JP2956688B1 - Anisotropic thin film evaluation method and evaluation apparatus - Google Patents

Anisotropic thin film evaluation method and evaluation apparatus

Info

Publication number
JP2956688B1
JP2956688B1 JP11526698A JP11526698A JP2956688B1 JP 2956688 B1 JP2956688 B1 JP 2956688B1 JP 11526698 A JP11526698 A JP 11526698A JP 11526698 A JP11526698 A JP 11526698A JP 2956688 B1 JP2956688 B1 JP 2956688B1
Authority
JP
Japan
Prior art keywords
light
thin film
incident
dielectric constant
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11526698A
Other languages
Japanese (ja)
Other versions
JPH11304645A (en
Inventor
一郎 廣沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP11526698A priority Critical patent/JP2956688B1/en
Application granted granted Critical
Publication of JP2956688B1 publication Critical patent/JP2956688B1/en
Publication of JPH11304645A publication Critical patent/JPH11304645A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

【要約】 【課題】 薄膜を構成する分子が配向することにより光
学的な異方性をもった薄膜の誘電率、および、膜厚を測
定する方法と装置を実現する。 【解決手段】 直線偏光の平行光を試料表面で焦点を結
ぶようにレンズで集光して基板上に作製された薄膜への
入射光とし、発生した反射光を前記レンズを通過させる
ことで再び拡張させて偏光子を通過させた後に、S偏光
成分およびP偏光成分の各強度を測定することを試料へ
の入射方位を変えて行い、前記薄膜に入射した光の入射
角度に依存する反射光強度または反射光の偏光状態の異
方性を測定することにより、前記薄膜の分子配向部の、
誘電率、主誘電率座標の向き、および厚さと、無配向部
の誘電率と厚さを求める。
A method and apparatus for measuring a dielectric constant and a film thickness of a thin film having optical anisotropy by orienting molecules constituting the thin film are realized. SOLUTION: Parallel light of linearly polarized light is condensed by a lens so as to be focused on the surface of a sample to be incident light on a thin film formed on a substrate, and the generated reflected light is passed through the lens to re-enter. After the light is expanded and passed through the polarizer, the intensity of each of the S-polarized light component and the P-polarized light component is measured by changing the incident direction to the sample, and the reflected light depends on the incident angle of the light incident on the thin film. By measuring the intensity or the anisotropy of the polarization state of the reflected light, the molecular orientation of the thin film,
The dielectric constant, the direction and thickness of the main dielectric constant coordinate, and the dielectric constant and thickness of the non-oriented portion are obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は異方性薄膜評価方
法、および、装置に関し、特に、液晶表示素子に用いら
れ、液晶分子に初期配向を与える液晶配向膜等の分子が
配向して光学的異方性を備える異方性薄膜評価方法、お
よび、装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for evaluating an anisotropic thin film, and more particularly to an optical anisotropic film used for a liquid crystal display device, in which molecules such as a liquid crystal alignment film for giving initial alignment to liquid crystal molecules are aligned. The present invention relates to a method and an apparatus for evaluating an anisotropic thin film having anisotropy.

【0002】[0002]

【従来の技術】異方性薄膜の評価方法として、従来、以
下に記すような様々な手法が提案されている。
2. Description of the Related Art Various methods described below have been proposed as methods for evaluating anisotropic thin films.

【0003】特開平05−005699号公報、およ
び、特開平04−329333号公報:複数の波長を入
射した際に発生する反射光強度の入射角依存性を測定す
る。
Japanese Patent Application Laid-Open No. 05-005699 and Japanese Patent Application Laid-Open No. 04-329333 measure the incident angle dependence of the intensity of reflected light generated when a plurality of wavelengths are incident.

【0004】特開平03−065637号公報:反射光
強度の入射角、および、入射方位依存性を測定する。
Japanese Patent Application Laid-Open No. 03-065637: Dependence of reflected light intensity on incident angle and incident direction is measured.

【0005】特開平08−152307号公報:直線偏
光した入射光をレンズを用いて集光し、S偏光成分、お
よび、P偏光成分のみをもつ入射光による反射光強度の
入射角、および、入射方位依存性を測定する。
Japanese Patent Application Laid-Open No. 08-152307: Linearly polarized incident light is condensed using a lens, and the incident angle and the incident angle of the reflected light intensity due to the incident light having only the S-polarized component and the P-polarized component. Measure orientation dependence.

【0006】特開平09−218133号公報:試料を
面内回転させ、反射光の偏光状態の入射方位依存性から
配向部の誘電率、膜厚、および、主誘電率座標の方向、
無配向部の誘電率と膜厚を決定する。
Japanese Patent Application Laid-Open No. 09-218133: A sample is rotated in a plane, and from the dependency of the polarization state of reflected light on the incident azimuth, the dielectric constant, the film thickness, and the direction of the main dielectric constant coordinate of the oriented part are determined.
Determine the dielectric constant and film thickness of the non-oriented part.

【0007】これらの中でも、特に、特開平08−15
2307号公報に開示される直線偏光した入射光をレン
ズを用いて集光し、S偏光成分、および、P偏光成分の
みをもつ入射光をレンズで集光したときの反射光強度の
入射角、および、入射方位依存性を測定することから能
率的に測定することができるとともに高い空間分解能を
もつという優れた特徴をもつ。
[0007] Of these, Japanese Patent Application Laid-Open No. 08-15 / 08
No. 2307, linearly polarized incident light is condensed using a lens, and S-polarized light component and the incident angle of the reflected light intensity when the incident light having only the P-polarized light component is condensed by the lens; In addition, it has an excellent feature that it can be efficiently measured by measuring the incident azimuth dependency and has high spatial resolution.

【0008】入射光をレンズで集光する方法では、図1
1(a)に示したようにレンズ101の周辺に近い部分
を通過する光の方が試料102に対してより大きな入射
角をもつために、大きな開口数で短い焦点距離のレンズ
を用いることで入射角度に大きな角度分散を実現するこ
とができる。
In the method of condensing incident light with a lens, FIG.
As shown in FIG. 1A, since light passing through a portion near the periphery of the lens 101 has a larger incident angle with respect to the sample 102, a lens having a large numerical aperture and a short focal length is used. A large angle dispersion can be realized for the incident angle.

【0009】さらに、反射光は、入射光を集光するとき
と同じレンズで平行光線化されて1次元または2次元の
光検出器で測定が行われるが、このときの反射光強度プ
ロファイルは反射光強度の入射角依存性を表わすため、
位置分解能が高い検出器を用いることで、微小域におい
ても反射光強度の入射角依存性を高精度で測定すること
が可能となり、高い空間分解能が実現されている。
Further, the reflected light is converted into parallel rays by the same lens as used for condensing the incident light, and is measured by a one-dimensional or two-dimensional photodetector. To show the dependence of the light intensity on the incident angle,
By using a detector having a high positional resolution, it is possible to measure the dependency of the reflected light intensity on the incident angle with high accuracy even in a minute area, and a high spatial resolution is realized.

【0010】上記公報に開示される方法では、薄膜の屈
折率、膜厚を決定するにあたり、入射光のS波成分とP
波成分の反射強度の入射角依存性が膜の屈折率や膜厚に
依存することを利用し、集光レンズには直線偏光した光
を入射する。このとき、偏光方向と平行な動径方向でレ
ンズに入射した光は、試料に入射する際にはP偏光成分
のみをもち、これと垂直な動径方向から試料に入射した
光はS偏光成分のみをもつ。そこでこれら2方向での反
射光強度を測定することによりS偏光成分とP偏光成分
の反射強度の入射角依存性を測定する。薄膜が異方性を
もつ場合には入射光の直線偏光の偏光方向を回転させる
ことで、試料に入射するS偏光、および、P偏光成分の
光の方位を変えて入射方位依存性の測定を行なう。
According to the method disclosed in the above publication, the S-wave component of incident light and P
Utilizing that the incident angle dependence of the reflection intensity of the wave component depends on the refractive index and the film thickness of the film, linearly polarized light is incident on the condenser lens. At this time, the light incident on the lens in the radial direction parallel to the polarization direction has only the P-polarized component when entering the sample, and the light incident on the sample from the radial direction perpendicular to this is the S-polarized component. Has only Therefore, by measuring the reflected light intensity in these two directions, the incident angle dependence of the reflected light intensity of the S-polarized light component and the P-polarized light component is measured. When the thin film has anisotropy, by rotating the polarization direction of the linearly polarized light of the incident light, the direction of the S-polarized light and the P-polarized light incident on the sample is changed to measure the incident direction dependence. Do.

【0011】薄膜が等方的な場合、または、異方的薄膜
であっても、3つの主誘電率座標軸のうち2つの軸が膜
表面に平行な場合、つまり、1つの軸が膜表面に垂直な
場合に、反射光はS偏光成分の光が入射するとS偏光成
分のみのとなり、P偏光成分の光が入射するとP偏光成
分のみとなるために反射光の偏光状態を測定する機能は
必要とされない。しかしながら、主誘電率座標系が膜表
面に対して傾きをもつ場合には反射光がS偏光成分とP
偏光成分の両方をもつため、反射光強度の測定だけでは
薄膜の状態を正確に測定することができない。
When the thin film is isotropic, or even when the thin film is anisotropic, two of the three principal permittivity coordinate axes are parallel to the film surface, that is, one axis is on the film surface. When perpendicular, the reflected light becomes only the S-polarized component when the S-polarized component is incident, and becomes only the P-polarized component when the P-polarized component is incident. Therefore, the function to measure the polarization state of the reflected light is necessary. And not. However, when the main dielectric constant coordinate system is inclined with respect to the film surface, the reflected light is
Since it has both polarization components, it is not possible to accurately measure the state of the thin film only by measuring the reflected light intensity.

【0012】更に、特開平08−152307号公報に
開示される発明では、ハーフミラーを介してレンズに光
が入射されるが、この場合、ハーフミラーに対してS偏
光成分のみ、もしくはP偏光成分のみで入射する場合を
除いて、反射光は入射光の偏光状態を保存しないため
に、方位異方性を正確に測定することができない。
Further, in the invention disclosed in Japanese Patent Application Laid-Open No. 08-152307, light is incident on a lens via a half mirror. In this case, only an S-polarized component or a P-polarized component is applied to the half mirror. Except when the reflected light is incident only, the reflected light does not preserve the polarization state of the incident light, so that the azimuthal anisotropy cannot be measured accurately.

【0013】一方、特開平09−218133号公報に
開示される、試料を面内回転させて反射光の偏光状態の
入射方位依存性を測定して異方的な誘電率と膜厚を決定
する方法では、主誘電率座標が膜表面に対して傾きをも
つ異方性膜でも異方的な誘電率と膜厚、および、主誘電
率座標の膜表面に対する傾きを決定することができる
が、空間分解能を向上させることは困難である。また、
単軸異方性で光学軸が試料面に垂直である場合には、入
射方位異方性が観測されないために異方的な誘電率や膜
厚を決定することができない。
On the other hand, the anisotropic dielectric constant and the film thickness are determined by rotating the sample in a plane and measuring the incident azimuth dependence of the polarization state of the reflected light as disclosed in JP-A-09-218133. In the method, the anisotropic dielectric constant and thickness of the anisotropic film whose main dielectric constant coordinate is inclined with respect to the film surface, and the inclination of the main dielectric constant with respect to the film surface can be determined. It is difficult to improve the spatial resolution. Also,
In the case of uniaxial anisotropy and the optical axis is perpendicular to the sample surface, the anisotropic dielectric constant and the film thickness cannot be determined because the incident azimuth anisotropy is not observed.

【0014】高い空間分解能をもつ異方性膜の測定法と
して、特願平09−100330号に提案される発明が
ある。この発明では、一定の偏光状態の単色光をレンズ
で集光し、試料面からの反射光を同じレンズで平行光線
化し、位置検出器と偏光子、または、偏光子と位相板を
用いて反射光の偏光状態の入射角、および、入射方位依
存性が測定される。しかし、この手法では測定光が集
光、および、平行光線化するためにレンズを通過させら
れるが、この際に入射光、および、反射光の偏光状態が
変化してしまう。特に、S偏光とP偏光の振幅比が変化
するために、測定精度が落ちてしまうことから、精度の
よい測定を行うためには、光学ガラス等の光学的な特性
が明確な複数の標準試料、および、標準試料と同じ膜付
けしていない基板とを用いて偏光状態の測定結果を注意
深く較正することが必要となるため、簡便な測定ができ
ない。
As a method for measuring an anisotropic film having a high spatial resolution, there is an invention proposed in Japanese Patent Application No. 09-100330. In the present invention, monochromatic light of a certain polarization state is condensed by a lens, reflected light from the sample surface is converted into parallel rays by the same lens, and reflected using a position detector and a polarizer or a polarizer and a phase plate. The incident angle and the incident azimuth dependence of the polarization state of light are measured. However, in this method, the measurement light is passed through a lens to be condensed and converted into a parallel light beam. At this time, the polarization state of the incident light and the reflected light changes. In particular, since the amplitude ratio between the S-polarized light and the P-polarized light changes, the measurement accuracy is reduced. Therefore, in order to perform accurate measurement, a plurality of standard samples having clear optical characteristics such as optical glass are required. Since it is necessary to carefully calibrate the measurement result of the polarization state by using the same substrate as the standard sample and without the film, simple measurement cannot be performed.

【0015】[0015]

【解決しようとしている課題】通常、物質の複素誘電率
には波長依存性があるために複数の波長における反射光
強度の入射角依存性の測定から異方的屈折率(誘電率)
を決定する方法は、誘電率の波長分散特性が既知な試料
の場合以外は適用が困難である。
Generally, since the complex permittivity of a substance has wavelength dependence, the anisotropic refractive index (dielectric constant) is determined from the measurement of the incident angle dependence of the reflected light intensity at a plurality of wavelengths.
Is difficult to apply except for a sample whose wavelength dispersion characteristic of dielectric constant is known.

【0016】これまでに提案されている反射光強度の入
射角、および、入射方位依存性の測定から試料の異方的
誘電率と膜厚を求める方法や、特開平08−15230
7号公報に開示されるレンズを用いて入射光を集光する
方法では、誘電率座標が膜表面に対して傾いている場合
には反射光がS偏光成分とP偏光成分の両方を含んでし
まい、更にはハーフミラーを介してレンズに光を入射す
る場合にはハーフミラーからの反射光が入射光の偏光状
態を保存しないために、方位異方性を正確に測定でき
ず、薄膜の異方的誘電率を正確に決定できないという問
題点がある。
A method proposed to obtain an anisotropic dielectric constant and a film thickness of a sample from measurement of the incident angle of reflected light intensity and the incident azimuth, which has been proposed so far, is disclosed in Japanese Patent Application Laid-Open No. 08-15230.
In the method of collecting incident light using a lens disclosed in Japanese Patent Application Laid-Open No. 7-107, when the dielectric constant coordinate is inclined with respect to the film surface, the reflected light contains both the S-polarized component and the P-polarized component. In addition, when light is incident on the lens via the half mirror, the reflected light from the half mirror does not preserve the polarization state of the incident light, so that the azimuthal anisotropy cannot be measured accurately, and the thin film has a different shape. There is a problem that the anisotropic dielectric constant cannot be determined accurately.

【0017】また、液晶表示素子に配向膜として広く使
われているラビング処理したポリイミド膜は、膜全体が
配向するのではなく、表面付近のみが配向することが知
られている(沢他 ジャパニーズジャーナルオブアプラ
イドフィジクス JapaneseJournal ofApplied Physic
s 33巻6273ページ 1994年)。このようなラビング処
理を施した液晶配向膜のように厚さが未知な異方的部分
と等方的部分の2層構造の試料については、これまでの
手法では異方的誘電率を求めることはできない。
Further, it is known that a rubbed polyimide film, which is widely used as an alignment film in a liquid crystal display element, is not oriented in the entire film, but is oriented only in the vicinity of the surface (see Sawa et al., Japanese Journal). Japanese Journal of Applied Physic
s 33, 6273, 1994). For samples with a two-layer structure of anisotropic and isotropic parts with unknown thickness, such as a rubbed liquid crystal alignment film, the anisotropic dielectric constant must be determined by the conventional method. Can not.

【0018】一方、特開平08−152307号公報に
開示される反射光の偏光状態の入射方位依存性から異方
的誘電率を決定する方法では、ラビング処理された液晶
配向膜のように厚さが未知な異方的部分と等方的部分の
2層構造をした試料の異方的誘電率とそれぞれの部分の
厚さや、主誘電率座標の表面に対する傾きを測定するこ
とができる。しかし、入射光を集光すると入射角に分布
が発生するために微小部分を評価することはできない。
さらに光学軸が表面に垂直な膜の場合は入射方位依存性
がないので、膜の異方的な誘電率を決定できないという
問題点がある。特願平09−100330号に提案され
る、レンズにより集光した光を用いて微少部分を評価す
る方法では、レンズによる偏光状態の変化があり、精度
を向上するためには較正作業を注意深く行う必要がある
ことから、測定に手間がかかるという問題点がある。
On the other hand, in the method disclosed in Japanese Patent Application Laid-Open No. 08-152307, in which the anisotropic dielectric constant is determined from the incident azimuth dependence of the polarization state of reflected light, the thickness of the liquid crystal alignment film is reduced as in a rubbed liquid crystal alignment film. It is possible to measure the anisotropic dielectric constant of a sample having a two-layer structure of an unknown anisotropic part and an isotropic part, the thickness of each part, and the inclination of the main dielectric constant coordinate with respect to the surface. However, when the incident light is condensed, a minute portion cannot be evaluated because a distribution occurs at the incident angle.
Further, in the case of a film whose optical axis is perpendicular to the surface, there is no incident azimuth dependency, so that anisotropic dielectric constant of the film cannot be determined. In the method proposed in Japanese Patent Application No. 09-100330 for evaluating a minute portion using light condensed by a lens, there is a change in the polarization state due to the lens, and the calibration operation is carefully performed to improve the accuracy. Since it is necessary, there is a problem that the measurement is troublesome.

【0019】本発明は上述した従来の技術が有する問題
点に鑑みてなされたものであって、主誘電率座標が試料
表面に対して傾きをもっている試料、主誘電率が試料表
面に垂直な試料でも微小部の異方的誘電率と膜厚、主誘
電率座標の傾きの評価を迅速に行うことが可能な方法と
装置を実現することを目的としている。
The present invention has been made in view of the above-mentioned problems of the prior art, and is directed to a sample whose main dielectric constant is inclined with respect to the sample surface and a sample whose main dielectric constant is perpendicular to the sample surface. However, it is an object of the present invention to realize a method and an apparatus capable of quickly evaluating the anisotropic dielectric constant and film thickness of a minute portion and the inclination of a main dielectric constant coordinate.

【0020】[0020]

【課題を解決するための手段】本発明による異方性薄膜
評価方法は、直線偏光の平行光を試料表面で焦点を結ぶ
ようにレンズで集光して基板上に作製された薄膜への入
射光とし、発生した反射光を前記レンズを通過させるこ
とで再び拡張させて偏光子を通過させた後に、S偏光成
分およびP偏光成分の各強度を測定することを試料への
入射方位を変えて行い、前記薄膜に入射した光の入射角
度に依存する反射光強度または反射光の偏光状態の異方
性を測定することにより、前記薄膜の分子配向部の、誘
電率、主誘電率座標の向き、および厚さと、無配向部の
誘電率と厚さを求めることを特徴とする。
The method of evaluating anisotropic thin film according to the present invention is directed to a method of converging linearly polarized parallel light with a lens so as to focus on a sample surface, and then inputting the light to a thin film formed on a substrate. After passing through the lens and expanding the reflected light again by passing the generated reflected light through the polarizer, measuring the intensity of each of the S-polarized component and the P-polarized component is performed by changing the incident direction to the sample. Then, by measuring the reflected light intensity or the anisotropy of the polarization state of the reflected light depending on the incident angle of light incident on the thin film, the molecular orientation of the thin film, the dielectric constant, the orientation of the main dielectric constant coordinate , And thickness, and the dielectric constant and thickness of the non-oriented portion are obtained.

【0021】この場合、入射光をハーフミラーにより折
り曲げて前記薄膜へ入射させ、前記薄膜からの前記ハー
フミラーを通った反射光についてS偏光成分およびP偏
光成分の各強度を測定することとしてもよい。
In this case, the incident light may be bent by a half mirror and made incident on the thin film, and the respective intensities of the S-polarized light component and the P-polarized light component of the reflected light from the thin film passing through the half mirror may be measured. .

【0022】また、ハーフミラーを回転させることで反
射光強度の異方性の測定を行なうこととしてもよい。
The anisotropy of the reflected light intensity may be measured by rotating the half mirror.

【0023】また、ハーフミラーとレンズの間に1/2
波長板を挿入し、該1/2波長板を回転させることで反
射光の偏光状態の異方性の測定を行なうこととしてもよ
い。上記のいずれの場合においても、S偏光成分および
P偏光成分の各強度を測定する検出器とレンズとの間に
検光子を挿入し、前記検光子を回転させ、回転角と検出
強度の相関を観測することにより反射光の偏光状態の測
定を行うこととしてもよい。
Also, a half distance between the half mirror and the lens is used.
A wave plate may be inserted, and the anisotropy of the polarization state of the reflected light may be measured by rotating the half-wave plate. In any of the above cases, an analyzer is inserted between the detector and the lens for measuring the intensities of the S-polarized light component and the P-polarized light component, and the analyzer is rotated. The observation may be used to measure the polarization state of the reflected light.

【0024】本発明の異方性薄膜評価装置は、直線偏光
の平行光である測定光を発生する光源と、測定対象の試
料を搭載するステージと、前記測定光を前記ステージ上
の試料方向に折り曲げるハーフミラーと、前記ハーフミ
ラーと前記試料との間に設けられたレンズおよび1/2
波長板と、前記試料にて反射され、前記ハーフミラーを
通った後の反射光の強度分布を測定する光検出器と、前
記ハーフミラーと前記光検出器との間に設けられた検光
子と、前記光検出器の検出内容に応じて前記薄膜の分子
配向部の、誘電率、主誘電率座標の向き、および厚さ
と、無配向部の誘電率と厚さを求める演算装置とを備
え、前記レンズは前記測定光に前記試料表面で焦点を結
ばせ、その反射光を再度平行光線化して前記ハーフミラ
ーに入射させることを特徴とする。
The anisotropic thin film evaluation apparatus of the present invention comprises a light source for generating measurement light that is parallel light of linearly polarized light, a stage on which a sample to be measured is mounted, and the measurement light in a direction toward the sample on the stage. A half mirror to be bent; a lens provided between the half mirror and the sample;
Wave plate, a photodetector that measures the intensity distribution of the reflected light reflected by the sample and passing through the half mirror, and an analyzer provided between the half mirror and the photodetector. An arithmetic unit for determining the dielectric constant and the orientation of the main dielectric constant coordinate, and the thickness of the molecular orientation portion of the thin film according to the detection content of the photodetector, and the dielectric constant and thickness of the non-orientation portion, The lens focuses the measurement light on the surface of the sample, converts the reflected light into parallel rays again, and causes the reflected light to enter the half mirror.

【0025】この場合、前記ステージが試料に入射する
前記測定光の光軸を中心として回転可能に構成されてお
り、前記演算装置はステージが回転したときの前記光検
出器の検出内容により反射光強度の異方性の測定を行な
い、その結果に応じて前記薄膜の分子配向部の、誘電
率、主誘電率座標の向き、および厚さと、無配向部の誘
電率と厚さを求めることとしてもよい。
In this case, the stage is configured to be rotatable about the optical axis of the measurement light incident on the sample, and the arithmetic unit determines the reflected light based on the detection content of the photodetector when the stage is rotated. By measuring the anisotropy of the strength, according to the result, the molecular orientation of the thin film, the dielectric constant, the direction of the main dielectric constant coordinate, and the thickness, as to determine the dielectric constant and thickness of the non-oriented portion Is also good.

【0026】また、前記ハーフミラーが試料に入射する
前記測定光の光軸を中心として回転可能に構成されてお
り、前記演算装置はハーフミラーが回転したときの前記
光検出器の検出内容により反射光強度の異方性の測定を
行ない、その結果に応じて前記薄膜の分子配向部の、誘
電率、主誘電率座標の向き、および厚さと、無配向部の
誘電率と厚さを求めることとしてもよい。
The half mirror is configured to be rotatable around the optical axis of the measurement light incident on the sample, and the arithmetic unit reflects the light based on the detection content of the photodetector when the half mirror rotates. The light intensity anisotropy is measured, and the dielectric constant, the direction of the main dielectric constant coordinate, and the thickness of the molecular orientation part of the thin film, and the dielectric constant and the thickness of the non-oriented part are determined according to the result. It may be.

【0027】また、前記1/2波長板が試料に入射する
前記測定光の光軸を中心として回転可能に構成されてお
り、前記演算装置は1/2波長板が回転したときの前記
光検出器の検出内容により反射光強度の異方性の測定を
行ない、その結果に応じて前記薄膜の分子配向部の、誘
電率、主誘電率座標の向き、および厚さと、無配向部の
誘電率と厚さを求めることとしてもよい。
The half-wave plate is rotatable about the optical axis of the measurement light incident on the sample, and the arithmetic unit detects the light when the half-wave plate rotates. The anisotropy of the reflected light intensity is measured according to the detection content of the detector, and according to the result, the dielectric constant of the molecular orientation part of the thin film, the direction of the main dielectric constant coordinate, and the thickness, and the dielectric constant of the non-orientation part And the thickness may be determined.

【0028】上記のいずれの場合においても、前記検光
子が試料に入射する前記測定光の光軸を中心として回転
可能に構成されており、前記演算装置は前記検光子が回
転したときの前記光検出器の検出内容により回転角と検
出強度の相関を観測して反射光の偏光状態の測定を行う
こととしてもよい。
In any of the above cases, the analyzer is configured to be rotatable about the optical axis of the measurement light incident on the sample, and the arithmetic unit is configured to detect the light when the analyzer rotates. The polarization state of the reflected light may be measured by observing the correlation between the rotation angle and the detected intensity according to the detection content of the detector.

【0029】「作用」本発明においては、S偏光成分の
み、もしくは、P偏光成分のみの一定の偏光状態の光の
一部をハーフミラーによって折り曲げ、通過による偏光
状態の変化が生じないレンズを介して試料面で焦点を結
ぶように集光させる。この後、同じレンズによって拡大
された反射光のうち、試料への入射光によって生じた反
射光の偏光状態を、偏光子もしくは偏光子と1/4波長
板、または、1次元または2次元の位置検出器を用いて
測定し、偏光状態の入射方位、入射角依存性を、レンズ
とハーフミラーの間に設けた方位可変の1/2波長板を
回転させること、もしくはハーフミラーの方位を回転さ
せることによって測定を行うものである。
[Operation] In the present invention, a part of the light having a fixed polarization state of only the S-polarized component or only the P-polarized component is bent by a half mirror, and passes through a lens in which the polarization state does not change due to passage. To focus on the sample surface. Then, of the reflected light magnified by the same lens, the polarization state of the reflected light generated by the incident light on the sample is changed to a polarizer or a polarizer and a quarter-wave plate, or a one-dimensional or two-dimensional position. Using a detector, measure the incident azimuth and incident angle dependence of the polarization state by rotating the azimuth-variable half-wave plate provided between the lens and the half mirror, or by rotating the azimuth of the half mirror. In this way, the measurement is performed.

【0030】上記のように構成される本発明において
は、主誘電率座標が試料表面に対して傾きをもっている
試料や、主誘電率が試料表面に垂直な試料でも微小部の
異方的誘電率と膜厚、主誘電率座標の傾きの評価が可能
となる。その原理について以下に述べる。
In the present invention configured as described above, the anisotropic dielectric constant of the minute part is obtained even for a sample whose main dielectric constant is inclined with respect to the sample surface or a sample whose main dielectric constant is perpendicular to the sample surface. And the inclination of the film thickness and the main dielectric constant coordinate can be evaluated. The principle is described below.

【0031】反射光の偏光状態は4×4行列(ベルマン
他 フィジカルレビューレターズ25巻 577ページ
1970年:D. W. Berrman and T. J. Scheffer, Ph
yscal Review Letters, 25, 577 (1970))により計算で
きる。この方法に従えば入射角βで試料に光が入射した
場合、ΦI、Φr、Φtで入射光、反射光、および、基板
への透過光の状態を表すと、それぞれの間に成立する関
係は、配向層の4×4行列と膜厚L2、d2と無配向層の4
×4行列と膜厚L、dを用いて Φt = exp(id1L1)exp(id2L2)(ΦI+Φr) となる。L1においてΔ14, Δ24, Δ31, Δ32, Δ33, Δ
41, Δ42,、および、Δ4 4は0であり、残りは、 Δ11=-(εe- εo)sinβsinθ cosθ sinΦ/(εecos2q+
εosin2q) Δ12=1- sin2β/(εecos2θ+ εosin2θ) Δ13=(εe- εo)sinβsinθ cosθ cosΦ/ (εecos2θ+
εosin2θ) Δ21oe-(εe- εo)sin2θ cos2Φ]/ (εecos2θ+
εosin2θ) Δ22=-εee- εo)sin2θ cos2f/ (εecos2θ+ εo s
in2θ) Δ23=-εoe- εo)sinθ cosΦsinΦ/ (εecos2θ+
εosin2θ) Δ34=1 Δ43oe- (εe- εo)sin2θ sin2f]/ (εecos2θ+
εosin2θ)-sin2β で表される。この式中でεeεoは主誘電率座標系で表し
た誘電率、θは主誘電率座標の膜表面に対する傾斜角、
Φが入射光の面内方位角である。L2はεe=εoであるの
で、それらを誘電率εで置き換えると、更にΔ11
Δ22、Δ13、Δ23が0になり、 Δ12=1- sin2β/ε Δ21=ε Δ34=1 Δ43=ε-sin2β を得る。以上の式を解くことにより反射光の偏光状態を
求めることができる。この式より、試料に入射した光
は、試料表面に平行であるS波成分、および、光の進行
方向と垂直であるとともにS波成分と直交するP波成
分、のいずれも位相差や振幅が反射の前後で変化し、S
波成分とP波成分の振幅と互いの位相差で表される反射
光の偏光状態、および、強度が、入射角、膜の屈折率、
厚さ、および、基板の屈折率に依存することがわかる。
そこで反射光の偏光状態や強度の角度依存性を測定する
ことにより、試料の膜厚、および、屈折率を決定でき
る。
The polarization state of the reflected light is 4 × 4 matrix (Bellman et al., Physical Review Letters, Vol. 25, p. 577, 1970: DW Berrman and TJ Scheffer, Ph.
yscal Review Letters, 25, 577 (1970)). According to this method, when light is incident on the sample at an incident angle β, the states of incident light, reflected light, and transmitted light to the substrate are represented by Φ I , Φ r , Φ t , respectively. The relationship between the 4 × 4 matrix of the alignment layer, the film thickness L 2 , d 2 and the 4
Using the × 4 matrix and the film thicknesses L 1 and d 1 , Φt = exp (id 1 L 1 ) exp (id 2 L 2 ) (Φ I + Φ r ). Delta 14 in L 1, Δ 24, Δ 31 , Δ 32, Δ 33, Δ
41, delta 42 ,, and, delta 4 4 is 0, the remainder, Δ 11 = - (ε e - ε o) sinβsinθ cosθ sinΦ / (ε e cos 2 q +
ε o sin 2 q) Δ 12 = 1- sin 2 β / (ε e cos 2 θ + ε o sin 2 θ) Δ 13 = (ε e −ε o ) sin β sin θ cosθ cosΦ / (ε e cos 2 θ +
ε o sin 2 θ) Δ 21 = ε oe-eo ) sin 2 θ cos 2 Φ] / (ε e cos 2 θ +
ε o sin 2 θ) Δ 22 = -ε eeo ) sin 2 θ cos 2 f / (ε e cos 2 θ + ε o s
in 2 θ) Δ 23 = -ε oeo ) sinθ cosΦsinΦ / (ε e cos 2 θ +
ε o sin 2 θ) Δ 34 = 1 Δ 43 = ε oe-eo ) sin 2 θ sin 2 f] / (ε e cos 2 θ +
ε o sin 2 θ) -sin 2 β. In this equation, ε e ε o is the permittivity expressed in the main permittivity coordinate system, θ is the inclination angle of the main permittivity coordinate with respect to the film surface,
Φ is the in-plane azimuth of the incident light. Since L 2 is ε e = ε o , by replacing them with the dielectric constant ε, Δ 11 ,
Δ 22, Δ 13, Δ 23 becomes 0, Δ 12 = 1- obtain sin 2 β / ε Δ 21 = ε Δ 34 = 1 Δ 43 = ε-sin 2 β. By solving the above equation, the polarization state of the reflected light can be obtained. According to this equation, the phase difference and amplitude of the S-wave component parallel to the sample surface and the P-wave component perpendicular to the traveling direction of the light and orthogonal to the S-wave component are both found for the light incident on the sample. Changes before and after reflection, S
The polarization state and intensity of the reflected light represented by the amplitude of the wave component and the P-wave component and the phase difference between each other are:
It can be seen that it depends on the thickness and the refractive index of the substrate.
Therefore, by measuring the polarization state and the angle dependence of the intensity of the reflected light, the film thickness and the refractive index of the sample can be determined.

【0032】空間的に微小な部分の膜厚や屈折率の測定
は、入射光をレンズで集光して試料面の入射光のあたる
部分の面積を小さくし、反射光を再びレンズを用いて平
行光線化して強度プロファイルを位置検出器により測定
して、反射光強度の入射角依存性を決定して膜厚と屈折
率を計算するBPR(Beam Profile Reflectmetry)法
によって可能となる。
In the measurement of the film thickness and the refractive index of a spatially minute portion, the incident light is condensed by a lens to reduce the area of the sample surface where the incident light hits, and the reflected light is again reflected by the lens. This can be achieved by a BPR (Beam Profile Reflectometry) method in which the intensity profile is measured by a position detector after being converted into parallel rays, the incident angle dependence of the reflected light intensity is determined, and the film thickness and the refractive index are calculated.

【0033】従来のBPR法は光学的に等方的な薄膜を
測定対象としているが、検出器の前に検光子(1/4波
長板と偏光子、または、偏光子)のみを挿入して反射光
のS波成分とP波成分の強度をそれぞれ測定することに
よりS偏光成分とP偏光成分がまじり合った反射光を生
じる光学的に異方的な膜についても測定することができ
る。
In the conventional BPR method, an optically isotropic thin film is measured, but only an analyzer (a quarter-wave plate and a polarizer, or a polarizer) is inserted in front of the detector. By measuring the intensities of the S-wave component and the P-wave component of the reflected light, an optically anisotropic film that produces reflected light in which the S-polarized component and the P-polarized component are mixed can be measured.

【0034】例として、S偏光成分のみの光を特定の入
射角で異方的な膜に入射した際に生じた反射光のS成分
とP成分がそれぞれ Rss=cos(ωt) Rps=cos(ωt+Δs) であった場合、検出器の上流に置かれた検光子の振動方
向を入射光と同じ向きに設定すればRssの入射角度依存
性を測定でき、検光子の振動方向を入射光と垂直に設定
すればRpsの入射角度依存性を測定できる。
As an example, the S component and the P component of the reflected light generated when light having only the S-polarized component is incident on the anisotropic film at a specific incident angle are respectively Rss = cos (ωt) Rps = cos ( ωt + Δs), the incident angle dependence of Rss can be measured by setting the vibration direction of the analyzer placed upstream of the detector to the same direction as the incident light, and the vibration direction of the analyzer is perpendicular to the incident light. , The dependency of Rps on the incident angle can be measured.

【0035】本発明においては、図11に示したように
直線偏光した光をレンズで集光して入射光とするので、
S偏光成分を与える入射方位とP偏光成分を与える入射
方位は直交し、検光子の方位がRssを測定する状態に調
整されていれば、レンズを通過することによる偏光状態
の変化が生じることはなく、2次元検出器を用いてP偏
光成分の入射光によって発生する反射光のP偏光成分R
ppも同時に測定することができる。
In the present invention, as shown in FIG. 11, linearly polarized light is condensed by a lens to become incident light.
The incident direction for providing the S-polarized component and the incident direction for providing the P-polarized component are orthogonal, and if the direction of the analyzer is adjusted to measure Rss, a change in the polarization state due to passing through the lens will not occur. Instead, the P-polarized component R of the reflected light generated by the incident light of the P-polarized component using the two-dimensional detector
pp can also be measured at the same time.

【0036】同様にRpsとRspの同時に測定することが
可能である。このような配置で測定された、Rss、Rs
p、Rps、Rppの入射角依存性と計算値とが一致するよ
うに異方層の誘電率εe、εo、主誘電率座標の試料表面
に対する傾斜角θ、と膜厚d1、等方相の誘電率εと膜厚
2を最適化して試料の構造を決定できるが、測定誤差
の存在を考慮するとそれぞれのパラメータを一義的に決
定することは困難である。そこで、Rss、Rsp、Rps、
Rppの入射方位依存性を測定して、最適化を行なう測定
値を増やすことにより決定されるパラメータの信頼性の
向上を計る。
Similarly, it is possible to measure Rps and Rsp simultaneously. Rss, Rs measured in such an arrangement
The dielectric constants ε e and ε o of the anisotropic layer, the inclination angle θ of the main dielectric constant with respect to the sample surface, the film thickness d 1 , etc., so that the incident angle dependence of p, Rps, and Rpp agree with the calculated value. Although the structure of the sample can be determined by optimizing the dielectric constant ε and the film thickness d 2 of the phase, it is difficult to uniquely determine each parameter in consideration of the existence of a measurement error. Therefore, Rss, Rsp, Rps,
By measuring the dependence of Rpp on the incident azimuth, the reliability of the parameter determined by increasing the measured value for optimization is improved.

【0037】入射方位依存性の測定は集光に用いるレン
ズの上流に1/2波長板を挿入し、その光学軸を回転さ
せることで試料に入射するS偏光成分の光、および、P
偏光成分の光の入射方位を変化させる。この際、1/2
波長板の回転に同期して1次元検出器の方位も変化させ
る。しかしRsp、Rpsは反射光がレンズを通過する際に
S成分とP成分のガラスの透過率の差から、偏光の振幅
成分が変化する。そのためRssとRsp、および、Rppと
Rps成分の位相差Δs、Δpが正しく測定される。このよ
うにして得られた、 位相差ΔsまたはΔpの入射角、お
よび、入射方位依存性と計算値が一致するように異方層
の誘電率εe、εo、主誘電率座標の試料表面に対する傾
斜角θ、膜厚d1を最適化して試料の構造を決定する。
For the measurement of the incident azimuth dependence, a half-wave plate is inserted upstream of the lens used for focusing, and the optic axis is rotated so that the light of the S-polarized component incident on the sample and P
The incident direction of the polarized light component is changed. At this time, 1/2
The direction of the one-dimensional detector is also changed in synchronization with the rotation of the wave plate. However, as for Rsp and Rps, when the reflected light passes through the lens, the amplitude component of the polarized light changes due to the difference between the transmittances of the S component and the P component of the glass. Therefore, the phase differences Δs and Δp between the components Rss and Rsp and between the components Rpp and Rps are correctly measured. Thus obtained, the incident angle of the phase difference Δs or Δp, and the dielectric constants ε e and ε o of the anisotropic layer and the sample surface of the main dielectric constant coordinates so that the calculated values match the incident azimuth dependency. inclination angle theta, by optimizing the thickness d 1 determining the structure of the sample to.

【0038】S偏光、および、P偏光の試料への入射方
位は、ハーフミラーの方位を変えることでも実現可能で
ある。
The incident direction of the S-polarized light and the P-polarized light to the sample can be realized by changing the direction of the half mirror.

【0039】[0039]

【発明の実施の形態】次に、本発明の実施例について図
面を参照して説明する。
Next, an embodiment of the present invention will be described with reference to the drawings.

【0040】実施例1 図1は本発明による一実施例の構成を示す図である。 Embodiment 1 FIG. 1 is a diagram showing the configuration of an embodiment according to the present invention.

【0041】本実施例は、ステージ11を備えた装置で
あり、5mWのHe―Neレーザーである光源1、偏光
子2、1/2波長板3、入射光の集光と反射光の平行化
に用いられるレンズ4、ハーフミラー5、検光子6、光
検出器であるCCD素子7、測定データを一時的に記憶
し、検出器の各素子の検出強度を数値出力する記憶装置
8、演算装置9、試料10から構成されている。
This embodiment is an apparatus provided with a stage 11, which is a light source 1 which is a 5 mW He-Ne laser, a polarizer 2, a half-wave plate 3, a method for condensing incident light and a method for parallelizing reflected light. 4, a half mirror 5, an analyzer 6, a CCD element 7 serving as a photodetector, a storage device 8 for temporarily storing measurement data, and numerically outputting a detection intensity of each element of the detector, an arithmetic unit 9 and a sample 10.

【0042】光源1から出射された測定光は偏光子2、
ハーフミラー5、1/2波長板3、レンズ4を介してス
テージ11上の試料10へ入射する。試料10からの反
射光は、レンズ4、1/2波長板3、ハーフミラー5、
検光子6を介してCCD素子7に入射する。
The measurement light emitted from the light source 1 is a polarizer 2,
The light enters the sample 10 on the stage 11 via the half mirror 5, the half-wave plate 3, and the lens 4. The reflected light from the sample 10 is transmitted through a lens 4, a half-wave plate 3, a half mirror 5,
The light enters the CCD device 7 via the analyzer 6.

【0043】CCD素子7としては1次元のものを2つ
用い、各CCD素子にてP偏光成分およびS偏光成分が
検出できるようにこれらの検出方向が直交するように配
置した。
Two one-dimensional CCD elements 7 were used, and the CCD elements were arranged so that their detection directions were orthogonal so that the P-polarized light component and the S-polarized light component could be detected by each CCD element.

【0044】レンズ4としては開口数Naが0.9のオ
リンパス社製の顕微鏡の100倍対物レンズを用いた。
焦点での観察域の大きさ(直径)は約1μmであり、入
射角0°〜±66°の領域を測定できる。
As the lens 4, a 100 × objective lens of an Olympus microscope having a numerical aperture Na of 0.9 was used.
The size (diameter) of the observation area at the focal point is about 1 μm, and it is possible to measure an area at an incident angle of 0 ° to ± 66 °.

【0045】本実施例における測定について述べると、
まず、光源1にて発生し、偏光子2を通った直線偏光の
平行光を試料10の表面で焦点を結ぶようにレンズ4で
集光して試料10を構成する基板上に作製された薄膜へ
の入射光とする。この光によって発生した反射光は入射
光を集光するために用いたレンズ4を通過することで再
び拡張される。この後、検光子6を通過させた後に、C
CD素子7で反射光のS偏光成分、および、P偏光成分
の強度を測定する。このとき、特に試料10に対してS
偏光状態、および、P偏光状態で入射する方位の反射光
に注目する。
The measurement in this embodiment will be described.
First, a thin film formed on a substrate constituting the sample 10 by condensing parallel light of linearly polarized light generated by the light source 1 and passing through the polarizer 2 with the lens 4 so as to focus on the surface of the sample 10. Light incident on the The reflected light generated by this light is expanded again by passing through the lens 4 used to collect the incident light. Thereafter, after passing through the analyzer 6, C
The intensity of the S-polarized light component and the P-polarized light component of the reflected light is measured by the CD element 7. At this time, in particular, S
Attention is paid to the reflected light of the azimuth which is incident in the polarization state and the P polarization state.

【0046】本実施例における測定では、レンズ4へ入
射する光と試料10からの反射光が同じ経路をたどるた
め、ハーフミラー5が使用されている。試料10への入
射方位を変えるためにハーフミラー5を用いて入射光、
または反射光の進行方位が変えられる。
In the measurement in this embodiment, the half mirror 5 is used because the light incident on the lens 4 and the reflected light from the sample 10 follow the same path. Incident light using the half mirror 5 to change the incident direction to the sample 10;
Alternatively, the traveling direction of the reflected light can be changed.

【0047】反射光の偏光状態を測定する際にはレンズ
4とCCD素子7との間に設けられた検光子6を回転さ
せ、回転角と検出強度の相関を観測することで偏光状態
を観測する。更に、ハーフミラー5の回転、および、ハ
ーフミラー5とレンズ4の間に挿入した1/2波長板3
の回転させて入射光の偏光方向とCCD素子7で検出さ
れる方向を回転させることで反射光強度または反射光の
偏光状態の異方性の測定を行なう。
When measuring the polarization state of the reflected light, the analyzer 6 provided between the lens 4 and the CCD element 7 is rotated, and the polarization state is observed by observing the correlation between the rotation angle and the detected intensity. I do. Further, the rotation of the half mirror 5 and the half-wave plate 3 inserted between the half mirror 5 and the lens 4
Is rotated to rotate the polarization direction of the incident light and the direction detected by the CCD element 7, thereby measuring the reflected light intensity or the anisotropy of the polarization state of the reflected light.

【0048】本実施例の装置は、オリンパス社製の顕微
鏡をもとに偏光子2、ハーフミラー5、検光子6、CC
D素子7や、演算装置等8、9を付加する改造を加えて
作製したものである。試料10を搭載するステージ11
の回転中心を入射光の焦点と一致させ、さらに回転軸を
入射光の対称軸と平行にするため、ガラス基板に直径約
2μmのアルミニウムを蒸着したものを用いた。
The apparatus of this embodiment is based on a microscope manufactured by Olympus Corporation, and includes a polarizer 2, a half mirror 5, an analyzer 6, a CC
It is manufactured by adding a modification to add a D element 7, an arithmetic unit, and the like 8, 9. Stage 11 on which sample 10 is mounted
In order to make the center of rotation coincide with the focal point of the incident light and to make the axis of rotation parallel to the axis of symmetry of the incident light, a glass substrate on which aluminum having a diameter of about 2 μm was deposited was used.

【0049】ステージ11に載せられたアルミニウム膜
からの反射光が検出器であるCCD素子7の各素子で測
定され、これらの強度の和が回転に対して変化しない状
態で調整を終了し、回転ステージを固定した。なお、試
料10の測定に先立って各構成部の調整を行う度毎に、
その都度ここで用いたアルミニウム蒸着板からの反射光
強度を測定して装置の状態を確認した。
The reflected light from the aluminum film placed on the stage 11 is measured by each element of the CCD element 7 as a detector, and the adjustment is completed in a state where the sum of these intensities does not change with respect to the rotation. The stage was fixed. In addition, each time the adjustment of each component is performed prior to the measurement of the sample 10,
Each time, the intensity of the reflected light from the aluminum deposition plate used here was measured to confirm the state of the apparatus.

【0050】上記の装置を用いて以下のようにして作製
した試料Aを測定した。試料Aは、液晶の垂直配向を実
現するために厚さ1.1mmのガラス基板(コーニング
社製7059)上に日本合成ゴム社製の垂直配向用ポリ
イミド原料であるアルキルアミン酸PC2のLB膜(ラ
ングミュア・ブロジェット膜)を堆積させた。このLB
膜はPC2を水面に展開後、ガラス基板を水面に垂直な
方向に4cm/sで上下に移動させて2回累積させた。
この後、オーブンで200℃、3時間加熱してポリイミ
ド膜を作製した。
A sample A prepared as described below was measured using the above apparatus. Sample A is a LB film of alkylamine acid PC2, which is a polyimide raw material for vertical alignment manufactured by Nippon Synthetic Rubber Co., Ltd., on a 1.1 mm-thick glass substrate (7059 manufactured by Corning Incorporated) in order to realize vertical alignment of liquid crystal. Langmuir-Blodgett film) was deposited. This LB
After the PC2 was spread on the water surface, the film was accumulated twice by moving the glass substrate up and down at 4 cm / s in a direction perpendicular to the water surface.
Thereafter, the resultant was heated in an oven at 200 ° C. for 3 hours to form a polyimide film.

【0051】上記のポリイミド膜の膜厚をファイブラボ
社製のエリプソメータMARY-102を用いて入射角を70
°、および、50°として測定を試みた。入射角が70
°、および、50°のいずれの場合にも、測定された反
射光の偏光状態を示す値(Δ、ψ)がガラス基板表面か
らの反射光の偏光状態のときと有為な差が測定されず、
ポリイミド膜の膜厚を決定することが出来なかった。こ
れは累積回数が少なくて膜厚が薄いことと、ポリイミド
膜の屈折率がガラス基板に近いためと考えられる。
The film thickness of the above polyimide film was adjusted to an incident angle of 70 using an ellipsometer MARY-102 manufactured by FIBRABO.
° and 50 ° were measured. 70 incident angle
In both cases of ° and 50 °, a significant difference between the measured polarization state of the reflected light (Δ, ψ) and the polarization state of the reflected light from the glass substrate surface was measured. Without
The thickness of the polyimide film could not be determined. This is presumably because the number of accumulations is small and the film thickness is small, and the refractive index of the polyimide film is close to that of the glass substrate.

【0052】上記の基板上にシアノビフェニル系液晶5
CB(メルク社製)を蒸着した。このときの蒸着は基板
と液晶を入れた容器を真空容器に入れ、真空容器の底に
置かれた液晶容器を加熱して液晶を蒸発させることによ
り行った。基板は容器内の天井に近い所に保持し、蒸着
面(ポリイミドを製膜した面)を下にむけて、蒸発した
液晶分子を付着させることにより液晶層を作製した。液
晶容器と基板の距離は約10cmとした。試料作製に際し
て、真空容器内をロータリーポンプにて1.2×10-2
mTorrに排気後、引き口を閉じた。基板は基板ホル
ダーに27°C(300K)の温水を流して温度を制御
した。液晶容器は抵抗加熱により室温から約70°Cに
昇温させてこの状態を約2時間保持させた。
On the above substrate, a cyanobiphenyl liquid crystal 5
CB (manufactured by Merck) was deposited. The vapor deposition at this time was performed by placing the container containing the substrate and the liquid crystal in a vacuum container and heating the liquid crystal container placed at the bottom of the vacuum container to evaporate the liquid crystal. The substrate was held near the ceiling in the container, and the evaporated surface (surface on which the polyimide film was formed) was directed downward, and the evaporated liquid crystal molecules were attached to form a liquid crystal layer. The distance between the liquid crystal container and the substrate was about 10 cm. At the time of sample preparation, the inside of the vacuum container was 1.2 × 10 −2 with a rotary pump.
After evacuation to mTorr, the inlet was closed. The temperature of the substrate was controlled by flowing hot water of 27 ° C. (300 K) through the substrate holder. The temperature of the liquid crystal container was increased from room temperature to about 70 ° C. by resistance heating, and this state was maintained for about 2 hours.

【0053】上記の試料からの反射光の位相差の入射方
位、入射角依存性を測定したところ、S偏光入射成分、
P偏光入射成分ともに入射方位、入射角の依存性がみら
れず、光学軸は基板に垂直であることが明らかになっ
た。
The incident azimuth and incident angle dependence of the phase difference of the reflected light from the sample were measured.
No dependence of the incident azimuth and the incident angle was observed for the P-polarized light incident component, and it became clear that the optical axis was perpendicular to the substrate.

【0054】本実施例の装置を用いて、さらに試料Bを
測定した。試料Bはまず、厚さ1.1mmのガラス基板(コ
ーニング社製7059)上に日本合成ゴム社製の垂直配
向用ポリイミド原料であるアルキルアミン酸PC2と水
平配向用ポリイミド原料であるアルキルアミン酸PC1
を9:1の割合で混合したものからLB膜を堆積した。
この膜は混合液を水面に展開後、ガラス基板を水面に垂
直な方向に4cm/sで上下に移動させて2回累積させた。
この後、オーブンで200℃、3時間加熱してポリイミ
ド膜を作成した。
The sample B was further measured using the apparatus of this example. Sample B was prepared on a 1.1 mm-thick glass substrate (7059 by Corning Incorporated) on a vertical alignment polyimide raw material PC2 and a horizontal alignment polyimide raw material PC1 by Nippon Synthetic Rubber Co., Ltd.
Was mixed at a ratio of 9: 1 to deposit an LB film.
After the mixed solution was spread on the water surface, the film was accumulated twice by moving the glass substrate up and down at 4 cm / s in a direction perpendicular to the water surface.
Thereafter, the resultant was heated in an oven at 200 ° C. for 3 hours to form a polyimide film.

【0055】上記のポリイミド膜の膜厚をファイブラボ
社製のエリプソメータMARY-102を用いて測定を試みたと
ころ、試料Aと同様に入射角が70°、および、50°
のいずれのときにも測定された反射光の偏光状態を示す
値(Δ、ψ)がガラス基板表面からの反射光の偏光状態
と有為な差が測定されず、ポリイミド膜の膜厚を決定す
ることが出来なかった。つまり、この膜は屈折率がガラ
ス基板とほぼ同じで、膜厚も薄いと結論される。この基
板上にシアノビフェニル系液晶5CB(メルク社製)を
蒸着した。蒸着は基板と液晶を入れた容器を真空容器に
入れ、真空容器の底に置かれた液晶容器を加熱して液晶
を蒸発させることにより行った。基板は容器内の天井に
近い所に保持し、蒸着面(ポリイミドを製膜した面)を
下に向けて、蒸発した液晶分子を付着させることにより
液晶層を作製した。液晶容器と基板の距離は約10cmと
した。試料作製に際して、真空容器内をロータリーポン
プにて1.2×10-2mTorrに排気後、引き口を閉
じた。基板は基板ホルダーに27°C(300K)の温
水を流して温度を制御した。液晶容器は抵抗加熱により
室温から約70°Cに昇温させて約1時間保持させた。
When an attempt was made to measure the thickness of the above polyimide film using an ellipsometer MARY-102 manufactured by Five Bravo Co., the incidence angles were 70 ° and 50 ° similarly to Sample A.
In any case, the value indicating the polarization state of the reflected light (Δ, ψ) was not significantly different from the polarization state of the reflected light from the glass substrate surface, and the thickness of the polyimide film was determined. I couldn't do it. That is, it is concluded that this film has almost the same refractive index as the glass substrate and a small film thickness. Cyanobiphenyl-based liquid crystal 5CB (manufactured by Merck) was deposited on the substrate. Vapor deposition was performed by placing a container containing a substrate and liquid crystal in a vacuum container, and heating the liquid crystal container placed at the bottom of the vacuum container to evaporate the liquid crystal. The substrate was held near the ceiling in the container, and the liquid crystal layer was produced by attaching the evaporated liquid crystal molecules with the deposition surface (the surface on which polyimide was formed) facing downward. The distance between the liquid crystal container and the substrate was about 10 cm. In preparing the sample, the inside of the vacuum vessel was evacuated to 1.2 × 10 −2 mTorr by a rotary pump, and then the inlet was closed. The temperature of the substrate was controlled by flowing hot water of 27 ° C. (300 K) through the substrate holder. The liquid crystal container was heated from room temperature to about 70 ° C. by resistance heating and held for about 1 hour.

【0056】本実施例による測定を行なう際には、蒸着
した膜が液晶相(25℃〜35℃)となるようにするた
め、測定を行なう部屋の温度を28℃に設定した。
In performing the measurement according to the present example, the temperature of the room where the measurement was performed was set to 28 ° C. so that the deposited film became a liquid crystal phase (25 ° C. to 35 ° C.).

【0057】図2、および、図3のそれぞれは入射角を
70°、および、50°とし、S偏光成分を入射した場
合に測定された試料からの反射光の偏光状態の入射方位
依存性を示す図であり、図4、および、図5のそれぞれ
は入射角を70°、および、50°とし、P偏光成分を
入射した場合に測定された試料からの反射光の偏光状態
の入射方位依存性、および、最適化されたパラメータに
よる計算値を示す図である。膜構造を記述するパラメー
タは計算値が測定値にもっとも近くなるように非線型最
小二乗法によって決定した。各図中、白丸が測定値を示
し、実線が計算値を示している。
FIGS. 2 and 3 show the incident azimuth dependence of the polarization state of the reflected light from the sample measured when the incident angle was 70 ° and 50 °, and the S-polarized component was incident. FIGS. 4 and 5 show incident angles of 70 ° and 50 °, respectively, and depend on the incident direction of the polarization state of reflected light from the sample measured when a P-polarized component is incident. It is a figure which shows the property and the calculated value by the optimized parameter. The parameters describing the film structure were determined by the nonlinear least squares method so that the calculated values were closest to the measured values. In each figure, white circles indicate measured values, and solid lines indicate calculated values.

【0058】その結果、異方的誘電率εeεoが2.8
5,2.30、膜厚が58nm、傾斜角35°の単軸異
方性膜であることがわかった。試料面内での液晶分子配
向方位はLB膜を累積する際の基板の移動方向と平行で
あった。
As a result, the anisotropic dielectric constant ε e ε o becomes 2.8.
It was found that the film was a uniaxial anisotropic film having a thickness of 5, 2.30, a thickness of 58 nm, and an inclination angle of 35 °. The orientation of the liquid crystal molecules in the plane of the sample was parallel to the moving direction of the substrate when the LB film was accumulated.

【0059】以上のように、膜の光学軸(異方性の軸)
が基板面に対して垂直でない場合には、膜の異方的な誘
電率と光学軸の傾き角、膜厚を決定できることが明らか
になった。
As described above, the optical axis of the film (axis of anisotropy)
When is not perpendicular to the substrate surface, the anisotropic dielectric constant of the film, the inclination angle of the optical axis, and the film thickness can be determined.

【0060】実施例2 次に、本発明の第2の実施例について図面を参照して説
明する。
Embodiment 2 Next, a second embodiment of the present invention will be described with reference to the drawings.

【0061】図6は本発明の第2の実施例の構成を示す
図である。
FIG. 6 is a diagram showing the configuration of the second embodiment of the present invention.

【0062】本実施例は、5mWのHe―Neレーザー
を用いた光源24、偏光子12、入射光の集光と反射光
の平行化に用いるレンズ13、ハーフミラー14、検光
子15、1次元の光検出器であるCCD素子16、測定
データを一時記憶し、CCD素子16の各素子の検出強
度を数値出力する記憶装置17、演算装置18、試料1
9、光源24からの出射光を折り曲げるミラー20〜2
2により構成されている。ミラー20〜22、および、
偏光子12はレーザー光源24の位置を固定の状態で光
の入射方位を変えることを可能とするためにハーフミラ
ー14と同じ軸を回転軸として回転可能に構成されてい
る。
In this embodiment, a light source 24 using a 5 mW He-Ne laser, a polarizer 12, a lens 13 used for condensing incident light and collimating reflected light, a half mirror 14, an analyzer 15, and a one-dimensional light source are used. CCD device 16, which is a photodetector, storage device 17, which temporarily stores measurement data, and numerically outputs the detected intensity of each device of CCD device 16, arithmetic device 18, sample 1
9. Mirrors 20 to 2 for bending light emitted from light source 24
2. Mirrors 20-22, and
The polarizer 12 is configured to be rotatable about the same axis as the half mirror 14 as a rotation axis so that the incident direction of light can be changed while the position of the laser light source 24 is fixed.

【0063】本実施例における、光学的な要素の作用お
よび解折動作は第1の実施例と同様である。
The operation of the optical element and the folding operation in this embodiment are the same as those in the first embodiment.

【0064】CCD素子16としては1次元のものを2
つ用い、各CCD素子にてP偏光成分およびS偏光成分
が検出できるようにこれらの検出方向が直交するように
配置した。レンズ13には開口数Naが0.9のオリン
パス製顕微鏡の100倍対物レンズを用いた。焦点での
観察域の大きさ(直径)は約1μmであり、入射角0°
〜66°の領域を測定できる。
As the CCD element 16, one-dimensional one is used.
In order to detect the P-polarized light component and the S-polarized light component in each CCD element, they are arranged so that their detection directions are orthogonal to each other. As the lens 13, a 100 × objective lens of an Olympus microscope having a numerical aperture Na of 0.9 was used. The size (diameter) of the observation area at the focal point is about 1 μm, and the incident angle is 0 °.
An area of ~ 66 ° can be measured.

【0065】上記の装置により以下のようにして作製さ
れた試料Cを測定した。ガラス基板(コーニング社製7
059)上に日産化学社製ポリイミドPI−Cをスピン
コートし、90゜Cで30分加熱後、250゜Cで60
分加熱して試料Cとした。この状態でファイブラボ社製
のエリプソメータMARY−102を用いて入射角70
°で膜厚を測定したところ、72nmであった。その
後、直径50mmの布ローラーを用いて、押し込み長
0.05mm、回転速度800rpm、基板移動速度3
0mm/sで2回のラビングを行った。
A sample C prepared as described below was measured using the above-described apparatus. Glass substrate (Corning 7
059) is spin-coated with polyimide PI-C manufactured by Nissan Chemical Industries, and heated at 90 ° C. for 30 minutes, and then heated at 250 ° C. for 60 minutes.
Sample C was heated for a minute. In this state, an incident angle of 70 was obtained using an ellipsometer MARY-102 manufactured by Fibravo.
When the film thickness was measured in °, it was 72 nm. Then, using a cloth roller having a diameter of 50 mm, the indentation length is 0.05 mm, the rotation speed is 800 rpm, and the substrate movement speed is 3 mm.
Rubbing was performed twice at 0 mm / s.

【0066】図7、および、図8のそれぞれは入射角を
70°、および、50°とし、S偏光成分を入射した場
合に測定された試料からの反射光の偏光状態の入射方位
依存性を示す図であり、図9、および、図10のそれぞ
れは入射角を70°、および、50°とし、P偏光成分
を入射した場合に測定された試料からの反射光の偏光状
態の入射方位依存性、および、最適化されたパラメータ
による計算値を示す図である。各図中、白丸が測定値を
示し、実線が計算値を示している。膜構造を記述するパ
ラメータは計算値が測定値にもっとも近くなるように非
線型最小二乗法によって決定した。
FIGS. 7 and 8 show the incident angle dependence of the polarization state of the reflected light from the sample measured when the S-polarized component was incident, with the incident angles of 70 ° and 50 °, respectively. FIGS. 9 and 10 show incident angles of 70 ° and 50 °, respectively, and the incident state dependence of the polarization state of the reflected light from the sample measured when the P-polarized component was incident. It is a figure which shows the property and the calculated value by the optimized parameter. In each figure, white circles indicate measured values, and solid lines indicate calculated values. The parameters describing the film structure were determined by the nonlinear least squares method so that the calculated values were closest to the measured values.

【0067】その結果、配向部の異方的誘電率εε
が3.17、2.58、厚さが33nm、主誘電率座標
の傾斜角25°と決定された。
As a result, the anisotropic dielectric constant ε e ε o of the alignment portion is obtained.
Were determined to be 3.17 and 2.58, the thickness was 33 nm, and the inclination angle of the main dielectric constant coordinate was 25 °.

【0068】上記の装置構成においても、ポリイミド分
子が配向して光学的な異方性を有する部分の異方的な誘
電率、光学軸の向き、厚さを決定することができた。こ
の測定で得られた膜厚は33nmであるが、ラビング前
に測定された膜厚は72nmである。この両者の違い
は、ラビング処理は膜全体にわたってポリイミド分子を
配向させるのではなく、表面の33nmを配向させるこ
とによると考えられる。本実施例の測定で得られる位相
差は、S偏光成分またはP偏光成分を入射した場合に反
射光に現れるP偏光成分またはS偏光成分とS偏光成分
またはP偏光成分の位相差である。光学的異方性がない
場合には反射光に位相差は発生しない。つまり、本実施
例による測定で反射光に検出される位相差は光学的異方
性をもつ部分のみに起因するために、光学的に異方性が
ある部分の情報のみを取り出すことができる。
Also in the above-described apparatus configuration, the anisotropic dielectric constant, the direction of the optical axis, and the thickness of the portion where the polyimide molecules are oriented and have optical anisotropy could be determined. The film thickness obtained by this measurement is 33 nm, but the film thickness measured before rubbing is 72 nm. It is considered that the difference between the two is due to the fact that the rubbing treatment does not orient the polyimide molecules over the entire film, but instead orients the surface at 33 nm. The phase difference obtained by the measurement in the present embodiment is the phase difference between the P-polarized component or the S-polarized component and the S-polarized component or the P-polarized component that appears in the reflected light when the S-polarized component or the P-polarized component enters. When there is no optical anisotropy, no phase difference occurs in the reflected light. That is, since the phase difference detected in the reflected light in the measurement according to the present embodiment is caused only by the portion having optical anisotropy, only the information of the portion having optical anisotropy can be extracted.

【0069】特願平09−100330号に提案された
従来の手法では、ラビングされたポリイミド膜のように
光学的な異方性を示す層と等方的な層からなる試料にお
いて、異方層と等方層両方の膜厚を決定できた。しか
し、膜厚の決定は最小二乗法によるパラメータの最適化
手法によるため、同じ測定精度ならば、最適化パラメー
タの数が少ない本発明による手法の方が、信頼性の高い
値を得ることができる。なお、上述した各実施例におい
て、光検出器として1次元のCCD素子を2つ用い、各
CCD素子にてP偏光成分およびS偏光成分が検出でき
るようにこれらの検出方向が直交するように配置すると
して説明した。これは不要な領域をも検出する2次元の
CCD素子では検出時間が長くなるため、測定時間を短
くするための選択である。当然ながら2次元のCCD素
子を用いてもよく、この場合には装置構成を簡略化する
ことができる。
In the conventional method proposed in Japanese Patent Application No. 09-100330, an anisotropic layer is formed on a sample comprising an optically anisotropic layer such as a rubbed polyimide film and an isotropic layer. And the film thickness of both isotropic layers could be determined. However, since the film thickness is determined by the parameter optimization method by the least square method, the method according to the present invention having a small number of optimization parameters can obtain a more reliable value with the same measurement accuracy. . In each of the above-described embodiments, two one-dimensional CCD elements are used as photodetectors, and are arranged so that their detection directions are orthogonal so that each CCD element can detect a P-polarized component and an S-polarized component. It was explained that you do. This is an option for shortening the measurement time because a two-dimensional CCD element that also detects an unnecessary area requires a long detection time. Of course, a two-dimensional CCD element may be used, and in this case, the device configuration can be simplified.

【0070】[0070]

【発明の効果】本発明は以上説明したように構成されて
いるので、以下に記載するような効果を奏する。
Since the present invention is configured as described above, it has the following effects.

【0071】レンズを用いて直線偏光状態の光を試料に
入射し、試料からの反射光同じレンズを用いて平行光線
化し、試料への入射光がS成分またはP成分のみになる
方位に対応する反射光の位相差の入射角、および、入射
方位依存性が、1μm程度の空間分解能で測定可能とな
り、その測定値から異方性膜の誘電率、主誘電率座標の
傾斜角、異方部分の厚さが評価可能となった。
Light in a linearly polarized state is incident on the sample using a lens, and the reflected light from the sample is converted into parallel rays using the same lens, and corresponds to the direction in which the incident light on the sample has only the S component or the P component. The incident angle and incident azimuth dependence of the phase difference of the reflected light can be measured with a spatial resolution of about 1 μm. From the measured values, the dielectric constant of the anisotropic film, the inclination angle of the main dielectric constant coordinate, and the anisotropic portion Became evaluable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による測定装置の第1の実施例の構成を
示す図である。
FIG. 1 is a diagram showing a configuration of a first embodiment of a measuring apparatus according to the present invention.

【図2】試料BにS偏光成分を入射した際に発生する反
射光のうち、入射角が50°に相当する光の位相差の入
射方位依存性の図。白丸が測定値、線が計算値を示す。
FIG. 2 is a diagram illustrating the incident azimuth dependence of the phase difference of light corresponding to an incident angle of 50 ° among reflected light generated when an S-polarized component is incident on a sample B. Open circles indicate measured values, and lines indicate calculated values.

【図3】試料BにS偏光成分を入射した際に発生する反
射光のうち、入射角が70°に相当する光の位相差の入
射方位依存性の図。白丸が測定値、線が計算値を示す。
FIG. 3 is a diagram illustrating the incident azimuth dependence of the phase difference of light corresponding to an incident angle of 70 ° among reflected light generated when an S-polarized component is incident on a sample B. Open circles indicate measured values, and lines indicate calculated values.

【図4】試料BにP偏光成分を入射した際に発生する反
射光のうち、入射角が50°に相当する光の位相差の入
射方位依存性の図。白丸が測定値、線が計算値を示す。
FIG. 4 is a diagram illustrating the incident azimuth dependence of the phase difference of light corresponding to an incident angle of 50 ° among reflected light generated when a P-polarized component is incident on a sample B. Open circles indicate measured values, and lines indicate calculated values.

【図5】試料BにP偏光成分を入射した際に発生する反
射光のうち、入射角が70°に相当する光の位相差の入
射方位依存性の図。白丸が測定値、線が計算値を示す。
FIG. 5 is a diagram showing the incident azimuth dependence of the phase difference of light corresponding to an incident angle of 70 ° among reflected light generated when a P-polarized component is incident on a sample B. Open circles indicate measured values, and lines indicate calculated values.

【図6】本発明による測定装置の第2の実施例の構成を
示す図である。
FIG. 6 is a diagram showing the configuration of a second embodiment of the measuring device according to the present invention.

【図7】試料CにS偏光成分を入射した際に発生する反
射光のうち、入射角が50°に相当する光の位相差の入
射方位依存性の図。白丸が測定値、線が計算値を示す。
FIG. 7 is a diagram illustrating the incident azimuth dependence of the phase difference of light corresponding to an incident angle of 50 ° among reflected light generated when an S-polarized component is incident on a sample C. Open circles indicate measured values, and lines indicate calculated values.

【図8】試料CにS偏光成分を入射した際に発生する反
射光のうち、入射角が70°に相当する光の位相差の入
射方位依存性の図。白丸が測定値、線が計算値を示す。
FIG. 8 is a diagram illustrating the incident azimuth dependence of the phase difference of light corresponding to an incident angle of 70 ° among reflected light generated when an S-polarized component enters the sample C. Open circles indicate measured values, and lines indicate calculated values.

【図9】試料CにP偏光成分を入射した際に発生する反
射光のうち、入射角が50°に相当する光の位相差の入
射方位依存性の図。白丸が測定値、線が計算値を示す。
FIG. 9 is a diagram illustrating the incident azimuth dependence of the phase difference of light corresponding to an incident angle of 50 ° among reflected light generated when a P-polarized component enters the sample C. Open circles indicate measured values, and lines indicate calculated values.

【図10】試料CにP偏光成分を入射した際に発生する
反射光のうち、入射角が70°に相当する光の位相差の
入射方位依存性の図。白丸が測定値、線が計算値を示
す。
FIG. 10 is a diagram illustrating the incident azimuth dependence of the phase difference of light corresponding to an incident angle of 70 ° among reflected light generated when a P-polarized component is incident on the sample C. Open circles indicate measured values, and lines indicate calculated values.

【図11】レンズに入る光の位置と入射角の関係を示し
た図。1、2がレンズであり、左側が入射光の進行方向
を含む平面での電場ベクトルの振動方向を示した図であ
り、右側が試料に入射する光の成分の方位分布を光の進
行方向に直交する面に投影した図である。
FIG. 11 is a diagram illustrating a relationship between a position of light entering a lens and an incident angle. Numerals 1 and 2 denote lenses, and the left side is a diagram showing the vibration direction of the electric field vector on a plane including the traveling direction of the incident light. It is the figure projected on the orthogonal surface.

【符号の説明】[Explanation of symbols]

1,24 光源 2,12 偏光子 3 1/2波長板 4,13 レンズ 5,14 ハーフミラー 6,15 検光子 7,16 CCD素子 8,17 記憶装置 9,18 演算装置 10,19 試料 11,23 ステージ 21〜23 ミラー 1,24 light source 2,12 polarizer 3 1/2 wavelength plate 4,13 lens 5,14 half mirror 6,15 analyzer 7,16 CCD device 8,17 storage device 9,18 arithmetic unit 10,19 sample 11, 23 stage 21-23 mirror

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 直線偏光の平行光を試料表面で焦点を結
ぶようにレンズで集光して基板上に作製された薄膜への
入射光とし、発生した反射光を前記レンズを通過させる
ことで再び拡張させて偏光子を通過させた後に、S偏光
成分およびP偏光成分の各強度を測定することを試料へ
の入射方位を変えて行い、前記薄膜に入射した光の入射
角度に依存する反射光強度または反射光の偏光状態の異
方性を測定することにより、前記薄膜の分子配向部の、
誘電率、主誘電率座標の向き、および厚さと、無配向部
の誘電率と厚さを求めることを特徴とする異方性薄膜評
価方法。
1. A method in which parallel light of linearly polarized light is condensed by a lens so as to be focused on the surface of a sample to be incident light on a thin film formed on a substrate, and the generated reflected light passes through the lens. After the light is expanded again and passed through the polarizer, the intensity of each of the S-polarized light component and the P-polarized light component is measured by changing the incident direction to the sample, and the reflection depending on the incident angle of the light incident on the thin film is performed. By measuring the anisotropy of the light intensity or the polarization state of the reflected light, of the molecular orientation portion of the thin film,
A method for evaluating an anisotropic thin film, comprising determining a dielectric constant, a direction and a thickness of a main dielectric constant coordinate, and a dielectric constant and a thickness of a non-oriented portion.
【請求項2】 請求項1記載の異方性薄膜評価方法にお
いて、 入射光をハーフミラーにより折り曲げて前記薄膜へ入射
させ、前記薄膜からの前記ハーフミラーを通った反射光
についてS偏光成分およびP偏光成分の各強度を測定す
ることを特徴とする異方性薄膜評価方法。
2. The method for evaluating an anisotropic thin film according to claim 1, wherein the incident light is bent by a half mirror and is incident on the thin film. A method for evaluating an anisotropic thin film, comprising measuring each intensity of a polarized light component.
【請求項3】 請求項2記載の異方性薄膜評価方法にお
いて、 ハーフミラーを回転させることで反射光強度の異方性の
測定を行なうことを特徴とする異方性薄膜評価方法。
3. The anisotropic thin film evaluation method according to claim 2, wherein the anisotropy of reflected light intensity is measured by rotating a half mirror.
【請求項4】 請求項2記載の異方性薄膜評価方法にお
いて、 ハーフミラーとレンズの間に1/2波長板を挿入し、該
1/2波長板を回転させることで反射光の偏光状態の異
方性の測定を行なうことを特徴とする異方性薄膜評価方
法。
4. The method for evaluating an anisotropic thin film according to claim 2, wherein a half-wave plate is inserted between the half mirror and the lens, and the half-wave plate is rotated to change the polarization state of the reflected light. A method for evaluating an anisotropic thin film, comprising measuring anisotropy of a thin film.
【請求項5】 請求項1ないし請求項4のいずれかに記
載の異方性薄膜評価方法において、 S偏光成分およびP偏光成分の各強度を測定する検出器
とレンズとの間に検光子を挿入し、前記検光子を回転さ
せ、回転角と検出強度の相関を観測することにより反射
光の偏光状態の測定を行うことを特徴とする異方性薄膜
評価方法。
5. The method for evaluating an anisotropic thin film according to claim 1, wherein an analyzer is provided between the lens and a detector for measuring the intensities of the S-polarized light component and the P-polarized light component. A method for evaluating an anisotropic thin film, comprising: inserting an analyzer, rotating the analyzer, and observing a correlation between a rotation angle and a detection intensity to measure a polarization state of reflected light.
【請求項6】 直線偏光の平行光である測定光を発生す
る光源と、 測定対象の試料を搭載するステージと、 前記測定光を前記ステージ上の試料方向に折り曲げるハ
ーフミラーと、 前記ハーフミラーと前記試料との間に設けられたレンズ
および1/2波長板と、 前記試料にて反射され、前記ハーフミラーを通った後の
反射光の強度分布を測定する光検出器と、 前記ハーフミラーと前記光検出器との間に設けられた検
光子と、 前記光検出器の検出内容に応じて前記薄膜の分子配向部
の、誘電率、主誘電率座標の向き、および厚さと、無配
向部の誘電率と厚さを求める演算装置とを備え、 前記レンズは前記測定光に前記試料表面で焦点を結ば
せ、その反射光を再度平行光線化して前記ハーフミラー
に入射させることを特徴とする異方性薄膜評価装置。
6. A light source that generates measurement light that is parallel light of linearly polarized light, a stage on which a sample to be measured is mounted, a half mirror that folds the measurement light toward the sample on the stage, and the half mirror. A lens and a half-wave plate provided between the sample and the half mirror; a photodetector measuring an intensity distribution of reflected light reflected by the sample and passing through the half mirror; An analyzer provided between the photodetector, and a molecular orientation part of the thin film according to the detection content of the photodetector, a dielectric constant, a direction of a main dielectric constant coordinate, and a thickness, and a non-orientation part. A calculating device for calculating the dielectric constant and thickness of the sample, wherein the lens focuses the measurement light on the surface of the sample, makes the reflected light parallel again, and makes the reflected light incident on the half mirror. Anisotropic thin film evaluation Location.
【請求項7】 請求項6記載の異方性薄膜評価装置にお
いて、 前記ステージが試料に入射する前記測定光の光軸を中心
として回転可能に構成されており、 前記演算装置はステージが回転したときの前記光検出器
の検出内容により反射光強度の異方性の測定を行ない、
その結果に応じて前記薄膜の分子配向部の、誘電率、主
誘電率座標の向き、および厚さと、無配向部の誘電率と
厚さを求めることを特徴とする異方性薄膜評価装置。
7. The anisotropic thin-film evaluation device according to claim 6, wherein the stage is configured to be rotatable around an optical axis of the measurement light incident on the sample, and the arithmetic unit rotates the stage. The anisotropy of the reflected light intensity is measured by the detection content of the photodetector at the time,
An anisotropic thin film evaluation apparatus characterized in that a dielectric constant, a direction and a coordinate of a main dielectric constant of a molecular orientation part of the thin film, and a dielectric constant and a thickness of a non-orientation part are determined according to the result.
【請求項8】 請求項6記載の異方性薄膜評価装置にお
いて、 前記ハーフミラーが試料に入射する前記測定光の光軸を
中心として回転可能に構成されており、 前記演算装置はハーフミラーが回転したときの前記光検
出器の検出内容により反射光強度の異方性の測定を行な
い、その結果に応じて前記薄膜の分子配向部の、誘電
率、主誘電率座標の向き、および厚さと、無配向部の誘
電率と厚さを求めることを特徴とする異方性薄膜評価装
置。
8. The anisotropic thin-film evaluation device according to claim 6, wherein the half mirror is configured to be rotatable about an optical axis of the measurement light incident on the sample, and the arithmetic unit is configured to include a half mirror. The anisotropy of the reflected light intensity is measured based on the detection content of the photodetector when rotated, and according to the result, the molecular orientation of the thin film, the dielectric constant, the direction of the main dielectric constant coordinate, and the thickness. Anisotropic thin film evaluation apparatus for determining a dielectric constant and a thickness of a non-oriented portion.
【請求項9】 請求項6記載の異方性薄膜評価装置にお
いて、 前記1/2波長板が試料に入射する前記測定光の光軸を
中心として回転可能に構成されており、 前記演算装置は1/2波長板が回転したときの前記光検
出器の検出内容により反射光強度の異方性の測定を行な
い、その結果に応じて前記薄膜の分子配向部の、誘電
率、主誘電率座標の向き、および厚さと、無配向部の誘
電率と厚さを求めることを特徴とする異方性薄膜評価装
置。
9. The anisotropic thin film evaluation apparatus according to claim 6, wherein the half-wave plate is configured to be rotatable around an optical axis of the measurement light incident on the sample, and the arithmetic unit is The anisotropy of the reflected light intensity is measured based on the detection content of the photodetector when the half-wave plate is rotated, and the dielectric constant and the main dielectric constant of the molecular orientation portion of the thin film are determined according to the result. An anisotropic thin film evaluation apparatus characterized in that the orientation and thickness of the non-oriented portion and the dielectric constant and thickness of the non-oriented portion are obtained.
【請求項10】 請求項6ないし請求項9のいずれかに
記載の異方性薄膜評価装置において、 検出器とレンズとの間に挿入された検光子を有し、 前記演算装置は前記検光子が回転したときの前記光検出
器の検出内容により回転角と検出強度の相関を観測して
反射光の偏光状態の測定を行うことを特徴とする異方性
薄膜評価装置。
10. The anisotropic thin-film evaluation device according to claim 6, further comprising an analyzer inserted between a detector and a lens, wherein the arithmetic unit is an analyzer. An anisotropic thin film evaluation apparatus characterized in that a correlation between a rotation angle and a detected intensity is observed based on the detection content of the photodetector when the light is rotated, and the polarization state of reflected light is measured.
JP11526698A 1998-04-24 1998-04-24 Anisotropic thin film evaluation method and evaluation apparatus Expired - Fee Related JP2956688B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11526698A JP2956688B1 (en) 1998-04-24 1998-04-24 Anisotropic thin film evaluation method and evaluation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11526698A JP2956688B1 (en) 1998-04-24 1998-04-24 Anisotropic thin film evaluation method and evaluation apparatus

Publications (2)

Publication Number Publication Date
JP2956688B1 true JP2956688B1 (en) 1999-10-04
JPH11304645A JPH11304645A (en) 1999-11-05

Family

ID=14658424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11526698A Expired - Fee Related JP2956688B1 (en) 1998-04-24 1998-04-24 Anisotropic thin film evaluation method and evaluation apparatus

Country Status (1)

Country Link
JP (1) JP2956688B1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3535786B2 (en) 1999-12-03 2004-06-07 Necエレクトロニクス株式会社 Liquid crystal display element evaluation method and evaluation device
JP2002162344A (en) * 2000-11-22 2002-06-07 Nec Corp Evaluation method of anisotropic thin film and its equipment
JP2007533977A (en) * 2004-03-11 2007-11-22 アイコス・ビジョン・システムズ・ナムローゼ・フェンノートシャップ Wavefront manipulation and improved 3D measurement method and apparatus
JP4791786B2 (en) * 2005-09-09 2011-10-12 石塚硝子株式会社 Reference substrate for thin film evaluation and thin film evaluation method
US7791724B2 (en) * 2006-06-13 2010-09-07 Asml Netherlands B.V. Characterization of transmission losses in an optical system
JP5806837B2 (en) * 2011-04-11 2015-11-10 株式会社モリテックス Optical anisotropy parameter measuring device, measuring method and measuring program
CN102607814B (en) * 2012-03-27 2014-10-22 清华大学 Detection device for anisotropy of optical element
TWI542864B (en) * 2014-12-30 2016-07-21 財團法人工業技術研究院 A system for measuring anisotropy, a method for measuring anisotropy and a calibration method thereof

Also Published As

Publication number Publication date
JPH11304645A (en) 1999-11-05

Similar Documents

Publication Publication Date Title
US5042951A (en) High resolution ellipsometric apparatus
US5963327A (en) Total internal reflection electromagnetic radiation beam entry to, and exit from, ellipsometer, polarimeter, reflectometer and the like systems
EP0397388B1 (en) Method and apparatus for measuring thickness of thin films
JP4863979B2 (en) Ellipsometry measurement method and apparatus
US6256097B1 (en) Ellipsometer and ellipsometry method
US6081337A (en) Method and apparatus for measuring liquid crystal cell properties
EP0396409B1 (en) High resolution ellipsometric apparatus
JP3447654B2 (en) Anisotropic thin film evaluation method and evaluation device
JP2956688B1 (en) Anisotropic thin film evaluation method and evaluation apparatus
US5979244A (en) Method and apparatus for evaluating internal film stress at high lateral resolution
US6693711B1 (en) Ellipsometer using radial symmetry
JP3425923B2 (en) Evaluation method and evaluation device for anisotropic multilayer thin film structure
US6795184B1 (en) Odd bounce image rotation system in ellipsometer systems
JPS63108236A (en) Spectral ellipsometer
Negara et al. Imaging ellipsometry for curved surfaces
JP2970585B2 (en) Anisotropic thin film evaluation method and anisotropic thin film evaluation apparatus
Ichimoto et al. Photopolarimetric measurement system of Mueller matrix with dual rotating waveplates
JPH11160199A (en) Liquid crystal initial alignment angle measuring method and device thereof
JP3196841B2 (en) Anisotropic thin film evaluation method, evaluation apparatus and recording medium
JP3181655B2 (en) Optical system and sample support in ellipsometer
JP2001083042A (en) Apparatus and method for measurement of optical anisotropy as well as recording medium with recorded measuring method
Chao The development of three-intensity measurement in PSA ellipsometry and photoelastic modulation ellipsometry
Hosoda et al. Convergent ellipsometry around Brewster angle for quantitative evaluation of Langmuir films
JPH0552657A (en) Polarization measurement equipment
Chen An Overview of Ellipsometric Measurements for Nonplanar Surfaces

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees