectric constant of the isotropic layer are measured. Determine the rate and thickness.

【0013】本発明の異方性薄膜評価装置は、単色で一
定の偏光状態をもつ入射光の薄膜試料面ヘの集光と、薄
膜試料からの反射光の平行光線化とを行なう同一のレン
ズと、1次元または2次元の検出器と、検出器の上流に
位置する偏光子と、薄膜試料を測定点を中心に面内回転
する機構とを備え、検出器と偏光子と面内回転する機構
とにより測定された、反射光のS偏光成分強度とP偏光
成分強度の入射角および入射方位依存性から、薄膜試料
の異方層の誘電率と厚さと、主誘電率座標の薄膜試料表
面に対する傾斜角と、等方層の誘電率と厚さとを決定す
る。
An anisotropic thin-film evaluation apparatus according to the present invention comprises the same lens for condensing incident light of a monochromatic color having a certain polarization state on a thin-film sample surface and for converting reflected light from the thin-film sample into parallel rays. A one-dimensional or two-dimensional detector, a polarizer positioned upstream of the detector, and a mechanism for rotating the thin film sample in-plane about the measurement point, and rotating the detector, the polarizer, and the plane. The dielectric constant and thickness of the anisotropic layer of the thin film sample and the surface of the thin film sample in the main permittivity coordinates are determined from the dependence of the S-polarized light component intensity and the P-polarized light component intensity on the incident angle and the incident direction measured by the mechanism. And the dielectric constant and thickness of the isotropic layer.

【0014】本発明の異方性薄膜評価方法は、単色で一
定の偏光状態をもつ入射光の薄膜試料面ヘの集光と、薄
膜試料からの反射光の平行光線化とを同一のレンズで行
ない、反射光の偏光状態の入射角および入射方位依存性
を、1次元または2次元の検出器と1/4波長板と偏光
子とを用いて、薄膜試料を測定点を中心に面内回転して
測定し、薄膜試料の異方層の誘電率と厚さと、主誘電率
座標の薄膜試料表面に対する傾斜角と、等方層の誘電率
と厚さとを決定する。
In the method for evaluating an anisotropic thin film according to the present invention, the same lens is used to converge incident light having a monochromatic and constant polarization state on the surface of the thin film sample and to convert reflected light from the thin film sample into parallel rays. In this case, the dependence of the polarization state of the reflected light on the incident angle and the incident direction is determined by using a one-dimensional or two-dimensional detector, a quarter-wave plate, and a polarizer to rotate the thin film sample in-plane around the measurement point. The dielectric constant and thickness of the anisotropic layer of the thin film sample, the inclination angle of the main dielectric constant with respect to the surface of the thin film sample, and the dielectric constant and thickness of the isotropic layer are determined.

【0015】本発明の異方性薄膜評価装置は、単色で一
定の偏光状態をもつ入射光の薄膜試料面ヘの集光と、薄
膜試料からの反射光の平行光線化とを行なう同一のレン
ズと、1次元または2次元の検出器と、1/4波長板
と、偏光子と、薄膜試料を測定点を中心に面内回転する
機構とを備え、検出器と1/4波長板と偏光子と面内回
転する機構とにより測定された、反射光の偏光状態の入
射角および入射方位依存性から、薄膜試料の異方層の誘
電率と厚さと、主誘電率座標の薄膜試料表面に対する傾
斜角と、等方層の誘電率と厚さとを決定する。
The anisotropic thin-film evaluation apparatus according to the present invention is a single lens for condensing incident light of a monochromatic color having a certain polarization state on the surface of the thin-film sample and converting the reflected light from the thin-film sample into parallel rays. A one-dimensional or two-dimensional detector, a quarter-wave plate, a polarizer, and a mechanism for in-plane rotation of the thin film sample around the measurement point. The dielectric constant and thickness of the anisotropic layer of the thin film sample and the principal permittivity coordinates with respect to the surface of the thin film sample are determined from the dependence of the polarization state of the reflected light on the incident angle and the incident direction measured by the element and the in-plane rotation mechanism. Determine the tilt angle and the dielectric constant and thickness of the isotropic layer.

【0016】本発明の異方性薄膜評価方法は、単色で直
線偏光した入射光の薄膜試料面ヘの集光と、薄膜試料か
らの反射光の平行光線化とを同一のレンズで行ない、反
射光のS偏光成分強度とP偏光成分強度の入射角および
入射方位依存性を、1次元または2次元の検出器を用い
て、入射光の偏光方向と検出器の方向とを同期して回転
させて測定し、薄膜試料の異方層の誘電率と厚さと、主
誘電率座標の薄膜試料表面に対する傾斜角と、等方層の
誘電率と厚さとを決定する。
In the anisotropic thin film evaluation method of the present invention, the same lens is used to converge monochromatic linearly polarized incident light on the thin film sample surface and to convert reflected light from the thin film sample into parallel rays. Using a one-dimensional or two-dimensional detector, the polarization direction of the incident light and the direction of the detector are rotated in synchronization with the incident angle and the incident azimuth of the S-polarized light component intensity and the P-polarized light component intensity. The dielectric constant and thickness of the anisotropic layer of the thin film sample, the inclination angle of the main dielectric constant coordinate with respect to the thin film sample surface, and the dielectric constant and thickness of the isotropic layer are determined.

【0017】本発明の異方性薄膜評価装置は、単色で直
線偏光した入射光の薄膜試料面ヘの集光と、薄膜試料か
らの反射光の平行光線化とを行なう同一のレンズと、1
次元または2次元の検出器と、入射光の偏光方向と検出
器の方向とを同期して回転する機構とを備え、検出器
と、同期して回転する機構とにより測定された、反射光
のS偏光成分強度とP偏光成分強度の入射角および入射
方位依存性から、薄膜試料の異方層の誘電率と厚さと、
主誘電率座標の薄膜試料表面に対する傾斜角と、等方層
の誘電率と厚さとを決定する。
The anisotropic thin-film evaluation apparatus of the present invention includes the same lens for condensing monochromatic linearly polarized incident light on the thin-film sample surface and converting the reflected light from the thin-film sample into parallel rays.
A two-dimensional or two-dimensional detector, and a mechanism for rotating the polarization direction of the incident light and the direction of the detector in synchronization with each other, and measuring the reflected light measured by the detector and the mechanism for rotating in synchronization. From the dependency of the S-polarized component intensity and the P-polarized component intensity on the incident angle and the incident azimuth, the dielectric constant and thickness of the anisotropic layer of the thin film sample,
The inclination angle of the main dielectric constant with respect to the thin film sample surface and the dielectric constant and thickness of the isotropic layer are determined.

【0018】本発明の異方性薄膜評価方法は、単色で直
線偏光した入射光の薄膜試料面ヘの集光と、薄膜試料か
らの反射光の平行光線化とを同一のレンズで行ない、反
射光の偏光状態の入射角および入射方位依存性を、1次
元または2次元の検出器と1/4波長板と偏光子とを用
いて、入射光の偏光方向と前記検出器の方向とを同期し
て回転させて測定し、薄膜試料の異方層の誘電率と厚さ
と、主誘電率座標の薄膜試料表面に対する傾斜角と、等
方層の誘電率と厚さとを決定する。
In the method for evaluating anisotropic thin film of the present invention, the same lens is used to converge monochromatic linearly polarized incident light on the surface of the thin film sample and convert the reflected light from the thin film sample into parallel rays. The dependence of the polarization state of the light on the incident angle and the incident direction is synchronized by using a one-dimensional or two-dimensional detector, a quarter-wave plate, and a polarizer to synchronize the polarization direction of the incident light with the direction of the detector. Then, the dielectric constant and thickness of the anisotropic layer of the thin film sample, the inclination angle of the main dielectric constant with respect to the surface of the thin film sample, and the dielectric constant and thickness of the isotropic layer are determined.

【0019】本発明の異方性薄膜評価装置は、単色で直
線偏光した入射光の薄膜試料面ヘの集光と、薄膜試料か
らの反射光の平行光線化とを行なう同一のレンズと、1
次元または2次元の検出器と、1/4波長板と、偏光子
と、入射光の偏光方向と検出器の方向とを同期して回転
する機構とを備え、検出器と1/4波長板と偏光子と同
期して回転する機構とにより測定された、反射光の偏光
状態の入射角および入射方位依存性から、薄膜試料の異
方層の誘電率と厚さと、主誘電率座標の前記薄膜試料表
面に対する傾斜角と、等方層の誘電率と厚さとを決定す
る。
The anisotropic thin-film evaluation apparatus of the present invention comprises the same lens for condensing monochromatic, linearly polarized incident light on the thin-film sample surface and converting reflected light from the thin-film sample into parallel rays.
A two-dimensional detector, a quarter-wave plate, a polarizer, and a mechanism for rotating the polarization direction of incident light and the direction of the detector in synchronization with each other. Measured by the mechanism that rotates in synchronization with the polarizer, from the incident angle and incident direction dependence of the polarization state of the reflected light, the dielectric constant and thickness of the anisotropic layer of the thin film sample, and the main dielectric constant coordinates The tilt angle with respect to the thin film sample surface and the dielectric constant and thickness of the isotropic layer are determined.

【0020】本発明の異方性薄膜評価方法は、単色で円
偏光した入射光の薄膜試料面ヘの集光と、薄膜試料から
の反射光の平行光線化とを同一のレンズで行ない、反射
光のS偏光成分強度とP偏光成分強度の入射角および入
射方位依存性を、1次元または2次元の検出器を用い
て、入射光の偏光方向と検出器の方向とを同期して回転
させて測定し、薄膜試料の異方層の誘電率と厚さと、主
誘電率座標の薄膜試料表面に対する傾斜角と、等方層の
誘電率と厚さとを決定する。
In the method for evaluating anisotropic thin film of the present invention, the same lens is used to converge monochromatic circularly polarized incident light on the surface of the thin film sample and convert the reflected light from the thin film sample into parallel rays. Using a one-dimensional or two-dimensional detector, the polarization direction of the incident light and the direction of the detector are rotated in synchronization with the incident angle and the incident azimuth of the S-polarized light component intensity and the P-polarized light component intensity. The dielectric constant and thickness of the anisotropic layer of the thin film sample, the inclination angle of the main dielectric constant coordinate with respect to the thin film sample surface, and the dielectric constant and thickness of the isotropic layer are determined.

【0021】本発明の異方性薄膜評価装置は、単色で円
偏光した入射光の薄膜試料面ヘの集光と、薄膜試料から
の反射光の平行光線化とを行なう同一のレンズと、1次
元または2次元の検出器と、入射光の偏光方向と検出器
の方向とを同期して回転する機構とを備え、検出器と、
同期して回転する機構とにより測定された、反射光のS
偏光成分強度とP偏光成分強度の入射角および入射方位
依存性から、薄膜試料の異方層の誘電率と厚さと、主誘
電率座標の薄膜試料表面に対する傾斜角と、等方層の誘
電率と厚さとを決定する。
The anisotropic thin-film evaluation apparatus of the present invention comprises the same lens for condensing monochromatic circularly polarized incident light on the thin-film sample surface and converting reflected light from the thin-film sample into parallel rays. A two-dimensional or two-dimensional detector, and a mechanism for rotating the polarization direction of the incident light and the direction of the detector in synchronization with each other,
S of the reflected light measured by the synchronously rotating mechanism
From the dependence of the polarization component intensity and the P polarization component intensity on the incident angle and the incident direction, the dielectric constant and thickness of the anisotropic layer of the thin film sample, the inclination angle of the main dielectric constant coordinates with respect to the thin film sample surface, and the dielectric constant of the isotropic layer And determine the thickness.

【0022】本発明の異方性薄膜評価方法は、単色で円
偏光した入射光の薄膜試料面ヘの集光と、薄膜試料から
の反射光の平行光線化とを同一のレンズで行ない、反射
光の偏光状態の入射角および入射方位依存性を、回転す
る1次元または2次元の検出器と1/4波長板と偏光子
とを用いて測定し、薄膜試料の異方層の誘電率と厚さ
と、主誘電率座標の薄膜試料表面に対する傾斜角と、等
方層の誘電率と厚さとを決定する。
In the method of evaluating anisotropic thin film of the present invention, the same lens is used to converge monochromatic circularly polarized incident light on the surface of the thin film sample and convert the reflected light from the thin film sample into parallel rays. The dependence of the polarization state of light on the incident angle and the incident direction is measured using a rotating one-dimensional or two-dimensional detector, a quarter-wave plate, and a polarizer, and the dielectric constant of the anisotropic layer of the thin film sample is measured. The thickness, the inclination angle of the main dielectric constant coordinate with respect to the thin film sample surface, and the dielectric constant and thickness of the isotropic layer are determined.

