JPH10291804A - Production method of germane - Google Patents

Production method of germane

Info

Publication number
JPH10291804A
JPH10291804A JP10207897A JP10207897A JPH10291804A JP H10291804 A JPH10291804 A JP H10291804A JP 10207897 A JP10207897 A JP 10207897A JP 10207897 A JP10207897 A JP 10207897A JP H10291804 A JPH10291804 A JP H10291804A
Authority
JP
Japan
Prior art keywords
reaction
germanium dioxide
acid
aqueous solution
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10207897A
Other languages
Japanese (ja)
Other versions
JP3865455B2 (en
Inventor
Takeshi Yasutake
剛 安武
Shinji Miyata
慎治 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP10207897A priority Critical patent/JP3865455B2/en
Publication of JPH10291804A publication Critical patent/JPH10291804A/en
Application granted granted Critical
Publication of JP3865455B2 publication Critical patent/JP3865455B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce high purity monogermane in a high yield, inexpensively, industrially and stably by specifying a pH of a reaction soln. after reacting a metal hydroxide aq. soln. of germanium dioxide and alkali metal borohydride with an acid. SOLUTION: A reaction starting material aq. soln. is obtained by dissolving 1 mol germanium dioxide and >=4 mol alkali metal borohydride in the aq. soln. containing the metal hydroxide of more than two chemical equivalent per 1 mol germanium dioxide so that a germanium dioxide concn. becomes <=0.5 mol/L, preferably <=0.3 mol/L. An acid such as sulfuric acid, phosphoric acid, acetic acid and propionic acid is added to the reaction starting material aq. soln., and the mixture is allowed to react at 0-50 deg.C under the condition in which the pH of the aq. soln. after reaction becomes <=7 till a conversion of the germanium dioxide becomes >=90%, preferably >=93%. In this way, the production of digermane is reduced and a purifying process is simplified.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はゲルマンガスの製造
方法に関する。より詳しくは、高次ゲルマンの生成を低
く抑えつつ、モノゲルマンを効率よくかつ安価に製造す
る方法に関する。
[0001] The present invention relates to a method for producing germane gas. More specifically, the present invention relates to a method for efficiently and inexpensively producing monogermane while suppressing generation of higher-order germane.

【0002】[0002]

【従来の技術】モノゲルマンは主としてアモルファスシ
リコンゲルマニウム薄膜の原料として使用されている。
これはアモルファスシリコン薄膜より長波長側の光の吸
収効率が高いという特性があるため、今後長波長光の変
換効率の高い太陽電池や長波長光感度の高い感光ドラム
の開発が進むにつれ、モノゲルマンの需要も著しく伸び
てくるものと期待されている。このため、アモルファス
シリコンゲルマニウム薄膜の原料として使用できるよう
な高純度のモノゲルマンを工業的に安定に、またいうま
でもなく安価に製造する技術が求められている。ゲルマ
ンの製造は、古くは1900年代の初頭にその報告があ
るが、本格的に研究が始まったのは1920年代以降で
ある。
2. Description of the Related Art Monogermane is mainly used as a raw material for amorphous silicon germanium thin films.
This has the property that the absorption efficiency of light on the long wavelength side is higher than that of amorphous silicon thin films.Therefore, as the development of solar cells with high conversion efficiency for long wavelength light and photosensitive drums with high long wavelength light sensitivity progresses, Monogerman The demand for is expected to increase significantly. For this reason, there is a need for a technique for industrially stably producing high-purity monogermane, which can be used as a raw material of an amorphous silicon germanium thin film, and needless to say, at a low cost. Germanic production was reported in the early 1900's, but full-scale research began in the 1920's.

【0003】これまでのゲルマン生成反応の型式は大き
く次の3つに分類される。 1)マグネシウムゲルマナイド(MgGe)と酸もし
くはハロゲン化アンモニウムの反応 例えば、Krans、Carney,J.Am.Che
m.Soc.;vol.56,P765(1934) 2)四塩化ゲルマニウム(GeCl)と水素化剤との
反応 例えば、Finholt、Bond,J.Am.Che
m.Soc.;vol.69,P2692(1947) 3)二酸化ゲルマニウム(GeO)と水素化剤との反
応 例えば、Piper、Wilson,J.Inorg.
Nucl.Chem.;vol.4,P22(195
7)
[0003] The types of Germane-forming reactions so far are roughly classified into the following three types. 1) Reaction of magnesium germanide (Mg 2 Ge) with an acid or ammonium halide For example, Krans, Carney, J. et al. Am. Che
m. Soc. Vol. 56, P765 (1934) 2) Reaction of germanium tetrachloride (GeCl 4 ) with a hydrogenating agent For example, see Finholt, Bond, J. et al. Am. Che
m. Soc. Vol. 69, P2692 (1947) 3) Reaction of germanium dioxide (GeO 2 ) with a hydrogenating agent See, for example, Piper, Wilson, J. et al. Inorg.
Nucl. Chem. Vol. 4, P22 (195
7)

【0004】これまでゲルマンの原料として使用されて
きた金属ゲルマニウム、四塩化ゲルマニウム及び二酸化
ゲルマニウムは、ゲルマニウムを基準に考えると価格的
には大きな差異はないため、工業的にゲルマンを製造す
るためには、取扱いの容易な原料を使用する方が有利で
ある。即ち、大気中で加水分解して塩酸のミストを生成
するような四塩化ゲルマニウムを原料とするよりは、ゲ
ルマニウム源としては安定な二酸化ゲルマニウムを、水
素化剤としては大気中でも水溶液としても取扱いのでき
るアルカリ金属ボロハイドライドを原料とし、かつ二酸
化ゲルマニウム自体が極めて高価であるため、高収率で
モノゲルマンを製造する方法であることが望ましい。
[0004] Metal germanium, germanium tetrachloride and germanium dioxide, which have been used as raw materials for germane, do not have a great difference in price in view of germanium. It is more advantageous to use raw materials that are easy to handle. In other words, rather than using germanium tetrachloride as a raw material that hydrolyzes in the air to generate a mist of hydrochloric acid, stable germanium dioxide can be handled as a germanium source, and it can be handled as an aqueous solution in the air as a hydrogenating agent. Since alkali metal borohydride is used as a raw material and germanium dioxide itself is extremely expensive, a method for producing monogermane with high yield is desirable.

【0005】ここでいう高収率とは、原料の転化率が高
く、またジゲルマンやトリゲルマンのような高次ゲルマ
ンの副生が少ないことを意味する。
[0005] The term "high yield" as used herein means that the conversion of the raw material is high and the by-products of higher-order germane such as digermane and trigermane are small.

【0006】二酸化ゲルマニウムとアルカリ金属ボロハ
イドライドから製造した例としては例えば、Pipe
r、Wilsonらの報告がある[J.Inorg.N
ucl.Chem.;vol.4,P22(195
7)]。彼らは、水素化剤にナトリウムボロハイドライ
ドを用い、臭化水素酸に溶解した二酸化ゲルマニウムを
水素化する方法で、最適条件下に於いて収率73%を得
たと報告している。
As an example of the production from germanium dioxide and an alkali metal borohydride, for example, Pipe
r, Wilson et al. [J. Inorg. N
ucl. Chem. Vol. 4, P22 (195
7)]. They report that using sodium borohydride as a hydrogenating agent and hydrogenating germanium dioxide dissolved in hydrobromic acid gave a yield of 73% under optimal conditions.

【0007】また、Drake、Jollyらの報告
[J.Chem.Soc.;2807(1962)]
は、二酸化ゲルマニウムとカリウムボロハイドライドを
溶解したアルカリ水溶液と酸とを接触させる方法であ
り、酸として酢酸を用いた場合の最適条件下に於いて収
率73%を得たと報告している。これらは安定な原料を
用いているため反応操作は複雑なものではないが、何れ
も最適条件下でも転化率が70%台と低く、未反応分の
回収を行わないとロスが大きいため、工業的には不利で
ある。
A report by Drake, Jolly et al. [J. Chem. Soc. 2807 (1962)].
Is a method in which an alkali aqueous solution in which germanium dioxide and potassium borohydride are dissolved is brought into contact with an acid, and it is reported that a yield of 73% was obtained under optimal conditions when acetic acid was used as the acid. Since these use stable raw materials, the reaction operation is not complicated, but the conversion rate is as low as 70% even under the optimum conditions, and the loss is large if the unreacted components are not recovered. It is disadvantageous.

【0008】これに対し、同様の原料で高収率でモノゲ
ルマンを得ることができる方法を開示したものとして、
USP 4,668,502号公報(1987)が挙げ
られる。該公報に開示された方法は、二酸化ゲルマニウ
ムのアルカリ水溶液(第一溶液)にアルカリ金属ボロハ
イドライドを添加してなる水溶液(第二溶液)を硫酸水
溶液と接触せしめ、モノゲルマンを得る方法であり、第
一溶液中の二酸化ゲルマニウム濃度、アルカリ/二酸化
ゲルマニウム比、第一溶液に添加するアルカリ金属ボロ
ハイドライド量、酸濃度、反応温度等の諸条件を特定の
範囲とすることにより、78%以上、実施例によれば、
最高で97%の収率でモノゲルマンを得る方法である。
On the other hand, the disclosure of a method capable of obtaining monogermane in high yield from similar raw materials is disclosed as follows.
USP 4,668,502 (1987). The method disclosed in the publication is a method of contacting an aqueous solution (second solution) obtained by adding an alkali metal borohydride to an alkaline aqueous solution of germanium dioxide (first solution) with a sulfuric acid aqueous solution to obtain monogermane, By setting the conditions such as the concentration of germanium dioxide in the first solution, the ratio of alkali / germanium dioxide, the amount of alkali metal borohydride added to the first solution, the acid concentration, and the reaction temperature to a specific range, 78% or more can be achieved. According to the example,
This is a method for obtaining monogermane with a maximum yield of 97%.

【0009】[0009]

【発明が解決しようとする課題】本発明者らもUSP
4,668,502号公報の実施例に従って条件を整
え、ゲルマン生成実験を行って、原料として使用した二
酸化ゲルマニウムの90%前後が転化しており、高収率
でゲルマンを得る方法であることを実験的に確認した。
SUMMARY OF THE INVENTION
The conditions were adjusted according to the example of JP-A-4,668,502, and a germane generation experiment was carried out to confirm that about 90% of the germanium dioxide used as the raw material was converted, and that this method was a method for obtaining germane in high yield. Confirmed experimentally.

【0010】しかしながら、この方法ではジゲルマンの
生成量が多く、条件によっては反応溶液中に黄色の高次
ゲルマンの沈殿物が生成するためモノゲルマンの収率が
低下すること、また反応中のガスの発生速度が安定しな
い、原料の供給を停止してもしばらくの間ゲルマンの生
成が継続するといった状況も同時に明らかとなった。ゲ
ルマンは自己分解性があり、この特性による事故も数件
報告されている。また発火性があること、猛毒性ガスで
あることを考えると取扱いは極めて慎重に行う必要があ
り、工業的に安定にモノゲルマンを製造するため前述の
状況は致命的ともいえる問題点である。
However, in this method, a large amount of digermane is generated, and depending on the conditions, a precipitate of yellow higher-order germane is formed in the reaction solution, so that the yield of monogermane is reduced. At the same time, it was also clarified that the generation rate was not stable and the production of germane continued for a while even after the supply of the raw material was stopped. Germane is self-degrading, and several accidents due to this property have been reported. Considering that it is ignitable and is a highly toxic gas, it is necessary to handle it very carefully, and the above situation is a fatal problem because monogermane is manufactured industrially stably.

【0011】[0011]

【課題を解決するための手段】本発明者らは、二酸化ゲ
ルマニウムとアルカリ金属ボロハイドライド、及び酸と
の反応でゲルマンを得る方法を前提に、高収率で安価に
また工業的に安定にモノゲルマンを製造する方法につい
て鋭意検討を行った。
Means for Solving the Problems The inventors of the present invention presupposed a method for obtaining germane by reacting germanium dioxide with an alkali metal borohydride and an acid, and in a high yield, at a low cost and industrially stably. We studied diligently on the method for producing germane.

【0012】この結果、反応の型式はUSP 4,66
8,502号公報に一例を記載の如く、二酸化ゲルマニ
ウムとアルカリ金属ボロハイドライドを含むアルカリ水
溶液(以下反応原料水溶液と記す)を予め調製し、これ
を酸と反応させる方法が最も容易であることを確認し
た。
As a result, the type of reaction is USP 4,66
No. 8,502, as an example, it is easiest to prepare an alkaline aqueous solution containing germanium dioxide and an alkali metal borohydride in advance (hereinafter referred to as a reaction raw material aqueous solution) and react it with an acid. confirmed.

【0013】また、ジゲルマンを含む高次ゲルマンの生
成を最小限に抑制すれば精製工程が簡略化され、結果と
して安価にモノゲルマンを得ることができるという判断
から、及び工業的に安定に製造を行うためには、ゲルマ
ンの発生速度が安定しており、かつ反応原料水溶液の供
給停止と共に直ちにゲルマンの生成も停止するような状
況が好ましいという判断から更に検討を進めた。この結
果、反応原料水溶液と酸との反応溶液のpHが7以下の
領域であった場合は、ジゲルマンの生成量を低く抑えら
れ、高次ゲルマンの沈殿物も生成しないことを、極めて
安定にゲルマンの生成反応が進行し、反応原料水溶液の
供給を停止しても短時間でゲルマンの生成も停止するこ
とを明らかにした。これに対しpHが7以上の領域であ
った場合には、ジゲルマンの生成量が多くかつ反応溶液
中に高次ゲルマンの沈殿物が生成すること、ガスの生成
速度は不安定で、反応原料水溶液の供給を停止してもし
ばらくの間ゲルマンの生成が継続することを見出し本発
明を完成するに至った。
[0013] Further, if the production of higher-order germane including digermane is suppressed to a minimum, the purification process is simplified, and from the judgment that monogermane can be obtained at low cost, it is possible to stably produce industrially. In order to carry out the process, further studies were carried out from the judgment that it is preferable that the rate of generation of germane be stable and that the generation of germane be stopped immediately upon stopping the supply of the aqueous solution of the reaction raw material. As a result, when the pH of the reaction solution of the reaction raw material aqueous solution and the acid is in the range of 7 or less, the amount of digermane produced can be suppressed to a low level, and no higher-order germane precipitate is produced. It has been clarified that the formation reaction of benzene progresses, and that the production of germane is stopped in a short time even if the supply of the reaction raw material aqueous solution is stopped. On the other hand, when the pH is in the range of 7 or more, a large amount of digermane is generated and a precipitate of higher-order germane is formed in the reaction solution. It has been found that the production of germane is continued for a while even after the supply of is stopped, and the present invention has been completed.

【0014】即ち、本発明は二酸化ゲルマニウムとアル
カリ金属ボロハイドライドの金属水酸化物水溶液と酸を
反応させゲルマンを得る方法に於いて、反応させた後の
反応溶液のpHが7以下であることを特徴とするゲルマ
ンの製造方法に関する。
That is, the present invention relates to a method for obtaining germane by reacting germanium dioxide with an aqueous metal hydroxide solution of an alkali metal borohydride to obtain germane, wherein the pH of the reaction solution after the reaction is 7 or less. The present invention relates to a method for producing germane.

【0015】[0015]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明は安価な原料から純度の高いモノゲルマンを高収
率でかつ工業的に安定に製造する方法であり、回分操作
でも連続操作でも対応しうる。反応は、先にも述べたよ
うに二酸化ゲルマニウムとアルカリ金属ボロハイドライ
ドを含むアルカリ水溶液(前出、反応原料水溶液)と酸
との反応である。二酸化ゲルマニウムとアルカリ金属ボ
ロハイドライドとを混合してもアルカリ水溶液中では何
の反応も進行しないため、反応原料水溶液の調製方法に
特に限定はない。USP 4,668,502号公報に
記された如く、所定比率の二酸化ゲルマニウムの金属水
酸化物水溶液に粉末のアルカリ金属ボロハイドライド粉
末を添加してもよいし、予め所定濃度のアルカリ水溶液
を調製しておいて、これに二酸化ゲルマニウム粉末及び
アルカリ金属ボロハイドライド粉末を添加してもよい。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The present invention is a method for producing monogermane of high purity from an inexpensive raw material in a high yield and in an industrially stable manner, and is applicable to both batch operation and continuous operation. As described above, the reaction is a reaction between an alkali aqueous solution containing germanium dioxide and an alkali metal borohydride (described above, an aqueous solution of a reaction raw material) and an acid. Even if germanium dioxide and the alkali metal borohydride are mixed, no reaction proceeds in the alkaline aqueous solution, and thus the method for preparing the reaction raw material aqueous solution is not particularly limited. As described in US Pat. No. 4,668,502, a powder of alkali metal borohydride powder may be added to a predetermined ratio of an aqueous solution of metal hydroxide of germanium dioxide, or an aqueous solution of an alkali having a predetermined concentration may be prepared in advance. Here, germanium dioxide powder and alkali metal borohydride powder may be added.

【0016】本発明では反応原料水溶液中の二酸化ゲル
マニウムの濃度は好ましくは0.5mol/L以下、よ
り好ましくは0.3mol/L以下で、また金属水酸化
物は、二酸化ゲルマニウム1モルに対して2化学当量以
上、アルカリ金属ボロハイドライドは、二酸化ゲルマニ
ウム1モルに対して4モル以上の範囲であることが好ま
しい。この領域を外れると、二酸化ゲルマニウムの転化
率が低下するため高収率で、即ち安価にモノゲルマンを
製造することができなくなる。
In the present invention, the concentration of germanium dioxide in the reaction raw material aqueous solution is preferably 0.5 mol / L or less, more preferably 0.3 mol / L or less, and the metal hydroxide is contained in 1 mol of germanium dioxide. It is preferable that the alkali metal borohydride is in a range of 4 moles or more with respect to 1 mole of germanium dioxide. Outside this range, the conversion of germanium dioxide is reduced, so that monogermane cannot be produced in high yield, that is, at low cost.

【0017】ここで金属水酸化物の化学当量とは、酸と
して作用する1当量の水素を含む酸を中和する塩基の量
と定義し、例えば水酸化ナトリウムのようなアルカリ金
属水酸化物なら2化学当量は2モル、水酸化カルシウム
のようなアルカリ土類金属水酸化物なら2化学当量は1
モルである。
Here, the chemical equivalent of the metal hydroxide is defined as the amount of a base that neutralizes an acid containing one equivalent of hydrogen acting as an acid. For example, in the case of an alkali metal hydroxide such as sodium hydroxide, 2 chemical equivalents are 2 moles, 2 equivalents for alkaline earth metal hydroxides such as calcium hydroxide
Is a mole.

【0018】二酸化ゲルマニウムや金属水酸化物、アル
カリ金属ボロハイドライドの純度に関しては特に制限は
ないが、モノゲルマンは取扱いが難しく、精製工程を簡
略化することが望ましいため、不純物の生成を極力抑制
するという意味で原料は比較的純度の高いものを使用す
ることが好ましい。
The purity of germanium dioxide, metal hydroxide and alkali metal borohydride is not particularly limited, but monogermane is difficult to handle and it is desirable to simplify the purification process, so that generation of impurities is suppressed as much as possible. In this sense, it is preferable to use a material having a relatively high purity.

【0019】また金属水酸化物、アルカリ金属ボロハイ
ドライド共特に物質を限定されるものではなく、単に安
価であるという理由で前者なら水酸化ナトリウムや水酸
化カリウム、水酸化カルシウム等、後者ではナトリウム
ボロハイドライドかカリウムボロハイドライドが好まし
い物質として挙げられる。
The metal hydroxide and the alkali metal borohydride are not particularly limited in substance. The former is sodium hydroxide, potassium hydroxide, calcium hydroxide or the like simply because it is inexpensive, and the latter is sodium borohydride. Hydride or potassium borohydride are preferred materials.

【0020】該反応原料水溶液は、酸と反応せしめモノ
ゲルマンを生成させる。酸の種類にも特に制限はなく、
例えば、硫酸や燐酸のような無機酸、酢酸やプロピオン
酸等の有機酸でも好適に使用可能である。但し、モノゲ
ルマンの精製を考えると塩酸のような揮発性の酸は避け
た方が好ましい。更に、反応温度は0〜50℃で行うの
が好ましい。反応温度が0℃未満では二酸化ゲルマニウ
ムの転化率が低下するので好ましくない。また、50℃
を超えるとジゲルマンを含む高次ゲルマンの生成量が多
くなるため好ましくない。反応原料水溶液と酸と反応せ
しめる方式は、所定量の酸の中に反応原料水溶液を供給
してもよいし、連続的に酸と反応原料水溶液を接触させ
てもよい。
The reaction raw material aqueous solution is reacted with an acid to form monogermane. There is no particular limitation on the type of acid,
For example, inorganic acids such as sulfuric acid and phosphoric acid, and organic acids such as acetic acid and propionic acid can be suitably used. However, considering the purification of monogermane, it is preferable to avoid volatile acids such as hydrochloric acid. Further, the reaction is preferably performed at a temperature of 0 to 50 ° C. If the reaction temperature is lower than 0 ° C., the conversion of germanium dioxide decreases, which is not preferable. Also, 50 ° C
Exceeding this is not preferable because the amount of higher-order germane including digermane increases. As a method of reacting the reaction raw material aqueous solution with the acid, the reaction raw material aqueous solution may be supplied into a predetermined amount of the acid, or the acid and the reaction raw material aqueous solution may be continuously contacted.

【0021】但し、本発明では反応原料水溶液と酸との
反応溶液のpHが7以下、好ましくは5以下となる条件
を選択しなければならない。この点が本発明の最も重要
な点である。ここに反応溶液とは、反応原料水溶液と酸
とを反応させた後のガスの発生がなくなった残りの水溶
液と定義し、具体的にはゲルマンガス及びアルカリ金属
ボロハイドライドの分解による水素の発生が終了もしく
は停止した残りの水溶液を意味する。
However, in the present invention, conditions must be selected so that the pH of the reaction solution of the reaction raw material aqueous solution and the acid is 7 or less, preferably 5 or less. This is the most important point of the present invention. Here, the reaction solution is defined as the remaining aqueous solution from which gas is no longer generated after the reaction of the reaction raw material aqueous solution with the acid, and specifically, generation of hydrogen due to decomposition of germane gas and alkali metal borohydride. It means the remaining or stopped aqueous solution.

【0022】USP 4,668,502号公報では硫
酸の濃度を1.5〜3.0mol/Lの範囲に限定して
いるものの、絶対量は特に限定はされていない。が、実
施例の最適条件と記された中には、GeO:HSO
の比として、1:1〜1:2の範囲であると明記され
ている。しかしながら、実はこの条件を満たすように反
応原料水溶液と酸との反応を行った場合は、反応溶液は
pHが約11でアルカリ領域となる。従って反応原料水
溶液と酸とを連続的に接触させた場合は、ジゲルマンの
生成量が多く、またガスの発生速度が安定しない、原料
と酸との反応を停止しても、しばらくの間反応溶液から
ゲルマンの生成が継続するといった問題点が発生する。
In US Pat. No. 4,668,502, the concentration of sulfuric acid is limited to the range of 1.5 to 3.0 mol / L, but the absolute amount is not particularly limited. However, in the description of the optimum conditions of the examples, GeO 2 : H 2 SO
It is specified that the ratio of 4 ranges from 1: 1 to 1: 2. However, when a reaction between the aqueous solution of the reaction raw material and the acid is carried out so as to satisfy this condition, the pH of the reaction solution is about 11 and the reaction solution is in an alkaline region. Therefore, when the reaction raw material aqueous solution and the acid are continuously contacted, the amount of digermane generated is large, the gas generation rate is not stable, and even if the reaction between the raw material and the acid is stopped, the reaction solution is kept for a while. There is a problem that the production of germane is continued.

【0023】また反応の形式を変えて、所定量の酸の中
に反応原料水溶液を徐々に添加していく場合は、反応溶
液のpHが7以下の領域である間はジゲルマンの含有量
の少ないモノゲルマンが安定的に生成し、また反応原料
水溶液の供給を停止すると数秒でゲルマンの発生も停止
するが、添加を継続しpHが7以上の領域となったと同
時に、先に述べたようにジゲルマンの生成量が多くな
る、ガスの発生速度が安定しなくなる、反応原料水溶液
と酸との反応を停止しても、しばらくの間反応溶液から
ゲルマンの生成が継続する、ジゲルマンの生成量が多く
なるといった問題点が発生するのである。
When the reaction raw material solution is gradually added to a predetermined amount of acid by changing the reaction mode, the digerman content is low while the pH of the reaction solution is in the range of 7 or less. Monogermane is stably generated, and when the supply of the aqueous solution of the reaction raw material is stopped, the generation of germane is stopped in a few seconds. However, the addition is continued and the pH becomes 7 or more. Increases, the rate of gas generation becomes unstable, the reaction between the reaction raw material aqueous solution and the acid is stopped, germane continues to be generated from the reaction solution for a while, and the amount of digermane increases Such a problem occurs.

【0024】この理由の詳細は明らかにはし得ないが、
アルカリ金属ボロハイドライドは酸の水溶液中では直ち
に分解されるのに対し、アルカリ水溶液中では比較的安
定であり、分解の速度が遅くなることに起因するものと
考えている。即ち、純度の高いモノゲルマンを高収率で
かつ工業的に安定に製造するためには、反応原料水溶液
と酸とを、反応後の水溶液がpH7以下となる条件で反
応を行わなければならないのである。この条件範囲とす
るためには、酸の濃度を高くしても、特定の濃度の酸の
絶対量を多くしても、本発明を遂行するに何ら支障はな
い。
Although the details of this reason cannot be clarified,
Alkali metal borohydride is decomposed immediately in an aqueous solution of an acid, but is relatively stable in an aqueous alkaline solution, and is considered to be caused by a slower decomposition rate. That is, in order to produce monogermane of high purity in a high yield and industrially stably, the reaction raw material aqueous solution and the acid must be reacted under the condition that the aqueous solution after the reaction has a pH of 7 or less. is there. In order to achieve this condition range, there is no problem in carrying out the present invention, even if the concentration of the acid is increased or the absolute amount of the acid at a specific concentration is increased.

【0025】[0025]

【実施例】以下、実施例により本発明を具体的に説明す
る。なお二酸化ゲルマニウム、ナトリウムボロハイドラ
イド、水酸化カリウム、硫酸はすべて関東化学社製の試
薬を、水はイオン交換水を使用した。また、%は特記し
ない限り重量基準を表す。 実施例1 容量1Lのガラス製三角フラスコに2.8%水酸化カリ
ウム水溶液532gを調製し、これに二酸化ゲルマニウ
ム粉末7.2gとナトリウムボロハイドライド粉末1
5.6gを添加、攪拌、溶解して反応原料水溶液を調製
した。この条件で、二酸化ゲルマニウム濃度は0.13
mol/L、水酸化カリウム濃度0.5mol/L、水
酸化カリウム/二酸化ゲルマニウム≒3.8、ナトリウ
ムボロハイドライド/二酸化ゲルマニウム≒6となる。
また、他の1Lガラス製三角フラスコに27%硫酸水溶
液(約3mol/L)を調製した。容量1Lで密閉ので
きる蓋付のテフロン製反応器に27%硫酸水溶液150
gを仕込んで蓋を閉め、反応原料水溶液供給ライン、温
度計、キャリヤ窒素、発生ガス出口ラインを接続した。
反応器はスターラーで攪拌ができるようにし、また容器
ごと温浴に浸して、反応温度を25〜35℃に調節し
た。
The present invention will be described below in detail with reference to examples. Note that germanium dioxide, sodium borohydride, potassium hydroxide, and sulfuric acid all used reagents manufactured by Kanto Chemical Co., and water used was ion-exchanged water. The percentages are based on weight unless otherwise specified. Example 1 532 g of a 2.8% aqueous potassium hydroxide solution was prepared in a 1 L glass Erlenmeyer flask, and 7.2 g of germanium dioxide powder and sodium borohydride powder 1 were added thereto.
5.6 g was added, stirred and dissolved to prepare a reaction raw material aqueous solution. Under these conditions, the germanium dioxide concentration is 0.13
mol / L, potassium hydroxide concentration 0.5 mol / L, potassium hydroxide / germanium dioxide ≒ 3.8, sodium borohydride / germanium dioxide ≒ 6.
A 27% sulfuric acid aqueous solution (about 3 mol / L) was prepared in another 1-L glass Erlenmeyer flask. A 27% sulfuric acid aqueous solution is placed in a Teflon reactor with a lid that can be sealed with a capacity of 1 L.
g, the lid was closed, and a reaction raw material aqueous solution supply line, a thermometer, carrier nitrogen, and a generated gas outlet line were connected.
The reactor was allowed to stir with a stirrer, and the reactor was immersed in a warm bath to adjust the reaction temperature to 25 to 35 ° C.

【0026】この反応器に反応原料水溶液をプランジャ
ポンプを用いて2.7cc/minの速度で、またガス
のキャリヤとして窒素を30cc/minで定量的に供
給した。反応原料水溶液の供給開始と共にガスが発生
し、このガスをガスクロマトグラフィーで分析したとこ
ろ、モノゲルマンと水素を主成分とするものであり、ま
たIR分析でジゲルマンは殆ど生成していないことを確
認した。反応は約3時間、反応原料水溶液を約500g
供給したところで停止したが、反応原料水溶液の供給停
止後、数秒でガスの生成も停止することを確認した。ま
た、反応期間中ガスの生成速度は160〜170L/m
inで安定していた。反応終了後の残液のpHは2以下
で沈殿の生成は認められなかった。また残水溶液中のゲ
ルマニウムをICP(誘導結合プラズマ分析)で分析し
たところ、二酸化ゲルマニウムの転化率は98%であっ
た。
An aqueous solution of the reaction raw material was quantitatively supplied to this reactor at a rate of 2.7 cc / min using a plunger pump, and nitrogen was supplied as a gas carrier at a rate of 30 cc / min. A gas was generated at the start of the supply of the aqueous solution of the reaction raw material, and the gas was analyzed by gas chromatography. The gas was mainly composed of monogermane and hydrogen, and IR analysis confirmed that digermane was hardly generated. did. The reaction is about 3 hours, about 500 g of aqueous solution of reaction raw materials
It stopped when the supply was completed, but it was confirmed that the generation of gas was stopped within a few seconds after the supply of the aqueous reaction raw material was stopped. In addition, the gas generation rate during the reaction period is 160 to 170 L / m.
It was stable in. After the completion of the reaction, the pH of the remaining solution was 2 or less, and no formation of a precipitate was observed. When germanium in the remaining aqueous solution was analyzed by ICP (inductively coupled plasma analysis), the conversion of germanium dioxide was 98%.

【0027】比較例1 実施例1で使用したテフロン製容器に、硫酸水溶液供給
ラインを更に接続し、その他は実施例1と同様にして、
調製した反応原料水溶液を2.8cc/min、硫酸水
溶液を0.2cc/minの速度で定量的に連続供給し
た。この条件で、硫酸/二酸化ゲルマニウム≒2とな
る。両水溶液の供給開始と共にガスが発生し、ガスクロ
マトグラフィーではモノゲルマンガスと水素が主成分で
あり、またIRの分析ではジゲルマンの生成量が実施例
1よりも大幅に増加していることがわかった。反応は約
3時間、反応原料水溶液を約500g、硫酸水溶液を4
5g供給したところで停止したが、反応期間中のガスの
生成速度は100〜200L/minのバラツキがあっ
た。両液の供給停止後もガスの生成が持続し、供給停止
後120分の時点でガスクロマトグラフィーで生成して
いるガスの組成を分析したところ、モノゲルマンが存在
することを確認した。反応終了後の残液のpHは10以
上で、反応溶液中に黄色の沈殿が生成しているのを確認
した。液を濾過した後、沈殿物の成分をXRF(蛍光X
線分析)で分析したところ、ゲルマニウムを主成分とす
るものであることがわかった。なお、二酸化ゲルマニウ
ムの転化率は86%であった。
Comparative Example 1 A sulfuric acid aqueous solution supply line was further connected to the Teflon container used in Example 1, and the other conditions were the same as in Example 1.
The prepared aqueous solution of the reaction raw material was quantitatively and continuously supplied at a rate of 2.8 cc / min and the aqueous solution of sulfuric acid at a rate of 0.2 cc / min. Under these conditions, sulfuric acid / germanium dioxide ≒ 2. Gas was generated at the start of the supply of both aqueous solutions, and gas chromatography revealed that monogermane gas and hydrogen were the main components, and IR analysis showed that the amount of digermane produced was significantly increased as compared with Example 1. Was. The reaction is carried out for about 3 hours, about 500 g of the aqueous solution of the reaction raw material and 4
It stopped when 5 g was supplied, but the gas generation rate during the reaction period varied from 100 to 200 L / min. The generation of gas continued even after the supply of both liquids was stopped. When the composition of the generated gas was analyzed by gas chromatography at 120 minutes after the supply was stopped, it was confirmed that monogermane was present. After the completion of the reaction, the pH of the remaining solution was 10 or more, and it was confirmed that a yellow precipitate was formed in the reaction solution. After the liquid was filtered, the components of the precipitate were analyzed by XRF (fluorescence X
Line analysis), it was found that the main component was germanium. The conversion of germanium dioxide was 86%.

【0028】実施例2 1Lガラス製三角フラスコに13.5%硫酸水溶液(約
1.5mol/L)を調製し、テフロン製反応器に硫酸
水溶液約60gを仕込んで蓋をした。この反応器にpH
メーターを設置した以外は実施例1と同様にして、反応
原料水溶液をプランジャポンプを用いて2.2cc/m
inの速度で、またガスのキャリヤとして窒素を30c
c/minで定量的に供給した。反応原料水溶液の供給
開始と共にガスが発生した。液がpH7以下の領域の間
はガスの生成速度は130〜150L/minで安定し
ていたが、供給開始後60分を経過した頃から液のpH
が上昇し、pH7以上の領域に入ると共に、ガスの発生
速度が次第に遅く、またばらつきが激しくなる傾向が認
められた。
Example 2 A 13.5% aqueous sulfuric acid solution (about 1.5 mol / L) was prepared in a 1-L glass Erlenmeyer flask, and about 60 g of an aqueous sulfuric acid solution was charged into a Teflon reactor and capped. PH into this reactor
The same procedure as in Example 1 was conducted except that a meter was provided, and the aqueous solution of the reaction raw material was 2.2 cc / m2 using a plunger pump.
in speed and 30 c of nitrogen as gas carrier
It was supplied quantitatively at c / min. Gas was generated when the supply of the reaction raw material aqueous solution was started. The gas generation rate was stable at 130 to 150 L / min during the region where the liquid had a pH of 7 or less.
Increased, and entered into the region of pH 7 or more, and the gas generation rate was gradually slowed down, and there was a tendency that the dispersion became severe.

【0029】図1は実施例2のpH変化と生成ガス流量
の関係を記したものである。図2は反応溶液がpH7以
下の領域の際に生成しているガス、及び図3はpH7以
上の領域に変化した時に生成しているガスのIRスペク
トルである。図2、図3中○印を付けたところがジゲル
マンの吸収であるが、図3のpH7以上の領域で生成す
るガスはジゲルマンの含有量が多いことが明らかであ
る。反応は約2時間、反応原料水溶液を約280g供給
したところで停止したが、反応原料水溶液の供給停止後
も、ガスの生成は持続していた。反応終了後の残液のp
Hは約10であり、二酸化ゲルマニウムの転化率は92
%であった。
FIG. 1 shows the relationship between the change in pH and the flow rate of the produced gas in Example 2. FIG. 2 is an IR spectrum of a gas generated when the reaction solution has a pH of 7 or less, and FIG. 3 is an IR spectrum of a gas generated when the reaction solution has changed to a pH of 7 or more. The circles in FIGS. 2 and 3 indicate the absorption of digermane, and it is clear that the gas generated in the region of pH 7 or more in FIG. 3 has a large content of digermane. The reaction was stopped when about 280 g of the aqueous solution of the reaction raw material was supplied for about 2 hours, but the gas generation continued even after the supply of the aqueous solution of the reaction raw material was stopped. P of residual liquid after completion of reaction
H is about 10, and the conversion of germanium dioxide is 92
%Met.

【0030】[0030]

【発明の効果】本発明は、二酸化ゲルマニウムアルカリ
金属ボロハイドライドのアルカリ金属水酸化物水溶液と
酸とを、反応溶液がpH7以下となる条件で反応を行う
こと方法である。この方法はこれまで述べた如く、ゲル
マンの発生速度が安定しており、かつ反応原料水溶液の
供給停止と共に直ちにゲルマンの生成も停止するするた
め、安定にモノゲルマンの生成反応を行うことができ
る。また、ジゲルマンの生成量も少ないため精製工程も
簡略化することができるため、結果として安価にモノゲ
ルマンを得ることができる。以上を総合して考えると、
本発明の効果は大きいと考える。
According to the present invention, there is provided a method for reacting an aqueous alkali metal hydroxide solution of germanium alkali metal borohydride with an acid under conditions where the reaction solution has a pH of 7 or less. According to this method, as described above, the generation rate of germane is stable, and the generation of germane is immediately stopped when the supply of the aqueous solution of the reaction raw material is stopped, so that the reaction for generating monogermane can be stably performed. In addition, since the amount of digermane produced is small, the purification step can be simplified, so that monogermane can be obtained at low cost. Considering all of the above,
The effect of the present invention is considered to be great.

【0031】[0031]

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例2のpH変化と生成ガス流量の関係FIG. 1 shows a relationship between a pH change and a generated gas flow rate in Example 2.

【図2】 反応溶液がpH7以下の領域の際に生成して
いるガスのIRスペクトル
FIG. 2 is an IR spectrum of a gas generated when the reaction solution is in a pH range of 7 or less.

【図3】 反応溶液がpH7以上の領域の際に生成して
いるガスのIRスペクトル
FIG. 3 is an IR spectrum of a gas generated when the reaction solution has a pH of 7 or more.

【符号の説明】[Explanation of symbols]

D:ジゲルマンの吸収 D: Absorption of digermane

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年6月6日[Submission date] June 6, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0026[Correction target item name] 0026

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0026】この反応器に反応原料水溶液をプランジャ
ポンプを用いて2.7cc/minの速度で、またガス
のキャリヤとして窒素を30cc/minで定量的に供
給した。反応原料水溶液の供給開始と共にガスが発生
し、このガスをガスクロマトグラフィーで分析したとこ
ろ、モノゲルマンと水素を主成分とするものであり、ま
たIR分析でジゲルマンは殆ど生成していないことを確
認した。反応は約3時間、反応原料水溶液を約500g
供給したところで停止したが、反応原料水溶液の供給停
止後、数秒でガスの生成も停止することを確認した。ま
た、反応期間中ガスの生成速度は160〜170cc
minで安定していた。反応終了後の残液のpHは2以
下で沈殿の生成は認められなかった。また残水溶液中の
ゲルマニウムをICP(誘導結合プラズマ分析)で分析
したところ、二酸化ゲルマニウムの転化率は98%であ
った。
An aqueous solution of the reaction raw material was quantitatively supplied to this reactor at a rate of 2.7 cc / min using a plunger pump, and nitrogen was supplied as a gas carrier at a rate of 30 cc / min. A gas was generated at the start of the supply of the aqueous solution of the reaction raw material, and the gas was analyzed by gas chromatography. The gas was mainly composed of monogermane and hydrogen, and IR analysis confirmed that digermane was hardly generated. did. The reaction is about 3 hours, about 500 g of aqueous solution of reaction raw materials
It stopped when the supply was completed, but it was confirmed that the generation of gas was stopped within a few seconds after the supply of the aqueous reaction raw material was stopped. During the reaction period, the gas generation rate is 160 to 170 cc /
It was stable at min. After the completion of the reaction, the pH of the remaining solution was 2 or less, and no formation of a precipitate was observed. When germanium in the remaining aqueous solution was analyzed by ICP (inductively coupled plasma analysis), the conversion of germanium dioxide was 98%.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0027[Correction target item name] 0027

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0027】比較例1 実施例1で使用したテフロン製容器に、硫酸水溶液供給
ラインを更に接続し、その他は実施例1と同様にして、
調製した反応原料水溶液を2.8cc/min、硫酸水
溶液を0.2cc/minの速度で定量的に連続供給し
た。この条件で、硫酸/二酸化ゲルマニウム≒2とな
る。両水溶液の供給開始と共にガスが発生し、ガスクロ
マトグラフィーではモノゲルマンガスと水素が主成分で
あり、またIRの分析ではジゲルマンの生成量が実施例
1よりも大幅に増加していることがわかった。反応は約
3時間、反応原料水溶液を約500g、硫酸水溶液を4
5g供給したところで停止したが、反応期間中のガスの
生成速度は100〜200cc/minのバラツキがあ
った。両液の供給停止後もガスの生成が持続し、供給停
止後120分の時点でガスクロマトグラフィーで生成し
ているガスの組成を分析したところ、モノゲルマンが存
在することを確認した。反応終了後の残液のpHは10
以上で、反応溶液中に黄色の沈殿が生成しているのを確
認した。液を濾過した後、沈殿物の成分をXRF(蛍光
X線分析)で分析したところ、ゲルマニウムを主成分と
するものであることがわかった。なお、二酸化ゲルマニ
ウムの転化率は86%であった。
Comparative Example 1 A sulfuric acid aqueous solution supply line was further connected to the Teflon container used in Example 1, and the other conditions were the same as in Example 1.
The prepared aqueous solution of the reaction raw material was quantitatively and continuously supplied at a rate of 2.8 cc / min and the aqueous solution of sulfuric acid at a rate of 0.2 cc / min. Under these conditions, sulfuric acid / germanium dioxide ≒ 2. Gas was generated at the start of the supply of both aqueous solutions, and gas chromatography revealed that monogermane gas and hydrogen were the main components, and IR analysis showed that the amount of digermane produced was significantly increased as compared with Example 1. Was. The reaction is carried out for about 3 hours, about 500 g of the aqueous solution of the reaction raw material and 4
It stopped when 5 g was supplied, but the gas generation rate during the reaction period varied from 100 to 200 cc / min. The generation of gas continued even after the supply of both liquids was stopped. When the composition of the generated gas was analyzed by gas chromatography at 120 minutes after the supply was stopped, it was confirmed that monogermane was present. The pH of the remaining solution after the reaction is 10
As described above, it was confirmed that a yellow precipitate was formed in the reaction solution. After the liquid was filtered, the components of the precipitate were analyzed by XRF (X-ray fluorescence analysis), and it was found that the precipitate contained germanium as a main component. The conversion of germanium dioxide was 86%.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0028[Correction target item name] 0028

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0028】実施例2 1Lガラス製三角フラスコに13.5%硫酸水溶液(約
1.5mol/L)を調製し、テフロン製反応器に硫酸
水溶液約60gを仕込んで蓋をした。この反応器にpH
メーターを設置した以外は実施例1と同様にして、反応
原料水溶液をプランジャポンプを用いて2.2cc/m
inの速度で、またガスのキャリヤとして窒素を30c
c/minで定量的に供給した。反応原料水溶液の供給
開始と共にガスが発生した。液がpH7以下の領域の間
はガスの生成速度は130〜150cc/minで安定
していたが、供給開始後60分を経過した頃から液のp
Hが上昇し、pH7以上の領域に入ると共に、ガスの発
生速度が次第に遅く、またばらつきが激しくなる傾向が
認められた。
Example 2 A 13.5% aqueous sulfuric acid solution (about 1.5 mol / L) was prepared in a 1-L glass Erlenmeyer flask, and about 60 g of an aqueous sulfuric acid solution was charged into a Teflon reactor and capped. PH into this reactor
The same procedure as in Example 1 was conducted except that a meter was provided, and the aqueous solution of the reaction raw material was 2.2 cc / m2 using a plunger pump.
in speed and 30 c of nitrogen as gas carrier
It was supplied quantitatively at c / min. Gas was generated when the supply of the reaction raw material aqueous solution was started. The gas generation rate was stable at 130 to 150 cc / min during the region where the liquid had a pH of 7 or less.
As H increased and entered the region of pH 7 or more, the generation rate of gas was gradually slowed down, and there was a tendency that the dispersion became severe.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 二酸化ゲルマニウムとアルカリ金属ボ
ロハイドライドの金属水酸化物水溶液と酸を反応させゲ
ルマンを得る方法に於いて、反応させた後の反応溶液の
pHが7以下であることを特徴とするゲルマンの製造方
法。
1. A method for obtaining germane by reacting germanium dioxide with an aqueous metal hydroxide solution of an alkali metal borohydride, wherein the pH of the reaction solution after the reaction is 7 or less. Germanic manufacturing method.
【請求項2】 反応溶液のpHが5以下である請求項
1記載の方法。
2. The method according to claim 1, wherein the pH of the reaction solution is 5 or less.
【請求項3】 二酸化ゲルマニウムの濃度が0.5m
ol/L以下、金属水酸化物を二酸化ゲルマニウム1モ
ルに対して2化学当量以上、アルカリ金属ボロハイドラ
イドを二酸化ゲルマニウム1モルに対して4モル以上で
ある請求項1または2記載の方法。
3. The concentration of germanium dioxide is 0.5 m.
The method according to claim 1 or 2, wherein the metal hydroxide is at least 2 chemical equivalents per mol of germanium dioxide and the alkali metal borohydride is at least 4 mol per mol of germanium dioxide.
【請求項4】 二酸化ゲルマニウムの濃度が0.3m
ol/L以下、金属水酸化物を二酸化ゲルマニウム1モ
ルに対して2化学当量以上、アルカリ金属ボロハイドラ
イドを二酸化ゲルマニウム1モルに対して4モル以上で
ある請求項1または2記載の方法。
4. The concentration of germanium dioxide is 0.3 m.
The method according to claim 1 or 2, wherein the metal hydroxide is at least 2 chemical equivalents per mol of germanium dioxide and the alkali metal borohydride is at least 4 mol per mol of germanium dioxide.
【請求項5】 反応温度が0〜50℃の範囲である請
求項1〜4のいずれか1項に記載の方法。
5. The method according to claim 1, wherein the reaction temperature ranges from 0 to 50 ° C.
【請求項6】 反応が回分操作である請求項1〜5の
いずれか1項に記載の方法。
6. The method according to claim 1, wherein the reaction is a batch operation.
【請求項7】 反応が連続操作である請求項1〜5の
いずれか1項に記載の方法。
7. The method according to claim 1, wherein the reaction is a continuous operation.
【請求項8】 二酸化ゲルマニウムの転化率が少なく
とも90%以上である請求項1〜7のいずれか1項に記
載の方法。
8. The method according to claim 1, wherein the conversion of germanium dioxide is at least 90% or more.
【請求項9】 二酸化ゲルマニウムの転化率が少なく
とも93%以上である請求項1〜7のいずれか1項に記
載の方法。
9. The method according to claim 1, wherein the conversion of germanium dioxide is at least 93% or more.
JP10207897A 1997-04-18 1997-04-18 Method for producing germane Expired - Fee Related JP3865455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10207897A JP3865455B2 (en) 1997-04-18 1997-04-18 Method for producing germane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10207897A JP3865455B2 (en) 1997-04-18 1997-04-18 Method for producing germane

Publications (2)

Publication Number Publication Date
JPH10291804A true JPH10291804A (en) 1998-11-04
JP3865455B2 JP3865455B2 (en) 2007-01-10

Family

ID=14317749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10207897A Expired - Fee Related JP3865455B2 (en) 1997-04-18 1997-04-18 Method for producing germane

Country Status (1)

Country Link
JP (1) JP3865455B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7087102B2 (en) 2004-02-26 2006-08-08 Air Products And Chemicals, Inc. Process for purification of germane
WO2013066033A1 (en) * 2011-10-31 2013-05-10 Duck Joo Yang Continuous process and continuous reacting apparatus for synthesizing semiconductor gases
WO2014030885A1 (en) * 2012-08-20 2014-02-27 Oci Materials Co., Ltd. Method for preparing monogermane gas in high yield
KR101413621B1 (en) * 2013-01-14 2014-07-01 대성산업가스 주식회사 Method for generating high quality geh_4 and apparatus for generating high quality geh_4
CN114524413A (en) * 2022-03-02 2022-05-24 沧州华宇特种气体科技有限公司 System and method for preparing germane
CN114655927A (en) * 2015-08-20 2022-06-24 贺孝鸣 Production method and device for regulating electromotive force to control germane preparation
CN116536531A (en) * 2022-11-24 2023-08-04 云南驰宏锌锗股份有限公司 Method for extracting germanium from germanium-containing zinc oxide smoke dust leaching solution

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7087102B2 (en) 2004-02-26 2006-08-08 Air Products And Chemicals, Inc. Process for purification of germane
WO2013066033A1 (en) * 2011-10-31 2013-05-10 Duck Joo Yang Continuous process and continuous reacting apparatus for synthesizing semiconductor gases
CN104619644A (en) * 2012-08-20 2015-05-13 奥瑟亚新材料股份有限公司 Apparatus for preparing germane gas, and method for preparing mono-germane gas by using same
WO2014030909A1 (en) * 2012-08-20 2014-02-27 오씨아이머티리얼즈 주식회사 Apparatus for preparing germane gas, and method for preparing mono-germane gas by using same
WO2014030885A1 (en) * 2012-08-20 2014-02-27 Oci Materials Co., Ltd. Method for preparing monogermane gas in high yield
JP2015526378A (en) * 2012-08-20 2015-09-10 オーシーアイ・マテリアルズ・カンパニー・リミテッドOCI Materials Co., Ltd. Germanium gas production apparatus and monogermane gas production method using the same
CN104619644B (en) * 2012-08-20 2016-12-14 爱思开新材料有限公司 Germane gas preparation facilities and the method utilizing the single Germane gas of its preparation
US9586820B2 (en) 2012-08-20 2017-03-07 Sk-Materials Co., Ltd. Apparatus for preparing germane gas and method for preparing monogermane gas using same
KR101413621B1 (en) * 2013-01-14 2014-07-01 대성산업가스 주식회사 Method for generating high quality geh_4 and apparatus for generating high quality geh_4
WO2014109463A1 (en) * 2013-01-14 2014-07-17 대성산업가스 주식회사 Method for producing high-purity germane and device therefor
CN114655927A (en) * 2015-08-20 2022-06-24 贺孝鸣 Production method and device for regulating electromotive force to control germane preparation
CN114524413A (en) * 2022-03-02 2022-05-24 沧州华宇特种气体科技有限公司 System and method for preparing germane
CN116536531A (en) * 2022-11-24 2023-08-04 云南驰宏锌锗股份有限公司 Method for extracting germanium from germanium-containing zinc oxide smoke dust leaching solution

Also Published As

Publication number Publication date
JP3865455B2 (en) 2007-01-10

Similar Documents

Publication Publication Date Title
CN105980297B (en) It is used to prepare the method for bromide
US7691356B2 (en) Method for producing trichlorosilane
JPH10291804A (en) Production method of germane
US4668502A (en) Method of synthesis of gaseous germane
EP1960408B1 (en) Process for the production of mercaptoalkylalkoxysilanes
JPH02229707A (en) Manufacture of silane
CN101981007A (en) Method for purification of pyridine, and method for production of chlorinated pyridine
AU2009306070A1 (en) Method for the production of polycrystalline silicon
MX2014008139A (en) Method of synthesis of azo compounds.
JPS60210515A (en) Silane manufacture
JP5495392B2 (en) Method for producing valuable materials from waste liquid
JP2000302411A (en) Production of monogermane
US20020071805A1 (en) Method and means of preparing chlorinated bicarbonates and carbonates of calcium and alkali metals
US20070010686A1 (en) Method of preparing phenylacetic acid
JP2013136539A (en) Method for producing tetraalkoxysilane
WO1992012124A1 (en) Novel process for producing semicarbazide
US5759410A (en) Process for recovering mercapto-s-triazines from silver precipitate
US8124046B2 (en) Alkali metal iodide salt solution and method for producing the same
JPS5826733B2 (en) Ensocaldehydono Seizouhouhou
JPH107623A (en) Production of bis(trichloromethyl) carbonate
US9919923B2 (en) Method for producing hydrogen peroxide
NZ202760A (en) Manufacture of arsenic acid
JP2846939B2 (en) Method for producing 2,3-epoxy-2,3-dihydro-1,4-naphthoquinone
FR2989074A1 (en) Preparing mixture of silane and germane compounds, involves reacting mixture of alloy containing silicon alloy in the form of powder and germanium alloy in the form of powder with hydrochloric acid that is pre-dissolved in aqueous solution
JP2523123B2 (en) Silane gas manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20061003

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061003

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20121013

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20121013

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees