JP2001004534A - Method and apparatus for evaluating molecular orientation of thin film and recording medium - Google Patents

Method and apparatus for evaluating molecular orientation of thin film and recording medium

Info

Publication number
JP2001004534A
JP2001004534A JP11169562A JP16956299A JP2001004534A JP 2001004534 A JP2001004534 A JP 2001004534A JP 11169562 A JP11169562 A JP 11169562A JP 16956299 A JP16956299 A JP 16956299A JP 2001004534 A JP2001004534 A JP 2001004534A
Authority
JP
Japan
Prior art keywords
sample
incident
reflected
light
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11169562A
Other languages
Japanese (ja)
Inventor
Ichiro Hirozawa
一郎 廣沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP11169562A priority Critical patent/JP2001004534A/en
Publication of JP2001004534A publication Critical patent/JP2001004534A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enhance the accuracy of the direct data related to the molecular orientation of a thin film in a method and apparatus for measuring the orientation of molecules constituting the thin film. SOLUTION: The molecular orientation state of a thin film 111 is determined by measuring the incident azimuth dependence of the deflection state of the reflected light of infrared rays 108 incident on the thin film 111 and the reflected light of visible light 107. Infrared rays and visible light are incident on the surface of the sample at the same position at the same time. When the plane azimuth dependence of reflected infrared rays and reflected visible light is measured, the sample is rotated in-plane centering around a measuring region. When in-plane distribution is measured, a two-azimuth parallel moving stage is arranged on a stage 112 rotated centering around the axis passing a position where infrared rays and visible light impinge against.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液晶分子に初期配
向を与える液晶配向膜等、分子配向に異方性がある薄膜
の分子配向状態評価に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the evaluation of the molecular alignment state of a thin film having anisotropic molecular alignment, such as a liquid crystal alignment film for giving initial alignment to liquid crystal molecules.

【0002】[0002]

【従来の技術】異方性薄膜の評価法として、可視光線を
用いて複数の波長を入射した際に発生する反射光強度の
入射角依存性を測定する方法(磯部「異方性薄膜の屈折
率及び膜厚測定方法」特開平5−5699、磯部「異方
性薄膜の屈折率及び膜厚を測定する方法」特開平4−3
29333)や、反射光強度の入射角及び入射方位依存
性から測定する方法(磯部「薄膜の屈折率膜厚測定法」
特開平3−65637)、直線偏光した入射光をレンズ
を用いて集光し、S偏光成分のみ及びP偏光成分のみを
持つ入射光による反射光強度の入射角及び入射方位依存
性を能率的に測定する方法(宇川「光学定数測定方法及
び測定装置」特開平8−152307)、試料を面内回
転させ反射光の偏光状態の入射方位依存性から配向部の
誘電率、膜厚及び主誘電率座標の方向、無配向部の誘電
率と膜厚を決定する方法(広沢「異方性薄膜評価法及び
評価装置」特願平8−49320)、直線偏光した入射
光をレンズを用いて集光し、S偏光成分のみ及びP偏光
成分のみを持つ入射光による反射光強度の入射角及び入
射方位依存性を能率的に測定する方法(宇川「光学定数
測定方法及び測定装置」特開平8−152307)が提
案されている。
2. Description of the Related Art As an evaluation method of an anisotropic thin film, a method of measuring the incident angle dependence of the intensity of reflected light generated when a plurality of wavelengths are incident using visible light (Isobe, "Refraction of anisotropic thin film"). JP-A-5-5699, Isobe, "Method for Measuring Refractive Index and Film Thickness of Anisotropic Thin Film", JP-A-5-3699
29333) and a method of measuring from the dependence of the reflected light intensity on the incident angle and the incident azimuth (Isobe “Method of measuring the refractive index and thickness of thin films”)
JP-A-3-65637), linearly polarized incident light is condensed using a lens, and the dependence of the intensity of the reflected light by the incident light having only the S-polarized component and only the P-polarized component on the incident angle and the incident azimuth can be efficiently determined. The method of measurement (Ukawa "Method and apparatus for measuring optical constants", JP-A-8-152307), the dielectric constant, the film thickness and the main dielectric constant of the oriented part are determined by rotating the sample in-plane and determining the polarization direction of the reflected light from the incident azimuth. A method of determining the direction of the coordinates, the dielectric constant and the film thickness of the non-aligned portion (Hirosawa, "Method and Apparatus for Evaluating Anisotropic Thin Films", Japanese Patent Application No. 8-49320) A method for efficiently measuring the incident angle and incident azimuth dependence of the intensity of reflected light by incident light having only an S-polarized component and a P-polarized component (Ukawa, "Optical Constant Measurement Method and Measurement Apparatus", JP-A-8-152307). ) Has been proposed.

【0003】一方、有機薄膜の分子配向状態を評価する
ために、直線偏光した赤外線を用いた赤外線吸収分光が
広く行われている(例:荒船他 アプライドフィジクス
レターズ、71巻 2755ページ、1997年 R. A
rafune et al., Appl. Phys.Lett. 71, 2755 1998な
ど)。これらは、試料を透過する赤外線の強度の偏光方
位と試料方位の相対的角度に対する変化量を測定するも
のである。つまり、赤外線吸収量が分子配向方位によっ
て違う二色性を検出して配向方位を評価する手法であ
る。この手法が適用できるのは、シリコンや弗化カルシ
ウム(ホタル石:CaF2)など赤外線が透過する基板
上に作成された膜に限られる。
On the other hand, infrared absorption spectroscopy using linearly polarized infrared light is widely performed to evaluate the molecular orientation state of an organic thin film (eg, Arafune et al., Applied Physics Letters, Vol. 71, p. 2755, 1997). R. A
rafune et al., Appl. Phys. Lett. 71, 2755 1998). These measures the amount of change in the intensity of the infrared light transmitted through the sample with respect to the relative angle between the polarization direction and the sample direction. That is, this is a method of detecting dichroism in which the amount of infrared absorption varies depending on the molecular orientation and evaluating the orientation. This method can be applied only to a film formed on a substrate such as silicon or calcium fluoride (fluorite: CaF 2 ) that transmits infrared rays.

【0004】近年、薄膜表面に赤外線を当てた際に発生
する反射光の偏光状態の波長分散を測定する赤外エリプ
ソメトリが開発され、シリコン基板と炭素膜の結合状態
(ハイツ他 アプライドフィジクスレターズ 72巻
780ページ、1998年T. Heitz et al., Appl. Phy
s. Lett. 72, 780 1998)や、シリコン基板上のホウ素
リン珪酸ガラス(boronphosphosilicate:BPSG)の膜厚
と組成評価等が行われている(ハオシコフスキー他 ア
プライドフィジクスレターズ 65巻 1236ペー
ジ、1994年 R.Ossikovski et al., Appl. Phys. L
ett. 65, 12361994)。この手法も、分子配向を反映し
て特定の赤外吸収波長において偏光状態が大きく変化す
るため、赤外線吸収分光と同様の化学的組成に関する知
見が得られるが、等方的な膜に関してのみ用いられてい
る手法である。
In recent years, infrared ellipsometry for measuring the wavelength dispersion of the polarization state of reflected light generated when infrared light is applied to a thin film surface has been developed, and the bonding state between a silicon substrate and a carbon film (Heights et al., Applied Physics Letters, Ltd.) has been developed. 72 volumes
780 pages, 1998 T. Heitz et al., Appl. Phy
s. Lett. 72, 780 1998) and the evaluation of the film thickness and composition of borophosphosilicate glass (BPSG) on a silicon substrate (Haoshikovsky et al., Applied Physics Letters 65, 1236, 1994 R. Ossikovski et al., Appl. Phys. L
ett. 65, 12361994). This method also provides a significant change in the polarization state at a specific infrared absorption wavelength reflecting the molecular orientation, so that knowledge about the chemical composition similar to infrared absorption spectroscopy can be obtained, but it is used only for isotropic films. It is a technique that is.

【0005】最近、上記赤外分光エリプソメトリによる
薄膜の分子配向評価法が提案されている(広沢「薄膜分
子配向評価法、評価装置及び記録媒体」特願平10−2
52662)。この手法は、試料への入射光源に赤外線
を用い、反射赤外線の偏光状態の入射方位依存性を測定
するもので、分子振動のエネルギーに対応する波数での
測定により、薄膜を構成する特定の構造単位の配向状態
に関する知見が得られるが、測定精度の向上が困難であ
る。
Recently, a method for evaluating the molecular orientation of a thin film by the above-mentioned infrared spectroscopic ellipsometry has been proposed (Hirosawa, "Method for evaluating molecular orientation of thin film, evaluation apparatus and recording medium", Japanese Patent Application No. 10-2).
52662). This method uses infrared light as a light source to enter the sample, and measures the incident azimuth dependence of the polarization state of reflected infrared light.By measuring at a wave number corresponding to the energy of molecular vibration, a specific structure that constitutes a thin film Although knowledge about the orientation state of the unit can be obtained, it is difficult to improve the measurement accuracy.

【0006】[0006]

【発明が解決しようとする課題】異方性薄膜の評価法と
して可視光線を利用する方法(磯部「異方性薄膜の屈折
率及び膜厚測定方法」特開平5−5699、磯部「異方
性薄膜の屈折率及び膜厚を測定する方法」特開平4−3
29333、磯部「薄膜の屈折率膜厚測定法」特開平3
−65637、宇川「光学定数測定方法及び測定装置」
特開平8−15230、広沢「異方性薄膜評価法及び評
価装置」特願平8−49320)が提案されている。こ
れらの方法は、結晶性が高い無機物の薄膜では、結晶構
造と光学的異方性の相関が明らかになっているものも多
いため、分子配向と等価な結晶配向に関して定量的な評
価が可能である。特に、「異方性薄膜評価法及び評価装
置」特願平8−49320は光学的異方性ばかりでな
く、試料膜厚も決定することができる。
As a method for evaluating an anisotropic thin film, a method using visible light (Isobe, "Method for Measuring Refractive Index and Film Thickness of Anisotropic Thin Film", JP-A-5-5699; Method for measuring refractive index and thickness of thin film "
29333, Isobe "Method for measuring refractive index and thickness of thin film"
-65637, Ukawa "Optical constant measuring method and measuring device"
Japanese Patent Application Laid-Open No. 8-15230 and Hirosawa, "Method and apparatus for evaluating anisotropic thin film" (Japanese Patent Application No. 8-49320) have been proposed. In many of these methods, the correlation between the crystal structure and the optical anisotropy of inorganic thin films with high crystallinity has been clarified. Therefore, it is possible to quantitatively evaluate the crystal orientation equivalent to the molecular orientation. is there. In particular, the “Method and apparatus for evaluating anisotropic thin film” of Japanese Patent Application No. 8-49320 can determine not only the optical anisotropy but also the thickness of a sample.

【0007】これに対し、有機薄膜は結晶性がきわめて
悪いために、膜の光学的異方性から分子配向を決定する
ことが困難である。さらに、液晶配向膜に代表される高
分子薄膜は分子鎖同士が相互に絡み合っていることが予
想され、高分子鎖を構成する基本単位の光学的特性が高
分子鎖の光学的特性を正確に反映しないことが予想され
る。つまり、可視光線による光学的異方性を測定するこ
とでは結晶性が悪い薄膜や液晶配向膜のような高分子有
機薄膜の分子配向を決定することができない。
On the other hand, since the organic thin film has extremely poor crystallinity, it is difficult to determine the molecular orientation from the optical anisotropy of the film. Furthermore, in polymer thin films, such as liquid crystal alignment films, it is expected that the molecular chains are entangled with each other, and the optical characteristics of the basic units that make up the polymer chains accurately reflect the optical characteristics of the polymer chains. Not expected. That is, by measuring optical anisotropy by visible light, it is not possible to determine the molecular orientation of a thin film having poor crystallinity or a polymer organic thin film such as a liquid crystal alignment film.

【0008】一方、有機薄膜の分子配向状態を評価する
ために直線偏光した赤外線を用いた赤外線吸収分光が広
く行われている(例 荒船他 アプライドフィジクスレ
ターズ、71巻 2755ページ、 R. Arafune et a
l., Appl. Phys. Lett. 71, 2755など)。しかし、赤外
線はガラス基板を透過しないために、液晶配向膜のよう
にガラス基板上に作成した膜の分子配向状態を測定する
ことはできない。
On the other hand, infrared absorption spectroscopy using linearly polarized infrared light has been widely performed to evaluate the molecular orientation state of an organic thin film (eg, Arafune et al. Applied Physics Letters, Vol. 71, p. 2755, R. Arafune et al. a
l., Appl. Phys. Lett. 71, 2755 etc.). However, since infrared light does not pass through the glass substrate, it is not possible to measure the molecular alignment state of a film formed on a glass substrate such as a liquid crystal alignment film.

【0009】赤外線の吸収を測定する以外に、赤外線の
反射光の偏光状態を測定する手法である赤外分光エリプ
ソメトリを用いれば、ガラス基板上の試料も測定が可能
であり、膜を構成する特定の構造単位の配向状態を決定
することができる。しかし、試料の膜厚がごく薄い場
合、試料からの反射赤外線の偏光密度ρと基板からの反
射赤外線の偏光密度ρsとの比の対数log(ρ/ρ
s)と、膜の誘電率εと膜厚dとの積εdとの間に比例
関係が成立する。なお、偏光密度の比であるlog(ρ
/ρs)の実数部は偏光状態の位相差成分Δに対応し、
虚数部分は振幅成分ψに対応する。また、膜の誘電率ε
は分子振動波数ω0付近で近似的に下記式1
In addition to measuring infrared absorption, the use of infrared spectroscopic ellipsometry, which is a technique for measuring the polarization state of reflected infrared light, enables a sample on a glass substrate to be measured and forms a film. The orientation state of a specific structural unit can be determined. However, when the thickness of the sample is extremely small, the logarithm log (ρ / ρ) of the ratio of the polarization density ρ of the reflected infrared light from the sample to the polarization density ρs of the reflected infrared light from the substrate is obtained.
s) and the product εd of the dielectric constant ε of the film and the film thickness d has a proportional relationship. It should be noted that the polarization density ratio log (ρ
/ Ρs) corresponds to the phase difference component Δ of the polarization state,
The imaginary part corresponds to the amplitude component ψ. Also, the dielectric constant ε of the film
Is approximately the following equation 1 near the molecular vibration wave number ω 0

【数1】 で表されることが多い。ここでγは分子振動の寿命に対
応する値である。誘電率の虚数部分の絶対値が最大にな
るのはω0近傍であり、入射方位異方性も最も明瞭に観
測される。一方、波数ω0付近では、誘電率の実数部が
ほとんど0になってしまうために異方性は観測されな
い。
(Equation 1) Often represented by Here, γ is a value corresponding to the lifetime of molecular vibration. The absolute value of the imaginary part of the dielectric constant becomes maximum near ω 0 , and the incident azimuth anisotropy is also most clearly observed. On the other hand, near the wave number ω 0 , the anisotropy is not observed because the real part of the dielectric constant becomes almost zero.

【0010】また、誘電率の実部の極値は下記式2The extreme value of the real part of the dielectric constant is given by the following equation (2).

【数2】 の位置であるために、誘電率の虚部の絶対値は、波数ω
0での値より小さくなって、異方性も観測されにくくな
る。つまり、波数ω0で測定した場合、偏光状態の振幅
比成分ψには異方性が明瞭に観測されるが、偏光状態の
位相差成分Δでは異方性がほとんど観測されない。一
方、前記式2の位置では、Δ及びψの両方に異方性が観
測されるが、ψの異方性は式2ほど大きくはない。以上
のような理由で、赤外エリプソメトリにより分子配向状
態を決定することは可能であるが、精度向上は困難であ
る。特に、偏光状態は誘電率と膜厚の積が偏光密度の対
数に近似的に比例するために、それぞれを独立に精度良
く決定することは困難である。
(Equation 2) The absolute value of the imaginary part of the permittivity is given by the wave number ω
Since the value is smaller than the value at 0 , the anisotropy is hardly observed. That is, when measured at the wave number ω 0 , anisotropy is clearly observed in the amplitude ratio component の of the polarization state, but almost no anisotropy is observed in the phase difference component Δ of the polarization state. On the other hand, at the position of the formula 2, anisotropy is observed in both Δ and ψ, but the anisotropy of ψ is not as large as that of the formula 2. For the above reasons, it is possible to determine the molecular orientation state by infrared ellipsometry, but it is difficult to improve the accuracy. In particular, since the product of the dielectric constant and the film thickness is approximately proportional to the logarithm of the polarization density, it is difficult to determine each polarization state independently and accurately.

【0011】本発明は、上述した事情に鑑みてなされた
もので、薄膜を構成する分子の配向を測定する方法と装
置において、薄膜の分子配向に関する直接的な情報の精
度向上を図ることを目的としている。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method and an apparatus for measuring the orientation of molecules constituting a thin film to improve the accuracy of direct information on the molecular orientation of the thin film. And

【0012】[0012]

【課題を解決するための手段】本発明は、前記目的を達
成するため、下記(1)〜(21)に示す薄膜分子配向
評価法及び評価装置並びに記録媒体を提供する。
In order to achieve the above object, the present invention provides a thin film molecular orientation evaluation method and evaluation apparatus and a recording medium described in the following (1) to (21).

【0013】(1)一定の偏光状態の赤外線と一定の偏
光状態の可視光線を試料面上の同じ位置に入射し、試料
からの反射光及び反射赤外線の偏光状態の入射方位依存
性を試料の面内回転により光及び赤外線の入射方位を変
えて測定し、試料薄膜の光学的異方性と分子配向状態を
決定することを特徴とする薄膜分子配向評価法。
(1) An infrared ray having a constant polarization state and a visible light ray having a constant polarization state are incident on the same position on the sample surface, and the incident azimuth dependence of the polarization state of the reflected light from the sample and the reflection infrared ray is determined. A method for evaluating the molecular orientation of a thin film, comprising measuring by changing the incident azimuth of light and infrared light by in-plane rotation to determine the optical anisotropy and the molecular orientation state of the sample thin film.

【0014】(2)一定の偏光状態の赤外線と一定の偏
光状態の可視光線を試料面上の同じ位置に入射し、試料
からの反射光及び反射赤外線の偏光状態の入射方位依存
性を試料の面内回転により光及び赤外線の入射方位を変
えて測定し、試料薄膜の光学的異方性と分子配向状態を
決定することを特徴とする薄膜分子配向評価装置。
(2) An infrared ray having a constant polarization state and a visible light ray having a constant polarization state are incident on the same position on the sample surface, and the incident azimuth dependence of the polarization state of the reflected light from the sample and the reflection infrared ray is determined. An apparatus for evaluating the molecular orientation of a thin film, wherein the optical anisotropy and molecular orientation of a sample thin film are determined by changing the incident directions of light and infrared light by in-plane rotation.

【0015】(3)一定の偏光状態の赤外線と一定の偏
光状態の可視光線を試料面上の同じ位置に入射し、試料
からの反射光及び反射赤外線の偏光状態の入射方位依存
性を試料の面内回転により光及び赤外線の入射方位を変
えて測定することを自動で行い、試料薄膜の光学的異方
性と分子配向状態を決定することを特徴とする薄膜分子
配向評価装置。
(3) An infrared ray having a constant polarization state and a visible light ray having a constant polarization state are incident on the same position on the sample surface, and the incident azimuth dependence of the polarization state of the reflected light from the sample and the reflection infrared ray is determined. A thin film molecular orientation evaluation apparatus characterized by automatically performing measurement by changing incident directions of light and infrared light by in-plane rotation and determining the optical anisotropy and molecular orientation state of a sample thin film.

【0016】(4)一定の偏光状態の赤外線と一定の偏
光状態の可視光線を試料面上の同じ位置に入射し、試料
からの反射光及び反射赤外線の偏光状態の入射方位依存
性を試料の面内回転により光及び赤外線の入射方位を変
えて測定することを自動制御するコンピュータプログラ
ムを記録した記録媒体。
(4) An infrared ray having a constant polarization state and a visible light ray having a constant polarization state are incident on the same position on the sample surface, and the incident azimuth dependency of the polarization state of the reflected light from the sample and the reflection infrared ray is determined. A recording medium in which a computer program for automatically controlling measurement by changing incident directions of light and infrared light by in-plane rotation is recorded.

【0017】(5)一定の偏光状態の赤外線と一定の偏
光状態の可視光線を試料面上の同じ位置に入射し、入射
赤外線光源、入射可視光線光源、反射赤外線偏光測定
部、及び反射可視光線偏光測定部を、測定点を通る試料
法線を軸として回転することにより、試料からの反射光
の偏光状態の入射方位依存性を測定して、試料薄膜の光
学的異方性と分子配向状態を決定することを特徴とする
薄膜分子配向評価法。
(5) An infrared ray having a constant polarization state and a visible light ray having a constant polarization state are incident on the same position on the sample surface, and an incident infrared light source, an incident visible light source, a reflected infrared polarization measuring section, and a reflected visible light ray are used. By rotating the polarization measurement unit around the sample normal passing through the measurement point as an axis, the dependence of the polarization state of the reflected light from the sample on the incident direction is measured, and the optical anisotropy and molecular orientation state of the sample thin film are measured. A method for evaluating the molecular orientation of a thin film, comprising:

【0018】(6)一定の偏光状態の赤外線と一定の偏
光状態の可視光線を試料面上の同じ位置に入射し、入射
赤外線光源、入射可視光線光源、反射赤外線偏光測定
部、及び反射可視光線偏光測定部を、測定点を通る試料
法線を軸として回転することにより、試料からの反射光
の偏光状態の入射方位依存性を測定して、試料薄膜の光
学的異方性と分子配向状態を決定することを特徴とする
薄膜分子配向評価装置。
(6) An infrared ray having a certain polarization state and a visible light ray having a certain polarization state are incident on the same position on the sample surface, and an incident infrared light source, an incident visible light source, a reflected infrared polarization measuring section, and a reflected visible light ray are used. By rotating the polarization measurement unit around the sample normal passing through the measurement point as an axis, the dependence of the polarization state of the reflected light from the sample on the incident direction is measured, and the optical anisotropy and molecular orientation state of the sample thin film are measured. A thin film molecular orientation evaluation device characterized by determining:

【0019】(7)一定の偏光状態の赤外線と一定の偏
光状態の可視光線を試料面上の同じ位置に入射し、入射
赤外線光源、入射可視光線光源、反射赤外線偏光測定
部、及び反射可視光線偏光測定部を、測定点を通る試料
法線を軸として回転することにより、試料からの反射光
の偏光状態の入射方位依存性を測定することを自動で行
い、試料薄膜の光学的異方性と分子配向状態を決定する
ことを特徴とする薄膜分子配向評価装置。
(7) An infrared ray having a certain polarization state and a visible light ray having a certain polarization state are incident on the same position on the sample surface, and an incident infrared light source, an incident visible light source, a reflected infrared polarization measuring section, and a reflected visible light ray By rotating the polarization measurement unit around the sample normal passing through the measurement point as an axis, the dependence of the polarization state of the reflected light from the sample on the incident azimuth is automatically measured, and the optical anisotropy of the sample thin film is measured. An apparatus for evaluating the molecular orientation of a thin film, wherein the molecular orientation is determined.

【0020】(8)一定の偏光状態の赤外線と一定の偏
光状態の可視光線を試料面上の同じ位置に入射し、入射
赤外線光源、入射可視光線光源、反射赤外線偏光測定
部、及び反射可視光線偏光測定部を、測定点を通る試料
法線を軸として回転することにより、試料からの反射光
の偏光状態の入射方位依存性を測定することを自動で行
うコンピュータプログラムを記録した記録媒体。
(8) An infrared ray having a certain polarization state and a visible light ray having a certain polarization state are incident on the same position on the sample surface, and an incident infrared light source, an incident visible light source, a reflected infrared polarization measuring section, and a reflected visible light ray are used. A recording medium on which a computer program for automatically measuring the incident azimuth dependence of the polarization state of reflected light from a sample by rotating a polarization measurement unit around a sample normal passing through the measurement point is provided.

【0021】(9)一定の偏光状態の赤外線と一定の偏
光状態の可視光線を試料面上の同じ位置に入射し、試料
からの反射光及び反射赤外線の偏光状態の入射方位依存
性の面内分布を、回転機構と、回転軸に直交した異なる
2方向への平行移動機能を備えた試料ステージを用い
て、試料の面内回転により光及び赤外線の入射方位を変
え、試料の平行移動により測定位置を選択し、試料薄膜
の光学的異方性と分子配向状態の面内分布を決定するこ
とを特徴とする薄膜分子配向評価法。
(9) An infrared ray having a constant polarization state and a visible light ray having a constant polarization state are incident on the same position on the sample surface, and the reflected light from the sample and the polarization direction of the reflected infrared ray have an incident direction dependent plane. Using a rotation mechanism and a sample stage equipped with a parallel movement function in two different directions perpendicular to the rotation axis, the distribution of light and infrared rays is changed by in-plane rotation of the sample, and the distribution is measured by parallel movement of the sample A method for evaluating the molecular orientation of a thin film, comprising selecting a position and determining an in-plane distribution of an optical anisotropy and a molecular orientation state of a sample thin film.

【0022】(10)一定の偏光状態の赤外線と一定の
偏光状態の可視光線を試料面上の同じ位置に入射し、試
料からの反射光及び反射赤外線の偏光状態の入射方位依
存性の面内分布を、回転機構と、回転軸に直交した異な
る2方向への平行移動機能を備えた試料ステージを用い
て、試料の面内回転により光及び赤外線の入射方位を変
え、試料の平行移動により測定位置を選択して測定し、
試料薄膜の光学的異方性と分子配向状態を決定すること
を特徴とする薄膜分子配向評価装置。
(10) An infrared ray having a constant polarization state and a visible light ray having a constant polarization state are incident on the same position on the sample surface. Using a rotation mechanism and a sample stage equipped with a parallel movement function in two different directions perpendicular to the rotation axis, the distribution of light and infrared rays is changed by in-plane rotation of the sample, and the distribution is measured by parallel movement of the sample Select a position and measure,
An apparatus for evaluating the molecular orientation of a thin film, which determines an optical anisotropy and a molecular orientation state of a sample thin film.

【0023】(11)一定の偏光状態の赤外線と一定の
偏光状態の可視光線を試料面上の同じ位置に入射し、試
料からの反射光及び反射赤外線の偏光状態の入射方位依
存性の面内分布を、回転機構と、回転軸に直交した異な
る2方向への平行移動機能を備えた試料ステージを用い
て、自動で試料の面内回転により光及び赤外線の入射方
位を変え、自動で試料の平行移動により測定位置を選択
して測定し、試料薄膜の光学的異方性と分子配向状態を
決定することを特徴とする薄膜分子配向評価装置。
(11) An infrared ray having a constant polarization state and a visible light ray having a constant polarization state are incident on the same position on the sample surface, and the reflected light from the sample and the polarization direction of the reflected infrared ray have an incident direction dependent plane. Using a rotation mechanism and a sample stage equipped with a parallel movement function in two different directions perpendicular to the rotation axis, the incident direction of light and infrared is automatically changed by in-plane rotation of the sample, and the distribution of the sample is automatically adjusted. An apparatus for evaluating the molecular orientation of a thin film, wherein a measurement position is selected and measured by a parallel movement to determine an optical anisotropy and a molecular orientation state of a sample thin film.

【0024】(12)一定の偏光状態の赤外線と一定の
偏光状態の可視光線を試料面上の同じ位置に入射し、試
料からの反射光及び反射赤外線の偏光状態の入射方位依
存性の面内分布を、回転機構と、回転軸に直交した異な
る2方向への平行移動機能を備えた試料ステージを用い
て、自動で試料の面内回転により光及び赤外線の入射方
位を変え、自動で試料の平行移動により測定位置を選択
して測定するコンピュータプログラムを記録した記録媒
体。
(12) An infrared ray having a constant polarization state and a visible light ray having a constant polarization state are incident on the same position on the sample surface, and the reflected light from the sample and the polarization state of the reflected infrared ray have an incident direction dependent plane. Using a rotation mechanism and a sample stage equipped with a parallel movement function in two different directions perpendicular to the rotation axis, the incident direction of light and infrared is automatically changed by in-plane rotation of the sample, and the distribution of the sample is automatically adjusted. A recording medium storing a computer program for selecting and measuring a measurement position by parallel movement.

【0025】(13)一定の偏光状態の赤外線と一定の
偏光状態の可視光線を試料面上の同じ位置に入射し、入
射赤外線光源、入射可視光線光源、反射赤外線偏光測定
部、及び反射可視光線偏光測定部を、測定点を通る試料
法線を軸として回転して測定位置での反射光及び反射赤
外線偏光状態の入射方位依存性を測定し、この回転軸に
直交した異なる2方向への平行移動機能を備えた試料ス
テージにより試料を平行移動することによって測定位置
を選択して、反射光及び反射赤外線の入射方位依存性の
面内分布を測定し、試料薄膜の光学的異方性と分子配向
状態を決定することを特徴とする薄膜分子配向評価法。
(13) An infrared ray having a constant polarization state and a visible light ray having a constant polarization state are incident on the same position on the sample surface, and an incident infrared light source, an incident visible light source, a reflected infrared polarization measuring section, and a reflected visible light ray are used. The polarization measurement unit is rotated about the sample normal passing through the measurement point as an axis to measure the incident azimuth dependence of the reflected light and reflected infrared polarization state at the measurement position, and parallelized in two different directions orthogonal to the rotation axis. The measurement position is selected by moving the sample in parallel using a sample stage equipped with a movement function, the in-plane distribution of the incident azimuth of the reflected light and reflected infrared light is measured, and the optical anisotropy of the sample thin film and molecular A method for evaluating the molecular orientation of a thin film, comprising determining an orientation state.

【0026】(14)一定の偏光状態の赤外線と一定の
偏光状態の可視光線を試料面上の同じ位置に入射し、入
射赤外線光源、入射可視光線光源、反射赤外線偏光測定
部、及び反射可視光線偏光測定部を、測定点を通る試料
法線を軸として回転して測定位置での反射光及び反射赤
外線偏光状態の入射方位依存性を測定し、この回転軸に
直交した異なる2方向への平行移動機能を備えた試料ス
テージにより試料を平行移動することによって測定位置
を選択して、反射光及び反射赤外線の入射方位依存性の
面内分布を測定し、試料薄膜の光学的異方性と分子配向
状態を決定することを特徴とする薄膜分子配向評価装
置。
(14) An infrared ray having a certain polarization state and a visible light ray having a certain polarization state are incident on the same position on the sample surface, and the incident infrared light source, the incident visible light source, the reflected infrared polarization measuring section, and the reflected visible light ray The polarization measurement unit is rotated about the sample normal passing through the measurement point as an axis to measure the incident azimuth dependence of the reflected light and reflected infrared polarization state at the measurement position, and parallelized in two different directions orthogonal to the rotation axis. The measurement position is selected by moving the sample in parallel using a sample stage equipped with a movement function, the in-plane distribution of the incident azimuth of the reflected light and reflected infrared light is measured, and the optical anisotropy of the sample thin film and molecular An apparatus for evaluating the molecular orientation of a thin film, which determines an orientation state.

【0027】(15)一定の偏光状態の赤外線と一定の
偏光状態の可視光線を試料面上の同じ位置に入射し、入
射赤外線光源、入射可視光線光源、反射赤外線偏光測定
部、及び反射可視光線偏光測定部を、測定点を通る試料
法線を軸として回転して測定位置での反射光及び反射赤
外線偏光状態の入射方位依存性を自動で測定し、この回
転軸に直交した異なる2方向への平行移動機能を備えた
試料ステージにより試料を自動で平行移動することによ
って測定位置を選択して、反射光及び反射赤外線の入射
方位依存性の面内分布を自動で測定し、試料薄膜の光学
的異方性と分子配向状態を決定することを特徴とする薄
膜分子配向評価装置。
(15) An infrared ray having a certain polarization state and a visible light ray having a certain polarization state are incident on the same position on the sample surface, and the incident infrared light source, the incident visible light source, the reflected infrared polarization measuring section, and the reflected visible light ray The polarization measurement unit is rotated about the sample normal passing through the measurement point as an axis to automatically measure the incident azimuth dependence of the reflected light and reflected infrared polarization state at the measurement position, and in two different directions orthogonal to the rotation axis. The measurement position is selected by automatically translating the sample using the sample stage equipped with a parallel translation function, and the in-plane distribution of the incident direction dependence of the reflected light and reflected infrared light is automatically measured. For determining the molecular anisotropy and molecular orientation state.

【0028】(16)一定の偏光状態の赤外線と一定の
偏光状態の可視光線を試料面上の同じ位置に入射し、入
射赤外線光源、入射可視光線光源、反射赤外線偏光測定
部、及び反射可視光線偏光測定部を、測定点を通る試料
法線を軸として回転して測定位置での反射光及び反射赤
外線偏光状態の入射方位依存性を自動で測定し、この回
転軸に直交した異なる2方向への平行移動機能を備えた
試料ステージにより試料を自動で平行移動することによ
って測定位置を選択して、反射光及び反射赤外線の入射
方位依存性の面内分布を自動で測定するコンピュータプ
ログラムを記録した記録媒体。
(16) An infrared ray having a certain polarization state and a visible light ray having a certain polarization state are incident on the same position on the sample surface, and an incident infrared light source, an incident visible light source, a reflected infrared polarization measuring section, and a reflected visible light ray are used. The polarization measurement unit is rotated about the sample normal passing through the measurement point as an axis to automatically measure the incident azimuth dependence of the reflected light and reflected infrared polarization state at the measurement position, and in two different directions orthogonal to the rotation axis. A computer program was recorded to automatically select the measurement position by automatically translating the sample using a sample stage equipped with a parallel movement function, and to automatically measure the incident azimuth-dependent in-plane distribution of reflected light and reflected infrared light. recoding media.

【0029】(17)測定を不活性ガス中又は真空中で
行うことを特徴とした(1)、(5)、(9)又は(1
3)の薄膜分子配向評価方法。
(17) (1), (5), (9) or (1) characterized in that the measurement is performed in an inert gas or vacuum.
3) Method for evaluating molecular orientation of thin film.

【0030】(18)測定を不活性ガス中又は真空中で
行うことを特徴とした(2)、(6)、(10)又は
(14)の薄膜分子配向評価装置。
(18) The apparatus for evaluating the molecular orientation of a thin film according to (2), (6), (10) or (14), wherein the measurement is carried out in an inert gas or in a vacuum.

【0031】(19)非球面レンズ、非球面反射鏡もし
くは楕円形の絞りを用いて、光及び赤外線が当たる試料
面上の領域が円形になるようにして測定を行うことを特
徴とした(1)、(5)、(9)又は(13)の薄膜分
子配向評価方法。
(19) The measurement is performed using an aspherical lens, an aspherical reflecting mirror, or an elliptical aperture so that the area on the sample surface to which light and infrared light are applied is circular. ), (5), (9) or (13).

【0032】(20)非球面レンズ、非球面反射鏡もし
くは楕円形の絞りを用いて、光及び赤外線が当たる試料
面上の領域が円形になるようにして測定を行うことを特
徴とした(2)、(6)、(10)又は(14)の薄膜
分子配向評価装置。
(20) The measurement is performed by using an aspherical lens, an aspherical reflecting mirror, or an elliptical stop so that the area on the sample surface to which light and infrared light are applied becomes circular. ), (6), (10) or (14).

【0033】(21)薄膜試料に一定の偏光状態の可視
光線と赤外線を入射した際に発生する反射可視光線及び
反射赤外線の偏光状態の入射方位依存性から、薄膜の光
学的構造及び分子配向状態を決定するコンピュータプロ
グラムを記録した記録媒体。
(21) The optical structure and molecular orientation state of the thin film are determined from the incident orientation dependence of the polarization state of the reflected visible light ray and the reflected infrared ray generated when visible light rays and infrared rays having a certain polarization state are incident on the thin film sample. Recording medium recording a computer program for determining

【0034】本発明は、試料表面に赤外線を入射した際
に発生する反射赤外光の偏光状態の入射方位依存性と同
時に可視光線の反射光の偏光状態の入射方位依存性を測
定することで、薄膜の分子配向に関する直接的な情報の
精度向上を行うものである。同じ測定点の反射光の偏光
状態及び反射赤外線の入射方位依存性を測定するに当た
り、試料面に垂直で測定点を通る回転ステージに試料を
保持し、このステージを用いた試料回転を行う。この
際、赤外線と可視光線は互いに違った入射方位で測定す
る方法と、入射方位は同じでも入射角度を変えて測定す
る方法とがある。なお、連続スペクトルを持つ光源から
の光を入射し、反射光の偏光状態の波長分散を測定する
ことも考えられる。
The present invention measures the incident azimuth dependence of the polarization state of reflected infrared light generated when infrared light is incident on the sample surface and the polarization state of visible light reflected light. The purpose of the present invention is to improve the accuracy of direct information on the molecular orientation of a thin film. In measuring the polarization state of reflected light and the incident azimuth dependence of reflected infrared light at the same measurement point, the sample is held on a rotating stage that is perpendicular to the sample surface and passes through the measurement point, and the sample is rotated using this stage. At this time, there are a method of measuring the infrared ray and the visible light ray at different incident directions, and a method of measuring the incident angle at the same incident angle but changing the incident angle. It is also conceivable that light from a light source having a continuous spectrum is incident and the wavelength dispersion of the polarization state of the reflected light is measured.

【0035】しかし、分子振動エネルギーに対応する赤
外線領域から可視光線領域の光を同時に扱える光学素子
は存在しないためにその実現は現状では困難である。ま
た、可視光線及び赤外線の試料への入射方位を変える方
法として、上記のように光源を固定して試料を回転させ
る方法の他に試料方位を固定して光源を測定点を通る試
料面法線を軸として回転させる方法がある。さらに、分
子配向の面内分布を測定する際には、この回転ステージ
上に2つの異なった方位に平行移動するステージを設置
し、その上に試料を保持する。試料面上の測定位置の走
査はこの平行移動ステージにより行う。
However, there is no optical element that can simultaneously handle light in the infrared region to the visible light region corresponding to the molecular vibration energy, so that it is difficult at present to realize this. As a method of changing the incident directions of visible light and infrared light to the sample, besides the method of rotating the sample while fixing the light source as described above, the normal of the sample surface passing through the light source and the measurement point with the fixed light source There is a method of rotating around an axis. Further, when measuring the in-plane distribution of the molecular orientation, a stage that translates in two different directions is set on the rotating stage, and the sample is held thereon. Scanning of the measurement position on the sample surface is performed by this translation stage.

【0036】可視光線の反射光の偏光状態の入射方位依
存性を4×4行列法に基づいて解析することにより、膜
厚に関する情報を含む膜の光学的構造を決定することが
できる。反射赤外線の偏光状態の入射方位依存性も同様
に4×4行列法に基づいて解析する。この際、膜厚に関
する情報は可視光線の測定結果より得られているので、
赤外線域での誘電率を精度良く決定することができ、膜
の分子配向状態の決定精度も向上する。
By analyzing the dependence of the polarization state of the reflected light of visible light on the incident azimuth based on the 4 × 4 matrix method, the optical structure of the film including the information on the film thickness can be determined. The dependence of the polarization state of the reflected infrared light on the incident direction is also analyzed based on the 4 × 4 matrix method. At this time, since the information about the film thickness is obtained from the measurement result of visible light,
The dielectric constant in the infrared region can be determined with high accuracy, and the determination accuracy of the molecular orientation state of the film is also improved.

【0037】反射光の偏光状態は、4×4行列(ベルマ
ン他 フィジカルレビューレターズ25巻 577ペー
ジ 1970年 D. W. Berrman and T. J. Scheffer,
Physcal Review Letters, 25, 577 1970)により計算で
きる。この方法に従えば、入射角βで試料に光が入射し
た場合、ΦI、Φr、Φtで入射光、反射光及び基板への
透過光の状態を表すと、それぞれの間に成立する関係
は、分子配向して単軸異方的になっている場合は膜の4
×4行列L膜厚d、入射赤外線の振動数ωを用いて下記
式のようになる。iは虚数単位である。Φt=exp
(iωdL)(ΦI+Φr
The polarization state of the reflected light is represented by a 4 × 4 matrix (Bellman et al., Physical Review Letters, Vol. 25, p. 577, 1970). DW Berrman and TJ Scheffer,
Physcal Review Letters, 25, 577 1970). According to this method, when light enters the sample at an incident angle β, Φ I , Φ r , and Φ t represent the states of the incident light, reflected light, and transmitted light to the substrate, which are established between the respective cases. The relationship is 4 in the film when the molecular orientation is uniaxially anisotropic.
The following equation is obtained using the × 4 matrix L film thickness d and the frequency ω of the incident infrared ray. i is an imaginary unit. Φ t = exp
(IωdL) (Φ I + Φ r )

【0038】LにおいてΔ14、Δ24、Δ31、Δ32
Δ33、Δ41、Δ42及びΔ44は0であり、残りは下記式で
表される。 Δ11=−(εe−εo)sinβsinθcosθsinφ/(εecos
2θ+εosin2θ) Δ12=1−sin2β/(εecos2θ+εosin2θ) Δ13=(εe−εo)sinβsinθcosθcosφ/(εecos2
θ+εosin2θ) Δ21=εo[εe−(εe−εo)sin2θcos2φ]/(εec
os2θ+εosin2θ) Δ22=−εe(εe−εo)sin2θcos2φ/(εecos2θ+
εosin2θ) Δ23=−εo(εe−εo)sinθcosφsinφ/(εecos2
θ+εosin2θ) Δ34=1 Δ43=εo[εe−(εe−εo)sin2θsin2φ]/(εec
os2θ+εosin2θ)−sin2β
In L, Δ 14 , Δ 24 , Δ 31 , Δ 32 ,
Δ 33, Δ 41, Δ 42 and delta 44 is 0, the remainder is represented by the following formula. Δ 11 = - (ε e -ε o) sinβsinθcosθsinφ / (ε e cos
2 θ + ε o sin 2 θ) Δ 12 = 1−sin 2 β / (ε e cos 2 θ + ε o sin 2 θ) Δ 13 = (ε e −ε o ) sin β sin θ cos θ cos φ / (ε e cos 2
θ + ε o sin 2 θ) Δ 21 = ε oe − (ε e −ε o ) sin 2 θ cos 2 φ] / (ε e c
os 2 θ + ε o sin 2 θ) Δ 22 = -ε e (ε e -ε o) sin 2 θcos 2 φ / (ε e cos 2 θ +
ε o sin 2 θ) Δ 23 = −ε oe −ε o ) sin θ cos φ sin φ / (ε e cos 2
θ + ε o sin 2 θ) Δ 34 = 1 Δ 43 = ε oe − (ε e −ε o ) sin 2 θsin 2 φ] / (ε e c
os 2 θ + ε o sin 2 θ) −sin 2 β

【0039】上記式中でεe、εoは主誘電率座標系で表
した誘電率、θは主誘電率座標の膜表面に対する傾斜
角、φは入射光の面内方位角である。この式に従って反
射光の偏光状態を計算すると、式中のεeとεoに差があ
れば反射光の偏光状態に異方性が発生することが示され
る。さらに、膜表面に対する主誘電率座標の角度の違い
は入射方位依存性に反映されるので、偏光状態の入射方
位依存性の測定値から異方的誘電率と主軸の傾きが決定
される。特に、液晶に代表される有機薄膜は可視光線域
での吸収がごく小さく、誘電率εは純実数として扱える
ために、これらの光学的構造を精度良く決定することが
できる。一方、赤外線領域では分子振動による吸収が存
在するために誘電率は複素数となる。さらに、分子振動
のエネルギーに対応する振動数では誘電率の異方的な部
分は純虚数になると考えられるために、より精度の良い
測定が可能である。
In the above equation, ε e and ε o are the permittivity expressed in the main permittivity coordinate system, θ is the inclination angle of the main permittivity coordinate with respect to the film surface, and φ is the in-plane azimuthal angle of the incident light. When the polarization state of the reflected light is calculated according to this equation, it is shown that an anisotropy occurs in the polarization state of the reflected light if there is a difference between ε e and ε o in the equation. Further, since the difference in the angle of the principal dielectric constant coordinate with respect to the film surface is reflected on the incident azimuth dependence, the anisotropic dielectric constant and the inclination of the principal axis are determined from the measured value of the incident azimuth dependence of the polarization state. In particular, an organic thin film typified by a liquid crystal has a very small absorption in the visible light region, and the dielectric constant ε can be treated as a pure real number, so that these optical structures can be accurately determined. On the other hand, the dielectric constant is a complex number in the infrared region due to the presence of absorption due to molecular vibration. Furthermore, since the anisotropic part of the dielectric constant is considered to be a pure imaginary number at the frequency corresponding to the energy of the molecular vibration, more accurate measurement is possible.

【0040】[0040]

【発明の実施の形態】本発明の実施例を図面を用いて以
下に説明する。 (実施例1)本発明の一実施例として、赤外線と可視光
線を同じ方位から入射する装置の構成を図1を用いて説
明する。図中、101は赤外線検出器や可動鏡からなる
FT−IRユニット、102は赤外線用検光子、103
は光電子増倍管、104は検光子、105は1/4波長
板、106は偏光子、107はHe−Neレーザー光
源、108は赤外線源、109は偏光子、110は赤外
線用光弾性素子、111は試料、112は試料ステージ
であり、測定点を中心に回転する。なお、FT−IRユ
ニット内と赤外線検出器を収めた筐体内の雰囲気は窒素
ガスに置換しているが、ステージを含め試料の周囲は通
常の大気である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings. (Embodiment 1) As an embodiment of the present invention, a configuration of an apparatus for incident infrared light and visible light from the same direction will be described with reference to FIG. In the figure, 101 is an FT-IR unit comprising an infrared detector and a movable mirror, 102 is an infrared analyzer, 103
Is a photomultiplier tube, 104 is an analyzer, 105 is a quarter-wave plate, 106 is a polarizer, 107 is a He-Ne laser light source, 108 is an infrared light source, 109 is a polarizer, 110 is a photoelastic element for infrared light, Reference numeral 111 denotes a sample, and 112 denotes a sample stage, which rotates around a measurement point. The atmosphere in the FT-IR unit and the housing containing the infrared detector is replaced with nitrogen gas, but the surroundings of the sample including the stage are ordinary air.

【0041】この装置を用いて測定した試料は以下の手
順で作成した。ガラス基板(コーニング7059)上に
日産化学製ポリイミドPI−Bをスピンコートし、90
℃で30分加熱後、250℃で60分加熱した。その後
に直径50mmの布ローラーを用いて、押し込み長0.
1mm、回転速度800rpm、基板移動速度30mm
/sで2回のラビングを行った。この装置を用いて、赤
外線の入射角を62°、可視光線の入射角を50°と
し、15°間隔で測定した、1250cm-1付近の反射
赤外線の偏光状態の波長分散、及び1246cm-1での
赤外線の反射光の偏光状態の入射方位依存性と、可視光
の反射光の入射方位依存性をそれぞれ図2、3、4、
5、6、7に示す。なお、図2、3、4、5は参照試料
としてガラス基板を測定して得たスペクトルとの差スペ
クトルより得られたものである。
A sample measured using this apparatus was prepared in the following procedure. A polyimide PI-B made by Nissan Chemical Co., Ltd. is spin-coated on a glass substrate (Corning 7059),
After heating at 30 ° C. for 30 minutes, heating was performed at 250 ° C. for 60 minutes. Thereafter, using a cloth roller having a diameter of 50 mm, the indentation length was set at 0.
1mm, rotation speed 800rpm, substrate moving speed 30mm
Rubbing was performed twice at / s. Using this apparatus, the incident angle of infrared rays was set to 62 °, the incident angle of visible light was set to 50 °, and the wavelength dispersion of the polarization state of reflected infrared rays near 1250 cm −1 , measured at 15 ° intervals, and 1246 cm −1 . The dependence of the polarization state of the reflected light of infrared light on the incident azimuth and the dependence of the reflected light of visible light on the incident azimuth are shown in FIGS.
The results are shown in 5, 6, and 7. 2, 3, 4, and 5 are obtained from a difference spectrum from a spectrum obtained by measuring a glass substrate as a reference sample.

【0042】この際、図1の101、102、108、
109は循環窒素雰囲気にしたが、試料は大気中にさら
した状態であったので、反射赤外線の偏光状態の波長分
散には、ポリイミド膜の分子振動に対応する微細構造
は、大気中の水蒸気と二酸化炭素に対応する微細構造に
よりはっきりと捕らえられないものもある。例えば15
00cm-1程度のエネルギーを持つフェニルの振動は確
認することができなかった。しかし、図2、3に示した
1246cm-1近傍のフェニルに対応する微細構造に関
しては、大気中の水蒸気や二酸化炭素の影響を受けてい
ない。
At this time, 101, 102, 108,
Although 109 was in a circulating nitrogen atmosphere, the sample was exposed to the atmosphere, so that the wavelength dispersion of the polarization state of the reflected infrared light showed that the microstructure corresponding to the molecular vibration of the polyimide film was the same as the water vapor in the atmosphere. Some are not clearly captured by the microstructure corresponding to carbon dioxide. For example, 15
No vibration of phenyl having an energy of about 00 cm -1 could be confirmed. However, the microstructure corresponding to phenyl near 1246 cm -1 shown in FIGS. 2 and 3 is not affected by atmospheric water vapor or carbon dioxide.

【0043】図4、5はΔが最小になる波数1246c
-1での偏光状態の入射方位依存性である。これらの図
が示すように、Δでは明瞭な異方性が見られるが、ψの
入射方位依存性がはっきりせず、膜構造解析の精度の向
上は期待できない。一方、可視光線の偏光状態の入射方
位依存性を示した図6、7ではΔ、ψとも明確な異方性
が観測され、可視光線域での光学的構造が精度良く決定
できる。特にψの異方性への影響が大きい膜表面近傍の
分子配向領域の厚さは32nmと決定された。しかし、
この配置では空間的制限により赤外線や可視光線の入射
角を任意に選ぶことができないという欠点がある。
FIGS. 4 and 5 show wave numbers 1246c at which Δ becomes minimum.
It is the incident azimuth dependence of the polarization state at m -1 . As shown in these figures, although a clear anisotropy is seen in Δ, the dependence of ψ on the incident azimuth is not clear, and an improvement in the accuracy of the film structure analysis cannot be expected. On the other hand, in FIGS. 6 and 7 showing the incident azimuth dependence of the polarization state of visible light, clear anisotropy is observed in both Δ and ψ, and the optical structure in the visible light range can be determined with high accuracy. In particular, the thickness of the molecular orientation region in the vicinity of the film surface, which greatly affects the anisotropy of ψ, was determined to be 32 nm. But,
This arrangement has the disadvantage that the angle of incidence of infrared or visible light cannot be arbitrarily selected due to spatial limitations.

【0044】(実施例2)本発明の一実施例として、赤
外線と可視光線を同じ方位から入射する装置の構成を図
8を用いて説明する。図中、201が赤外線光源と偏光
子を含む入射赤外線源、202が赤外線用光弾性素子、
検光子とFT−IR系を含む赤外線偏光検出部、203
が偏光子とHe−Neレーザからなる入射光光源、20
4が位相子、検光子及び光電子像陪観からなる偏光測定
部、205が回転ステージ、206、207が平行移動
ステージ、208が試料である。この例では、赤外線と
可視光線の入射方位は互いに90°異なっている。大気
中の水蒸気や二酸化炭素の影響なく測定できるようにす
るために、全体を覆う容器や試料の傾き調整に用いるオ
ートコリメータは図8では省略してある。
(Embodiment 2) As an embodiment of the present invention, a configuration of an apparatus for injecting infrared light and visible light from the same direction will be described with reference to FIG. In the figure, 201 is an incident infrared light source including an infrared light source and a polarizer, 202 is a photoelastic element for infrared light,
Infrared polarization detector including analyzer and FT-IR system, 203
Is an incident light source comprising a polarizer and a He-Ne laser, 20
Reference numeral 4 denotes a polarization measuring unit including a phase shifter, an analyzer and a photoelectron image, 205 denotes a rotating stage, 206 and 207 denote translation stages, and 208 denotes a sample. In this example, the incident directions of the infrared light and the visible light are different from each other by 90 °. In order to enable measurement without the influence of water vapor or carbon dioxide in the atmosphere, a vessel covering the whole and an autocollimator used for adjusting the inclination of the sample are omitted in FIG.

【0045】図9は容器を含めた装置を可視光線の検出
側から見た際の構成図である。なお、図9では可視光線
の偏光測定部を省略してある。1は全赤外線光路が希ガ
ス、窒素ガス又は真空中を通るようにするために、試料
や光学素子を含め装置全体を収納するための容器であ
り、ガスの導入口2と排出口3がそなえられている。こ
の材質は厚さ1cmのアクリル樹脂製のものと覗き窓が
ついたステンレス製のものの2種を試みた。試料は導入
用の扉12から中に入れる。4はタングステンフィラメ
ントによる赤外線源、干渉計を含めたFT−IR装置で
ある。FT−IR装置部はBio−rad製のSPC−
3200を流用し、この装置の試料部にミラーを配置し
て赤外線を装置外に導いた。装置外に出た赤外線は偏光
子5を通過し、光弾性素子6(変調振動数40kHz)
により偏光状態を変調される。試料9の表面から反射さ
れた赤外線は検光子7を通過して検出器8により、その
強度が測定される。さらに、入射赤外線に対して試料面
の傾きを確認するためにオートコリメータ11を取り付
けた。なお、試料傾き調整の能率をあげるために、オー
トコリメータでの試料からの反射光位置はCCDカメラ
によりモニターし、容器外のデイスプレイ13に映し出
した。
FIG. 9 is a diagram showing the configuration of the apparatus including the container when viewed from the visible light detecting side. In FIG. 9, the visible light polarization measuring unit is omitted. Reference numeral 1 denotes a container for accommodating the entire apparatus including a sample and an optical element in order to allow the all-infrared light path to pass through a rare gas, a nitrogen gas, or a vacuum, and has a gas inlet 2 and a gas outlet 3. Have been. Two types of this material, an acrylic resin having a thickness of 1 cm, and a stainless steel having a viewing window were tried. The sample is introduced through the introduction door 12. Reference numeral 4 denotes an FT-IR device including an infrared ray source using a tungsten filament and an interferometer. The FT-IR unit is SPC- manufactured by Bio-rad.
The 3200 was diverted, and a mirror was arranged at the sample portion of the apparatus to guide infrared rays to the outside of the apparatus. The infrared light that has exited the device passes through the polarizer 5, and is converted into a photoelastic element 6 (modulation frequency: 40 kHz).
Changes the polarization state. The infrared light reflected from the surface of the sample 9 passes through the analyzer 7 and its intensity is measured by the detector 8. Further, an autocollimator 11 was attached to confirm the inclination of the sample surface with respect to incident infrared rays. In order to improve the efficiency of adjusting the tilt of the sample, the position of the reflected light from the sample in the autocollimator was monitored by a CCD camera and projected on the display 13 outside the container.

【0046】容器1を除いたこの光学系の配置は、これ
まで報告されている配置(ドレヴィロン他 シン ソリ
ッド フィルムス 236巻 204ページ、1993
年B. Drevillon et al., Thin Solid Films 236, 204 1
993)と基本的に同様であるが、ステージ10は試料へ
の赤外線の入射方位を調整するために回転ステージと2
つの平行移動ステージの組み合わせよりなる。
The arrangement of this optical system excluding the container 1 is the same as the arrangement reported so far (Dreviron et al., Shin Solid Films, Vol. 236, p. 204, 1993).
B. Drevillon et al., Thin Solid Films 236, 204 1
993) is basically the same as that of the first embodiment except that the stage 10 has a rotating stage and a two-stage for adjusting the incident direction of the infrared ray to the sample.
It consists of a combination of two translation stages.

【0047】このステージの詳細な構成は図10に示さ
れている。図10において21は回転ステージである。
この回転軸は試料表面上の赤外線が当たる位置を通るよ
うに配置されている。回転ステージの上に設置された2
つの平行移動ステージ22、23は移動方向が回転軸と
直交するように配置され、それぞれの平行移動の方向が
直交している。また、平行移動のステージの上に試料表
面のあおりを調節するためのステージ24が付けられ、
直接試料が置かれる板26の傾き角を調整する。回転ス
テージの下に取り付けられた回転軸と平行に移動するス
テージ25は厚さの違う試料の測定に対応するために取
り付けられている。なお、図10中の矢印は各ステージ
の移動方向を示している。異方性の面内分布の測定を自
動で行なうために、FT−IR装置4、光弾性素子6、
検出器8、ステージ12の動作及びデータの取り込みは
コンピュータ14により制御されている。
The detailed configuration of this stage is shown in FIG. In FIG. 10, reference numeral 21 denotes a rotary stage.
This rotation axis is arranged so as to pass through a position on the sample surface where the infrared rays strike. 2 installed on a rotating stage
The two parallel movement stages 22 and 23 are arranged so that the movement direction is orthogonal to the rotation axis, and the respective parallel movement directions are orthogonal. In addition, a stage 24 for adjusting the tilt of the sample surface is provided on the translation stage,
The tilt angle of the plate 26 on which the sample is directly placed is adjusted. A stage 25 that moves parallel to the rotation axis and is mounted below the rotary stage is mounted to support measurement of samples having different thicknesses. Note that the arrows in FIG. 10 indicate the moving direction of each stage. In order to automatically measure the in-plane distribution of anisotropy, the FT-IR device 4, the photoelastic element 6,
The operation of the detector 8 and the stage 12 and the acquisition of data are controlled by the computer 14.

【0048】この装置を組み立てるに当たり、測定試料
位置を決定するために以下の方法を用いた。まず、偏光
子、光弾性素子、検光子を取り除いた状態で直径10m
mの金コート鏡を試料位置に置き、反射赤外線強度が最
大になるようにステージを調整する。その後、研磨した
光学ガラスに金コート領域の直径を5mm、2mm、1
mmと段階的に小さくして、同様の調整を行った。金コ
ート領域直径が1mmの鏡を用いて赤外線強度が最大に
なった状態でオートコリメータの位置調整を行った。そ
の後、偏光子、検光子、光弾性素子を設置して同様な手
順で再調整した。以上の作業は雰囲気を保持する容器の
側壁が一部ない状態で行った後、側壁を取り付けてから
再度配置を確認した。なお、入射側及び反射側のアパー
チャには円形のものを用いた。
In assembling this apparatus, the following method was used to determine the position of the sample to be measured. First, the diameter is 10 m with the polarizer, photoelastic element and analyzer removed.
The gold-coated mirror of m is placed at the sample position, and the stage is adjusted so that the reflected infrared light intensity is maximized. Thereafter, the diameter of the gold-coated area was 5 mm, 2 mm, 1 mm on the polished optical glass.
mm, and the same adjustment was performed. The position of the autocollimator was adjusted in a state where the infrared intensity was maximized using a mirror having a gold-coated area diameter of 1 mm. Thereafter, a polarizer, an analyzer, and a photoelastic element were installed, and readjustment was performed in the same procedure. The above operation was performed in a state where the side wall of the container holding the atmosphere was partially missing, and the arrangement was confirmed again after attaching the side wall. Note that circular apertures were used for the entrance side and the reflection side aperture.

【0049】この装置を用いて測定した試料は以下の手
順で作成した。ガラス基板(コーニング7059)上に
日産化学製ポリイミドPI−Cをスピンコートし、90
℃で30分加熱後、250℃で60分加熱して試料とし
た。その後に直径50mmの布ローラーを用いて、押し
込み長0.05mm、回転速度800rpm、基板移動
速度30mm/sで2回のラビングを行った。また、参
照試料として焼成後のラビングを施さない試料もあわせ
て作成した。
A sample measured using this apparatus was prepared in the following procedure. A polyimide PI-C manufactured by Nissan Chemical Industries is spin-coated on a glass substrate (Corning 7059),
After heating at 30 ° C. for 30 minutes, the sample was heated at 250 ° C. for 60 minutes to obtain a sample. Thereafter, rubbing was performed twice using a cloth roller having a diameter of 50 mm at a pressing length of 0.05 mm, a rotation speed of 800 rpm, and a substrate moving speed of 30 mm / s. A sample not subjected to rubbing after firing was also prepared as a reference sample.

【0050】アクリル製容器を用いてこれら2つの試料
の測定を行った。容器内にはアルゴンガスを導入して測
定を行ったが、雰囲気中に残存する水分に起因するピー
クが目立たなくなるまで約50分を要した。試料の高さ
は反射赤外線強度が最大になるように調整し、あおりは
オートコリメータにて調整した。この装置にて測定した
ラビングなしの試料の反射赤外線の偏光状態を示すS成
分に対するP成分の振幅比の逆正接で定義されるψと、
S成分とP成分の位相差で定義されるΔの赤外線波数依
存性を図11、12にそれぞれ示す。ラビングを施した
試料の測定結果についても図13、14に同様に示す。
これらの図が示す通り、どちらの試料においても大気中
の水蒸気や二酸化炭素の影響なく測定できたことがわか
る。
These two samples were measured using an acrylic container. The measurement was carried out by introducing an argon gas into the container, but it took about 50 minutes until the peak caused by moisture remaining in the atmosphere became inconspicuous. The height of the sample was adjusted so that the intensity of the reflected infrared rays was maximized, and the tilt was adjusted with an autocollimator. Ψ defined by the arctangent of the amplitude ratio of the P component to the S component indicating the polarization state of the reflected infrared light of the sample without rubbing measured by this device,
FIGS. 11 and 12 show the infrared wavenumber dependence of Δ defined by the phase difference between the S component and the P component, respectively. The measurement results of the rubbed sample are also shown in FIGS.
As shown in these figures, it can be seen that measurement was possible without influence of water vapor or carbon dioxide in the air in both samples.

【0051】図15、16は、ラビングした試料の測定
より得られた1500cm-1付近の波長分散である。試
料周囲の雰囲気も置換したこの例では、実施例1の大気
中測定では得られなかったフェニルの分子振動に対応す
る微細構造がΔ、ψの両方に明瞭に観測された。さら
に、図17に1504cm-1でのΔのガラス基板との差
の入射方位依存性を示す。同様な測定を窒素ガス雰囲気
下でも行ったが、パージに要する時間が約40分に若干
短縮されたこと以外に大きな差はなかった。
FIGS. 15 and 16 show the wavelength dispersion around 1500 cm −1 obtained from the measurement of the rubbed sample. In this example in which the atmosphere around the sample was also replaced, fine structures corresponding to the molecular vibration of phenyl, which were not obtained by the measurement in the atmosphere of Example 1, were clearly observed in both Δ and ψ. Further, FIG. 17 shows the incident azimuth dependence of the difference of Δ at 1504 cm −1 from the glass substrate. The same measurement was performed in a nitrogen gas atmosphere, but there was no significant difference except that the time required for purging was slightly reduced to about 40 minutes.

【0052】このデータに基づき、フェニル基に対応す
る1504cm-1のピークに注目し、フェニル基の向き
を以下の方法で決定した。可視光線、赤外線ともに偏光
状態の入射方位依存性は図17に示した手続きで行う。
より詳細には、前述したとおり、反射赤外線の偏光状態
は先に示した4×4行列より計算する。ポリイミド膜に
対応する4×4行列は、前述したものと同じである。一
方、膜の無配向部分(等方的部分)を透過する入射光や
反射光の4×4行列は下記のようになる。 Δ11=0 Δ12=1−sin2β Δ13=0 Δ21=1 Δ22=0 Δ23=0 Δ34=1 Δ43=1−sin2β.
Based on this data, focusing on the peak at 1504 cm -1 corresponding to the phenyl group, the orientation of the phenyl group was determined by the following method. The incident direction dependence of the polarization state of both visible light and infrared light is determined by the procedure shown in FIG.
More specifically, as described above, the polarization state of the reflected infrared light is calculated from the 4 × 4 matrix described above. The 4 × 4 matrix corresponding to the polyimide film is the same as described above. On the other hand, the 4 × 4 matrix of incident light and reflected light that pass through the non-oriented portion (isotropic portion) of the film is as follows. Δ 11 = 0 Δ 12 = 1 -sin 2 β Δ 13 = 0 Δ 21 = 1 Δ 22 = 0 Δ 23 = 0 Δ 34 = 1 Δ 43 = 1-sin 2 β.

【0053】これらの行列は、試料表面法線に平行に
軸、赤外線の入射平面及び試料表面に平行にX軸、X、
Z軸に垂直にY軸を定義したものである。配向部分もし
くは無配向部分の4×4行列をA、Bとする。さらに、
それぞれの膜厚をd1、d2とする。入射光、反射光、
膜中の透過光の電磁場の状態を4つの電磁場成分Ex、
y、Ey、−Hxを要素とする列ベクトルΦI、Φr、Φt
とすると、その間は下記式で示される。 exp(−iωBd2)exp(−iωAd1)(ΦI+Φr
=Φt
These matrices have an axis parallel to the normal to the sample surface, an X-axis parallel to the plane of incidence of infrared radiation and the X
This defines the Y axis perpendicular to the Z axis. A and B are 4 × 4 matrices of the oriented part or the non-oriented part. further,
The respective film thicknesses are d1 and d2. Incident light, reflected light,
The state of the electromagnetic field of the transmitted light in the film is represented by four electromagnetic field components Ex,
Column vectors Φ I , Φ r , Φ t with elements H y , E y , −H x
Then, the interval is represented by the following equation. exp (−iωBd2) exp (−iωAd1) (Φ I + Φ r )
= Φ t

【0054】具体的にexp(−iωBd2)、exp(−i
ωAd1)の計算は、iωBd2、iωAd1について
テーラー展開を行い、6次の項まで考慮した。A、Bの
累乗の計算はケーリーハミルトンの定理を用いて高速化
を図った。ΦIは入射光であるので任意の値を用いるこ
とができる。さらに、Φtはスネルの法則によりψiよ
り直接計算できる。以上よりΦrを一義的に決定するこ
とができる。Φrの電場成分Erx、Eryと、反射赤外線
の試料面に平行なS成分Ers、及びS成分と赤外線の進
行方向にともに垂直な成分Erpの間には下記式の関係が
ある。 Ers=Eryrp=Erxcosβ
Specifically, exp (-iωBd2), exp (-i
In the calculation of ωAd1), Taylor expansion was performed for iωBd2 and iωAd1, and the sixth order term was considered. The calculation of the powers of A and B was speeded up using the Cary Hamilton's theorem. Since Φ I is incident light, an arbitrary value can be used. Further, Φ t can be calculated directly from ψi according to Snell's law. From the above, Φ r can be uniquely determined. There is a relationship between the electric field components E rx and E ry of Φ r, the S component E rs parallel to the sample surface of the reflected infrared ray, and the component E rp perpendicular to both the S component and the traveling direction of the infrared ray. . E rs = E ry E rp = E rx cosβ

【0055】つまり、反射光の偏光状態(Δr、ψr)
は、 exp(iΔr)tanψr=Erxcosβ/Ery より決定される。以上の計算を各測定方位について行
う。この計算手順の流れは図18に示してある。
That is, the polarization state of the reflected light (Δr, Δr)
Is determined by exp (iΔr) tanψr = E rx cos β / E ry . The above calculation is performed for each measurement direction. The flow of this calculation procedure is shown in FIG.

【0056】まず、以上の手続きより計算された反射可
視光線の偏光状態の入射方位依存性と、測定結果を比較
して、計算結果が測定結果と一致するように膜構造パラ
メータを最適化する。図17に示すようにパラメータ最
適化は以下のようにして行った。単軸異方性を仮定した
場合、反射光の偏光状態は前記のように4×4行列法に
より計算できる。可視光線領域では多くの有機薄膜は透
明とみなすことができるので、誘電率は実数となる。こ
れ以外に主誘電率座標の傾き角、配向部分及び無配向部
分の厚さd1、d2及び無配向部分の6つのパラメータ
が膜構造を決定するパラメータとなる。しかし、無配向
部の誘電率は配向部の異方的誘電率の平均値と考えられ
るので、実際の最適化パラメータは5個になる。この場
合、24方位で測定を行い、それぞれの方位での偏光状
態を示す2つの量が選ばれているため、膜構造を示すこ
れら5個のパラメータを決定するには十分な量である。
First, the measurement result is compared with the dependence of the polarization state of the reflected visible light calculated by the above procedure on the incident direction, and the film structure parameters are optimized so that the calculation result matches the measurement result. As shown in FIG. 17, parameter optimization was performed as follows. Assuming uniaxial anisotropy, the polarization state of the reflected light can be calculated by the 4 × 4 matrix method as described above. Since many organic thin films can be considered transparent in the visible light region, the dielectric constant is a real number. In addition, the six parameters of the inclination angle of the main dielectric constant, the thickness d1, d2 of the oriented portion and the non-oriented portion, and the non-oriented portion are parameters for determining the film structure. However, since the dielectric constant of the non-oriented portion is considered to be the average value of the anisotropic dielectric constant of the oriented portion, the actual optimization parameters are five. In this case, the measurement is performed in 24 directions, and two quantities indicating the polarization state in each direction are selected. Therefore, the quantities are sufficient to determine these five parameters indicating the film structure.

【0057】しかし、各測定値は誤差を含むため解析的
に決められたパラメータは大きな誤差を含むことが予想
される。また、計算式の非線形性が高いため、解析的に
6個のパラメータを決定することは大変困難である。そ
こで、5個の未知パラメータに暫定的な値を代入し、そ
こから計算される偏光状態の入射方位依存性と測定値を
比較して差の2乗和が最小になる値をパラメータの決定
値とした。ここで、全残差Rと各測定点の残差rj(j
番目の測定点)として、 R=Σ(W1(Δobs−Δcal)2+W2(ψob
s−ψcal)2) rj=W1(Δobs−Δcal)2+W2(ψobs
−ψcal)2 と定義した。Δobs、Δcal、ψobs、ψcal
は、各入射方位におけるΔ、ψの測定値と計算値であ
る。W1、W2は加重であり、最適化過程においてΔ、
ψの一致の優先度を調節する。和はすべての測定方位に
ついて行う。この場合は6点である。
However, since each measured value includes an error, it is expected that a parameter determined analytically will include a large error. Further, since the calculation formula has high nonlinearity, it is very difficult to analytically determine six parameters. Therefore, temporary values are substituted into the five unknown parameters, and the incident direction dependence of the polarization state calculated from the measured values is compared with the measured values, and the value that minimizes the sum of squares of the difference is determined as the parameter determination value. And Here, the total residual R and the residual rj (j
R = (W1 (Δobs−Δcal) 2 + W2 (ψob
s−ψcal) 2 ) rj = W1 (Δobs−Δcal) 2 + W2 (ψobs
−ψcal) 2 Δobs, Δcal, ψobs, ψcal
Are measured and calculated values of Δ and に お け る at each incident direction. W1 and W2 are weights, and Δ,
一致 Adjust the matching priority. The sum is performed for all measurement directions. In this case, it is 6 points.

【0058】最小二乗法の計算は修正マーカット法を主
体とし、アルゴリズムは小柳著「最小二乗法によるデー
タ解析」(東京大学出版会)を参考にした。具体的に
は、全残差Rのパラメータ依存性を決定するため、各測
定方位における残差rjを決定する6個のパラメータそ
れぞれについて偏微分を計算し、それぞれを行列要素と
した微分行列を決定する。この場合は5行5列の行列A
になる。さらに残差rjを要素とする列ベクトルBを定
義する。下記式AP=Bを満たす列ベクトルPがパラメ
ータ修正ベクトルであり、この値をA、Bを計算する際
に用いたパラメータに足して新たな膜構造パラメータと
し、測定結果と計算結果が一致するまでこの手続きをす
ることを基本とする。
The calculation of the least squares method is mainly based on the modified Markat method, and the algorithm is referred to "Data analysis by the least squares method" by Koyanagi (Tokyo University Press). Specifically, in order to determine the parameter dependence of the total residual R, partial derivatives are calculated for each of the six parameters for determining the residual rj in each measurement direction, and a differential matrix is determined using each of the six parameters as a matrix element. I do. In this case, a matrix A of 5 rows and 5 columns
become. Further, a column vector B having the residual rj as an element is defined. A column vector P that satisfies the following equation AP = B is a parameter correction vector. This value is added to the parameters used in calculating A and B to obtain a new film structure parameter, and until the measurement result and the calculation result match. This procedure is basically used.

【0059】しかし、この問題では非線形性が高いた
め、この方法で修正したパラメータより得られた全残差
が修正前よりも小さくなるとは限らない。そこで修正ベ
クトルの値を半分にする操作を全残差が修正前の値より
小さくなるまで繰り返した。この修正ベクトルの大きさ
を半分にする手順の繰り返しを4回行っても全残差が減
少しない場合は、微分行列の対角要素に任意の数(ダン
ピング)を付加する操作を行って修正ベクトルを改めて
計算した。付加する値は行列Aの行列式の値の4分の1
を基準にし、各ダンピング操作で得られた修正ベクトル
についても全残差が修正前の残差より小さくなるまで4
回以下の回数で修正ベクトルの値を半減させた。ダンピ
ング付加によっても全残差が減少しない場合は、ダンピ
ング値を4倍ずつ大きくする操作を5回を限度に行っ
た。その結果、配向部の誘電率は2.959、2.40
0、膜表面に対する主誘電率の傾き角30°、配向部分
の厚さ64nm、無配向部分の厚さ18nmと決定され
た。
However, in this problem, since the nonlinearity is high, the total residual obtained from the parameters corrected by this method is not always smaller than before the correction. Therefore, the operation of halving the value of the correction vector was repeated until the total residual became smaller than the value before correction. If the total residual does not decrease even after repeating the procedure of halving the size of the correction vector four times, an operation of adding an arbitrary number (damping) to the diagonal elements of the differential matrix is performed to perform the correction vector Was calculated again. The value to be added is a quarter of the value of the determinant of matrix A.
, With respect to the correction vector obtained by each damping operation, until all residuals become smaller than the residual before correction.
The value of the correction vector was halved in less than or equal to the number of times. If all residuals did not decrease even after the addition of damping, the operation of increasing the damping value by four times was performed up to five times. As a result, the dielectric constant of the alignment portion was 2.959, 2.40.
0, the inclination angle of the main dielectric constant with respect to the film surface was 30 °, the thickness of the oriented portion was 64 nm, and the thickness of the non-oriented portion was 18 nm.

【0060】同様にして赤外線の反射光の偏光状態から
赤外線領域での膜の光学的構造を決定することが原理的
に可能ではある。しかし、吸収があるために誘電率は複
素数になり、決定すべきパラメータがさらに多くなると
ともに、実施例1の図5に示したように、試料の分子振
動に対応する波数ではψに観測される異方性がごく小さ
いために、パラメータを精度良く決定することができな
い。そこで、図17のデータと可視光線の測定より決定
された配向部分及び無配向部分の厚さを用いて赤外域で
の光学的構造を決定した。分子振動に対応する波数では
誘電率は純虚数になるため、決定すべきパラメータは配
向部の2つの誘電率と主誘電率座標の傾斜角になる。図
17に示したように反射光の偏光状態の入射方位依存性
は、主にΔの最大値と最小値の差、Δの2つの極小値の
間の差、及びΔの平均値の3つの量で特徴付けることが
できる。最適化されるパラメータも3個であるから、精
度良くパラメータを決定することができる。
Similarly, it is possible in principle to determine the optical structure of the film in the infrared region from the polarization state of the reflected infrared light. However, due to the absorption, the dielectric constant becomes a complex number, the parameters to be determined further increase, and as shown in FIG. 5 of the first embodiment, ψ is observed at the wave number corresponding to the molecular vibration of the sample. Since the anisotropy is very small, the parameters cannot be determined with high accuracy. Therefore, the optical structure in the infrared region was determined using the data of FIG. 17 and the thicknesses of the oriented part and the non-oriented part determined from the measurement of visible light. Since the permittivity is a pure imaginary number at the wave number corresponding to the molecular vibration, the parameters to be determined are the two permittivity of the orientation part and the inclination angle of the main permittivity coordinate. As shown in FIG. 17, the incident azimuth dependence of the polarization state of the reflected light mainly includes the difference between the maximum value and the minimum value of Δ, the difference between two minimum values of Δ, and the average value of Δ. Can be characterized by quantity. Since three parameters are optimized, the parameters can be determined with high accuracy.

【0061】その結果、膜厚dは約54nm、主誘電率
座標の傾き角は27°付近、εoi、εeiはそれぞれ
1.2、0.9となった。フェニル基は6員環の面内方
向と面の法線方向の吸収係数は1.1になることを考慮
すると、フェニル基の全体の約60%((1.0/1.
2)÷(1/2)=0.6)が6員環の面を試料表面か
ら27°傾いた状態で配向していると決定された。な
お、可視光線での光学的構造、及び赤外線での光学的構
造の決定は、上記の手順を実行するコンピュータプログ
ラムをfortranにより作成し、コンピュータを用
いて自動的に膜構造の決定を行った。
As a result, the film thickness d was about 54 nm, the inclination angle of the main dielectric constant coordinate was around 27 °, and εoi and εei were 1.2 and 0.9, respectively. Considering that the absorption coefficient of the phenyl group in the in-plane direction of the 6-membered ring and the normal direction of the plane is 1.1, about 60% of the total of the phenyl group ((1.0 / 1.
2) {(1/2) = 0.6) was determined to be oriented with the surface of the six-membered ring inclined 27 ° from the sample surface. The determination of the optical structure in the visible light and the optical structure in the infrared was performed by creating a computer program for executing the above procedure by fortran and automatically determining the film structure using a computer.

【0062】(実施例3)実施例2と同じ装置構成と試
料を用い、平行移動ステージを用いて測定位置を走査す
ることにより、縦10mm、横10mmの範囲を5mm
の間隔でコンピュータ制御により計9点を自動で測定し
た。つまり、図19に示すように平行移動ステージで試
料を測定位置まで移動し、あおり調整等を行ったのちに
各測定位置の反射赤外線及び反射可視光線の偏光状態の
入射方位依存性を測定する。当初予定の全測定個所の測
定が終了しない場合は、次の測定位置まで試料を移動さ
せる。この手順を全測定が完了するまで繰り返し行う。
なお、図20に示すように実施例2と同じ方法で各測定
点での膜構造の決定を測定終了後ただちに行い、膜構造
の面内分布を測定しながら決定する方法もある。しか
し、膜構造を決定するための演算量が多く、処理能力の
低いコンピュータの場合は能率が悪いため、図19の手
順で測定を行った後、別途膜構造の決定を行った。図2
1にこのようにして測定された1504cm-1における
配向部分の2つの誘電率の差の等方的誘電率に対する比
(εei−εoi)/εiの分布を示す。なお、ここで
εei、εoiは配向部分の異方的誘電率の虚数部分、
εiはそれらの平均値である。
(Embodiment 3) Using the same apparatus configuration and sample as in Embodiment 2 and scanning the measurement position using a translation stage, a range of 10 mm in length and 10 mm in width was changed to 5 mm.
9 points were automatically measured by computer control at intervals of. That is, as shown in FIG. 19, the sample is moved to the measurement position by the parallel movement stage, and after adjusting the tilt and the like, the incident azimuth dependence of the polarization state of the reflected infrared light and the reflected visible light at each measurement position is measured. If the measurement at all the measurement points initially planned is not completed, the sample is moved to the next measurement position. This procedure is repeated until all measurements are completed.
As shown in FIG. 20, there is a method in which the determination of the film structure at each measurement point is performed immediately after the completion of the measurement by the same method as in the second embodiment, and the film structure is determined while measuring the in-plane distribution of the film structure. However, since the amount of calculation for determining the film structure is large and a computer with a low processing capacity is inefficient, the measurement was performed according to the procedure in FIG. 19 and then the film structure was separately determined. FIG.
FIG. 1 shows the distribution of the ratio (εei−εoi) / εi of the difference between the two dielectric constants of the oriented portion at 1504 cm −1 and the isotropic dielectric constant. Here, εei and εoi are the imaginary part of the anisotropic dielectric constant of the orientation part,
εi is their average value.

【0063】(実施例4)反射赤外線及び反射可視光線
を測定する際、通常は断面が円形になるようにアパーチ
ャ又はミラーで入射光及び入射赤外線形状の整形を行
う。しかし、試料面に対して光や赤外線を斜めに入射し
た場合、試料面上での光や赤外線が当たる領域は図22
に示すように楕円になる。この場合は可視光及び赤外線
の入射方位の変化に伴い、測定される試料面上の領域が
変化する。そこで、入射光がS偏光方向に長軸を持つ楕
円になるようにアパーチャにより入射光の形状を補正し
た。この楕円形アパーチャを用いて測定した結果と、円
形アパーチャにより測定した反射赤外線の入射方位依存
性を実施例3の試料について測定した結果を図23、2
4に示す。これらの図が示すように、楕円形アパーチャ
で測定した方が異方性が明瞭になっている。
Embodiment 4 When measuring the reflected infrared light and the reflected visible light, the shape of the incident light and the incident infrared light is usually shaped by an aperture or a mirror so that the cross section becomes circular. However, when light or infrared light is obliquely incident on the sample surface, the region where the light or infrared light hits the sample surface is shown in FIG.
It becomes an ellipse as shown in FIG. In this case, the area on the sample surface to be measured changes with the change in the incident direction of the visible light and the infrared light. Therefore, the shape of the incident light was corrected by an aperture so that the incident light became an ellipse having a long axis in the S polarization direction. 23 and 2 show the results obtained by using the elliptical aperture and the results obtained by measuring the incident azimuth dependency of the reflected infrared light measured by the circular aperture for the sample of Example 3.
It is shown in FIG. As these figures show, the anisotropy is clearer when measured with an elliptical aperture.

【0064】(実施例5)広い範囲の分布測定を行う場
合、測定位置を調整する水平移動ステージの可動領域を
大きくする必要がある。そのために、実施例1、2、3
のような構成では水平移動ステージの下の回転ステージ
も大型になる必要がある。装置が大型化すると、回転軸
の精度や各ステージ間の組み合わせ精度の劣化や、装置
自身の重量による歪みが原因の機械的精度劣化が原因と
なって、精度良い測定が可能な装置の実現が困難にな
る。例えば20インチのパネル全面にわたる分布を測定
する場合、水平移動ステージの可動範囲は1000mm
となる。2つの水平移動ステージの重量も重くなるため
に、回転ステージも大型化し、入射方位角の変化に要す
る時間が増大してしまう。そこで、広い範囲の面内分布
測定を行う場合、試料の入射方位角の制御は可視光源と
反射光の偏光解析部、及び赤外線光源と反射赤外線の偏
光解析部を回転させた方が精度が確保しやすい。
(Embodiment 5) When performing distribution measurement over a wide range, it is necessary to increase the movable area of the horizontal movement stage for adjusting the measurement position. Therefore, Examples 1, 2, and 3
In such a configuration, the rotation stage below the horizontal movement stage also needs to be large. As the size of the device increases, the accuracy of the rotating shaft and the combination accuracy between the stages deteriorate, and the mechanical accuracy deteriorates due to the distortion due to the weight of the device itself. It becomes difficult. For example, when measuring the distribution over the entire surface of a 20-inch panel, the movable range of the horizontal moving stage is 1000 mm.
Becomes Since the weight of the two horizontal movement stages also increases, the size of the rotation stage also increases, and the time required for changing the incident azimuth increases. Therefore, when measuring the in-plane distribution over a wide range, it is more accurate to control the incident azimuth of the sample by rotating the visible light source and the reflected light polarization analyzer and the infrared light source and the reflected infrared polarization analyzer. It's easy to do.

【0065】図25に装置の構成図を示す。この図にお
いて401は試料、402は水平移動ステージ、403
は偏光子を含む入射光源、404は位相子と検光子を含
む偏光測定器、405は回転ステージ、406は測定器
を固定する支柱で405に取り付けられている。407
は回転軸の中心に取り付けられたオートコリメータ、4
08は光学系を釣り下げるための支柱である。なお、赤
外線光源と反射赤外線の偏光測定部は省略されている。
この際測定した試料は、実施例2と同質のガラス基板と
ポリイミド材を用いたが、ポリイミドはスピンコートで
はなく転写により塗布した。図26にこの装置を用いて
4cm間隔で20cm四方を測定して決定した、150
4cm-1における配向部分の2つの誘電率の差の等方的
誘電率に対する比(εei―εoi)/εiの分布を示
す。
FIG. 25 shows the configuration of the apparatus. In this figure, 401 is a sample, 402 is a horizontal moving stage, 403
Is an incident light source including a polarizer, 404 is a polarimeter including a phaser and an analyzer, 405 is a rotary stage, and 406 is a column for fixing the detector, and is attached to 405. 407
Is an autocollimator attached to the center of the rotation axis, 4
Reference numeral 08 denotes a support for hanging the optical system. The infrared light source and the reflected infrared polarization measuring section are omitted.
The sample measured at this time was a glass substrate and a polyimide material of the same quality as in Example 2, but the polyimide was applied by transfer instead of spin coating. FIG. 26 shows the result of measuring and measuring 20 cm square at 4 cm intervals using this apparatus.
3 shows the distribution of the ratio (εei−εoi) / εi of the difference between the two dielectric constants of the oriented portion at 4 cm −1 to the isotropic dielectric constant.

【0066】[0066]

【発明の効果】本発明によれば、試料面の同じ位置に赤
外線と可視光線を入射した際に発生する反射可視光線及
び反射赤外線の偏光状態の入射方位依存性を測定するこ
とにより、膜の異方性部分と等方性部分の厚さをより精
度良く決定することが可能になり、赤外線領域での膜の
光学的構造の決定精度が向上して、膜の分子配向状態の
決定精度を向上させることができる。また、試料面上に
当たる入射赤外線及び可視光線の形状が円形になるよう
に入射光及び入射赤外線の断面形状を楕円形にすること
で、測定の精度がより向上する。さらに、回転ステージ
と水平移動ステージを組み合わせることにより、赤外線
領域での膜の光学的構造の面内分布を決定することが可
能となる。
According to the present invention, the dependency of the polarization state of the reflected visible light and the reflected infrared light generated when the infrared light and the visible light are incident on the same position on the sample surface on the incident direction is measured. The thickness of the anisotropic portion and the isotropic portion can be determined more accurately, and the accuracy of determining the optical structure of the film in the infrared region is improved, and the accuracy of determining the molecular orientation state of the film is improved. Can be improved. Further, by making the cross-sectional shapes of the incident light and the incident infrared light elliptic so that the shapes of the incident infrared light and the visible light hitting the sample surface are circular, the measurement accuracy is further improved. Further, by combining the rotating stage and the horizontal moving stage, it is possible to determine the in-plane distribution of the optical structure of the film in the infrared region.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る薄膜分子配向評価装置の一例を示
す装置構成図である。
FIG. 1 is an apparatus configuration diagram showing an example of a thin film molecular orientation evaluation apparatus according to the present invention.

【図2】1200cm-1付近の、互いに90°違った方
位から測定した、反射赤外線線のΔ成分の膜付き試料と
ガラスとの差ペクトルの測定結果である。
FIG. 2 shows a measurement result of a difference spectrum between a sample with a film of the Δ component of reflected infrared ray and glass, which was measured from directions different from each other by about 90 ° near 1200 cm −1 .

【図3】1200cm-1付近の、互いに90°違った方
位から測定した、反射赤外線線のψ成分の膜付き試料と
ガラスとの差ペクトルの測定結果である。
FIG. 3 shows a measurement result of a difference spectrum between a sample with a film of the 赤 外線 component of the reflected infrared ray and the glass, which was measured from directions different from each other by about 90 cm −1 near 1200 cm −1 .

【図4】1246cm-1の反射赤外線のΔ成分の膜付き
試料とガラスとの差ペクトルの入射方位依存性の測定結
果である。
FIG. 4 is a measurement result of the incident azimuth dependence of a difference spectrum between a sample with a film and glass of a Δ component of reflected infrared light at 1246 cm −1 .

【図5】1246cm-1の反射赤外線のψ成分の膜付き
試料とガラスとの差ペクトルの入射方位依存性の測定結
果である。
FIG. 5 shows the measurement results of the incident azimuth dependence of the difference spectrum between a sample with a film of the 赤 外線 component of reflected infrared light at 1246 cm −1 and glass.

【図6】可視光の反射光の偏光状態のΔ成分の入射方位
依存性の測定結果である。
FIG. 6 shows a measurement result of the incident azimuth dependence of the Δ component of the polarization state of reflected visible light.

【図7】可視光の反射光の偏光状態のψ成分の入射方位
依存性の測定結果である。
FIG. 7 is a measurement result of the incident azimuth dependency of the ψ component of the polarization state of the reflected light of visible light.

【図8】赤外線と可視光線を互いに異なった方位から入
射する装置の装置構成図である。
FIG. 8 is a diagram illustrating the configuration of an apparatus that receives infrared light and visible light from different directions.

【図9】雰囲気制御容器に入った赤外線と可視光線を互
いに異なった方位から入射する装置の、可視光線の測定
系の記載を省略した装置構成図である。
FIG. 9 is a diagram of a device in which an infrared ray and a visible ray entering the atmosphere control container are incident from different directions, and a description of a visible light measurement system is omitted.

【図10】試料ステージの構成図である。FIG. 10 is a configuration diagram of a sample stage.

【図11】アルゴン雰囲気中のラビングなしの試料の測
定より得られた反射赤外線のψ成分の波長分散の図であ
る。
FIG. 11 is a diagram showing the wavelength dispersion of the ψ component of reflected infrared light obtained from measurement of a sample without rubbing in an argon atmosphere.

【図12】アルゴン雰囲気中のラビングなしの試料の測
定より得られた反射赤外線のΔ成分の波長分散の図であ
る。
FIG. 12 is a graph showing the wavelength dispersion of a Δ component of reflected infrared light obtained from measurement of a sample without rubbing in an argon atmosphere.

【図13】アルゴン雰囲気中のラビングした試料の測定
より得られた反射赤外線のψ成分の波長分散の図であ
る。
FIG. 13 is a graph showing the wavelength dispersion of the ψ component of reflected infrared light obtained by measuring a rubbed sample in an argon atmosphere.

【図14】アルゴン雰囲気中のラビングした試料の測定
より得られた反射赤外線のΔ成分の波長分散の図であ
る。
FIG. 14 is a graph showing the wavelength dispersion of the Δ component of reflected infrared light obtained by measuring a rubbed sample in an argon atmosphere.

【図15】アルゴン雰囲気中のラビングした試料の互い
に90°異なった方位からの測定より得られた、反射赤
外線のΔ成分の1500cm-1付近のΔ成分の波長分散
の図である。
FIG. 15 is a diagram of the wavelength dispersion of the Δ component near 1500 cm −1 of the Δ component of the reflected infrared ray, obtained by measuring the rubbed sample in an argon atmosphere from directions different from each other by 90 °.

【図16】アルゴン雰囲気中のラビングした試料の互い
に90°異なった方位からの測定より得られた、反射赤
外線のΔ成分の1500cm-1付近のψ成分の波長分散
の図である。
FIG. 16 is a diagram showing the wavelength dispersion of a ψ component near 1500 cm −1 of a Δ component of reflected infrared light obtained by measuring a rubbed sample in an argon atmosphere from directions different from each other by 90 °.

【図17】アルゴン雰囲気中のラビングした試料の測定
より得られた、反射赤外線の1504cm-1でのΔ成分
のガラス基板との差スペクトルの入射方位依存性の図で
ある。
FIG. 17 is a diagram illustrating the incident azimuth dependence of the difference spectrum of the Δ component at 1504 cm −1 between the reflected infrared ray and the glass substrate, obtained from the measurement of the rubbed sample in an argon atmosphere.

【図18】測定結果から膜の光学的構造を決定するプロ
グラムの手順を示した流れ図である。
FIG. 18 is a flowchart showing a procedure of a program for determining an optical structure of a film from measurement results.

【図19】反射赤外線及び反射可視光線の偏光状態の入
射方位依存性の面内分布の自動測定を行うための制御プ
ログラムの手順を示した流れ図である。
FIG. 19 is a flowchart showing a procedure of a control program for automatically measuring an incident azimuth-dependent in-plane distribution of the polarization state of reflected infrared light and reflected visible light.

【図20】反射赤外線及び反射可視光線の偏光状態の入
射方位依存性の面内分布の自動測定と膜の光学的構造の
決定を同時に行うための制御プログラムの手順を示した
流れ図である。
FIG. 20 is a flowchart showing a procedure of a control program for simultaneously performing automatic measurement of the in-plane distribution of the polarization direction of reflected infrared light and reflected visible light, and the determination of the optical structure of the film.

【図21】反射可視光線の反射光の偏光状態の異方性測
定の結果と1504cm-1の反射赤外線の偏光状態の入
射方位依存性の測定結果から計算された1504cm-1
の誘電率の異方性の面内分布図である。
FIG. 21 shows 1504 cm −1 calculated from the results of anisotropy measurement of the polarization state of reflected visible light and the measurement of the incident azimuth dependence of the polarization state of reflected infrared light at 1504 cm −1.
FIG. 4 is a diagram showing an in-plane distribution of anisotropy of the dielectric constant of FIG.

【図22】断面が円形の光で照射される試料表面上の領
域の形状を示す図であり、矢印は入射方位を示す。
FIG. 22 is a diagram showing a shape of a region on a sample surface irradiated with light having a circular cross section, and an arrow indicates an incident direction.

【図23】楕円形のアパーチャを用いて測定した150
4cm-1のΔ成分の入射方位依存性の図であり、横軸は
ステージの読み値による試料方位、縦軸は位相差、白丸
がラビングを施さない試料、黒丸がラビングを施した試
料の測定結果である。
FIG. 23 shows 150 measured using an elliptical aperture.
FIG. 4 is a diagram showing the dependence of the Δ component of 4 cm −1 on the incident azimuth, where the horizontal axis represents the sample azimuth according to the reading on the stage, the vertical axis represents the phase difference, the white circle represents the sample without rubbing, and the black circle represents the measurement of the rubbed sample. The result.

【図24】楕円形のアパーチャを用いて測定した150
4cm-1の反射赤外線のψ成分の入射方位依存性の図で
あり、横軸はステージの読み値による試料方位、縦軸は
位相差、白丸がラビングを施さない試料、黒丸がラビン
グを施した試料の測定結果である。
FIG. 24 illustrates a 150 measured using an elliptical aperture.
It is a diagram of the incident azimuth dependence of the ψ component of the reflected infrared ray of 4 cm −1 , the horizontal axis is the sample azimuth according to the reading value of the stage, the vertical axis is the phase difference, the white circle is a sample without rubbing, and the black circle is rubbed. It is a measurement result of a sample.

【図25】光学系を回転させることにより、可視及び赤
外線の反射光の偏光状態を測定する装置の、赤外線光源
と反射赤外線の偏光測定部の記載を省略した装置構成図
である。
FIG. 25 is an apparatus configuration diagram of an apparatus for measuring the polarization state of visible and infrared reflected light by rotating an optical system, in which an illustration of an infrared light source and a reflected infrared polarization measuring unit is omitted.

【図26】光学系を回転させて可視及び赤外線の反射光
の偏光状態を測定する装置による測定結果より得られ
た、504cm-1の誘電率の異方性の面内分布図であ
る。
FIG. 26 is an in-plane distribution diagram of anisotropy of a dielectric constant of 504 cm −1 obtained from a measurement result obtained by a device that measures the polarization state of visible and infrared reflected light by rotating an optical system.

【符号の説明】[Explanation of symbols]

1 容器 2 ガス導入のためのバルブ 3 真空排気のためのバルブ 4 FT−IR分光器 5 偏光子 6 光弾性素子 7 検光子 8 赤外線検出器 9 試料 10 試料ステージ 11 オートコリメータ 12 容器の扉 13 オートコリメータ用のモニタ 14 測定制御用のコンピュータ 21 回転ステージ 22 平行移動ステージ 23 平行移動ステージ 24 試料の傾き角を調整するノブ 25 平行移動ステージ 26 試料が取り付けられる板 101 FT−IRユニット 102 赤外線用検光子 103 光電子増倍管 104 検光子 105 1/4波長板 106 偏光子 107 He−Neレーザー光源 108 赤外線源 109 偏光子 110 赤外線用光弾性素子 111 試料 112 試料ステージ 201 入射赤外線源 202 赤外線偏光検出部 203 入射光光源 204 偏光測定部 205 回転ステージ 206 平行移動ステージ 207 平行移動ステージ 208 試料。 401 試料 402 水平移動ステージ 403 入射光源 404 偏光測定器 405 回転ステージ 406 支柱 407 オートコリメータ 408 支柱 DESCRIPTION OF SYMBOLS 1 Container 2 Valve for gas introduction 3 Valve for evacuation 4 FT-IR spectrometer 5 Polarizer 6 Photoelastic element 7 Analyzer 8 Infrared detector 9 Sample 10 Sample stage 11 Autocollimator 12 Container door 13 Auto Monitor for collimator 14 Computer for measurement control 21 Rotation stage 22 Parallel movement stage 23 Parallel movement stage 24 Knob for adjusting tilt angle of sample 25 Parallel movement stage 26 Plate on which sample is mounted 101 FT-IR unit 102 Infrared analyzer 103 Photomultiplier tube 104 Analyzer 105 Quarter-wave plate 106 Polarizer 107 He-Ne laser light source 108 Infrared source 109 Polarizer 110 Infrared photoelastic element 111 Sample 112 Sample stage 201 Incident infrared source 202 Infrared polarization detector 203 Incident light Source 204 polarization measurement unit 205 rotates the stage 206 translation stage 207 translation stage 208 samples. 401 Sample 402 Horizontal moving stage 403 Incident light source 404 Polarimeter 405 Rotating stage 406 Support 407 Autocollimator 408 Support

Claims (21)

【特許請求の範囲】[Claims] 【請求項1】一定の偏光状態の赤外線と一定の偏光状態
の可視光線を試料面上の同じ位置に入射し、試料からの
反射光及び反射赤外線の偏光状態の入射方位依存性を試
料の面内回転により光及び赤外線の入射方位を変えて測
定し、試料薄膜の光学的異方性と分子配向状態を決定す
ることを特徴とする薄膜分子配向評価法。
1. An infrared ray having a constant polarization state and a visible light ray having a constant polarization state are incident on the same position on a sample surface, and the incident azimuth dependence of the polarization state of the reflected light from the sample and the reflection infrared ray is determined on the surface of the sample. A method for evaluating the molecular orientation of a thin film, wherein the measurement is performed by changing the incident azimuth of light and infrared light by internal rotation, and the optical anisotropy and the molecular orientation state of the sample thin film are determined.
【請求項2】一定の偏光状態の赤外線と一定の偏光状態
の可視光線を試料面上の同じ位置に入射し、試料からの
反射光及び反射赤外線の偏光状態の入射方位依存性を試
料の面内回転により光及び赤外線の入射方位を変えて測
定し、試料薄膜の光学的異方性と分子配向状態を決定す
ることを特徴とする薄膜分子配向評価装置。
2. An infrared ray having a constant polarization state and a visible light ray having a constant polarization state are incident on the same position on a sample surface, and the incident azimuth dependence of the polarization state of the reflected light from the sample and the reflection infrared ray is determined on the surface of the sample. An apparatus for evaluating the molecular orientation of a thin film, wherein the optical anisotropy and the molecular orientation of a sample thin film are determined by changing the incident azimuth of light and infrared light by internal rotation.
【請求項3】一定の偏光状態の赤外線と一定の偏光状態
の可視光線を試料面上の同じ位置に入射し、試料からの
反射光及び反射赤外線の偏光状態の入射方位依存性を試
料の面内回転により光及び赤外線の入射方位を変えて測
定することを自動で行い、試料薄膜の光学的異方性と分
子配向状態を決定することを特徴とする薄膜分子配向評
価装置。
3. An infrared ray having a certain polarization state and a visible light ray having a certain polarization state are incident on the same position on the sample surface, and the incident azimuth dependence of the polarization state of the reflected light from the sample and the reflection infrared light is determined on the surface of the sample. A thin film molecular orientation evaluation apparatus characterized by automatically performing measurement by changing the incident directions of light and infrared light by internal rotation, and determining the optical anisotropy and molecular orientation state of a sample thin film.
【請求項4】一定の偏光状態の赤外線と一定の偏光状態
の可視光線を試料面上の同じ位置に入射し、試料からの
反射光及び反射赤外線の偏光状態の入射方位依存性を試
料の面内回転により光及び赤外線の入射方位を変えて測
定することを自動制御するコンピュータプログラムを記
録した記録媒体。
4. An infrared ray having a predetermined polarization state and a visible light ray having a predetermined polarization state are incident on the same position on the sample surface, and the incident azimuth dependence of the polarization state of the reflected light from the sample and the reflection infrared light is determined on the surface of the sample. A recording medium on which a computer program for automatically controlling measurement by changing incident directions of light and infrared light by internal rotation is recorded.
【請求項5】一定の偏光状態の赤外線と一定の偏光状態
の可視光線を試料面上の同じ位置に入射し、入射赤外線
光源、入射可視光線光源、反射赤外線偏光測定部、及び
反射可視光線偏光測定部を、測定点を通る試料法線を軸
として回転することにより、試料からの反射光の偏光状
態の入射方位依存性を測定して、試料薄膜の光学的異方
性と分子配向状態を決定することを特徴とする薄膜分子
配向評価法。
5. An infrared ray having a predetermined polarization state and a visible light ray having a predetermined polarization state are incident on the same position on the sample surface, and an incident infrared light source, an incident visible light source, a reflected infrared polarization measuring section, and a reflected visible light polarization section are provided. By rotating the measurement unit about the sample normal passing through the measurement point as an axis, the dependence of the polarization state of the reflected light from the sample on the incident direction is measured, and the optical anisotropy and molecular orientation state of the sample thin film are measured. A method for evaluating the molecular orientation of a thin film, characterized in that it is determined.
【請求項6】一定の偏光状態の赤外線と一定の偏光状態
の可視光線を試料面上の同じ位置に入射し、入射赤外線
光源、入射可視光線光源、反射赤外線偏光測定部、及び
反射可視光線偏光測定部を、測定点を通る試料法線を軸
として回転することにより、試料からの反射光の偏光状
態の入射方位依存性を測定して、試料薄膜の光学的異方
性と分子配向状態を決定することを特徴とする薄膜分子
配向評価装置。
6. An infrared ray having a predetermined polarization state and a visible light ray having a predetermined polarization state are incident on the same position on the sample surface, and an incident infrared light source, an incident visible light source, a reflected infrared polarization measuring section, and a reflected visible light polarization section are provided. By rotating the measurement unit about the sample normal passing through the measurement point as an axis, the dependence of the polarization state of the reflected light from the sample on the incident direction is measured, and the optical anisotropy and molecular orientation state of the sample thin film are measured. An apparatus for evaluating the molecular orientation of a thin film, comprising:
【請求項7】一定の偏光状態の赤外線と一定の偏光状態
の可視光線を試料面上の同じ位置に入射し、入射赤外線
光源、入射可視光線光源、反射赤外線偏光測定部、及び
反射可視光線偏光測定部を、測定点を通る試料法線を軸
として回転することにより、試料からの反射光の偏光状
態の入射方位依存性を測定することを自動で行い、試料
薄膜の光学的異方性と分子配向状態を決定することを特
徴とする薄膜分子配向評価装置。
7. An infrared ray having a constant polarization state and a visible light ray having a constant polarization state are incident on the same position on the sample surface, and an incident infrared light source, an incident visible light source, a reflected infrared polarization measuring section, and a reflected visible light polarization section are provided. By rotating the measurement unit around the sample normal passing through the measurement point as an axis, the dependence of the polarization state of the reflected light from the sample on the incident azimuth is automatically measured, and the optical anisotropy of the sample thin film and An apparatus for evaluating the molecular orientation of a thin film, which determines a molecular orientation state.
【請求項8】一定の偏光状態の赤外線と一定の偏光状態
の可視光線を試料面上の同じ位置に入射し、入射赤外線
光源、入射可視光線光源、反射赤外線偏光測定部、及び
反射可視光線偏光測定部を、測定点を通る試料法線を軸
として回転することにより、試料からの反射光の偏光状
態の入射方位依存性を測定することを自動で行うコンピ
ュータプログラムを記録した記録媒体。
8. An infrared ray having a predetermined polarization state and a visible light ray having a predetermined polarization state are incident on the same position on the sample surface, and an incident infrared light source, an incident visible light source, a reflected infrared polarization measuring section, and a reflected visible light polarization section are provided. A recording medium in which a computer program for automatically measuring the incident azimuth dependence of the polarization state of reflected light from a sample by rotating a measurement unit about a sample normal passing through a measurement point as an axis is recorded.
【請求項9】一定の偏光状態の赤外線と一定の偏光状態
の可視光線を試料面上の同じ位置に入射し、試料からの
反射光及び反射赤外線の偏光状態の入射方位依存性の面
内分布を、回転機構と、回転軸に直交した異なる2方向
への平行移動機能を備えた試料ステージを用いて、試料
の面内回転により光及び赤外線の入射方位を変え、試料
の平行移動により測定位置を選択し、試料薄膜の光学的
異方性と分子配向状態の面内分布を決定することを特徴
とする薄膜分子配向評価法。
9. An in-plane distribution of the polarization direction of reflected light and reflected infrared light from a sample, which is incident on the same position on the sample surface with infrared light having a fixed polarization state and visible light having a fixed polarization state. Using a rotation mechanism and a sample stage equipped with a parallel movement function in two different directions perpendicular to the rotation axis, the incident directions of light and infrared light are changed by in-plane rotation of the sample, and the measurement position is determined by parallel movement of the sample. And determining the optical anisotropy and the in-plane distribution of the molecular orientation state of the sample thin film.
【請求項10】一定の偏光状態の赤外線と一定の偏光状
態の可視光線を試料面上の同じ位置に入射し、試料から
の反射光及び反射赤外線の偏光状態の入射方位依存性の
面内分布を、回転機構と、回転軸に直交した異なる2方
向への平行移動機能を備えた試料ステージを用いて、試
料の面内回転により光及び赤外線の入射方位を変え、試
料の平行移動により測定位置を選択して測定し、試料薄
膜の光学的異方性と分子配向状態を決定することを特徴
とする薄膜分子配向評価装置。
10. An in-plane distribution of the polarization direction of reflected light and reflected infrared light from a sample, wherein the infrared light having a fixed polarization state and the visible light having a certain polarization state are incident on the same surface. Using a rotation mechanism and a sample stage equipped with a parallel movement function in two different directions perpendicular to the rotation axis, the incident directions of light and infrared light are changed by in-plane rotation of the sample, and the measurement position is determined by parallel movement of the sample. And an optical anisotropy and molecular orientation state of the sample thin film are determined.
【請求項11】一定の偏光状態の赤外線と一定の偏光状
態の可視光線を試料面上の同じ位置に入射し、試料から
の反射光及び反射赤外線の偏光状態の入射方位依存性の
面内分布を、回転機構と、回転軸に直交した異なる2方
向への平行移動機能を備えた試料ステージを用いて、自
動で試料の面内回転により光及び赤外線の入射方位を変
え、自動で試料の平行移動により測定位置を選択して測
定し、試料薄膜の光学的異方性と分子配向状態を決定す
ることを特徴とする薄膜分子配向評価装置。
11. An in-plane distribution of polarization direction of reflected light and reflected infrared light from a sample, which is incident on the sample at the same position on the surface of the sample. Using a rotation mechanism and a sample stage equipped with a parallel movement function in two different directions perpendicular to the rotation axis, the incident directions of light and infrared light are automatically changed by in-plane rotation of the sample, and the sample is automatically parallelized. An apparatus for evaluating the molecular orientation of a thin film, wherein the measuring position is selected and measured by movement to determine the optical anisotropy and the molecular orientation state of the sample thin film.
【請求項12】一定の偏光状態の赤外線と一定の偏光状
態の可視光線を試料面上の同じ位置に入射し、試料から
の反射光及び反射赤外線の偏光状態の入射方位依存性の
面内分布を、回転機構と、回転軸に直交した異なる2方
向への平行移動機能を備えた試料ステージを用いて、自
動で試料の面内回転により光及び赤外線の入射方位を変
え、自動で試料の平行移動により測定位置を選択して測
定するコンピュータプログラムを記録した記録媒体。
12. An in-plane distribution of the polarization direction of reflected light and reflected infrared light from a sample, which is incident on the same position on the sample surface with infrared light having a fixed polarization state and visible light having a fixed polarization state. Using a rotation mechanism and a sample stage equipped with a parallel movement function in two different directions perpendicular to the rotation axis, the incident directions of light and infrared light are automatically changed by in-plane rotation of the sample, and the sample is automatically parallelized. A recording medium on which a computer program for selecting and measuring a measurement position by movement is recorded.
【請求項13】一定の偏光状態の赤外線と一定の偏光状
態の可視光線を試料面上の同じ位置に入射し、入射赤外
線光源、入射可視光線光源、反射赤外線偏光測定部、及
び反射可視光線偏光測定部を、測定点を通る試料法線を
軸として回転して測定位置での反射光及び反射赤外線偏
光状態の入射方位依存性を測定し、この回転軸に直交し
た異なる2方向への平行移動機能を備えた試料ステージ
により試料を平行移動することによって測定位置を選択
して、反射光及び反射赤外線の入射方位依存性の面内分
布を測定し、試料薄膜の光学的異方性と分子配向状態を
決定することを特徴とする薄膜分子配向評価法。
13. An infrared ray having a predetermined polarization state and a visible light ray having a predetermined polarization state are incident on the same position on a sample surface, and an incident infrared light source, an incident visible light source, a reflected infrared polarization measuring section, and a reflected visible light polarization section are provided. The measuring unit is rotated around the sample normal passing through the measuring point as an axis to measure the incident azimuth dependence of the reflected light and reflected infrared polarization at the measuring position, and is translated in two different directions orthogonal to the rotation axis. The sample position is selected by moving the sample in parallel using a sample stage equipped with a function, and the in-plane distribution of the incident azimuth of reflected light and reflected infrared light is measured, and the optical anisotropy and molecular orientation of the sample thin film are measured. A thin film molecular orientation evaluation method characterized by determining a state.
【請求項14】一定の偏光状態の赤外線と一定の偏光状
態の可視光線を試料面上の同じ位置に入射し、入射赤外
線光源、入射可視光線光源、反射赤外線偏光測定部、及
び反射可視光線偏光測定部を、測定点を通る試料法線を
軸として回転して測定位置での反射光及び反射赤外線偏
光状態の入射方位依存性を測定し、この回転軸に直交し
た異なる2方向への平行移動機能を備えた試料ステージ
により試料を平行移動することによって測定位置を選択
して、反射光及び反射赤外線の入射方位依存性の面内分
布を測定し、試料薄膜の光学的異方性と分子配向状態を
決定することを特徴とする薄膜分子配向評価装置。
14. An infrared ray having a predetermined polarization state and a visible light ray having a predetermined polarization state are incident on the same position on the sample surface, and an incident infrared light source, an incident visible light source, a reflected infrared polarization measuring section, and a reflected visible light polarization section are provided. The measuring unit is rotated around the sample normal passing through the measuring point as an axis to measure the incident azimuth dependence of the reflected light and reflected infrared polarization at the measuring position, and is translated in two different directions orthogonal to the rotation axis. The sample position is selected by moving the sample in parallel using a sample stage equipped with a function, and the in-plane distribution of the incident azimuth of reflected light and reflected infrared light is measured, and the optical anisotropy and molecular orientation of the sample thin film are measured. An apparatus for evaluating the molecular orientation of a thin film, characterized by determining a state.
【請求項15】一定の偏光状態の赤外線と一定の偏光状
態の可視光線を試料面上の同じ位置に入射し、入射赤外
線光源、入射可視光線光源、反射赤外線偏光測定部、及
び反射可視光線偏光測定部を、測定点を通る試料法線を
軸として回転して測定位置での反射光及び反射赤外線偏
光状態の入射方位依存性を自動で測定し、この回転軸に
直交した異なる2方向への平行移動機能を備えた試料ス
テージにより試料を自動で平行移動することによって測
定位置を選択して、反射光及び反射赤外線の入射方位依
存性の面内分布を自動で測定し、試料薄膜の光学的異方
性と分子配向状態を決定することを特徴とする薄膜分子
配向評価装置。
15. An infrared ray having a predetermined polarization state and a visible light ray having a predetermined polarization state are incident on the same position on a sample surface, and an incident infrared light source, an incident visible light source, a reflected infrared polarization measuring section, and a reflected visible light polarization section are provided. The measuring unit is rotated around the sample normal passing through the measuring point as an axis to automatically measure the incident azimuth dependence of the reflected light and reflected infrared polarization state at the measuring position, and to measure in two different directions orthogonal to the rotation axis. The sample position is selected by automatically translating the sample using a sample stage equipped with a translation function, and the in-plane distribution of the incident direction dependence of the reflected light and reflected infrared light is automatically measured, and the optical properties of the sample thin film are measured. An apparatus for evaluating the molecular orientation of a thin film, which determines anisotropy and a molecular orientation state.
【請求項16】一定の偏光状態の赤外線と一定の偏光状
態の可視光線を試料面上の同じ位置に入射し、入射赤外
線光源、入射可視光線光源、反射赤外線偏光測定部、及
び反射可視光線偏光測定部を、測定点を通る試料法線を
軸として回転して測定位置での反射光及び反射赤外線偏
光状態の入射方位依存性を自動で測定し、この回転軸に
直交した異なる2方向への平行移動機能を備えた試料ス
テージにより試料を自動で平行移動することによって測
定位置を選択して、反射光及び反射赤外線の入射方位依
存性の面内分布を自動で測定するコンピュータプログラ
ムを記録した記録媒体。
16. An infrared ray having a constant polarization state and a visible light ray having a constant polarization state are incident on the same position on the sample surface, and an incident infrared light source, an incident visible light source, a reflected infrared polarization measuring section, and a reflected visible light polarization section are provided. The measuring unit is rotated around the sample normal passing through the measuring point as an axis to automatically measure the incident azimuth dependence of the reflected light and reflected infrared polarization state at the measuring position, and to measure in two different directions orthogonal to the rotation axis. A recording that records a computer program for automatically selecting a measurement position by automatically translating a sample using a sample stage having a parallel movement function and automatically measuring an incident direction dependent in-plane distribution of reflected light and reflected infrared light. Medium.
【請求項17】測定を不活性ガス中又は真空中で行うこ
とを特徴とした請求項1、5、9又は13に記載の薄膜
分子配向評価方法。
17. The method according to claim 1, wherein the measurement is performed in an inert gas or in a vacuum.
【請求項18】測定を不活性ガス中又は真空中で行うこ
とを特徴とした請求項2、6、10又は14に記載の薄
膜分子配向評価装置。
18. The apparatus according to claim 2, wherein the measurement is performed in an inert gas or in a vacuum.
【請求項19】非球面レンズ、非球面反射鏡もしくは楕
円形の絞りを用いて、光及び赤外線が当たる試料面上の
領域が円形になるようにして測定を行うことを特徴とし
た請求項1、5、9又は13に記載の薄膜分子配向評価
方法。
19. The measurement is performed using an aspherical lens, an aspherical reflecting mirror, or an elliptical aperture so that the area on the sample surface to which light and infrared light fall is circular. 14. The method for evaluating the molecular orientation of a thin film according to any one of 5, 9 and 13.
【請求項20】非球面レンズ、非球面反射鏡もしくは楕
円形の絞りを用いて、光及び赤外線が当たる試料面上の
領域が円形になるようにして測定を行うことを特徴とし
た請求項2、6、10又は14に記載の薄膜分子配向評
価装置。
20. The method according to claim 2, wherein the measurement is performed using an aspherical lens, an aspherical reflecting mirror, or an elliptical aperture so that the area on the sample surface to which light and infrared light fall is circular. 15. The apparatus for evaluating the molecular orientation of a thin film according to any one of claims 1, 6, 10 and 14.
【請求項21】薄膜試料に一定の偏光状態の可視光線と
赤外線を入射した際に発生する反射可視光線及び反射赤
外線の偏光状態の入射方位依存性から、薄膜の光学的構
造及び分子配向状態を決定するコンピュータプログラム
を記録した記録媒体。
21. Determine the optical structure and molecular orientation of the thin film from the dependence of the polarization state of the reflected visible light and reflected infrared light generated when visible light and infrared light of a certain polarization state are incident on the thin film sample on the incident direction. A recording medium on which a computer program to be determined is recorded.
JP11169562A 1999-06-16 1999-06-16 Method and apparatus for evaluating molecular orientation of thin film and recording medium Pending JP2001004534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11169562A JP2001004534A (en) 1999-06-16 1999-06-16 Method and apparatus for evaluating molecular orientation of thin film and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11169562A JP2001004534A (en) 1999-06-16 1999-06-16 Method and apparatus for evaluating molecular orientation of thin film and recording medium

Publications (1)

Publication Number Publication Date
JP2001004534A true JP2001004534A (en) 2001-01-12

Family

ID=15888775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11169562A Pending JP2001004534A (en) 1999-06-16 1999-06-16 Method and apparatus for evaluating molecular orientation of thin film and recording medium

Country Status (1)

Country Link
JP (1) JP2001004534A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008093074A1 (en) * 2007-01-29 2008-08-07 Teraview Limited A method and apparatus for imaging an lcd using terahertz time domain spectroscopy
JP2009069054A (en) * 2007-09-14 2009-04-02 Otsuka Denshi Co Ltd Optical anisotropy measuring device and optical anisotropy measuring method
CN102564954A (en) * 2010-12-09 2012-07-11 苏州生物医学工程技术研究所 Multi-channel photoelectric detection device for dry type chemical analysis
WO2013138066A1 (en) * 2012-03-13 2013-09-19 Nanometrics Incorporated Dual angles of incidence and azimuth angles optical metrology
JP2014119290A (en) * 2012-12-14 2014-06-30 Mitsubishi Electric Corp Film thickness measuring apparatus
US9115987B2 (en) 2013-12-04 2015-08-25 Nanometrics Incorporated Optical metrology with multiple angles of incidence and/or azimuth angles
CN114199807A (en) * 2021-12-10 2022-03-18 南京大学 Method for detecting polyimide surface molecular chain orientation structure by AFM-IR
CN115931132A (en) * 2023-02-20 2023-04-07 长春理工大学 Infrared polarization detection system, device and method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008093074A1 (en) * 2007-01-29 2008-08-07 Teraview Limited A method and apparatus for imaging an lcd using terahertz time domain spectroscopy
JP2009069054A (en) * 2007-09-14 2009-04-02 Otsuka Denshi Co Ltd Optical anisotropy measuring device and optical anisotropy measuring method
CN102564954A (en) * 2010-12-09 2012-07-11 苏州生物医学工程技术研究所 Multi-channel photoelectric detection device for dry type chemical analysis
WO2013138066A1 (en) * 2012-03-13 2013-09-19 Nanometrics Incorporated Dual angles of incidence and azimuth angles optical metrology
JP2014119290A (en) * 2012-12-14 2014-06-30 Mitsubishi Electric Corp Film thickness measuring apparatus
US9115987B2 (en) 2013-12-04 2015-08-25 Nanometrics Incorporated Optical metrology with multiple angles of incidence and/or azimuth angles
CN114199807A (en) * 2021-12-10 2022-03-18 南京大学 Method for detecting polyimide surface molecular chain orientation structure by AFM-IR
CN114199807B (en) * 2021-12-10 2023-09-22 南京大学 Method for detecting polyimide surface molecular chain orientation structure by AFM-IR
CN115931132A (en) * 2023-02-20 2023-04-07 长春理工大学 Infrared polarization detection system, device and method

Similar Documents

Publication Publication Date Title
JP4231902B2 (en) Device for analyzing multilayer thin film stacks on semiconductors
JP2000081371A (en) Method and device for evaluating thin-film molecular orientation and storage medium
US7889339B1 (en) Complementary waveplate rotating compensator ellipsometer
US7277171B1 (en) Flying mobile on-board ellipsometer, polarimeter, reflectometer and the like systems
Chen et al. Multichannel Mueller matrix ellipsometer based on the dual rotating compensator principle
US20030053053A1 (en) Apparatus for optical measurements of nitrogen concentration in thin films
TW200809170A (en) Focused-beam ellipsometer
US7286226B2 (en) Method and apparatus for measuring birefringence
US6535285B1 (en) Combination thermal wave and optical spectroscopy measurement system
JP3447654B2 (en) Anisotropic thin film evaluation method and evaluation device
US6583875B1 (en) Monitoring temperature and sample characteristics using a rotating compensator ellipsometer
TWI780109B (en) Systems and methods for semiconductor metrology and inspection
US5532488A (en) Apparatus and method for evaluating orientation film
JP2001004534A (en) Method and apparatus for evaluating molecular orientation of thin film and recording medium
US7612879B2 (en) Method and device for three-dimensionally determining the refractive index of transparent or partially transparent layers
US20010026365A1 (en) Evaluation of optically anisotropic structure
An et al. Calibration and data reduction for a UV-extended rotating-compensator multichannel ellipsometer
US7054006B2 (en) Self-calibrating beam profile ellipsometer
JP3520379B2 (en) Optical constant measuring method and device
Gombert et al. Broadband spectroscopic ellipsometry based on a Fourier transform spectrometer
JP3196841B2 (en) Anisotropic thin film evaluation method, evaluation apparatus and recording medium
JPH10293011A (en) Method and device for evaluating anisotropic thin film
Sassella et al. Generalized anisotropic ellipsometry applied to an organic single crystal: Potassium acid phthalate
CN113358604A (en) Oblique incidence type spectral reflection differential measurement device and method
Tang et al. Using imaging ellipsometry to determine angular distribution of ellipsometric parameters without scanning mechanism