【0023】本発明の異方性薄膜評価装置は、単色で円
偏光した入射光の薄膜試料面ヘの集光と、薄膜試料から
の反射光の平行光線化とを行なう同一のレンズと、回転
する1次元または2次元の検出器と、1/4波長板と、
偏光子とを備え、検出器と1/4波長板と偏光子とによ
り測定された、反射光の偏光状態の入射角および入射方
位依存性から、薄膜試料の異方層の誘電率と厚さと、主
誘電率座標の薄膜試料表面に対する傾斜角と、等方層の
誘電率と厚さとを決定する。
The anisotropic thin film evaluation apparatus according to the present invention comprises the same lens for condensing monochromatic circularly polarized incident light on the thin film sample surface and converting the reflected light from the thin film sample into a parallel light beam, A one-dimensional or two-dimensional detector, a quarter-wave plate,
A polarizer, and the dielectric constant and thickness of the anisotropic layer of the thin film sample are determined from the dependence of the polarization state of the reflected light on the incident angle and the incident azimuth measured by the detector, the quarter-wave plate, and the polarizer. The inclination angle of the main dielectric constant with respect to the surface of the thin film sample and the dielectric constant and thickness of the isotropic layer are determined.

【0024】即ち、本発明は、一定の偏光状態の光が試
料面で焦点を結ぶようにレンズをもちいて集光し、同じ
レンズによって拡大された反射光のS、P偏光成分強度
の入射角および入射光の偏光状態依存性、または反射光
の偏光状態の入射角および入射光の偏光状態依存性を偏
光子と1/4波長板の両方、または偏光子のみと、1次
元または2次元の位置敏感光検出器をもちいて測定する
ことによって上記課題を解決し、主誘電率座標が試料表
面に対して傾きをもっている試料でも微小部の異方的誘
電率と膜厚、主誘電率座標の傾きを決定する方法と装置
である。
That is, according to the present invention, light having a certain polarization state is condensed by using a lens so as to be focused on the sample surface, and the incident angles of the S and P polarization component intensities of the reflected light expanded by the same lens. And the polarization state dependence of the incident light, or the incident angle and the polarization state dependence of the polarization state of the reflected light, of both the polarizer and the quarter-wave plate, or only the polarizer, and the one-dimensional or two-dimensional The above problem is solved by measuring using a position-sensitive photodetector, and the anisotropic dielectric constant and film thickness of the microscopic portion, even when the main dielectric constant coordinate is inclined with respect to the sample surface, the main dielectric constant coordinate. A method and apparatus for determining a tilt.

【0025】[0025]

【発明の実施の形態】反射光の偏光状態は4×4行列
(ベルマン他 フィジカルレビューレターズ25巻 5
77ペ−ジ 1970年 D.W.Berrman a
nd T.J.Scheffer,Physcal R
eview Letters,25,577 (197
0))により計算できる。この方法に従えば入射角βで
試料に光が入射した場合、ΦI 、Φr 、Φt で入射光、
反射光および基板ヘの透過光の状態を表すと、それぞれ
の間に成立する関係は、配向層の4×4行列と膜厚L
2 、d2 と無配向層の4×4行列と膜厚L1 、d1 を用
いて Φt =exp(id11 )exp(id22 )(Φ
I +Φr ) となる。L1 において△14,△24,△31,△32,△33
よび△44は0であり、残りは △11=−(εe −εo)sinβsinθcosθsinφ(εe cos
2θ+εo sin2θ) △12=1−sin2β/(εe cos2θ+εo sin2θ) △13=△42=(εe −εo)sinβsinθcosθcosφ(εe
cos2θ+εo sin2θ) △21=εo{εe −(εe −εo)sin2θcos2φ}/(ε
e cos2θ+εo sin2θ) △22=−εe(εe −εo)sin2θcos2φ/(εe cos2θ
+εo sin2θ) △23=△41=−εo(εe −εo)sinθcosφsinφ/
(εe cos2θ+εo sin2θ) △34=1 △43=εo{εe −(εe −εo)sin2θsin2φ}/(ε
e cos2θ+εo sin2θ)−sin2β で表される。この式中でεe 、εo は主誘電率座標系で
表した誘電率、θは主誘電率座標の膜表面に対する傾斜
角、φが入射光の面内方位角である。L2 は更に△11
22、△13、△23が0になり、 △12=1−sin2β/ε △21=ε △34=1 △43=ε−sin2β となる。
BEST MODE FOR CARRYING OUT THE INVENTION The polarization state of reflected light is 4 × 4 matrix (Bellman et al., Physical Review Letters, Vol. 25, No. 5).
Page 77, 1970 W. Berrman a
nd T. J. Scheffer, Physcal R
view Letters, 25, 577 (197
0)). According to this method, when light is incident on the sample at an incident angle β, the incident light is Φ I , Φ r , Φ t ,
When the state of the reflected light and the state of the transmitted light to the substrate are expressed, the relationship established between each of them is the 4 × 4 matrix of the alignment layer and the film thickness L.
Φ t = exp (id 1 L 1 ) exp (id 2 L 2 ) (Φ 2 , d 2 , 4 × 4 matrix of non-oriented layer and film thickness L 1 , d 1
I + Φ r ). In L 1 △ 14, △ 24, △ 31, △ 32, △ 33 and △ 44 is 0, the remaining △ 11 = - (ε e -ε o) sinβsinθcosθsinφ (ε e cos
2 θ + ε o sin 2 θ) Δ 12 = 1−sin 2 β / (ε e cos 2 θ + ε o sin 2 θ) Δ 13 = Δ 42 = (ε e −ε o ) sin β sin θ cos θ cos φ (ε e
cos 2 θ + ε o sin 2 θ) △ 21 = ε o {ε e − (ε e −ε o ) sin 2 θ cos 2 φ} / (ε
e cos 2 θ + ε o sin 2 θ) △ 22 = -ε e (ε e -ε o) sin 2 θcos 2 φ / (ε e cos 2 θ
+ Ε o sin 2 θ) △ 23 = △ 41 = −ε oe −ε o ) sin θ cos φ sin φ /
e cos 2 θ + ε o sin 2 θ) △ 34 = 1 △ 43 = ε o {ε e − (ε e −ε o ) sin 2 θsin 2 φ} / (ε
e cos 2 θ + ε o sin 2 θ) −sin 2 β. In this equation, ε e and ε o are the permittivity expressed in the main permittivity coordinate system, θ is the inclination angle of the main permittivity coordinate with respect to the film surface, and φ is the in-plane azimuth of the incident light. L 2 is also △ 11 ,
22,13,23 becomes 0, and △ 12 = 1-sin 2 β / ε △ 21 = ε △ 34 = 1 △ 43 = ε-sin 2 β.

【0026】以上の式を解いて反射光の偏光状態を求め
ることができる。この式より、試料に入射した光は反射
の前後で試料表面に平行であるS波成分と光の進行方向
と垂直でかつS波成分と直交するP波成分の位相差や振
幅が変化し、S波成分とP波成分の振幅と互いの位相差
で表される反射光の偏光状態および強度は入射角、膜の
屈折率、厚さ及び基板の屈折率に依存することがわか
る。そこで反射光の偏光状態や強度の角度依存性を測定
することにより、試料の膜厚及び屈折率を決定できる。
空間的に微小な部分の膜厚や屈折率の測定は、入射光を
レンズで集光して試料面の入射光のあたる部分の面積を
小さくし、反射光を再びレンズを用いて平行光線化して
強度プロファイルを位置敏感検出器により測定して、反
射光強度の入射角依存性を決定して膜厚と屈折率を計算
するBPR法によって可能となる。従来のBPR法は光
学的に等方的な薄膜を測定対象にしているが、検出器の
前に1/4波長板と偏光子、または偏光子のみを挿入し
て反射光のS波成分とP波成分の強度をそれぞれ測定す
ればS偏光成分とP偏光成分がまじり合った反射光を生
じる光学的に異方的な膜を測定することができる。
By solving the above equation, the polarization state of the reflected light can be obtained. From this equation, the phase difference and amplitude of the S wave component parallel to the sample surface and the P wave component perpendicular to the traveling direction of the light and orthogonal to the S wave component change before and after reflection of the light incident on the sample, It can be seen that the polarization state and intensity of the reflected light represented by the amplitude of the S-wave component and the P-wave component and the phase difference between them depend on the incident angle, the refractive index and thickness of the film, and the refractive index of the substrate. Thus, by measuring the angle dependence of the polarization state and intensity of the reflected light, the thickness and refractive index of the sample can be determined.
To measure the film thickness and refractive index of a spatially minute part, the incident light is condensed by a lens to reduce the area of the sample surface where the incident light hits, and the reflected light is converted into a parallel beam using the lens again. The intensity profile can be measured by a position-sensitive detector, the incident angle dependence of the reflected light intensity is determined, and the film thickness and the refractive index are calculated by the BPR method. Although the conventional BPR method targets an optically isotropic thin film as a measurement target, a 4 wavelength plate and a polarizer or only a polarizer are inserted in front of the detector to reduce the S wave component of the reflected light. By measuring the intensity of the P-wave component, it is possible to measure an optically anisotropic film that generates reflected light in which the S-polarized component and the P-polarized component are mixed.

【0027】例として、S偏光成分のみの光を、特定の
入射角で異方的な膜に入射した際に生じた、反射光のS
偏光成分とP偏光成分がそれぞれ Rsscos(ωt) Rpscos(ωt+△s ) であった場合、検出器の上流に置かれた検光子(偏光
子)の振動方向を入射光と同じ向きに設定すれば、Rss
の、垂直に設定すればRpsの入射角度依存性を測定でき
る。
As an example, the S-polarized light generated when the light having only the S-polarized light component is incident on the anisotropic film at a specific incident angle.
When the polarization component and the P-polarization component are respectively R ss cos (ωt) R ps cos (ωt + △ s ), the vibration direction of the analyzer (polarizer) placed upstream of the detector is set in the same direction as the incident light. If set to R ss
If it is set perpendicularly, the incident angle dependency of R ps can be measured.

【0028】図20に示したように直線偏光した光をレ
ンズで集光して入射光とするので、S偏光成分を与える
入射方位とP偏光成分を与える入射方位は直交し、検光
子(偏光子)の方位がRssを測定する状態に調整されて
いれば、2次元検出器を用いてP偏光成分の入射光によ
って発生する反射光のP偏光成分Rppも同時に測定でき
る。同様にRpsとRspの同時測定が可能である。この配
置で測定されたRss、Rsp、Rps、Rppの入射角依存性
と計算値が一致するように異方層の誘電率εe、εo
膜厚d1 、主誘電率座標の試料表面に対する傾斜角θ、
等方層の誘電率εと膜厚d2 を最適化して試料の構造を
決定できるが、測定誤差の存在を考慮するとそれぞれの
パラメータを一義的に決定することは困難である。そこ
で、Rss、Rsp、Rps、Rppの入射方位依存性を測定し
て、最適化を行なう測定値を増やすことにより決定され
るパラメータの信頼性の向上を計る。入射方位依存性の
測定は集光に用いるレンズの上流に1/2波長板を挿入
し、その光学軸を回転させることで試料に入射するS偏
光成分の光、及びP偏光成分の光の入射方位を変化させ
る。この際、1/2波長板の回転に同期して1次元検出
器の方位も変化させる。このようにして得られた、
ss、Rsp、Rps、Rppの入射角及び入射方位依存性と
計算値が一致するように異方層の誘電率εe 、εo と膜
厚d1 、主誘電率座標の試料表面に対する傾斜角θ、等
方層の誘電率εと膜厚d2 を最適化して試料の構造を決
定する。
As shown in FIG. 20, since the linearly polarized light is condensed by a lens to be incident light, the incident direction for providing an S-polarized component and the incident direction for providing a P-polarized component are orthogonal to each other. If the orientation of the child is adjusted to measure R ss , the P-polarized light component R pp of the reflected light generated by the incident light of the P-polarized light component can be measured at the same time using a two-dimensional detector. Similarly, simultaneous measurement of R ps and R sp is possible. The dielectric constants ε e and ε o of the anisotropic layer, the film thickness d 1 , and the main dielectric constant are set so that the calculated values match the incident angle dependences of R ss , R sp , R ps , and R pp measured in this arrangement. The inclination angle θ of the coordinates with respect to the sample surface,
Although the structure of the sample can be determined by optimizing the dielectric constant ε and the thickness d 2 of the isotropic layer, it is difficult to uniquely determine each parameter in consideration of the existence of a measurement error. Therefore, the dependency of R ss , R sp , R ps , and R pp on the incident azimuth is measured, and the reliability of the parameters determined by increasing the measurement values for optimization is measured. For the measurement of the incident azimuth dependence, a half-wave plate is inserted upstream of the lens used for focusing, and the optical axis is rotated so that the light of the S-polarized component and the light of the P-polarized component incident on the sample are incident. Change orientation. At this time, the direction of the one-dimensional detector is also changed in synchronization with the rotation of the half-wave plate. Obtained in this way,
A sample of the dielectric constants ε e , ε o , the film thickness d 1 , and the main dielectric constant of the anisotropic layer so that the calculated values are consistent with the incident angle and incident direction dependence of R ss , R sp , R ps , and R pp. The structure of the sample is determined by optimizing the inclination angle θ with respect to the surface, the dielectric constant ε of the isotropic layer, and the film thickness d 2 .

【0029】上記の例で検出器の上流に挿入された検光
子(偏光子)のかわりに、上流側より1/4波長板と検
光子(偏光子)を挿入し、波長板を回転させ、その際に
検出される光の強度の波長板の方位角について求めたフ
ーリエ和から、S波成分が入射した方位ではRss、Rps
及び△s 、P波成分が入射した方位ではRsp、Rppと位
相差△pの入射角および入射方位依存性を測定し、測定
値と計算値が一致するように、異方層の誘電率εe 、ε
o と膜厚d1 、主誘電率座標の傾斜角θ、等方層の誘電
率εと膜厚d2 を最適化して試料の構造を決定する。通
常、反射強度よりも位相差の方が膜構造に対して敏感で
あるため、反射強度にのみ注目する場合よりも感度が高
い。
In the above example, instead of the analyzer (polarizer) inserted upstream of the detector, a quarter-wave plate and an analyzer (polarizer) are inserted from the upstream side, and the wave plate is rotated. From the Fourier sum obtained for the azimuth of the wave plate of the intensity of the light detected at that time, R ss and R ps are obtained for the azimuth where the S-wave component is incident.
In the azimuth where 成分s and P wave components are incident, the dependence of R sp , R pp and the phase difference Δp on the incident angle and the incident azimuth are measured, and the dielectric value of the anisotropic layer is adjusted so that the measured value agrees with the calculated value. Rate ε e , ε
The structure of the sample is determined by optimizing o , the film thickness d 1 , the inclination angle θ of the main permittivity coordinate, the dielectric constant ε of the isotropic layer, and the film thickness d 2 . Normally, the phase difference is more sensitive to the film structure than the reflection intensity, and therefore the sensitivity is higher than when focusing only on the reflection intensity.

【0030】本発明の実施の形態を図面を用いて以下に
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0031】(本発明の第1の実施の形態)本発明の第
1の実施の形態としての試料回転ステージを備えた装置
の構成を図1を用いて説明する。1は光源で5mWのH
e−Neレーザーを用いた。2は偏光子、3は試料回転
ステージ、4が入射光の集光と反射光の平行化に用いる
レンズで開口数Naが0.9のオリンパス製顕微鏡の1
00倍対物レンズを用いた。焦点での観察域の大きさ
(直径)は約1μmであり、入射角0゜〜±66゜の領
域を測定できる。5はハーフミラー、6が検光子(偏光
子)、7が互いに垂直方向に配置した1次元の光検出器
であるCCD素子、8が測定データを一時記憶し検出器
の各素子の検出強度を数値出力する装置、9が演算装
置、10が試料である。
(First Embodiment of the Present Invention) The structure of an apparatus having a sample rotating stage according to a first embodiment of the present invention will be described with reference to FIG. 1 is a light source of 5 mW H
An e-Ne laser was used. 2 is a polarizer, 3 is a sample rotation stage, 4 is a lens used for condensing incident light and collimating reflected light, and is an Olympus microscope having a numerical aperture Na of 0.9.
A 00 × objective lens was used. The size (diameter) of the observation area at the focal point is about 1 μm, and an area at an incident angle of 0 ° to ± 66 ° can be measured. Reference numeral 5 denotes a half mirror, 6 denotes an analyzer (polarizer), 7 denotes a CCD element which is a one-dimensional photodetector arranged in a direction perpendicular to each other, and 8 temporarily stores measurement data and detects the detection intensity of each element of the detector. A numerical output device, 9 is an arithmetic device, and 10 is a sample.

【0032】試料回転ステージ3は測定点を通る軸を中
心に面内回転する。この装置はオリンパス製の顕微鏡を
もとに偏光子2、試料回転ステージ3、ハーフミラー
5、検光子(偏光子)6、CCD素子7、測定データを
一時記憶し検出器の各素子の検出強度を数値出力する装
置8、演算装置9を付加する改造を加えて作成したもの
である。試料回転ステージ3の回転中心を入射光の焦点
と一致させ、さらに回転軸を入射光の対称軸と平行にす
るため、ガラス基板に直径約2μmのアルミニウムを蒸
着したものを用いた。検出器の各素子で測定される試料
回転ステージ3に載せられたアルミニウム膜からの反射
光の強度の和が回転に対して変化しない状態で調整を終
了し、試料回転ステージ3を固定した。なお、試料10
の測定に先立って、その都度ここで用いたアルミニウム
蒸着板からの反射光強度を測定して装置の状態を確認し
た。
The sample rotating stage 3 rotates in-plane around an axis passing through the measuring point. This apparatus temporarily stores a polarizer 2, a sample rotation stage 3, a half mirror 5, an analyzer (polarizer) 6, a CCD element 7, and measurement data based on an Olympus microscope and detects the intensity of each element of the detector. Are created by adding a modification to add a device 8 for outputting a numerical value and an arithmetic unit 9. In order to make the rotation center of the sample rotation stage 3 coincide with the focal point of the incident light and further make the rotation axis parallel to the axis of symmetry of the incident light, a glass substrate on which aluminum having a diameter of about 2 μm was deposited was used. The adjustment was completed in a state where the sum of the intensities of the reflected light from the aluminum film placed on the sample rotation stage 3 measured by the respective elements of the detector did not change with respect to the rotation, and the sample rotation stage 3 was fixed. Sample 10
Prior to the measurement, the state of the apparatus was confirmed by measuring the intensity of the reflected light from the aluminum deposition plate used here each time.

【0033】この装置を用いて厚さ1.1mmのガラス
基板(コーニング7059)上に日本合成ゴム製の垂直
配向用ポリイミド原料であるアルキルアミン酸PC2の
LB膜を堆積した。この膜はPC2を水面に展開後、ガ
ラス基板を水面に垂直な方向に4cm/sで上下に移動
させて2回累積後、オーブンで200℃、3時間加熱し
てポリイミド膜を作成した。このポリイミド膜の膜厚を
ファイブラボ製エリプソメータMARY−102を用い
て測定を試みたところ、入射角が70゜及び50゜でも
測定された反射光の偏光状態(△(位相差成分)、ψ
(振幅反射率成分))が、ガラス基板表面からの反射光
の偏光状態と有為な差が測定されず、膜厚を決定するこ
とが出来なかった。これは累積回数が少なくて膜厚が薄
いことと、膜の屈折率がガラス基板に近いためと考えら
れる。
Using this apparatus, an LB film of alkylamine acid PC2 which is a polyimide raw material for vertical alignment made by Nippon Synthetic Rubber Co., Ltd. was deposited on a 1.1 mm thick glass substrate (Corning 7059). After the PC2 was spread on the water surface, the glass substrate was moved up and down at 4 cm / s in the direction perpendicular to the water surface, accumulated twice, and then heated at 200 ° C. for 3 hours in an oven to form a polyimide film. When an attempt was made to measure the thickness of this polyimide film using an ellipsometer MARY-102 made by Fibravo, the polarization state of the reflected light measured at an incident angle of 70 ° and 50 ° (△ (phase difference component), ψ
(Amplitude reflectance component), the significant difference between the polarization state of the reflected light from the glass substrate surface and the film thickness could not be determined. This is presumably because the number of accumulations is small and the film thickness is small, and the refractive index of the film is close to that of the glass substrate.

【0034】この基板上にシアノビフェニル系液晶5C
B(メルク製)を蒸着した。蒸着は基板と液晶を入れた
容器を真空容器に入れ、容器の底に置かれた液品容器を
加熱して液晶を蒸発させる。基板は容器内の天井に近い
所に保持し、蒸着面(ポリイミドを製膜した面)を下に
むけて、蒸発した液晶分子を付着させることにより液晶
層を作成する。液晶容器と基板の距離は約10cmであ
る。試料作成に際して、容器内をロータリーポンプにて
1.2×l0-2mTorrに排気後、引き口を閉じた。
基板は基板ホルダーに27℃(300K)の温水を流し
て温度を制御した。液晶容器は抵抗加熱により室温から
約70℃に昇温して約2時間保持した。
On this substrate, a cyanobiphenyl-based liquid crystal 5C
B (Merck) was deposited. In vapor deposition, a container containing a substrate and liquid crystal is placed in a vacuum container, and a liquid product container placed at the bottom of the container is heated to evaporate the liquid crystal. The substrate is held near the ceiling in the container, and the liquid crystal layer is formed by attaching the evaporated liquid crystal molecules with the vapor deposition surface (the surface on which the polyimide film is formed) facing downward. The distance between the liquid crystal container and the substrate is about 10 cm. In preparing the sample, the inside of the container was evacuated to 1.2 × 10 −2 mTorr by a rotary pump, and then the inlet was closed.
The temperature of the substrate was controlled by flowing hot water of 27 ° C. (300 K) through the substrate holder. The liquid crystal container was heated from room temperature to about 70 ° C. by resistance heating and held for about 2 hours.

【0035】以上のようにして作成した試料Aからの反
射光の偏光状態の入射方位依存性を入射角を70゜とし
てエリプソメータMARY−102を用いて測定した。
この際、蒸着した膜が液晶相(25℃〜35℃)となる
ようにするため、測定を行なう部屋の温度を28℃に設
定した。図2はエリプソメータで測定した試料Aからの
反射光の位相差成分(Δ)の入射方位依存性を示す図で
ある。図3はエリプソメータで測定した試料Aからの反
射光の振幅反射率比成分(ψ)の入射方位依存性を示す
図である。液晶が表面に垂直に配向しているため、等方
膜と同様に△、ψともに有為な異方性は観測されない。
この測定結果を屈折率1.53のガラス基板上の等方膜
として測定された△、ψの平均7.58゜、23.82
゜から膜厚と屈折率を求めると、屈折率が1.42、膜
厚が89.4nmとなり、液晶の等方層の屈折率1.5
7や、液晶相の屈折率1.51〜1.64といった値か
ら大きくはずれている。これは、反射光の偏光状態に異
方性が観測されず、等方的な膜として扱ったために誤差
が大きくなったためと考えられる。
The dependence of the polarization state of the reflected light from sample A prepared as described above on the incident direction was measured using an ellipsometer MARY-102 at an incident angle of 70 °.
At this time, the temperature of the room where the measurement was performed was set to 28 ° C. so that the deposited film became a liquid crystal phase (25 ° C. to 35 ° C.). FIG. 2 is a diagram showing the incident azimuth dependence of the phase difference component (Δ) of the reflected light from the sample A measured by the ellipsometer. FIG. 3 is a diagram showing the incident azimuth dependence of the amplitude reflectance ratio component (ψ) of the reflected light from the sample A measured by the ellipsometer. Since the liquid crystal is oriented perpendicular to the surface, no significant anisotropy is observed in both △ and 同 様 as in the isotropic film.
This measurement result was measured as an isotropic film on a glass substrate having a refractive index of 1.53. The average of △ and ψ was 7.58 ゜ and 23.82.
When the film thickness and the refractive index are obtained from ゜, the refractive index is 1.42, the film thickness is 89.4 nm, and the refractive index of the isotropic layer of the liquid crystal is 1.5.
7 and the refractive index of the liquid crystal phase such as 1.51-1.64. This is presumably because no anisotropy was observed in the polarization state of the reflected light, and the error was increased because the reflected light was treated as an isotropic film.

【0036】このように従来の技法では膜の状態を正し
く決定できない。なお、膜厚、屈折率を求める際、液晶
蒸着前のエリプソメータの測定で配向膜の存在により反
射光の状態が大きく変化しなかったため、その存在を無
視した。
As described above, the state of the film cannot be correctly determined by the conventional technique. In determining the film thickness and the refractive index, the presence of the alignment film did not significantly change the state of the reflected light in the measurement of the ellipsometer before the liquid crystal deposition, and thus the presence thereof was ignored.

【0037】本発明の装置を用いて試料Aを測定した。
この場合も室温を28℃に設定した。測定に際して、入
射光が試料表面で焦点を結ぶようにするために、検出器
7の各素子で検出された強度の和が最大となるよう試料
回転ステージ3の高さを調整した。測定の結果、検光子
(偏光子)6の振動方向が入射光の振動方向に垂直な場
合、S偏光入射もP偏光入射も有為な強度は観測され
ず、この試料からの反射光にはS偏光成分とP偏光成分
の混じり合いがなかった。
Sample A was measured using the apparatus of the present invention.
Also in this case, the room temperature was set to 28 ° C. At the time of measurement, the height of the sample rotation stage 3 was adjusted so that the sum of the intensities detected by the elements of the detector 7 was maximized so that the incident light was focused on the sample surface. As a result of the measurement, when the vibration direction of the analyzer (polarizer) 6 is perpendicular to the vibration direction of the incident light, no significant intensity is observed for both the S-polarized light and the P-polarized light. There was no mixing of the S-polarized component and the P-polarized component.

【0038】図4は試料Aからの反射光のRss成分の入
射角依存性の測定結果を示す図である。図5は試料Aか
らの反射光のRpp成分の入射角依存性の測定結果を示す
図である。図中の○及び△は互いに直交する入射方位か
らの測定結果、曲線は最適化されたパラメータによる計
算結果である。○と△は試料回転ステージ3の方位が互
いに90゜違った状態での測定結果であり、エリプソメ
ータによる予備実験の結果と同様、有為な入射方位依存
性は観測されない。この方法はS偏光成分の光の入射方
位とP偏光成分の光の入射方位が常に90゜違っている
ために、データの解析は試料の向きが互いに90゜違っ
た位置での測定結果を組み合わせて行なう必要がある。
しかし、この試料は反射光強度が入射方位について対称
であるばかりか、面内の入射方位依存性がないために一
つの方位で測定した結果の解析で十分である。解析では
配向膜の存在を無視し、計算値が測定値と一致するよう
に、液晶膜の2つの異方的主誘電率と膜厚、及び計算値
と測定値の間の比例定数の最適化を行なった。入射角が
小さい領域では試料面からの反射光ばかりでなく、ガラ
ス基板の裏面からの反射光も同時に検出されるために、
入射角30゜〜64゜の範囲の測定結果を最適化した。
なお、面内異方性が観測されなかったため、主誘電率座
標軸は試料表面に垂直とした。その結果、液晶層の膜厚
が73nm、膜表面に垂直な方向の誘電率が2.86、
表面に平行な誘電率が2.28と決定された。これらの
値より計算された反射強度の入射角依存性は図中の実線
にて示されている。
FIG. 4 is a graph showing the measurement results of the incident angle dependence of the R ss component of the reflected light from the sample A. FIG. 5 is a diagram showing a measurement result of the incident angle dependence of the R pp component of the reflected light from the sample A. In the figure, ○ and Δ indicate the measurement results from the incident azimuths orthogonal to each other, and the curve indicates the calculation results using the optimized parameters. ○ and △ are measurement results when the orientations of the sample rotation stage 3 are different from each other by 90 °. Similar to the results of the preliminary experiment using the ellipsometer, no significant incident orientation dependency is observed. In this method, since the incident direction of the S-polarized component light and the incident direction of the P-polarized component light are always 90 ° different, the data analysis combines the measurement results at positions where the sample directions differ by 90 ° from each other. Need to be done.
However, since the reflected light intensity of this sample is not only symmetrical with respect to the incident azimuth, but does not depend on the incident azimuth in the plane, it is sufficient to analyze the result measured in one azimuth. The analysis ignores the presence of the alignment film and optimizes the two anisotropic main dielectric constants and film thickness of the liquid crystal film, and the proportionality constant between the calculated and measured values, so that the calculated value matches the measured value. Was performed. In the region where the incident angle is small, not only the reflected light from the sample surface but also the reflected light from the back surface of the glass substrate is detected at the same time.
The measurement result in the range of the incident angle of 30 ° to 64 ° was optimized.
Since no in-plane anisotropy was observed, the main dielectric constant coordinate axis was perpendicular to the sample surface. As a result, the thickness of the liquid crystal layer was 73 nm, the dielectric constant in the direction perpendicular to the film surface was 2.86,
The dielectric constant parallel to the surface was determined to be 2.28. The incident angle dependence of the reflection intensity calculated from these values is shown by the solid line in the figure.

【0039】(本発明の第2の実施の形態)本発明の第
2の実施の形態としての1/2波長板を用いて入射光の
偏光面を回転させる機能を備えた装置の構成を図6を用
いて説明する。11は光源で5mWのHe−Neレーザ
ーを用いた。12は偏光子、13は1/2波長板、14
が入射光の集光と反射光の平行化に用いるレンズで開口
数Naが0.9のオリンパス製顕微鏡の100倍対物レ
ンズを用いた。焦点での観察域の大きさ(直径)は約1
μmであり、入射角0゜〜66゜の領域を測定できる。
15はハーフミラー、16が検光子(偏光子)、17が
互いに垂直方向に配置した1次元の光検出器であるCC
D素子、19が測定データを一時記憶し検出器の各素子
の検出強度を数値出力する装置、20が演算装置、21
が試料である。この装置は本発明の第1の実施の形態の
装置に1/2波長板13を付加する改良を加えたもので
ある。本発明の第1の実施の形態の試料回転ステージは
取り付けたままであるが、測定において必要なものでは
ないので図6より省いた。
(Second Embodiment of the Present Invention) The structure of an apparatus having a function of rotating a plane of polarization of incident light using a half-wave plate according to a second embodiment of the present invention will be described. 6 will be described. 11 is a light source using a 5 mW He-Ne laser. 12 is a polarizer, 13 is a half-wave plate, 14
Is a lens used for condensing incident light and collimating reflected light, and a 100 × objective lens of an Olympus microscope having a numerical aperture Na of 0.9 was used. The size (diameter) of the observation area at the focal point is about 1
μm, and can measure a region at an incident angle of 0 ° to 66 °.
Reference numeral 15 denotes a half mirror, 16 denotes an analyzer (polarizer), and 17 denotes a one-dimensional photodetector arranged in a direction perpendicular to each other.
D element, 19 is a device for temporarily storing measurement data and numerically outputting the detected intensity of each element of the detector, 20 is a computing device, 21
Is a sample. This device is an improvement obtained by adding a half-wave plate 13 to the device according to the first embodiment of the present invention. Although the sample rotation stage according to the first embodiment of the present invention is still attached, it is not necessary for measurement, and is omitted from FIG.

【0040】この装置を用いて厚さ1.1mmのガラス
基板(コーニング7059)上に日本合成ゴム製の垂直
配向用ポリイミド原料であるアルキルアミン酸PC2と
水平配向用ポリイミド原料であるアルキルアミン酸PC
lを9:1の割合で混合したものからLB膜を堆積し
た。この膜は混合液を水面に展開後、ガラス基板を水面
に垂直な方向に4cm/sで上下に移動させて2回累積
後、オーブンで200℃、3時間加熱してポリイミド膜
を作成した。このポリイミド膜の膜厚をファイブラボ製
エリプソメータMARY−102を用いて測定を試みた
ところ、本発明の第1の実施の形態の試料と同様に入射
角が70゜及び50゜でも測定された反射光の偏光状態
(△、ψ)がガラス基板表面からの反射光の偏光状態と
有為な差が測定されず膜厚を決定することが出来なかっ
た。つまり、この膜は屈折率がガラス基板とほぼ同じ
で、膜厚もうすいと結論される。この基板上にシアノビ
フェニル系液晶5CB(メルク製)を本発明の第1の実
施の形態と同じ方法で蒸着した。ただし、本発明の第1
の実施の形態の試料Aよりも液晶を厚く蒸着するために
液晶容器は約70℃で約3時間保持した。
Using this apparatus, on a glass substrate (Corning 7059) having a thickness of 1.1 mm, alkylamine acid PC2 as a polyimide raw material for vertical alignment and alkylamine acid PC as a raw material for polyimide for horizontal alignment made by Nippon Synthetic Rubber Co., Ltd.
An LB film was deposited from a mixture of 1 at a ratio of 9: 1. After the mixed solution was spread on the water surface, the glass substrate was moved up and down at 4 cm / s in the direction perpendicular to the water surface, accumulated twice, and then heated at 200 ° C. for 3 hours in an oven to form a polyimide film. When the film thickness of this polyimide film was measured using an ellipsometer MARY-102 made by Fibravo, the reflection was measured even when the incident angles were 70 ° and 50 °, similarly to the sample of the first embodiment of the present invention. The polarization state of light (△, ψ) was not significantly different from the polarization state of light reflected from the glass substrate surface, and the film thickness could not be determined. That is, it is concluded that the refractive index of this film is almost the same as that of the glass substrate, and the film thickness is smaller. On this substrate, a cyanobiphenyl-based liquid crystal 5CB (manufactured by Merck) was deposited by the same method as in the first embodiment of the present invention. However, the first of the present invention
The liquid crystal container was held at about 70 ° C. for about 3 hours in order to deposit a liquid crystal thicker than the sample A of the embodiment.

【0041】以上のようにして作成した試料Bからの反
射光の偏光状態の入射方位依存性を入射角を70゜とし
てエリプソメータMARY−102を用いて測定した。
この際、蒸着した膜が液晶相(25℃〜35℃)となる
ようにするため、本発明の第1の実施の形態と同様に測
定を行なう部屋の温度を28℃に設定した。図7はエリ
プソメータで測定した試料Bからの反射光の位相差成分
(△)の入射方位依存性を示す図である。図8はエリプ
ソメータで測定した試料Bからの反射光の振幅反射率比
成分(ψ)の入射方位依存性を示す図である。液晶分子
が表面に対して傾いて配向しているため、△、ψともに
回転非対称の異方性が観測されている。この測定結果を
屈折率1.53のガラス基板上の単軸異方性膜として測
定された△、ψの平均から膜厚と異方的誘電率を求める
と、誘電率が2.85,2.30、膜厚が58nm、傾
斜角が35゜となる。試料面内での液晶分子配向方位は
LB膜を累積する際の基板の移動方向と平行であった。
The dependence of the polarization state of the reflected light from sample B prepared as described above on the incident azimuth was measured using an ellipsometer MARY-102 at an incident angle of 70 °.
At this time, in order to make the deposited film have a liquid crystal phase (25 ° C. to 35 ° C.), the temperature of the room where the measurement was performed was set to 28 ° C. as in the first embodiment of the present invention. FIG. 7 is a diagram showing the incident azimuth dependence of the phase difference component (△) of the reflected light from the sample B measured by the ellipsometer. FIG. 8 is a diagram showing the incident azimuth dependency of the amplitude reflectance ratio component (ψ) of the reflected light from the sample B measured by the ellipsometer. Since the liquid crystal molecules are oriented at an angle to the surface, rotationally asymmetric anisotropy is observed for both △ and ψ. The film thickness and the anisotropic dielectric constant were determined from the average of △ and ψ measured as a uniaxial anisotropic film on a glass substrate having a refractive index of 1.53. .30, the film thickness is 58 nm, and the inclination angle is 35 °. The orientation of the liquid crystal molecules in the plane of the sample was parallel to the moving direction of the substrate when the LB film was accumulated.

【0042】本発明の装置を用いて試料Bを測定した。
この場合も宝温を28℃に設定した。測定に際して行な
った装置の調整は、第1の実施の形態と同じである。あ
らかじめ行なったエリプソメータによる測定で液晶分子
の配向方向がLB膜作成時の基板の振動方向と一致して
いるので、入射光の偏光状態を制御する1/2波長板の
方位角を、S偏光成分の光が液晶の配向方位と平行であ
る位置を0゜とした。反射光の検出器は0〜±66゜の
入射角の光が測定できるので、方位角依存性の測定は1
/2波長板の方位を0゜〜180゜で変化させることで
十分である。実際の測定は1/2波長板が0゜、45
゜、90゜、135゜の方位で測定した。なお、0〜±
20゜には基板の裏面からの反射の影響があるので30
゜より大きい入射角についてのみ測定した。各入射方位
においてRss、Rppは、異方性は明瞭に観測されたもの
の反転対称性があるために、これらに注目して解析を行
なっても傾斜角を精度よく決定することは困難であっ
た。ー方、Rsp、Rpsには明瞭な異方性が観測されるた
め傾斜角の決定には適しているが、測定された強度がR
ss、Rppより2桁弱く、測定データ自身がもつ揺らぎが
大きいために解析の精度を上げることができない。特
に、方位角0゜、90゜では有為な強度が観測されなか
った。そこで、膜厚と誘電率の決定はRss、Rppを主な
最適化対象のデータとし、傾斜角は主に方位角45゜と
135゜のRsp、Rpsに注目してパラメータの最適化を
行なった。その結果、エリプソメータによる観測から得
られた値に近い値(誘電率が2.86、2.30、膜厚
が58.2nm、傾斜角が36゜)が得られた。この値
を用いると方位角0゜、90゜でRsp、Rpsが入射角に
よらず0となり、測定結果と一致する。なお、従来法の
ようにS偏光成分P偏光成分にかかわりなく反射光強度
を測定すると、Rsp、Rpsの存在の影響は反射光強度が
弱い58゜付近に若干あらわれる程度で30゜〜64゜
の範囲で最適化を行なうと、積算時間(測定時間)を長
くすることにより精度の高い測定をしても最適化された
値にRsp、Rpsの存在があまり反映されない。
Sample B was measured using the apparatus of the present invention.
Also in this case, the treasure temperature was set to 28 ° C. Perform the measurement
The adjustment of the device is the same as in the first embodiment. Ah
Liquid crystal molecules were determined by ellipsometer measurement
Orientation direction coincides with the vibration direction of the substrate when the LB film is formed.
Of the half-wave plate that controls the polarization state of the incident light
The azimuth angle is set so that the S-polarized light component is parallel to the liquid crystal orientation direction.
Position was set to 0 °. The detector of reflected light is 0 ~ ± 66 ゜
Since the light at the incident angle can be measured, the measurement of the azimuth angle dependency is 1
By changing the direction of the half-wave plate from 0 ° to 180 °
It is enough. In actual measurement, the half-wave plate is 0 °, 45 °.
Measurements were made at ゜, 90 ゜, and 135 ゜. In addition, 0 ±
Since 20 ° is affected by reflection from the back surface of the substrate, 30 °
Measured only for incident angles greater than ゜. Each incident direction
At Rss, RppIndicates that the anisotropy was clearly observed
Because of the inversion symmetry of
Even so, it is difficult to determine the tilt angle accurately.
Was. -How, Rsp, RpsHas a clear anisotropy
Is suitable for determining the tilt angle, but the measured intensity is R
ss, Rpp2 orders of magnitude less, fluctuations in the measurement data itself
Analysis accuracy cannot be improved because of the large size. Special
No significant intensity was observed at azimuth angles of 0 ° and 90 °
Was. Therefore, the determination of the film thickness and the dielectric constant is Rss, RppThe main
Data to be optimized, the tilt angle is mainly 45 ° azimuth
135 ゜ Rsp, RpsFocus on parameter optimization
Done. As a result, ellipsometer observations
(Approx. 2.86, 2.30, film thickness)
Of 58.2 nm and an inclination angle of 36 °). This value
Is used, azimuth angles 0 ° and 90 °sp, RpsIs the incident angle
Nevertheless, it becomes 0, which coincides with the measurement result. The conventional method
Reflected light intensity regardless of S-polarized component and P-polarized component
Is measured, Rsp, RpsThe effect of the presence of
30 ゜ to 64 ゜ with a slight appearance around 58 ゜
If optimization is performed within the range, the integration time (measurement time) will increase.
Optimized for high-precision measurements
R for valuesp, RpsIs not reflected so much.

【0043】図9、図10に例としてRss、Rspの測定
結果と最適化の結果得られたパラメータから計算された
値(実線)を示す。図9は入射方位角0゜での試料Bか
らの反射光のRss成分の入射角依存性の測定結果を示す
図である。図10は入射方位角135゜での試料Bから
の反射光のRsp成分の入射角依存性の測定結果を示す図
である。○は測定結果、曲線は最適化されたパラメータ
による計算結果である。
FIGS. 9 and 10 show, as examples, values (solid lines) calculated from the measurement results of R ss and R sp and the parameters obtained as a result of optimization. FIG. 9 is a diagram showing a measurement result of the incident angle dependence of the R ss component of the reflected light from the sample B at the incident azimuth angle of 0 °. FIG. 10 is a diagram showing a measurement result of the incident angle dependence of the R sp component of the reflected light from the sample B at an incident azimuth angle of 135 °. ○ indicates a measurement result, and a curve indicates a calculation result using optimized parameters.

【0044】(本発明の第3の実施の形態)本発明の第
3の実施の形態としての、1/2波長板を用いて、入射
光の偏光面を回転させる機能と、反射光の偏光状態を測
定する機能とを備えた装置の構成を図11を用いて説明
する。31は光源で5mWのHe−Neレーザーを用い
た。32は偏光子、33は1/2波長板、34が入射光
の集光と反射光の平行化に用いるレンズで開口数Naが
0.9のオリンパス製顕微鏡の100倍対物レンズを用
いた。焦点での観察域の大きさ(直径)は約1μmであ
り、入射角0゜〜66゜の領域を測定できる。35はハ
ーフミラー、36が1/4波長板、37が検光子(偏光
子)、38が2次元の光検出器であるCCD素子、39
が測定データを一時記憶し検出器の各素子の検出強度を
数値出カする装置、40が演算装置、41が試料であ
る。この装置は本発明の第2の実施の形態の装置に1/
4波長板36を付加し、1次元検出器を2次元検出器と
取り替える改良を加えたものである。試料ステージは回
転機能もあるが測定に必須な機能ではないので図11よ
り省いた。
(Third Embodiment of the Present Invention) As a third embodiment of the present invention, a function of rotating the plane of polarization of incident light using a half-wave plate, and a function of polarizing reflected light. The configuration of an apparatus having a function of measuring a state will be described with reference to FIG. 31 is a light source using a 5 mW He-Ne laser. Reference numeral 32 denotes a polarizer, 33 denotes a half-wave plate, and 34 denotes a lens used for condensing incident light and collimating reflected light. A 100 × objective lens of an Olympus microscope having a numerical aperture Na of 0.9 is used. The size (diameter) of the observation area at the focal point is about 1 μm, and a region at an incident angle of 0 ° to 66 ° can be measured. 35 is a half mirror, 36 is a 1/4 wavelength plate, 37 is an analyzer (polarizer), 38 is a CCD element which is a two-dimensional photodetector, 39
Is a device for temporarily storing measurement data and numerically outputting the detected intensity of each element of the detector, 40 is an arithmetic device, and 41 is a sample. This device is different from the device according to the second embodiment of the present invention by 1 /.
This is an improvement in which a four-wavelength plate 36 is added and the one-dimensional detector is replaced with a two-dimensional detector. The sample stage has a rotation function, but is not an essential function for measurement, and is therefore omitted from FIG.

【0045】この装置により以下のようにして作成され
た試料を測定した。ガラス基板(コーニング7059)
上に日立化成製ボリイミドLQ−120Hをスピンコー
トし、90℃で30分加熱後、250℃で60分加熱し
て試料Cとした。その後に直径50mmの布ローラーを
用いて、押し込み長0.05mm、回転速度800rp
m、基板移動速度30mm/sで2回のラビングを行っ
た。入射角50゜でエリプソメータを用いてこの試料C
からの反射光の偏光状態の入射方位依存性の測定結果と
最適化されたパラメータより計算された結果を図12、
13に示す。図12はエリプソメータで測定した試料C
からの反射光の位相差成分(△)の入射方位依存性を示
す図である。図13はエリプソメータで測定した試料C
からの反射光の振幅反射率比成分(ψ)の入射方位依存
性を示す図である。その結果、無配向部の誘電率2.6
4、厚さ81nm、配向部の誘電率2.72、2.5
8、厚さ13nm、主誘電率座標の傾斜角41゜と決定
された。
A sample prepared as described below was measured by this apparatus. Glass substrate (Corning 7059)
A sample C was obtained by spin-coating Polyimide LQ-120H manufactured by Hitachi Chemical Co., Ltd., heating at 90 ° C. for 30 minutes, and then heating at 250 ° C. for 60 minutes. Thereafter, using a cloth roller having a diameter of 50 mm, the indentation length is 0.05 mm and the rotation speed is 800 rpm.
rubbing was performed twice at a substrate moving speed of 30 mm / s. This sample C was obtained using an ellipsometer at an incident angle of 50 °.
FIG. 12 shows the measurement results of the dependence of the polarization state of the reflected light from the incident direction on the incident direction and the results calculated from the optimized parameters.
FIG. FIG. 12 shows a sample C measured by an ellipsometer.
FIG. 6 is a diagram showing the incident azimuth dependence of the phase difference component (△) of the reflected light from the light source. FIG. 13 shows a sample C measured by an ellipsometer.
FIG. 4 is a diagram showing the incident azimuth dependence of the amplitude reflectance ratio component (ψ) of the reflected light from the light source. As a result, the dielectric constant of the non-oriented portion is 2.6.
4, thickness 81 nm, dielectric constant of the oriented part 2.72, 2.5
8, the thickness was 13 nm, and the inclination angle of the main dielectric constant coordinate was 41 °.

【0046】この装置を用いて、試料Cを以下の手順で
測定した。入射光が試料表面で焦点を結ぶようにするた
めに、検出器の各素子で検出された強度の和が最大とな
るよう試料ステージの高さを調整した。反射光の偏光状
態は図11の1/4波長板の方位角1゜おきに変え、そ
の際に観測される反射光の強度を1/4波長板の方位角
について求めたフーリエ和から偏光状態(△、ψ)を求
めた。この試料は光学的異方性が試料A、Bよりも更に
小さいため、反射光でのS偏光成分とP偏光成分の混じ
り合いが更に小さく、S偏光入射及びP偏光入射の方位
での反射光の位相成分△の測定精度が著しく悪化する。
Using this apparatus, a sample C was measured according to the following procedure. In order to focus the incident light on the sample surface, the height of the sample stage was adjusted so that the sum of the intensities detected by the elements of the detector became maximum. The polarization state of the reflected light is changed at every 1 ° azimuth angle of the quarter-wave plate in FIG. 11, and the intensity of the reflected light is measured from the Fourier sum obtained for the azimuth angle of the quarter-wave plate. (△, ψ). Since this sample has a smaller optical anisotropy than the samples A and B, the mixture of the S-polarized light component and the P-polarized light component in the reflected light is smaller, and the reflected light in the azimuth of the S-polarized light incidence and the P-polarized light incidence. , The measurement accuracy of the phase component significantly deteriorates.

【0047】図14は本発明の第3の実施の形態として
の装置において注目する方位とレンズに入射する光の偏
光方向の関係を示した図である。円44はレンズ、矩形
45、46は注目する方位、矢印47は入射光の偏光方
向である。
FIG. 14 is a diagram showing the relationship between the azimuth of interest and the polarization direction of light incident on the lens in the device according to the third embodiment of the present invention. A circle 44 is a lens, rectangles 45 and 46 are azimuths of interest, and an arrow 47 is a polarization direction of incident light.

【0048】そこで図14の破線の矩形45、46で示
したS、P偏光成分が1=1である方位、つまりレンズ
に入射する光の偏光方向と45゜をなす方位で反射光の
偏光状態を測定した。第2の実施の形態と同様、1/2
波長板を回転させて試料ヘの光の入射方位を0゜、45
゜、90゜、135゜に制御した。この装置では2次元
検出器を用いたので入射光の偏光方向の回転に伴い、注
目する領域を変えて各入射方位での反射光の偏光状態と
反射強度を測定した。
Therefore, the polarization state of the reflected light in the azimuth where the S and P polarization components are 1 = 1 as shown by the dashed rectangles 45 and 46 in FIG. Was measured. As in the second embodiment, 1 /
By rotating the wave plate, the incident azimuth of light to the sample is set to 0 °, 45 °.
゜, 90 ゜, 135 ゜. Since a two-dimensional detector was used in this apparatus, the region of interest was changed along with the rotation of the polarization direction of the incident light, and the polarization state and reflection intensity of the reflected light at each incident azimuth were measured.

【0049】試料Cは光学的な異方性がごく小さいこ
と、どの入射方位においてもψが入射角58゜付近で最
小になり、P偏光成分の反射率が0にきわめて近くなる
ために膜の平均的な誘電率は2.56程度と見積もられ
る。どの入射方位においてもψ=0(P偏光成分が0)
とならないのは試料がごくわずかではあるが光学的な異
方性をもっためである。反射強度には有為な異方性が観
測されなかったので等方膜として扱い、全膜厚95nm
となった。以上の結果を参考にして測定されたそれぞれ
の入射方位での偏光状態を再現するように各パラメータ
を最適化した結果、無配向部の誘電率2.60、厚さ8
3nm、配向部の誘電率2.70、2.55、厚さ13
nm、主誘電率座標の傾斜角40゜と決定された。
In Sample C, the optical anisotropy was extremely small, ψ was minimized at an angle of incidence of about 58 ° in any incident direction, and the reflectance of the P-polarized component was extremely close to 0. The average dielectric constant is estimated to be about 2.56. Ψ = 0 (P polarization component is 0) at any incident direction
The reason why this does not occur is that the sample has a very slight but optical anisotropy. Since no significant anisotropy was observed in the reflection intensity, it was treated as an isotropic film, and the total film thickness was 95 nm.
It became. As a result of optimizing each parameter so as to reproduce the polarization state at each incident direction measured with reference to the above results, the dielectric constant of the non-oriented portion was 2.60 and the thickness was 8
3 nm, permittivity 2.70, 2.55, thickness 13 of orientation part
nm and the inclination angle of the main dielectric constant coordinate were determined to be 40 °.

【0050】図15は、本発明の第3の実施の形態の装
置で測定した入射方位角0゜での試料Cからの反射光の
位相差成分(△)の入射角依存性を示す図である。図1
6は、本発明の第3の実施の形態の装置で測定した入射
方位角0゜での試料Cからの反射光の振幅反射率比成分
(ψ)の入射角依存性を示す図である。例に示した図1
5、16中の○は入射方位角0゜での測定値、曲線は最
適化されたパラメータを用いて計算した偏光状態であ
る。
FIG. 15 is a diagram showing the incident angle dependence of the phase difference component (△) of the reflected light from the sample C at the incident azimuth angle of 0 ° measured by the apparatus according to the third embodiment of the present invention. is there. FIG.
FIG. 6 is a diagram illustrating the incident angle dependence of the amplitude reflectance ratio component (ψ) of the reflected light from the sample C at the incident azimuth angle of 0 ° measured by the device according to the third embodiment of the present invention. Figure 1 shown in the example
The circles in 5 and 16 indicate the measured values at the incident azimuth angle of 0 °, and the curves indicate the polarization states calculated using the optimized parameters.

【0051】(本発明の第4の実施の形態)本発明の第
4の実施の形態としての1/4波長板により円偏光化さ
れた光を入射光に用い、反射光の偏光状態を測定する機
能を備えた装置の構成を図17を用いて説明する。51
は光源で5mWのHe−Neレーザーを用いた。52は
偏光子、53は1/4波長板、54が入射光の集光と反
射光の平行化に用いるレンズで開口数Naが0.9のオ
リンパス製顕微鏡の100倍対物レンズを用いた。焦点
での観察域の大きさ(直径)は約1μmであり、入射角
0゜〜66゜の領域を測定できる。55はハーフミラ
ー、56が1/4波長板、57が検光子(偏光子)、5
8が2次元の光検出器であるCCD素子、59が測定デ
ータを一時記憶し検出器の各素子の検出強度を数値出力
する装置、60が演算装置、61が試料である。この装
置は第3の実施の形態の装置の1/2波長板33を1/
4波長板53に置き換えたものである。
(Fourth Embodiment of the Present Invention) The polarization state of reflected light is measured by using, as incident light, circularly polarized light by a quarter-wave plate as a fourth embodiment of the present invention. The configuration of the device having the function of performing the above will be described with reference to FIG. 51
Used a 5 mW He-Ne laser as a light source. 52 is a polarizer, 53 is a 1/4 wavelength plate, and 54 is a lens used for condensing incident light and collimating reflected light. A 100 × objective lens of an Olympus microscope having a numerical aperture Na of 0.9 was used. The size (diameter) of the observation area at the focal point is about 1 μm, and a region at an incident angle of 0 ° to 66 ° can be measured. 55 is a half mirror, 56 is a quarter-wave plate, 57 is an analyzer (polarizer), 5
Reference numeral 8 denotes a CCD element which is a two-dimensional photodetector; 59, a device for temporarily storing measurement data and numerically outputting the detected intensity of each element of the detector; 60, an arithmetic device; and 61, a sample. This device is different from the device of the third embodiment in that the half-wave plate 33 is
It is replaced with a four-wavelength plate 53.

【0052】この試料を用いて試料Cを測定した。偏光
状態の決定は第3の実施の形態と同じであるが、直交す
る2つの方向の位相が90゜ずれた円偏光を入射したこ
とを考慮して△、ψを決定した。この装置は検出器が2
次元であるためすべての入射方位での反射光の偏光状態
の入射角依存性を同時に測定できる。しかし、第3の実
施の形態でしめしたとおり、この試料の場合は複数の入
射方位での入射角依存性よりも一定の入射角での入射方
位依存性の方に異方性がより明瞭に現れるため、入射角
50゜に対応する部分の入射方位依存性に関するデータ
について解析を行なった。図18、19において○が測
定結果、曲線が解析結果をあらわす。最適化の結果、配
向部分の誘電率が2.73、2.58、主誘電率座標の
傾き角が40゜、厚さがl3nm、無配向部分の誘電率
が2.63、厚さが81.4nmとなった。
Using this sample, sample C was measured. The polarization state is determined in the same manner as in the third embodiment. However, △ and ψ are determined in consideration of the fact that circularly polarized light whose phases in two orthogonal directions are shifted by 90 ° is incident. This device has two detectors
Because of the dimension, the incident angle dependence of the polarization state of the reflected light in all incident directions can be measured simultaneously. However, as described in the third embodiment, in the case of this sample, the anisotropy becomes more apparent in the dependence on the incident azimuth at a constant incident angle than in the plurality of incident azimuths. Since it appears, data on the incident azimuth dependence of the portion corresponding to the incident angle of 50 ° was analyzed. In FIGS. 18 and 19, ○ indicates the measurement result, and curves indicate the analysis result. As a result of the optimization, the permittivity of the oriented portion is 2.73 and 2.58, the inclination angle of the main permittivity coordinate is 40 °, the thickness is 13 nm, the permittivity of the non-oriented portion is 2.63, and the thickness is 81. 0.4 nm.

【0053】[0053]

【発明の効果】以上説明したように本発明は、レンズを
用いて一定の偏光状態の光を試料に入射し、試料からの
反射光を同じレンズを用いて平行光線化することによ
り、1μm程度の空間分解能で、反射光の互いに直交す
る成分(S、P偏光成分)、または偏光状態の入射角及
び入射方位依存性が測定可能となり、その測定値から異
方性膜の誘電率、主誘電率座標の傾斜角、異方部分の厚
さ、等方的誘電率、等方的部分の厚さが評価可能となる
という効果がある。
As described above, according to the present invention, light of a certain polarization state is incident on a sample using a lens, and reflected light from the sample is converted into a parallel light beam using the same lens, thereby obtaining about 1 μm. With the spatial resolution of, the orthogonal components (S, P polarization components) of the reflected light or the dependence of the polarization state on the incident angle and the incident azimuth can be measured. From the measured values, the dielectric constant of the anisotropic film and the main dielectric There is an effect that the inclination angle of the rate coordinate, the thickness of the anisotropic portion, the isotropic dielectric constant, and the thickness of the isotropic portion can be evaluated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態としての、試料回転
ステージを備えた装置の構成図である。
FIG. 1 is a configuration diagram of an apparatus including a sample rotation stage according to a first embodiment of the present invention.

【図2】エリプソメータで測定した試料Aからの反射光
の位相差成分(Δ)の入射方位依存性を示す図である。
FIG. 2 is a diagram showing the incident azimuth dependence of a phase difference component (Δ) of reflected light from a sample A measured by an ellipsometer.

【図3】エリプソメータで測定した試料Aからの反射光
の振幅反射率比成分(ψ)の入射方位依存性を示す図で
ある。
FIG. 3 is a diagram showing the incident azimuth dependence of the amplitude reflectance ratio component (ψ) of reflected light from sample A measured by an ellipsometer.

【図4】試料Aからの反射光のRss成分の入射角依存性
の測定結果を示す図である。
FIG. 4 is a diagram showing a measurement result of an incident angle dependence of an R ss component of reflected light from a sample A;

【図5】試料Aからの反射光のRpp成分の入射角依存性
の測定結果を示す図である。
FIG. 5 is a view showing a measurement result of an incident angle dependence of an R pp component of reflected light from a sample A.

【図6】本発明の第2の実施の形態としての、1/2波
長板を用いて入射光の偏光面を回転させる機能を備えた
装置の構成図である。
FIG. 6 is a configuration diagram of an apparatus having a function of rotating a polarization plane of incident light using a half-wave plate according to a second embodiment of the present invention.

【図7】エリプソメータで測定した試料Bからの反射光
の位相差成分(△)の入射方位依存性を示す図である。
FIG. 7 is a diagram showing the incident azimuth dependence of a phase difference component (△) of reflected light from sample B measured by an ellipsometer.

【図8】エリプソメータで測定した試料Bからの反射光
の振幅反射率比成分(ψ)の入射方位依存性を示す図で
ある。
FIG. 8 is a diagram showing the incident azimuth dependence of the amplitude reflectance ratio component (ψ) of reflected light from sample B measured by an ellipsometer.

【図9】入射方位角0゜での試料Bからの反射光のRss
成分の入射角依存性の測定結果を示す図である。
FIG. 9 shows R ss of reflected light from sample B at an incident azimuth angle of 0 °.
It is a figure showing the measurement result of the incidence angle dependence of a component.

【図10】入射方位角135゜での試料Bからの反射光
のRsp成分の入射角依存性の測定結果を示す図である。
FIG. 10 is a diagram showing a measurement result of an incident angle dependence of an R sp component of reflected light from a sample B at an incident azimuth angle of 135 °.

【図11】本発明の第3の実施の形態としての、1/2
波長板を用いて、入射光の偏光面を回転させる機能と、
反射光の偏光状態を測定する機能とを備えた装置の構成
図である。
FIG. 11 shows a half according to a third embodiment of the present invention.
A function of rotating the plane of polarization of the incident light using a wave plate,
FIG. 2 is a configuration diagram of an apparatus having a function of measuring a polarization state of reflected light.

【図12】エリプソメータで測定した試料Cからの反射
光の位相差成分(△)の入射方位依存性を示す図であ
る。
FIG. 12 is a diagram showing the incident azimuth dependence of the phase difference component (△) of the reflected light from the sample C measured by the ellipsometer.

【図13】エリプソメータで測定した試料Cからの反射
光の振幅反射率比成分(ψ)の入射方位依存性を示す図
である。
FIG. 13 is a diagram showing the incident azimuth dependence of the amplitude reflectance ratio component (ψ) of the reflected light from the sample C measured by the ellipsometer.

【図14】本発明の第3の実施の形態としての装置にお
いて注目する方位とレンズに入射する光の偏光方向の関
係を示した図である。
FIG. 14 is a diagram illustrating a relationship between a direction of interest and a polarization direction of light incident on a lens in an apparatus according to a third embodiment of the present invention.

【図15】本発明の第3の実施の形態の装置で測定した
入射方位角0゜での試料Cからの反射光の位相差成分
(△)の入射角依存性を示す図である。
FIG. 15 is a diagram showing the incident angle dependence of the phase difference component (△) of the reflected light from the sample C at an incident azimuth angle of 0 ° measured by the device according to the third embodiment of the present invention.

【図16】本発明の第3の実施の形態の装置で測定した
入射方位角0゜での試料Cからの反射光の振幅反射率比
成分(ψ)の入射角依存性を示す図である。
FIG. 16 is a diagram showing an incident angle dependency of an amplitude reflectance ratio component (ψ) of reflected light from a sample C at an incident azimuth angle of 0 ° measured by the device according to the third embodiment of the present invention. .

【図17】本発明の第4の実施の形態としての1/4波
長板により円偏光化された光を入射光に用い、反射光の
偏光状態を測定する機能を備えた装置の構成図である。
FIG. 17 is a configuration diagram of an apparatus having a function of measuring the polarization state of reflected light by using light that has been circularly polarized by a quarter-wave plate as incident light as a fourth embodiment of the present invention. is there.

【図18】本発明の第4の実施の形態としての装置で測
定した入射角50゜に対応する、試料Cからの反射光の
位相差成分(△)の入射方位依存性を示す図である。
FIG. 18 is a diagram showing the incident azimuth dependence of the phase difference component (△) of the reflected light from the sample C corresponding to the incident angle of 50 ° measured by the device according to the fourth embodiment of the present invention. .

【図19】本発明の第4の実施の形態としての装置で測
定した入射角50゜に対応する、試料Cからの反射光の
振幅反射率比成分(ψ)の入射方位依存性を示す図であ
る。
FIG. 19 is a diagram showing the incident azimuth dependence of the amplitude reflectance ratio component (ψ) of the reflected light from the sample C corresponding to the incident angle of 50 ° measured by the device according to the fourth embodiment of the present invention. It is.

【図20】レンズに入る光の位置と入射角の関係を示し
た図である。
FIG. 20 is a diagram showing a relationship between a position of light entering a lens and an incident angle.

【符号の説明】[Explanation of symbols]

1、11、31、51 光源 2、12、32、52 偏光子 3 試料回転ステージ 4、14、34、54 レンズ 5、15、35、55 ハーフミラー 6、16、37、57 検光子(偏光子) 7、17 CCD素子 8、19、39、59 数値出力装置 9、20、40、60 演算装置 10、21、41、61 試料 13、33 1/2波長板 36、53、56 1/4波長板 38、58 2次元検出器 1, 11, 31, 51 Light source 2, 12, 32, 52 Polarizer 3 Sample rotation stage 4, 14, 34, 54 Lens 5, 15, 35, 55 Half mirror 6, 16, 37, 57 Analyzer (polarizer) ) 7, 17 CCD element 8, 19, 39, 59 Numerical output device 9, 20, 40, 60 Arithmetic device 10, 21, 41, 61 Sample 13, 33 1/2 wavelength plate 36, 53, 56 1/4 wavelength Plate 38, 58 Two-dimensional detector

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 単色で一定の偏光状態をもつ入射光の薄
膜試料面ヘの集光と、薄膜試料からの反射光の平行光線
化とを同一のレンズで行ない、 前記反射光のS偏光成分強度とP偏光成分強度の入射角
および入射方位依存性を、1次元または2次元の検出器
と該検出器の上流に位置する偏光子とを用いて、前記薄
膜試料を測定点を中心に面内回転して測定し、 前記薄膜試料の異方層の誘電率と厚さと、主誘電率座標
の前記薄膜試料表面に対する傾斜角と、等方層の誘電率
と厚さとを決定することを特徴とする異方性薄膜評価方
法。
An S-polarized light component of the reflected light is obtained by condensing incident light of a monochromatic color having a certain polarization state on the surface of the thin film sample and parallelizing reflected light from the thin film sample with the same lens. The dependence of the intensity and the P-polarized component intensity on the incident angle and the incident azimuth can be measured by using a one-dimensional or two-dimensional detector and a polarizer located upstream of the detector to divide the thin film sample around a measurement point. Measuring by rotating inward, determining the permittivity and thickness of the anisotropic layer of the thin film sample, the inclination angle of the main permittivity coordinate with respect to the surface of the thin film sample, and the permittivity and thickness of the isotropic layer. Anisotropic thin film evaluation method.
【請求項2】 単色で一定の偏光状態をもつ入射光の薄
膜試料面ヘの集光と、薄膜試料からの反射光の平行光線
化とを行なう同一のレンズと、 1次元または2次元の検出器と、該検出器の上流に位置
する偏光子と、前記薄膜試料を測定点を中心に面内回転
する機構とを備え、 前記検出器と前記偏光子と前記面内回転する機構とによ
り測定された、前記反射光のS偏光成分強度とP偏光成
分強度の入射角および入射方位依存性から、 前記薄膜試料の異方層の誘電率と厚さと、主誘電率座標
の前記薄膜試料表面に対する傾斜角と、等方層の誘電率
と厚さとを決定することを特徴とする異方性薄膜評価装
置。
2. The same lens for condensing incident light of a monochromatic color having a certain polarization state on the surface of a thin film sample and for converting reflected light from the thin film sample into parallel rays, and one-dimensional or two-dimensional detection. Comprising a detector, a polarizer positioned upstream of the detector, and a mechanism for rotating the thin film sample in-plane around a measurement point, and measuring by the detector, the polarizer, and the mechanism for rotating in-plane. From the incident angle and incident azimuth dependence of the intensity of the S-polarized component and the intensity of the P-polarized component of the reflected light, the dielectric constant and thickness of the anisotropic layer of the thin film sample and the main dielectric constant coordinates with respect to the surface of the thin film sample An anisotropic thin film evaluation apparatus, which determines an inclination angle, a dielectric constant and a thickness of an isotropic layer.
【請求項3】 単色で一定の偏光状態をもつ入射光の薄
膜試料面ヘの集光と、薄膜試料からの反射光の平行光線
化とを同一のレンズで行ない、 前記反射光の偏光状態の入射角および入射方位依存性
を、1次元または2次元の検出器と1/4波長板と偏光
子とを用いて、前記薄膜試料を測定点を中心に面内回転
して測定し、 前記薄膜試料の異方層の誘電率と厚さと、主誘電率座標
の前記薄膜試料表面に対する傾斜角と、等方層の誘電率
と厚さとを決定することを特徴とする異方性薄膜評価方
法。
3. The same lens is used to converge monochromatic incident light having a certain polarization state on the surface of the thin film sample and to convert reflected light from the thin film sample into parallel rays by using the same lens. The incident angle and the incident direction dependency are measured using a one-dimensional or two-dimensional detector, a quarter-wave plate, and a polarizer by rotating the thin-film sample in-plane around a measurement point. A method for evaluating an anisotropic thin film, comprising determining a dielectric constant and a thickness of an anisotropic layer of a sample, an inclination angle of a main dielectric constant with respect to the thin film sample surface, and a dielectric constant and a thickness of an isotropic layer.
【請求項4】 単色で一定の偏光状態をもつ入射光の薄
膜試料面ヘの集光と、薄膜試料からの反射光の平行光線
化とを行なう同一のレンズと、 1次元または2次元の検出器と、1/4波長板と、偏光
子と、前記薄膜試料を測定点を中心に面内回転する機構
とを備え、 前記検出器と前記1/4波長板と前記偏光子と前記面内
回転する機構とにより測定された、前記反射光の偏光状
態の入射角および入射方位依存性から、 前記薄膜試料の異方層の誘電率と厚さと、主誘電率座標
の前記薄膜試料表面に対する傾斜角と、等方層の誘電率
と厚さとを決定することを特徴とする異方性薄膜評価装
置。
4. The same lens for condensing incident light of a monochromatic color having a certain polarization state on the surface of the thin film sample and converting the reflected light from the thin film sample into parallel rays, and one-dimensional or two-dimensional detection. A detector, a quarter-wave plate, a polarizer, and a mechanism for rotating the thin-film sample in a plane around a measurement point. The detector, the quarter-wave plate, the polarizer, and the in-plane From the dependency of the polarization state of the reflected light on the incident angle and the incident azimuth measured by the rotating mechanism, the dielectric constant and thickness of the anisotropic layer of the thin film sample, and the inclination of the main permittivity coordinate with respect to the surface of the thin film sample An anisotropic thin-film evaluation apparatus characterized by determining an angle, a dielectric constant and a thickness of an isotropic layer.
【請求項5】 単色で直線偏光した入射光の薄膜試料面
ヘの集光と、薄膜試料からの反射光の平行光線化とを同
一のレンズで行ない、 前記反射光のS偏光成分強度とP偏光成分強度の入射角
および入射方位依存性を、1次元または2次元の検出器
を用いて、前記入射光の偏光方向と前記検出器の方向と
を同期して回転させて測定し、 前記薄膜試料の異方層の誘電率と厚さと、主誘電率座標
の前記薄膜試料表面に対する傾斜角と、等方層の誘電率
と厚さとを決定することを特徴とする異方性薄膜評価方
法。
5. A single lens for condensing monochromatic linearly polarized incident light on the surface of the thin film sample and turning the reflected light from the thin film sample into parallel rays using the same lens. Dependence of the polarization component intensity on the incident angle and the incident azimuth is measured by using a one-dimensional or two-dimensional detector and rotating the polarization direction of the incident light and the direction of the detector in synchronization with each other. A method for evaluating an anisotropic thin film, comprising determining a dielectric constant and a thickness of an anisotropic layer of a sample, an inclination angle of a main dielectric constant with respect to the thin film sample surface, and a dielectric constant and a thickness of an isotropic layer.
【請求項6】 単色で直線偏光した入射光の薄膜試料面
ヘの集光と、薄膜試料からの反射光の平行光線化とを行
なう同一のレンズと、 1次元または2次元の検出器と、前記入射光の偏光方向
と前記検出器の方向とを同期して回転する機構とを備
え、 前記検出器と、前記同期して回転する機構とにより測定
された、前記反射光のS偏光成分強度とP偏光成分強度
の入射角および入射方位依存性から、 前記薄膜試料の異方層の誘電率と厚さと、主誘電率座標
の前記薄膜試料表面に対する傾斜角と、等方層の誘電率
と厚さとを決定することを特徴とする異方性薄膜評価装
置。
6. The same lens for condensing monochromatic, linearly polarized incident light on the thin film sample surface and converting the reflected light from the thin film sample into parallel rays, a one-dimensional or two-dimensional detector, A mechanism for rotating the polarization direction of the incident light and the direction of the detector in synchronization with each other, wherein the intensity of the S-polarized component of the reflected light is measured by the detector and the mechanism for rotating in synchronization. And the incident angle and the incident azimuth dependence of the P-polarized component intensity, the dielectric constant and thickness of the anisotropic layer of the thin film sample, the inclination angle of the main dielectric constant with respect to the thin film sample surface, and the dielectric constant of the isotropic layer. An anisotropic thin film evaluation apparatus characterized by determining a thickness.
【請求項7】 単色で直線偏光した入射光の薄膜試料面
ヘの集光と、薄膜試料からの反射光の平行光線化とを同
一のレンズで行ない、 前記反射光の偏光状態の入射角および入射方位依存性
を、1次元または2次元の検出器と1/4波長板と偏光
子とを用いて、前記入射光の偏光方向と前記検出器の方
向とを同期して回転させて測定し、 前記薄膜試料の異方層の誘電率と厚さと、主誘電率座標
の前記薄膜試料表面に対する傾斜角と、等方層の誘電率
と厚さとを決定することを特徴とする異方性薄膜評価方
法。
7. The same lens collects the monochromatic linearly polarized incident light on the surface of the thin film sample and converts the reflected light from the thin film sample into parallel rays by using the same lens. The incident azimuth dependency is measured by using a one-dimensional or two-dimensional detector, a quarter-wave plate, and a polarizer to rotate the polarization direction of the incident light and the direction of the detector synchronously. Anisotropic thin film characterized in that the dielectric constant and thickness of the anisotropic layer of the thin film sample, the inclination angle of the main dielectric constant with respect to the surface of the thin film sample, and the dielectric constant and thickness of the isotropic layer are determined. Evaluation method.
【請求項8】 単色で直線偏光した入射光の薄膜試料面
ヘの集光と、薄膜試料からの反射光の平行光線化とを行
なう同一のレンズと、 1次元または2次元の検出器と、1/4波長板と、偏光
子と、前記入射光の偏光方向と前記検出器の方向とを同
期して回転する機構とを備え、 前記検出器と前記1/4波長板と前記偏光子と前記同期
して回転する機構とにより測定された、前記反射光の偏
光状態の入射角および入射方位依存性から、 前記薄膜試料の異方層の誘電率と厚さと、主誘電率座標
の前記薄膜試料表面に対する傾斜角と、等方層の誘電率
と厚さとを決定することを特徴とする異方性薄膜評価装
置。
8. The same lens that condenses monochromatic linearly polarized incident light on the thin film sample surface and converts reflected light from the thin film sample into parallel rays, a one-dimensional or two-dimensional detector, A quarter-wave plate, a polarizer, and a mechanism for rotating the polarization direction of the incident light and the direction of the detector in synchronization with each other, wherein the detector, the quarter-wave plate, the polarizer, Measured by the mechanism that rotates synchronously, from the incident angle and incident direction dependence of the polarization state of the reflected light, the dielectric constant and thickness of the anisotropic layer of the thin film sample, the thin film of the main dielectric constant coordinates An anisotropic thin-film evaluation apparatus characterized by determining an inclination angle with respect to a sample surface and a dielectric constant and a thickness of an isotropic layer.
【請求項9】 単色で円偏光した入射光の薄膜試料面ヘ
の集光と、薄膜試料からの反射光の平行光線化とを同一
のレンズで行ない、 前記反射光のS偏光成分強度とP偏光成分強度の入射角
および入射方位依存性を、1次元または2次元の検出器
を用いて、前記入射光の偏光方向と前記検出器の方向と
を同期して回転させて測定し、 前記薄膜試料の異方層の誘電率と厚さと、主誘電率座標
の前記薄膜試料表面に対する傾斜角と、等方層の誘電率
と厚さとを決定することを特徴とする異方性薄膜評価方
法。
9. The same lens collects the monochromatic circularly polarized incident light on the surface of the thin film sample and converts the reflected light from the thin film sample into parallel rays by using the same lens. Dependence of the polarization component intensity on the incident angle and the incident azimuth is measured by using a one-dimensional or two-dimensional detector and rotating the polarization direction of the incident light and the direction of the detector in synchronization with each other. A method for evaluating an anisotropic thin film, comprising determining a dielectric constant and a thickness of an anisotropic layer of a sample, an inclination angle of a main dielectric constant with respect to the thin film sample surface, and a dielectric constant and a thickness of an isotropic layer.
【請求項10】 単色で円偏光した入射光の薄膜試料面
ヘの集光と、薄膜試料からの反射光の平行光線化とを行
なう同一のレンズと、 1次元または2次元の検出器と、前記入射光の偏光方向
と前記検出器の方向とを同期して回転する機構とを備
え、 前記検出器と、前記同期して回転する機構とにより測定
された、前記反射光のS偏光成分強度とP偏光成分強度
の入射角および入射方位依存性から、 前記薄膜試料の異方層の誘電率と厚さと、主誘電率座標
の前記薄膜試料表面に対する傾斜角と、等方層の誘電率
と厚さとを決定することを特徴とする異方性薄膜評価装
置。
10. A single lens for converging monochromatic circularly polarized incident light on a thin film sample surface and converting reflected light from the thin film sample into parallel rays, a one-dimensional or two-dimensional detector, A mechanism for rotating the polarization direction of the incident light and the direction of the detector in synchronization with each other, wherein the intensity of the S-polarized component of the reflected light is measured by the detector and the mechanism for rotating in synchronization. And the incident angle and the incident azimuth dependence of the P-polarized component intensity, the dielectric constant and thickness of the anisotropic layer of the thin film sample, the inclination angle of the main dielectric constant with respect to the thin film sample surface, and the dielectric constant of the isotropic layer. An anisotropic thin film evaluation apparatus characterized by determining a thickness.
【請求項11】 単色で円偏光した入射光の薄膜試料面
ヘの集光と、薄膜試料からの反射光の平行光線化とを同
一のレンズで行ない、 前記反射光の偏光状態の入射角および入射方位依存性
を、回転する1次元または2次元の検出器と1/4波長
板と偏光子とを用いて測定し、 前記薄膜試料の異方層の誘電率と厚さと、主誘電率座標
の前記薄膜試料表面に対する傾斜角と、等方層の誘電率
と厚さとを決定することを特徴とする異方性薄膜評価方
法。
11. The same lens collects the monochromatic circularly polarized incident light on the thin film sample surface and converts the reflected light from the thin film sample into a parallel light beam using the same lens. The incident azimuth dependency is measured using a rotating one-dimensional or two-dimensional detector, a quarter-wave plate and a polarizer, and the dielectric constant and thickness of the anisotropic layer of the thin film sample and the main dielectric constant coordinates Determining an inclination angle with respect to the surface of the thin film sample and a dielectric constant and a thickness of the isotropic layer.
【請求項12】 単色で円偏光した入射光の薄膜試料面
ヘの集光と、薄膜試料からの反射光の平行光線化とを行
なう同一のレンズと、 回転する1次元または2次元の検出器と、1/4波長板
と、偏光子とを備え、 前記検出器と前記1/4波長板と前記偏光子とにより測
定された、前記反射光の偏光状態の入射角および入射方
位依存性から、 前記薄膜試料の異方層の誘電率と厚さと、主誘電率座標
の前記薄膜試料表面に対する傾斜角と、等方層の誘電率
と厚さとを決定することを特徴とする異方性薄膜評価装
置。
12. A single lens for condensing monochromatic circularly polarized incident light on a thin film sample surface and converting reflected light from the thin film sample into parallel rays, and a rotating one-dimensional or two-dimensional detector. And a quarter-wave plate and a polarizer, and the dependency of the polarization state of the reflected light on the incident angle and the incident azimuth measured by the detector, the quarter-wave plate, and the polarizer. Anisotropic thin film characterized in that the dielectric constant and thickness of the anisotropic layer of the thin film sample, the inclination angle of the main dielectric constant with respect to the surface of the thin film sample, and the dielectric constant and thickness of the isotropic layer are determined. Evaluation device.
JP10033097A 1997-04-17 1997-04-17 Anisotropic thin film evaluation method and anisotropic thin film evaluation apparatus Expired - Fee Related JP2970585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10033097A JP2970585B2 (en) 1997-04-17 1997-04-17 Anisotropic thin film evaluation method and anisotropic thin film evaluation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10033097A JP2970585B2 (en) 1997-04-17 1997-04-17 Anisotropic thin film evaluation method and anisotropic thin film evaluation apparatus

Publications (2)

Publication Number Publication Date
JPH10293011A true JPH10293011A (en) 1998-11-04
JP2970585B2 JP2970585B2 (en) 1999-11-02

Family

ID=14271154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10033097A Expired - Fee Related JP2970585B2 (en) 1997-04-17 1997-04-17 Anisotropic thin film evaluation method and anisotropic thin film evaluation apparatus

Country Status (1)

Country Link
JP (1) JP2970585B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020040593A (en) * 2000-11-22 2002-05-30 가네꼬 히사시 Method of anisotropic thin film appraisement capable of measuring film regularity and orientation at high speed, and device thereof
JP2007057443A (en) * 2005-08-25 2007-03-08 Nagaoka Univ Of Technology Method and device for evaluating orientation film
JP2007071839A (en) * 2005-09-09 2007-03-22 Ishizuka Glass Co Ltd Reference substrate for thin-film evaluation and thin-film evaluation method
JP2007139722A (en) * 2005-11-22 2007-06-07 Tokyo Univ Of Agriculture & Technology Instrument and method for measuring optical characteristic
JP2020190540A (en) * 2019-05-17 2020-11-26 シンクロア株式会社 Visual inspection support device
JP2021529328A (en) * 2018-07-12 2021-10-28 コリア リサーチ インスティトゥート オブ スタンダーズ アンド サイエンス Vertical incident ellipsometer and method for measuring optical properties of test pieces using this
WO2024020136A1 (en) * 2022-07-22 2024-01-25 Onto Innovation Inc. Apparatus to characterize substrates and films

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020040593A (en) * 2000-11-22 2002-05-30 가네꼬 히사시 Method of anisotropic thin film appraisement capable of measuring film regularity and orientation at high speed, and device thereof
JP2007057443A (en) * 2005-08-25 2007-03-08 Nagaoka Univ Of Technology Method and device for evaluating orientation film
JP2007071839A (en) * 2005-09-09 2007-03-22 Ishizuka Glass Co Ltd Reference substrate for thin-film evaluation and thin-film evaluation method
JP2007139722A (en) * 2005-11-22 2007-06-07 Tokyo Univ Of Agriculture & Technology Instrument and method for measuring optical characteristic
JP2021529328A (en) * 2018-07-12 2021-10-28 コリア リサーチ インスティトゥート オブ スタンダーズ アンド サイエンス Vertical incident ellipsometer and method for measuring optical properties of test pieces using this
JP2020190540A (en) * 2019-05-17 2020-11-26 シンクロア株式会社 Visual inspection support device
WO2024020136A1 (en) * 2022-07-22 2024-01-25 Onto Innovation Inc. Apparatus to characterize substrates and films

Also Published As

Publication number Publication date
JP2970585B2 (en) 1999-11-02

Similar Documents

Publication Publication Date Title
US5042951A (en) High resolution ellipsometric apparatus
US5963327A (en) Total internal reflection electromagnetic radiation beam entry to, and exit from, ellipsometer, polarimeter, reflectometer and the like systems
Germer et al. Goniometric optical scatter instrument for out-of-plane ellipsometry measurements
US7889339B1 (en) Complementary waveplate rotating compensator ellipsometer
Chen et al. Multichannel Mueller matrix ellipsometer based on the dual rotating compensator principle
EP1026495B1 (en) Adjustable beam alignment compensator/retarder
US20070188755A1 (en) Device for ellipsometric two-dimensional display of a sample, display method and ellipsometric measurement method with spatial resolution
EP0787286A1 (en) Spectroscopic ellipsometer
Laskarakis et al. Mueller matrix spectroscopic ellipsometry: formulation and application
EP0396409A2 (en) High resolution ellipsometric apparatus
JP3447654B2 (en) Anisotropic thin film evaluation method and evaluation device
US6583875B1 (en) Monitoring temperature and sample characteristics using a rotating compensator ellipsometer
JP2000081371A (en) Method and device for evaluating thin-film molecular orientation and storage medium
JP3425923B2 (en) Evaluation method and evaluation device for anisotropic multilayer thin film structure
JP2970585B2 (en) Anisotropic thin film evaluation method and anisotropic thin film evaluation apparatus
US6795184B1 (en) Odd bounce image rotation system in ellipsometer systems
US5979244A (en) Method and apparatus for evaluating internal film stress at high lateral resolution
JP2956688B1 (en) Anisotropic thin film evaluation method and evaluation apparatus
Ichimoto et al. Photopolarimetric measurement system of Mueller matrix with dual rotating waveplates
An et al. Calibration and data reduction for a UV-extended rotating-compensator multichannel ellipsometer
JPH11160199A (en) Liquid crystal initial alignment angle measuring method and device thereof
US6441902B1 (en) Method for evaluating sample system anisotropic refractive indices and orientations thereof in multiple dimensions
JP3196841B2 (en) Anisotropic thin film evaluation method, evaluation apparatus and recording medium
JP2001004534A (en) Method and apparatus for evaluating molecular orientation of thin film and recording medium
Okabe et al. New configuration of channeled spectropolarimeter for snapshot polarimetric measurement of materials

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees