JPH10291866A - Method for sintering powdery brittle material - Google Patents

Method for sintering powdery brittle material

Info

Publication number
JPH10291866A
JPH10291866A JP9104361A JP10436197A JPH10291866A JP H10291866 A JPH10291866 A JP H10291866A JP 9104361 A JP9104361 A JP 9104361A JP 10436197 A JP10436197 A JP 10436197A JP H10291866 A JPH10291866 A JP H10291866A
Authority
JP
Japan
Prior art keywords
sintering
brittle material
temperature
temp
material powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9104361A
Other languages
Japanese (ja)
Inventor
Michihiko Fujine
道彦 藤根
Toru Nagashima
徹 長島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP9104361A priority Critical patent/JPH10291866A/en
Publication of JPH10291866A publication Critical patent/JPH10291866A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an HIP method by which shrinkage anisotropy is reduced at the time of sintering a powdery brittle material having brittleness even at the sintering temp. SOLUTION: When a capsule is filled with a powdery brittle material such as Y2 O3 , Si3 N4 or Nb5 Si3 and the material is subjected to HIP by which it is sintered by heating under isostatic pressure, isostatic pressure is applied after the material attains to a temp. >=0.8 time as high as the sintering temp. (expressed in terms of absolute temp.). Since shrinkage anisotropy is remarkably reduced at the time of sintering the powdery brittle material such as ceramics or an intermetallic compd. having brittleness even at the sintering temp., parts having a complex shape are easily obtd. by sintering in a near-net shape with the powdery brittle material, the number of precision finishing processes is reduced and a superior economical effect is produced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、セラミックス、金
属間化合物等の脆性材料の焼結方法に関する。
[0001] The present invention relates to a method for sintering brittle materials such as ceramics and intermetallic compounds.

【0002】[0002]

【従来の技術】セラミックス、金属間化合物等は耐熱材
料として極めて有用な材料であるが、一般に広い温度範
囲にわたって硬脆であるために塑性加工、切削加工等の
成形加工が困難である。このような脆性材料を用いて部
品形状に成形するには、通常、金属製カプセルに該材料
粉末を充填・密封し、これを高圧容器中に挿入し、該高
圧容器内に高圧ガスを導入して前記材料粉末を充填した
金属製カプセルに高い静水圧を加えつつ高温加熱する、
いわゆるHIP処理によって前記材料粉末を焼結するこ
とが行われる。静水圧下で焼結することによりマイクロ
キャビティなどの内部欠陥が少なく、高強度の焼結品が
得られる。また、このとき、金属製カプセル形状を適宜
に選択することによって、焼結品の形状を部品形状に近
いニアネットシェープ品とし、研削等の精密仕上加工の
手間を低減することができる。
2. Description of the Related Art Ceramics, intermetallic compounds, and the like are extremely useful materials as heat-resistant materials, but are generally hard and brittle over a wide temperature range, so that forming processes such as plastic working and cutting are difficult. In order to form a part shape using such a brittle material, usually, the material powder is filled and sealed in a metal capsule, inserted into a high-pressure vessel, and a high-pressure gas is introduced into the high-pressure vessel. High temperature heating while applying high hydrostatic pressure to the metal capsule filled with the material powder,
Sintering of the material powder is performed by a so-called HIP process. By sintering under hydrostatic pressure, a high-strength sintered product with few internal defects such as microcavities can be obtained. Also, at this time, by appropriately selecting the shape of the metal capsule, the shape of the sintered product can be made into a near net shape product close to the component shape, and the labor of precision finishing such as grinding can be reduced.

【0003】ところで、上記のHIP処理を行う際は、
従来、比較的低い温度で高圧容器内にガスを導入してお
き、その後高温まで昇温することが行われていた。この
方法によれば、ガスの加熱膨張による圧力上昇を利用で
きるので、高圧容器内の圧力を上昇するためのポンプの
能力が小さくて済む利点がある。しかし、材料の焼結温
度においても、なお脆性を示すようなセラミックス、金
属間化合物粉末を上記のような従来のHIP処理方法に
よって焼結すると、焼結時に生じる収縮率に異方性を生
じるという問題があった。すなわち、焼結体の長尺方向
の収縮率は短尺方向の収縮率に比べて大きく、そのた
め、複雑な形状を有する部品をニアネットシェープに焼
結成形することが困難で、精密仕上加工に多くの工数を
要していた。
By the way, when performing the above HIP processing,
Conventionally, a gas has been introduced into a high-pressure vessel at a relatively low temperature, and then heated to a high temperature. According to this method, since the pressure increase due to the heat expansion of the gas can be used, there is an advantage that the capacity of the pump for increasing the pressure in the high-pressure container can be small. However, when ceramics and intermetallic compound powders that still exhibit brittleness even at the sintering temperature of the material are sintered by the above-described conventional HIP processing method, anisotropic shrinkage occurs during sintering. There was a problem. In other words, the shrinkage rate in the long direction of the sintered body is greater than the shrinkage rate in the short direction, so that it is difficult to sinter and mold parts having a complicated shape into a near net shape, which is often used for precision finishing. Man-hours were required.

【0004】[0004]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、焼結温度においても脆性を示す脆性材料粉
末を焼結する際に生じる収縮率の異方性を低減するHI
P処理方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to reduce the anisotropy of the shrinkage caused when sintering a brittle material powder that is brittle even at a sintering temperature.
P processing method is provided.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
め、本発明の脆性材料粉末の焼結方法は、脆性材料粉末
をカプセルに充填し、静水圧を付与しつつ加熱・焼結す
るHIP処理工程において、前記脆性材料粉末の温度
が、絶対温度で、前記脆性材料粉末の焼結加熱保持温度
の0.8倍以上に達してから静水圧を付与することを特
徴とする。
In order to solve the above-mentioned problems, a method of sintering brittle material powder according to the present invention comprises filling a capsule with brittle material powder, heating and sintering while applying hydrostatic pressure. In the treatment step, the hydrostatic pressure is applied after the temperature of the brittle material powder reaches 0.8 times or more of the sintering heating holding temperature of the brittle material powder in absolute temperature.

【0006】[0006]

【発明の実施の形態】本発明の対象とする脆性材料は、
たとえばY2 3 、Si3 4 、Nb5 Si 3 のよう
に、これらの材料粉末を焼結する温度においてもなお脆
性を示す材料とする。カプセルは、粉末のHIP処理に
通常用いるものでよく、前記粉末の焼結温度において、
ガス気密性を有し、加える静水圧に耐える耐熱強度と材
料粉体の収縮に追従しうる延性を備え、材料粉末と反応
することがないものとする。
BEST MODE FOR CARRYING OUT THE INVENTION
For example, YTwoOThree, SiThreeNFour, NbFiveSi ThreeAs
In addition, these materials are still brittle even at the sintering temperature.
It should be a material that exhibits properties. Capsules are used for powder HIP processing
What is usually used, at the sintering temperature of the powder,
Heat-resistant strength and materials that have gas tightness and withstand the applied hydrostatic pressure
It has ductility that can follow the shrinkage of the material powder and reacts with the material powder.
Shall not do so.

【0007】カプセルへの材料粉末の充填、脱気、封止
は、通常の方法によって行い、また、HIP処理は通常
のHIP装置によって行う。なお材料粉末の焼結に当っ
て、焼結を促進するために、例えばY2 3 超微粉末、
Si,Nb粉末のような焼結助剤を加えることができ
る。HIP処理における静水圧加圧は、材料温度が、絶
対温度で、材料粉末の焼結加熱保持温度の0.8倍以上
に達してから行う。これより低い温度から加圧を行うと
得られる焼結体の収縮率に異方性を生じる。
[0007] Filling, degassing and sealing of the material powder into the capsule are performed by a usual method, and HIP processing is performed by a normal HIP device. In promoting sintering of the material powder, for example, Y 2 O 3 ultrafine powder,
A sintering aid such as Si, Nb powder can be added. The hydrostatic pressure in the HIP processing is performed after the material temperature reaches 0.8 times or more of the sintering heating holding temperature of the material powder in absolute temperature. When pressure is applied from a temperature lower than this, anisotropy occurs in the shrinkage ratio of the obtained sintered body.

【0008】[0008]

【実施例】本発明の脆性材料粉末の焼結方法を、177
3Kの温度でも脆性を示すことが知られているY2 3
の場合を例として具体的に説明する。粒度−350me
shのY2 3 粉末を、内径114mm、内法長さ21
0mm、肉厚4.3mmのSUS304製の円筒形カプ
セルに充填した後、10-3torrに減圧して封孔し
た。このカプセル充填材をHIP装置により加熱し、4
hrで常温より焼結加熱保持温度1573Kまで加熱し
た。この間、カプセル充填材が所定の温度Tに達してか
ら静水圧加圧を開始し、静水圧が2000atmとなっ
てから焼結加熱保持温度で3hr保持後約6hrで37
3K以下の温度まで冷却した。常温に冷却後、切削によ
ってカプセルを除去し、焼結体を得た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The method for sintering brittle material powder of the present invention
Y 2 O 3 which is known to exhibit brittleness even at a temperature of 3K
A specific description will be given by taking the case of (1) as an example. Particle size -350me
sh Y 2 O 3 powder, inner diameter 114 mm, inner length 21
After filling into a cylindrical capsule made of SUS304 having a thickness of 0 mm and a thickness of 4.3 mm, the capsule was sealed by reducing the pressure to 10 −3 torr. This capsule filler is heated by a HIP device,
The mixture was heated from room temperature to a sintering heating holding temperature of 1573K at the same time. During this time, hydrostatic pressure pressurization is started after the capsule filler material reaches the predetermined temperature T, and after the hydrostatic pressure reaches 2000 atm, the sintering is held at the sintering heating holding temperature for 3 hours and then at about 6 hours for 37 hours.
Cooled to a temperature below 3K. After cooling to room temperature, the capsule was removed by cutting to obtain a sintered body.

【0009】前記焼結体の軸方向両端面は皿状に凹み、
側面は鼓形にくびれているが、それぞれ最小寸法をとっ
て焼結体の長さおよび直径とした。これらの測定結果を
表1に示す。また、表1には、1473K以上の温度で
は延性を示すNb3 Alについての同様な試験結果を併
記する。焼結前の粉末充填体の長さと前記焼結体の長さ
とから長さ方向の収縮率を、また焼結前の粉末充填体の
直径と前記焼結体の直径長さとから直径方向の収縮率を
それぞれ算出した。長さ方向の収縮率と直径方向の収縮
率との差を収縮率異方性指数とすれば、これは収縮率の
異方性を表す指標となる。
[0009] Both ends in the axial direction of the sintered body are recessed in a dish shape,
Although the side face is constricted in a drum shape, the length and diameter of the sintered body were taken as minimum dimensions. Table 1 shows the measurement results. Table 1 also shows similar test results for Nb 3 Al which exhibits ductility at a temperature of 1473 K or higher. The shrinkage in the length direction is determined from the length of the powder filler before sintering and the length of the sintered body, and the shrinkage in the diameter direction is determined from the diameter of the powder filler before sintering and the diameter of the sintered body. The rates were calculated respectively. If the difference between the contraction ratio in the length direction and the contraction ratio in the diameter direction is defined as a contraction ratio anisotropy index, this is an index indicating the anisotropy of the contraction ratio.

【0010】絶対温度で、静水圧加圧を開始する温度T
と焼結加熱保持温度Ts との比を求め、これを加圧開始
温度比とする。
[0010] Absolute temperature, temperature T at which hydrostatic pressurization starts
And the sintering heating holding temperature Ts are determined, and this is defined as the pressurization start temperature ratio.

【0011】[0011]

【表1】 [Table 1]

【0012】表1から、焼結加熱保持温度1573Kで
は脆性を示すY2 3 のHIP処理による焼結におい
て、加圧開始温度比が0.8未満の比較例1、2では収
縮率の異方性が認められるが、加圧開始温度比が0.8
以上の実施例1、2、3では異方性指数は極めて小さ
く、収縮率の異方性が認められなくなることが判る。焼
結加熱保持温度1573Kでは脆性を示すNb5 Si3
についても同様な試験を行った結果、加圧開始温度比が
0.8以上の実施例4では異方性指数が小さく、収縮率
の異方性は認められないが、加圧開始温度比が0.8未
満の比較例3では異方性指数が大きく、収縮率の異方性
が認められる。
From Table 1, it can be seen that in the sintering of H 2 O 3 , which exhibits brittleness at the sintering heating holding temperature of 1573 K, by the HIP treatment, the difference in the shrinkage ratios in Comparative Examples 1 and 2 in which the pressure start temperature ratio is less than 0.8. Anisotropy is observed, but the pressure start temperature ratio is 0.8
In Examples 1, 2, and 3 above, the anisotropy index is extremely small, and it can be seen that the anisotropy of the shrinkage ratio is not recognized. Nb 5 Si 3 showing brittleness at sintering heating holding temperature of 1573K
As a result of the same test, the anisotropy index was small in Example 4 in which the pressurization start temperature ratio was 0.8 or more, and no anisotropy of the shrinkage rate was observed. In Comparative Example 3 having a value of less than 0.8, the anisotropy index was large, and the anisotropy of the shrinkage was observed.

【0013】また、表1には、1473K以上の温度で
は延性を示すNb3 Alについての同様な試験結果を併
記するが、この場合には、加圧開始温度比が0.8未満
であっても収縮率の異方性は認められない。
Table 1 also shows similar test results for Nb 3 Al, which exhibits ductility at a temperature of 1473K or higher. In this case, the pressurization start temperature ratio is less than 0.8. Also, no anisotropy in shrinkage was observed.

【0014】[0014]

【発明の効果】以上に説明したように、本発明の脆性材
料粉末の焼結方法によれば、焼結温度においても脆性を
示すような脆性材料粉末を焼結する際に生じる収縮率の
異方性を著しく低減することができる。これによって、
脆性材料粉末で複雑な形状を有する部品をニアネットシ
ェープに焼結成形することが容易となり、精密仕上加工
の工数を節約する優れた経済的効果をもたらす。
As described above, according to the method for sintering brittle material powder of the present invention, the difference in shrinkage caused when sintering brittle material powder that is brittle even at the sintering temperature. The anisotropy can be significantly reduced. by this,
It becomes easy to sinter and mold a component having a complicated shape with a brittle material powder into a near net shape, which brings about an excellent economic effect of saving man-hours for precision finishing.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 脆性材料粉末をカプセルに充填し、静水
圧を付与しつつ加熱・焼結するHIP処理工程におい
て、前記脆性材料粉末の温度が、絶対温度で、前記脆性
材料粉末の焼結加熱保持温度の0.8倍以上に達してか
ら静水圧を付与することを特徴とする脆性材料粉末の焼
結方法。
In a HIP process of filling a capsule with brittle material powder and heating and sintering while applying hydrostatic pressure, the temperature of the brittle material powder is an absolute temperature, and the sintering of the brittle material powder is performed at an absolute temperature. A method for sintering a brittle material powder, wherein a hydrostatic pressure is applied after the holding temperature reaches 0.8 times or more.
JP9104361A 1997-04-22 1997-04-22 Method for sintering powdery brittle material Pending JPH10291866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9104361A JPH10291866A (en) 1997-04-22 1997-04-22 Method for sintering powdery brittle material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9104361A JPH10291866A (en) 1997-04-22 1997-04-22 Method for sintering powdery brittle material

Publications (1)

Publication Number Publication Date
JPH10291866A true JPH10291866A (en) 1998-11-04

Family

ID=14378702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9104361A Pending JPH10291866A (en) 1997-04-22 1997-04-22 Method for sintering powdery brittle material

Country Status (1)

Country Link
JP (1) JPH10291866A (en)

Similar Documents

Publication Publication Date Title
EP0667405A1 (en) Method of manufacturing aluminum borate whiskers having a reformed surface based upon gamma alumina
US20070235701A1 (en) Nanostructured titanium monoboride monolithic material and associated methods
JP2860064B2 (en) Method for producing Ti-Al alloy target material
JP5719543B2 (en) Improved apparatus and method for hot isostatic pressure vessels with adjustable volume and corners
JP2011041983A (en) Device and method for hot isostatic pressing container
JPH0130898B2 (en)
EP0741194B1 (en) Pneumatic isostatic compaction of sintered compacts
JP3380892B2 (en) Ti-Al alloy, method for producing the same, and method for joining the same
JPH10291866A (en) Method for sintering powdery brittle material
JPS5888171A (en) Manufacture of high density silicon nitride sintered body
JPH03150303A (en) Hot isostatic pressing method
JPH0499146A (en) Powder sintered material and its manufacture
KR100904646B1 (en) The manufacturing method of a Tungsten Heavy Alloy
JP2008169463A (en) Cobalt-tungsten sputter target, and method for manufacturing the same
KR20040091627A (en) Stabilized grain size refractory metal powder metallurgy mill products
JP4976626B2 (en) Sintered alloy material, method for producing the same, and mechanical structural member using the same
JPS5884186A (en) Ceramics bonding method
US11065686B2 (en) Method for sintering metals, non-oxide ceramics and other oxidation-sensitive materials
JPS62278240A (en) Compacting method for ti-al intermetallic compound member
JP3771127B2 (en) Atmospheric pressure combustion synthesis method of high density TiAl intermetallic compound
JP3495264B2 (en) Manufacturing method of composite sintered machine parts
JPH0860203A (en) Production of compacted and sintered body of high melting point metal powder
KR20230081814A (en) Hot isostatic pressure powder metallurgy canning container for preventing can pollution by diffusion and the hot isostatic pressure metallurgy method using the same
JPH02122004A (en) Manufacture of aluminum powder forged material
JP3144178B2 (en) Silicon nitride sintered body and method for producing the same