JPH10291029A - Straightening method for alpha+beta type titanium alloy straight bar - Google Patents

Straightening method for alpha+beta type titanium alloy straight bar

Info

Publication number
JPH10291029A
JPH10291029A JP10156197A JP10156197A JPH10291029A JP H10291029 A JPH10291029 A JP H10291029A JP 10156197 A JP10156197 A JP 10156197A JP 10156197 A JP10156197 A JP 10156197A JP H10291029 A JPH10291029 A JP H10291029A
Authority
JP
Japan
Prior art keywords
rod
titanium alloy
amount
bending
type titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10156197A
Other languages
Japanese (ja)
Inventor
Kazuhiro Takahashi
一浩 高橋
Isamu Takayama
勇 高山
Satoru Kawakami
哲 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10156197A priority Critical patent/JPH10291029A/en
Publication of JPH10291029A publication Critical patent/JPH10291029A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Wire Processing (AREA)

Abstract

PROBLEM TO BE SOLVED: To straighten an α+β type titanium alloy straight bar in relatively high productivity and to produce a straight bar having good straightness from a wire rod made of, particularly, an α+β type titanium alloy. SOLUTION: By inserting a bar having bends straightened from a wire rod coil of α+β type titanium alloy in any container among a round shape, a circular arc shape, an U shape, an V shape in cross section and holding at a prescribed hold temp. of below the βtransformation temp. for a prescribed time or more, bends of the bar is not increased at heat treatment and is efficiently reduced, further, stabilized straightness is obtained after subsequent cold straightening, cutting and grinding of a surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、α+β型チタン合
金直棒の矯正方法、特にα+β型チタン合金製の線材コ
イルから直棒を製造する方法に関する。
The present invention relates to a method for straightening an α + β type titanium alloy straight bar, and more particularly to a method for manufacturing a straight bar from a wire coil made of an α + β type titanium alloy.

【0002】[0002]

【従来の技術】一般に鋼製の棒線の矯正には、冷間で曲
げ矯正を行う2ロール矯正機や多ロール矯正機及びスピ
ンナ矯正機が使用される。しかし、汎用のα+β型チタ
ン合金は、鋼に比べ室温での耐力が高く、且つスプリン
グバックが大きいため、冷間での矯正が非常に難しく、
特にコイル状態から矯正する場合には、一般的な上記の
鋼用の冷間矯正機では塑性変形量が不足するため十分な
真直度が得られない。
2. Description of the Related Art In general, a two-roll straightener, a multi-roll straightener, and a spinner straightener for performing bending correction in a cold state are used for correcting a steel wire. However, general-purpose α + β-type titanium alloys have a higher proof stress at room temperature than steel and have a large springback, making it extremely difficult to correct them in the cold.
In particular, when straightening from the coil state, a sufficient straightness cannot be obtained because the amount of plastic deformation is insufficient with the above-mentioned general cold straightening machine for steel.

【0003】また、矯正能力のある冷間矯正機を使用し
て矯正した場合には、表層の残留応力で形状を維持して
いるため、次工程の加熱や表面の切削、研削で残留応力
のバランスが崩れ、曲がってしまう。これに対して、冷
間矯正で付与された残留応力を除去するために焼鈍を行
う場合があるが、加熱むらにより、棒の形状を維持して
いた残留応力が不均一に開放され、通常は炉床や搬送ロ
ーラ上に直に置き拘束がないため、曲がってしまう。そ
のために冷間矯正と焼鈍を何度か繰り返す必要があり、
生産性が低い。
[0003] Further, when a straightening machine having a straightening ability is used for straightening, since the shape is maintained by the residual stress of the surface layer, the residual stress is reduced by heating, surface cutting and grinding in the next step. I lose my balance and bend. On the other hand, annealing may be performed to remove the residual stress given by the cold straightening.However, due to uneven heating, the residual stress that has maintained the shape of the rod is released unevenly, and is usually released. It is bent directly because it is placed directly on the hearth and the transport roller and there is no restraint. Therefore, it is necessary to repeat cold straightening and annealing several times,
Low productivity.

【0004】冷間での矯正が困難なチタン合金等の線材
を矯正する方法として、温間または熱間で引張矯正する
方法がある。特開昭52−72356号公報には所定寸
法の線材を両端から張力を与えながら通電加熱する方法
が開示されている。この方法では両端の保持部が矯正さ
れないため歩留りが低く、また1本ずつ保持して加熱す
るため生産性が低い。
[0004] As a method of correcting a wire such as a titanium alloy which is difficult to correct in a cold state, there is a method of correcting the tension in a warm state or in a hot state. Japanese Patent Application Laid-Open No. 52-72356 discloses a method in which a wire having a predetermined size is energized and heated while applying tension from both ends. In this method, since the holding portions at both ends are not corrected, the yield is low, and the productivity is low because the holding portions are heated one by one.

【0005】これに対して特公平6−79743号公報
に記載された連続熱間引張矯正装置では、2つのピンチ
ローラ間に周速差を与え、そのピンチローラ間で誘導加
熱することにより熱間での引張矯正を連続的に行う方法
がある。しかし、専用の設備が必要であり、また引張力
がかかっているピンチローラ間の温度分布が不均一な場
合、温度が高い部分にくびれが生じる。
On the other hand, in the continuous hot tension straightening device described in Japanese Patent Publication No. Hei 6-79743, a peripheral speed difference is given between two pinch rollers, and induction heating is performed between the pinch rollers to thereby reduce hot working. There is a method of continuously performing the tension correction in the above. However, if dedicated equipment is required, and if the temperature distribution between the pinch rollers subjected to the tensile force is not uniform, constriction occurs at a high temperature portion.

【0006】チタン合金板に関して特開平8−1084
5号公報に開示している金属板の真空クリープ形状矯正
法は、板に加圧してクリープ矯正する方法であるが、直
棒に関しては形状の点から加圧保持が難しい。
JP-A-8-1084 for titanium alloy plate
The vacuum creep shape correction method of a metal plate disclosed in Japanese Patent Publication No. 5 is a method of correcting creep by pressing a metal plate. However, it is difficult to hold a straight bar under pressure from the point of shape.

【0007】[0007]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、比較的生産性が高く、α+β型チタン合金
直棒を矯正すること、特に、α+β型チタン合金の線材
コイルから真直度の良い直棒を製造することである。
The problem to be solved by the present invention is to relatively straighten an α + β type titanium alloy straight bar, and in particular, to straighten an α + β type titanium alloy wire rod from straightness. Producing a good straight rod.

【0008】[0008]

【課題を解決するための手段】本発明は、α+β型チタ
ン合金製の線材コイルを冷間で粗矯正した後、断面が円
型、円弧型、U字型或いはV字型の何れかで、長さが該
チタン合金棒の長さ以上ある容器に長手方向が平行にな
るように1本以上挿入し、高温に加熱保持する。加熱温
度に応じて所定の時間以上保持することにより、粗矯正
後で曲がりの有るチタン合金棒を、クリープ変形させて
容器の底面或いは側面に沿った形状にし、曲がりを減少
させ、真直度を向上させる方法である。
According to the present invention, a wire coil made of an α + β type titanium alloy is cold-coarse-corrected in a cold state, and then has a circular, arc-shaped, U-shaped or V-shaped cross section. One or more rods are inserted into a container having a length equal to or longer than the length of the titanium alloy rod so that the longitudinal direction is parallel to the container, and heated and maintained at a high temperature. By holding for a predetermined time or more according to the heating temperature, the crooked titanium alloy rod that has been bent after roughing is creeped and shaped along the bottom or side surface of the container to reduce bending and improve straightness. It is a way to make it.

【0009】また、上記の熱処理で比較的真直度が良く
なった棒を冷間で仕上げ矯正することにより、塑性変形
量が小さくて良く、付与される残留応力も小さいため、
次工程での加熱や表層の切削、研削により発生する曲が
りは極僅かで真直度への影響はほとんどない。
In addition, since the rod whose straightness has been relatively improved by the heat treatment is finish-corrected in a cold state, the amount of plastic deformation can be small and the applied residual stress is small.
The bending generated by heating, surface layer cutting, and grinding in the next step is extremely small, and has little effect on straightness.

【0010】図1に、熱間圧延の仕上げ温度がα+β二
相域である(以降、α+βプロセス)コイルの巻き径が
約1.1m、直径17mmのTi−6Al−4V製線材コ
イルを、引張と曲げにより粗矯正し、長さ5mに切断し
た棒を、種々の置き方で加熱炉内に入れ、800℃で保
持した場合の保持時間による曲がり量の変化を示す。こ
こで、曲がり量は、ローラを1m間隔に置き、ローラ間
の中央にダイヤルゲージを棒の表面が接するように設置
し、棒をローラ上で軸を中心に1回転させた時のダイヤ
ルゲージの最大値と最小値の差の2分の1の値とし、全
長5点で測定した平均値であり、棒複数本を同時に処理
した場合の曲がり量は各棒の曲がり量の平均値である。
また、粗矯正後の曲がり量が約5mm程度の棒を使用し
た。加熱炉はローラ搬送型を使用した。
FIG. 1 shows that a Ti-6Al-4V wire rod coil having a coil diameter of about 1.1 m and a diameter of 17 mm having a finishing temperature of hot rolling in an α + β two-phase region (hereinafter referred to as α + β process) having a diameter of 1.1 m is pulled. The graph shows the change in the amount of bending depending on the holding time when the rod which was roughly corrected by bending and cut into a length of 5 m was placed in a heating furnace in various ways and held at 800 ° C. Here, the amount of bending was measured by placing the rollers at intervals of 1 m, placing the dial gauge in the center between the rollers so that the surface of the rod was in contact with the roller, and rotating the rod once around the axis on the roller. The value is a half of the difference between the maximum value and the minimum value, and is an average value measured at five points in the entire length. The bending amount when a plurality of bars are processed simultaneously is the average value of the bending amount of each bar.
Further, a rod having a bending amount of about 5 mm after the rough correction was used. The heating furnace used was a roller transfer type.

【0011】図1より、Ti−6Al−4V製の粗矯正
後の棒を加熱炉の搬送ローラ上に直に置いた場合は、加
熱中の加熱むらにより粗矯正で付与した歪みが不均一に
開放され、棒の変形に対して拘束がないため、曲がりが
発生したままになり、40分の保持で曲がり量が約12
mmにもなる。また、5本のTi−6Al−4V製の粗矯
正後の棒を長さ方向に5箇所、鋼線で結束した場合に
は、結束部の間の側部では結束がないため、自重により
下方に垂れてしまい結束部に局部的な曲がりが発生し、
曲がり量は保持時間の増加に伴い増加し、約13mmにも
なる。
As shown in FIG. 1, when the rod after rough correction made of Ti-6Al-4V is placed directly on the conveying roller of the heating furnace, the distortion imparted by the rough correction due to uneven heating during heating becomes uneven. Since it is released and has no restraint against the deformation of the rod, the bending remains generated.
mm. When five Ti-6Al-4V rods after rough correction are tied with steel wires at five locations in the length direction, since there is no tying at the side part between the tying parts, the lower part is caused by its own weight. And a local bend occurs in the binding part,
The amount of bending increases with an increase in the holding time, and reaches about 13 mm.

【0012】一方、図2の(a),(b),(c)に示
すようにTi−6Al−4V製の粗矯正後の棒を外径1
01mm、厚さ8mm、長さ6mの鋼管内に各々1本、5
本、10本挿入した場合には、図1より、保持時間の増
加に伴い曲がりのあったチタン合金棒がクリープ変形
し、鋼管の底面或いは側面に沿って、曲がり量が減少す
る。所定の保持時間以上になると曲がり量は1mm以下に
なる。
On the other hand, as shown in FIGS. 2 (a), 2 (b) and 2 (c), a rod after rough correction made of Ti-6Al-4V has an outer diameter of 1 mm.
01 mm, 8 mm thick, 6 m long
When ten or ten rods are inserted, as shown in FIG. 1, the bent titanium alloy rod undergoes creep deformation as the holding time increases, and the amount of bending decreases along the bottom or side surface of the steel pipe. When the holding time is longer than a predetermined holding time, the bending amount becomes 1 mm or less.

【0013】また複数本挿入した場合には、下部にある
棒は自重以外に上部にある棒の重さが加わることから、
1本だけ挿入した場合よりも短時間で底面或いは側面に
沿うため、他の棒の重さが加わり難い上部にある棒も短
時間で曲がりが低下した下部の棒に沿うため、1本だけ
挿入した場合と同程度の保持時間で曲がり量が1mm以下
になる。
When a plurality of rods are inserted, the weight of the upper rod is added to the weight of the lower rod in addition to the weight of the lower rod.
Since only one rod is inserted along the bottom or side surface in a shorter time than when only one rod is inserted, the upper rod, to which the weight of other rods is unlikely to be added, also follows the lower rod whose bending has been reduced in a short time, so insert only one rod The bending amount becomes 1 mm or less in the same holding time as in the case where the bending is performed.

【0014】ここで鋼製の棒に許容される曲がり量は、
一般に1.0mm以下、厳しい場合で0.5mm以下である
ことから、目標とする曲がり量を1mm以下とした。
Here, the allowable bending amount of the steel rod is as follows.
In general, the target bending amount is set to 1 mm or less because it is generally 1.0 mm or less and 0.5 mm or less in severe cases.

【0015】図2の(d),(e),(f)に示すよう
な断面が、円弧状或いはU字型、V字型の鋼製の容器を
用いた場合にも、図1の鋼管を用いた場合と同様の効果
が得られる。
Even when a steel container having a cross section as shown in FIGS. 2 (d), (e) and (f) having an arc shape or a U-shape or a V-shape is used, the steel pipe shown in FIG. The same effect as in the case of using is obtained.

【0016】以上により、粗矯正後のα+β型チタン合
金製の曲がりのある棒を、断面が円型、円弧型、U字型
或いはV字型の何れかで、長さが棒の長さ以上ある容器
に長手方向が平行になるように1本以上挿入し、高温で
加熱保持することとした。
As described above, the bent bar made of the α + β type titanium alloy after the rough correction has a cross section of any one of a circle, an arc, a U-shape, and a V-shape, and the length is equal to or longer than the length of the bar. One or more tubes were inserted into a certain container so that their longitudinal directions were parallel, and the container was heated and held at a high temperature.

【0017】図2の(g)に示すように直径が17mmの
Ti−6Al−4V製の粗矯正後の棒5本と直径が17
mmの鋼製の直棒を2本、ランダムに挿入した場合にも、
図1より、曲がり量は保持時間の増加に伴い低下し、曲
がり量が1mm以下になる保持時間は鋼製の直棒を挿入し
ない場合とほとんが差がないが、チタン合金製の棒より
も重く且つ真直度の高い鋼製の直棒が一緒にあることに
より、鋼製の直棒が重りの役割をして、チタン合金棒に
より重い荷重をかけ、クリープ変形し易くすると共に、
チタン合金棒がクリープ変形して沿う芯の役割をするた
め、チタン合金棒だけを挿入した場合よりも曲がり量は
小さく、約0.3mm以下になる。
As shown in FIG. 2 (g), five rods made of Ti-6Al-4V having a diameter of 17 mm after rough correction and a diameter of 17
Even if two steel straight rods of mm are inserted randomly,
From FIG. 1, the bending amount decreases with the increase of the holding time, and the holding time at which the bending amount becomes 1 mm or less is almost the same as when the steel straight bar is not inserted, but is smaller than that of the titanium alloy bar. By having a heavy and straight straight steel bar together, the steel straight bar acts as a weight, applies a heavy load to the titanium alloy bar, and facilitates creep deformation,
Since the titanium alloy rod acts as a core along the creep deformation, the bending amount is smaller than that when only the titanium alloy rod is inserted, and is about 0.3 mm or less.

【0018】ここで一緒に挿入する鋼製の直棒の直径
が、チタン合金製の棒の直径より極端に細い場合や太い
場合には、挿入した棒同志が充填されずに、大きな隙間
が形成され、その隙間に細いチタン合金棒が位置する
と、上部に棒が接しないため棒の重さが隙間にあるチタ
ン合金棒には加わらず、曲がり量が低下し難く、隙間に
細い鋼製の直棒が位置すると、隙間の上部にあるチタン
合金棒には鋼製の直棒が接触していないため、自重によ
る曲がりが発生し易くなり、曲がり量が低下し難い。ま
た鋼製の直棒が細すぎる場合には、鋼製の直棒の重量が
チタン合金棒以下になり、荷重をかける重りの役割をな
さなくなるため、曲がり量を低減する効果が小さくな
る。したがって、チタン合金棒と同程度の径の鋼製の直
棒を1本以上一緒に挿入することとした。好ましくは、
一緒に挿入する鋼製の直棒の本数は、α+β型チタン合
金製の棒の本数の1/3〜2/3である。
If the diameter of the steel rod inserted together is extremely smaller or larger than the diameter of the titanium alloy rod, the inserted rods are not filled and a large gap is formed. When a thin titanium alloy rod is located in the gap, the rod does not touch the upper part and the weight of the rod does not add to the titanium alloy rod in the gap. When the rod is positioned, the steel alloy rod is not in contact with the titanium alloy rod at the upper part of the gap, so that bending due to its own weight is likely to occur, and the bending amount is not easily reduced. When the steel straight bar is too thin, the weight of the steel straight bar becomes less than or equal to that of the titanium alloy bar, and the steel straight bar does not function as a weight for applying a load. Therefore, the effect of reducing the amount of bending is reduced. Therefore, one or more steel straight rods having the same diameter as the titanium alloy rod were inserted together. Preferably,
The number of steel straight rods inserted together is 1/3 to 2/3 of the number of α + β titanium alloy rods.

【0019】図2の(h)に示すようにTi−6Al−
4V製の粗矯正後の棒5本の上部に、直径が17mmの鋼
製の直棒を4本置いた場合には、図1より、曲がり量は
保持時間の増加に伴い低下し、曲がり量が1mm以下にな
る保持時間も若干短くなる。これは、チタン合金製の棒
よりも重たく且つ真直度の高い鋼製の直棒が上部にある
ことにより、鋼製の直棒が重りの役割をして該チタン合
金棒全数により重い荷重をかけクリープ変形し易くする
と共に、該チタン合金棒がクリープ変形して沿う芯の役
割をするため、該チタン合金棒だけを挿入した場合より
も若干短時間で曲がり量が低下する。
As shown in FIG. 2 (h), Ti-6Al-
When four steel straight rods with a diameter of 17 mm are placed on top of five 4V-made rough-corrected rods, the bending amount decreases as the holding time increases, and the bending amount decreases from FIG. Is shorter than 1 mm. This is because the steel straight bar, which is heavier and straighter than the titanium alloy bar, is at the top, so that the steel straight bar acts as a weight and applies a heavier load to all the titanium alloy bars. In addition to the creep deformation, the titanium alloy rod serves as a core along with the creep deformation, so that the bending amount is reduced in a slightly shorter time than when only the titanium alloy rod is inserted.

【0020】ここで、一緒に挿入する鋼製の直棒の直径
が、該チタン合金製の棒の直径より、極端に太い場合に
は、太い鋼製の直棒同志が接触してできる隙間が大き
く、その隙間に細いチタン合金棒が位置すると、上部に
鋼製の直棒が接していないためにチタン合金棒がクリー
プ変形して沿う芯の役割が低下する。鋼製の直棒の直径
が極端に細い場合には、鋼製の直棒の重量がチタン合金
棒以下になり、荷重をかける重りの役割が低下するた
め、曲がり量を低減する効果が小さくなる。したがっ
て、チタン合金棒と同程度の径の鋼製の直棒を1本以上
一緒に挿入することとした。好ましくは、一緒に挿入す
る鋼製の直棒の本数は、α+β型チタン合金製の棒の本
数の1/3〜2/3である。
Here, when the diameter of the steel straight rod inserted together is extremely larger than the diameter of the titanium alloy rod, a gap formed by contact between the thick steel straight rods is formed. When a large titanium alloy rod is located in the gap, the titanium alloy rod creep-deforms because the steel straight rod is not in contact with the upper part, and the role of the core along the titanium alloy rod is reduced. When the diameter of the steel straight bar is extremely thin, the weight of the steel straight bar becomes less than or equal to the titanium alloy bar, and the role of the weight for applying the load is reduced, so that the effect of reducing the amount of bending is reduced. . Therefore, one or more steel straight rods having the same diameter as the titanium alloy rod were inserted together. Preferably, the number of steel straight rods to be inserted together is 1/3 to 2/3 of the number of α + β type titanium alloy rods.

【0021】次に、熱間圧延の仕上げ温度がβ相域であ
る(以降、βプロセス)コイルの巻き径が約1.1m、
直径17mmのTi−6Al−4V製コイルを引張と曲げ
により粗矯正した後、α+βプロセスの場合と同じ種々
の置き方(加熱炉の搬送ローラ上に直に置く方法や結
束、図2に示した容器内に挿入した置き方)で加熱炉内
に入れ800℃で保持した。また、粗矯正後の曲がり量
が約5mm程度の棒を使用した。保持時間による曲がり量
の変化は置き方によって異なり、図1に示したα+βプ
ロセス材の場合と同様に、搬送ローラ上に直に置いた場
合や結束では、曲がりが増加してしまうが、鋼管や断面
がU字型、V字型の容器に挿入した場合、更に鋼製の直
棒を一緒に挿入した場合には、保持時間の増加に伴い曲
がり量は減少し、1mm以下になる。曲がり量が1mm以下
に低下する保持時間は、α+βプロセスの場合に比べ、
βプロセスの材料の方が耐クリープ性が良いために長
い。
Next, when the finishing temperature of the hot rolling is in the β phase region (hereinafter referred to as β process), the winding diameter of the coil is about 1.1 m,
After a Ti-6Al-4V coil having a diameter of 17 mm is roughly corrected by tension and bending, it is placed in the same manner as in the case of the α + β process (the method of placing the coil directly on the conveying roller of the heating furnace, bundling, as shown in FIG. 2). (Placed in a container) and kept at 800 ° C. in a heating furnace. Further, a rod having a bending amount of about 5 mm after the rough correction was used. The change in the amount of bending due to the holding time differs depending on the placement. As in the case of the α + β process material shown in FIG. 1, the bending increases when placed directly on the transport roller or when tying the steel tube. When inserted into a container having a U-shaped or V-shaped cross section, and when a straight steel bar is inserted together, the amount of bending decreases with an increase in the holding time and becomes 1 mm or less. The holding time at which the amount of bending falls to 1 mm or less is shorter than that of the α + β process.
The β process material is longer because it has better creep resistance.

【0022】図2の(a),(b),(c),(g),
(h)のようなチタン合金棒やチタン合金棒と同程度の
直径を有する鋼製の直棒を一緒に挿入した鋼管を回転搬
送型のウォーキングビーム式加熱炉で、円筒軸を中心に
回転させて熱処理した場合には、鋼管内の位置による温
度差と上部からかかる荷重の差及びクリープ変形して沿
う対象物の真直度の差(鋼管や鋼製の直棒との接触の度
合い)が、回転することにより平均化されるため、どの
チタン合金棒も平均的にクリープ変形し、回転しない場
合よりもより平均して曲がり量が低下する。したがっ
て、真直度のばらつきをより低く抑えるために、円筒型
の容器に粗矯正したチタン合金棒、または鋼製の直棒を
一緒に挿入し、円筒型の容器を円筒軸を中心に回転する
こととした。
2 (a), 2 (b), 2 (c), 2 (g),
(H) A steel pipe into which a titanium alloy rod or a steel straight rod having a diameter similar to that of the titanium alloy rod is inserted together is rotated about a cylindrical axis by a rotary conveyance type walking beam heating furnace. In the case of heat treatment, the temperature difference due to the position in the steel pipe and the difference between the load applied from above and the difference in the straightness of the object along creep deformation (the degree of contact with the steel pipe or steel straight rod) Since the titanium alloy rods are averaged by rotating, all the titanium alloy rods undergo creep deformation on average, and the amount of bending is reduced more on average than when the rod is not rotated. Therefore, in order to reduce the variation in straightness, insert a roughly straightened titanium alloy rod or steel straight rod together into a cylindrical container, and rotate the cylindrical container around the cylindrical axis. And

【0023】したがって、本願発明では粗矯正後の曲が
りを有するα+β型チタン合金製の棒の曲がり量を1mm
以下にするために、熱処理時のチタン合金棒の置き方
を、断面が円型、円弧型、U字型或いはV字型の何れか
で、長さがチタン合金棒の長さ以上ある容器に長手方向
が平行になるように1本以上挿入する方法、またはチタ
ン合金棒と同程度の直径を有する鋼製の直棒を1本以上
一緒に挿入する方法、更にこの鋼製の直棒をチタン合金
棒の上部に配置する方法、または円筒型の容器に挿入し
て容器を円筒軸を中心に回転する方法、更にチタン合金
棒と同程度の直径を有する鋼製の直棒を1本以上一緒に
挿入した円筒型の容器を円筒軸を中心に回転する方法と
した。
Therefore, in the present invention, the bending amount of the α + β type titanium alloy rod having the bending after the rough correction is set to 1 mm.
In order to make the following, place the titanium alloy rod at the time of heat treatment in a container whose cross section is circular, arc-shaped, U-shaped or V-shaped, and whose length is longer than the length of the titanium alloy rod. A method of inserting one or more steel bars having a diameter similar to that of a titanium alloy rod together with a method of inserting one or more steel rods so that their longitudinal directions are parallel to each other. A method of placing it on the top of an alloy rod, or a method of inserting it into a cylindrical container and rotating the container around a cylindrical axis, and joining together one or more steel straight rods having the same diameter as the titanium alloy rod The cylindrical container inserted into the container was rotated around a cylindrical axis.

【0024】図3に、α+βプロセスで製造したTi−
6Al−4V製線材コイルを引張と曲げにより矯正し、
長さ5mに切断した棒を、外径101mm、厚さ8mm、長
さ6mの鋼管内に5本挿入して、種々の温度で保持した
場合の保持時間と棒の曲がり量の変化を示す。ここで、
曲がり量は上記と同様の方法で測定した5本の棒の平均
値である。また、粗矯正後の曲がり量が約5mm程度の棒
を使用した。加熱炉はローラ搬送型を使用した。
FIG. 3 shows that Ti-
6Al-4V wire rod coil is corrected by tension and bending,
Changes in the holding time and the amount of bending of the rod when five rods cut into a length of 5 m are inserted into a steel pipe having an outer diameter of 101 mm, a thickness of 8 mm, and a length of 6 m and held at various temperatures are shown. here,
The amount of bending is an average value of five bars measured in the same manner as described above. Further, a rod having a bending amount of about 5 mm after the rough correction was used. The heating furnace used was a roller transfer type.

【0025】図3より、保持温度が650℃以上では、
保持温度の増加に伴い棒の曲がり量は減少し、800℃
では約30分、650℃では約240分で棒の曲がり量
が1mm以下になる。保持温度が600℃の場合には、保
持温度が増加しても曲がり量がほとんど減少しない。し
たがって、能率の点から、保持時間が240分以下で棒
の曲がり量が1mm以下にするため、α+βプロセスの場
合には、保持温度を650℃以上とした。また、β変態
点以上に加熱すると急激に粒成長するため、熱間圧延で
造り込んだ材質が大幅に変化するため、保持温度の上限
をβ変態点未満とした。
FIG. 3 shows that when the holding temperature is 650 ° C. or more,
The amount of bending of the rod decreased with increasing the holding temperature,
In about 30 minutes at 650 ° C., the bending amount of the rod becomes 1 mm or less in about 240 minutes. When the holding temperature is 600 ° C., the amount of bending hardly decreases even if the holding temperature increases. Therefore, from the viewpoint of efficiency, the holding temperature was set to 650 ° C. or higher in the case of the α + β process in order to reduce the bending amount of the rod to 1 mm or less when the holding time was 240 minutes or less. In addition, when heated above the β transformation point, the grains grow rapidly, and the material produced by hot rolling changes significantly. Therefore, the upper limit of the holding temperature is set to less than the β transformation point.

【0026】図4に、βプロセスで製造したTi−6A
l−4V製線材コイルを引張と曲げにより矯正し、長さ
5mに切断した棒を、外径101mm、厚さ8mm、長さ6
mの鋼管内に5本挿入して、種々の温度で保持した場合
の保持時間と棒の曲がり量の変化を示す。ここで、曲が
り量は上記と同様の方法で測定した5本の棒の平均値で
ある。また、粗矯正後の曲がり量が約5mm程度の棒を使
用した。加熱炉はローラ搬送型を使用した。
FIG. 4 shows Ti-6A manufactured by the β process.
A rod obtained by correcting a 1-4V wire rod coil by tension and bending and cutting it to a length of 5 m is an outer diameter of 101 mm, a thickness of 8 mm, and a length of 6 mm.
5 shows changes in the holding time and the amount of bending of a rod when five steel pipes are inserted into a steel pipe of m and held at various temperatures. Here, the amount of bending is an average value of five bars measured by the same method as described above. Further, a rod having a bending amount of about 5 mm after the rough correction was used. The heating furnace used was a roller transfer type.

【0027】図4より、保持温度が750℃以上では、
保持温度の増加に伴い棒の曲がり量は減少し、900℃
では約40分、750℃では約210分で棒の曲がり量
が1mm以下になる。保持温度が700℃の場合には、保
持温度が増加しても曲がり量がほとんど減少しない。し
たがって、能率の点から、保持時間が240分以下で棒
の曲がり量が1mm以下にするため、βプロセスの場合に
は、保持温度を750℃以上とした。また、β変態点以
上に加熱すると急激に粒成長するため、熱間圧延で造り
込んだ材質が大幅に変化するため、保持温度の上限をβ
変態点未満とした。
FIG. 4 shows that when the holding temperature is 750 ° C. or more,
The amount of bending of the rod decreased with the increase of the holding temperature, 900 ° C
In about 40 minutes at 750 ° C., the bending amount of the rod becomes 1 mm or less in about 210 minutes. When the holding temperature is 700 ° C., the amount of bending hardly decreases even if the holding temperature increases. Therefore, from the viewpoint of efficiency, the holding temperature was set to 750 ° C. or higher in the case of the β process in order to reduce the bending amount of the rod to 1 mm or less when the holding time was 240 minutes or less. Further, when heated above the β transformation point, the grains grow rapidly, and the material formed by hot rolling changes significantly.
It was below the transformation point.

【0028】また、他のα+β型チタン合金であるTi
−3Al−2.5Vでも図3,4と同様の挙動を示して
おり、各保持温度における棒の曲がり量が1mm以下にな
る保持時間はTi−6Al−4Vの場合より、若干短時
間になるが、ほぼ同程度である。
Also, another α + β type titanium alloy, Ti
-3Al-2.5V shows the same behavior as in FIGS. 3 and 4, and the holding time at which the bending amount of the rod at each holding temperature is 1 mm or less is slightly shorter than that of Ti-6Al-4V. But about the same.

【0029】図5に、α+βプロセスとβプロセスで製
造したTi−6Al−4V製の粗矯正後の棒における熱
処理前の棒の曲がり量と熱処理で棒の曲がり量が1mm以
下に低下する保持時間の関係を示す。ここで棒の曲がり
量が1mm以下になる保持時間は、図3,4のように、熱
処理前の種々の曲がり量を有する棒における保持時間に
対する曲がり量の変化から求めた。図5より、α+βプ
ロセスとβプロセスで、保持温度が800,950℃と
も棒の曲がり量が1mm以下に低下する保持時間は、熱処
理前の棒の曲がり量にほぼ比例して増加しており、また
図3,4より、棒の曲がりが1mm以下になるまでの棒の
曲がり量の低下は、保持時間にほぼ比例していることか
ら、単位時間当たりの曲がり量の低下はα+βプロセス
とβプロセス各々で、各保持温度においてほぼ一定であ
る。
FIG. 5 shows the bending amount of the rod before the heat treatment in the rod after the rough correction made of Ti-6Al-4V manufactured by the α + β process and the β process, and the holding time at which the bending amount of the rod is reduced to 1 mm or less by the heat treatment. Shows the relationship. Here, the holding time at which the bending amount of the bar is 1 mm or less was determined from the change in the bending amount with respect to the holding time of the rod having various bending amounts before the heat treatment as shown in FIGS. From FIG. 5, in the α + β process and the β process, the holding time at which the bending amount of the rod decreases to 1 mm or less at both the holding temperature of 800 and 950 ° C. increases almost in proportion to the bending amount of the rod before the heat treatment. 3 and 4, the decrease in the amount of bending of the rod until the bending of the rod becomes 1 mm or less is almost proportional to the holding time. Therefore, the reduction in the amount of bending per unit time is due to the α + β process and the β process. In each case, it is almost constant at each holding temperature.

【0030】図5に示したような直線の傾きから、各保
持温度における曲がり量を1mm低下させるのに必要な保
持時間を求めるとα+βプロセスでは(3)式のt1
(1) 、βプロセスでは(4)式のt2(1) が得られる。
したがって、棒の曲がり量の低下が保持時間にほぼ比例
することから、各保持温度において、熱処理後に狙いの
曲がり量を達成するのに必要な保持時間は、棒1m当た
りの狙いの曲がり量に対する粗矯正後(熱処理前)の曲
がり量との差(狙いの矯正量:Δd)とt1(1)または
t2(1) との積になり、α+βプロセスとβプロセス各
々で、(5)式のt1、(6)式のt2となる。 t1(1) =4.5×10-5×exp(1.3×104 /(T+273)) …(3) t2(1) =1.6×10-4×exp(1.3×104 /(T+273)) …(4) ここで、 t1(1) ,t2(1) :棒の曲がり量を1mm低下させるの
に必要な保持時間(分) T :保持温度(℃) t1=4.5×10-5×Δd×exp(1.3×104 /(T+273))…(5) t2=1.6×10-4×Δd×exp(1.3×104 /(T+273))…(6) ここで、 t1,t2:時間(分) T :保持温度(℃) Δd:狙いの矯正量(mm) (棒1m当たりの狙いの曲がり量に対する粗矯正後の曲
がり量との差)
From the inclination of the straight line as shown in FIG. 5, the holding time required to reduce the amount of bending at each holding temperature by 1 mm is obtained. In the α + β process, t1 in equation (3) is obtained.
In the (1) and β processes, t2 (1) in equation (4) is obtained.
Therefore, since the reduction in the amount of bending of the rod is substantially proportional to the holding time, the holding time required to achieve the desired amount of bending after heat treatment at each holding temperature is roughly the same as the desired amount of bending per meter of the rod. It is the product of the difference between the amount of bending after correction (before heat treatment) (the target correction amount: Δd) and t1 (1) or t2 (1). In each of the α + β process and the β process, t1 of the formula (5) is obtained. , (6) becomes t2. t1 (1) = 4.5 × 10 −5 × exp (1.3 × 10 4 / (T + 273)) (3) t2 (1) = 1.6 × 10 −4 × exp (1.3 × 10 4 / (T + 273)) (4) Here, t1 (1), t2 (1): holding time (min) required to reduce the bending amount of the bar by 1 mm T: holding temperature (° C.) t1 = 4 0.5 × 10 −5 × Δd × exp (1.3 × 10 4 / (T + 273)) (5) t2 = 1.6 × 10 −4 × Δd × exp (1.3 × 10 4 / (T + 273)) ) (6) where, t1, t2: time (minutes) T: holding temperature (° C.) Δd: target correction amount (mm) (the difference between the target correction amount per 1 m of the rod and the post-coarse correction correction amount) difference)

【0031】図6に、Δdが4mmの場合の棒の曲がり量
を1mm以下にするのに適した保持温度と保持時間の領域
を示す。保持温度が、α+βプロセス(α+β二相域仕
上げ)では650℃未満、βプロセス(β相域仕上げ)
では750℃未満の場合、保持温度が低いため棒がほと
んど変形しないか、棒の曲がり量を1mm以下にするのに
240分超もの長時間の保持が必要となり、能率が低
い。また、β変態点以上に加熱すると急激に粒成長する
ため、熱間圧延で造り込んだ材質が大幅に変化してしま
う。α+βプロセス(α+β二相域仕上げ)では、保持
温度が650℃以上β変態点未満で保持時間t1(分)
以上、βプロセス(β相域仕上げ)では750℃未満以
上β変態点未満で保持時間t2(分)以上が、棒の曲が
り量が1mm以下になる範囲(図6の斜線部分)である。
一方、t1またはt2未満の保持時間では保持時間が短
いため変形量が少なく、棒の曲がり量が1mm以下になら
ない。
FIG. 6 shows a range of the holding temperature and the holding time suitable for reducing the bending amount of the rod to 1 mm or less when Δd is 4 mm. Holding temperature is less than 650 ° C for α + β process (α + β two-phase region finish), β process (β-phase region finish)
When the temperature is lower than 750 ° C., the rod is hardly deformed due to the low holding temperature, or the rod needs to be held for a long time of more than 240 minutes to reduce the bending amount of the rod to 1 mm or less, resulting in low efficiency. Further, when heated above the β transformation point, the grains grow rapidly, so that the material formed by hot rolling changes significantly. In the α + β process (α + β two-phase region finishing), when the holding temperature is 650 ° C. or more and less than the β transformation point, the holding time t1 (minute)
As described above, in the β process (β phase region finishing), the holding time t2 (minutes) or more but less than 750 ° C. or more and less than the β transformation point is the range where the amount of bending of the rod is 1 mm or less (shaded portion in FIG. 6).
On the other hand, if the holding time is shorter than t1 or t2, the holding time is short, so that the deformation amount is small, and the bending amount of the rod does not become 1 mm or less.

【0032】[0032]

【発明の実施の形態】以下の実施例により、本発明を更
に詳しく説明する。熱間圧延の仕上げ温度がα+β相温
度域の920℃及びβ相温度域の1020℃であるコイ
ルの巻き径が約1.1m、直径が9mmと17mmのTi−
6Al−4V製の線材コイルを引張と曲げにより粗矯正
した後、長さ5mに切断した。その棒を種々の置き方、
保持温度、保持時間で熱処理を行った後、冷間で2ロー
ル矯正をし、一部表層を研削または切削した。また、各
工程後の曲がり量を測定した。
The present invention will be described in more detail with reference to the following examples. When the finishing temperature of the hot rolling is 920 ° C. in the α + β temperature range and 1020 ° C. in the β phase temperature range, the winding diameter of the coil is about 1.1 m, and the diameter of the Ti—
The wire coil made of 6Al-4V was roughly corrected by tension and bending, and then cut to a length of 5 m. The rod can be placed in various ways,
After performing the heat treatment at the holding temperature and the holding time, two-roll straightening was performed in a cold state, and a part of the surface layer was ground or cut. Also, the amount of bending after each step was measured.

【0033】ここで加熱炉はローラハース型炉及び回転
搬送式のウォーキングビーム炉を使用した。研削量は直
径に対して約0.3mmで、切削量は直径に対して約1.
0mmである。また曲がり量は、ローラを1m間隔に置
き、ローラ間の中央にダイヤルゲージを棒の表面が接す
るように設置し、棒をローラ上で軸を中心に1回転させ
た時のダイヤルゲージの最大値と最小値の差の2分の1
の値とし、全長5点で測定した平均値である。棒複数本
を同時に処理した場合の曲がり量は各棒の曲がり量の平
均値である。また、棒を挿入したパイプは外径101m
m、厚さ8mm、長さ6mの鋼管を使用し、他のU字型や
V字型の保持具は、このパイプを切断、加工したもので
ある。チタン製の棒と一緒に挿入した鋼製の直棒は直径
17mmである。
As the heating furnace, a roller hearth type furnace and a rotary conveying type walking beam furnace were used. The grinding amount is about 0.3 mm to the diameter, and the cutting amount is about 1.
0 mm. The amount of bending is the maximum value of the dial gauge when the rollers are placed at 1m intervals, the dial gauge is set at the center between the rollers so that the surface of the rod contacts, and the rod is rotated once around the axis on the roller. And half of the difference between
And the average value measured at 5 points in the total length. The bending amount when a plurality of bars are simultaneously processed is an average value of the bending amounts of the respective bars. The pipe with the rod inserted has an outer diameter of 101m.
Other U-shaped and V-shaped holders are formed by cutting and processing a steel pipe having a length of 8 m, a thickness of 8 mm, and a length of 6 m. The steel rod inserted with the titanium rod is 17 mm in diameter.

【0034】Ti−3Al−2.5Vをα+β相温度域
である850℃及びβ相温度域である970℃で熱間圧
延した直径17mmの線材コイルにおいてもTi−6Al
−4Vの場合と同様の工程で棒を製造した。
A 17 mm diameter wire coil obtained by hot rolling Ti-3Al-2.5V at 850 ° C. in the α + β temperature range and 970 ° C. in the β phase temperature range was also used.
A rod was manufactured in the same process as in the case of -4V.

【0035】表1に、各工程後の曲がり量、熱処理条件
(置き方,保持温度,保持時間)、(1)式のt1及び
(2)式のt2の値、棒の曲がり量を1mmにするのに必
要な矯正量Δdの値を示す。
Table 1 shows the amount of bending after each step, heat treatment conditions (placement, holding temperature, holding time), the value of t1 in equation (1) and the value of t2 in equation (2), and the amount of bending of the rod to 1 mm. This shows the value of the correction amount Δd required to perform the correction.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【0038】表1より、α+β二相域仕上げの直径17
mmのTi−6Al−4V線材コイルを粗矯正した棒を種
々の置き方で、保持温度800℃、保持時間40分で熱
処理した場合、搬送ローラ上に直に置いたNo.1や結
束したNo.2は棒の曲がり量が熱処理前より増加して
いる。一方、本発明の棒の置き方である、パイプ内に棒
を挿入したNo.3,4,17や、鋼製の直棒を一緒に
挿入したNo.5,6、またU字型やV字型の容器に挿
入したNo.7,8、更にパイプを回転させたNo.
9,10は、熱処理後の棒の曲がり量が1mm未満に低下
している。
As shown in Table 1, the diameter of the α + β two-phase region finish was 17
mm heat-treated at a holding temperature of 800 ° C. and a holding time of 40 minutes by variously placing rods obtained by roughly correcting a Ti-6Al-4V wire coil of No. No. 1 or No. In No. 2, the amount of bending of the rod was larger than before the heat treatment. On the other hand, No. 1 in which the rod was inserted into the pipe, which is the method of placing the rod of the present invention. Nos. 3, 4, 17 and No. 3 in which steel straight rods were inserted together. No. 5, 6, or No. 5 inserted in a U-shaped or V-shaped container. Nos. 7, 8 and No. 7 where the pipe was further rotated
In Nos. 9 and 10, the bending amount of the rod after the heat treatment was reduced to less than 1 mm.

【0039】α+β二相域仕上げの直径17mmのTi−
6Al−4V線材コイルを粗矯正した棒を5本、パイプ
内に挿入して、加熱保持したNo.13〜23では、保
持温度が650℃以上で、保持時間がt1以上の棒は、
熱処理後の曲がり量が1mm未満に低下しているが、保持
温度が650℃未満または保持時間がt1未満の場合に
は、棒の曲がり量が1mm以下にならない。
Α + β Two phase finish Ti- 17 mm diameter
No. 6 rods obtained by inserting five rods obtained by roughly correcting a 6Al-4V wire coil into a pipe and heating and holding. In 13 to 23, a rod having a holding temperature of 650 ° C. or more and a holding time of t1 or more is
Although the bending amount after the heat treatment is reduced to less than 1 mm, when the holding temperature is less than 650 ° C. or the holding time is less than t1, the bending amount of the rod does not become 1 mm or less.

【0040】β相域仕上げの直径17mmのTi−6Al
−4V線材コイルを粗矯正した棒を1本パイプ内に挿入
したNo.11、5本挿入したNo.24〜34、鋼製
の直棒を一緒に挿入したNo.12では、保持温度が7
50℃以上で、保持時間がt2以上の棒は、熱処理後の
曲がり量が1mm未満に低下しているが、保持温度が75
0℃未満または保持時間がt2未満の場合には、棒の曲
がり量が1mm以下にならない。
Ti-6Al having a diameter of 17 mm and a β phase finish
No. 4 in which a single rod obtained by roughly correcting a -4V wire rod coil was inserted into one pipe. Nos. 11 and 5 inserted. Nos. 24 to 34, in which a steel straight bar was inserted together. In the case of 12, the holding temperature is 7
The rod having a holding temperature of 75 ° C. or more and having a holding time of t 2 or more has a bending amount of less than 1 mm after the heat treatment, but has a holding temperature of 75 ° C.
When the temperature is less than 0 ° C. or the holding time is less than t2, the bending amount of the rod does not become 1 mm or less.

【0041】No.35〜38の直径9mmのTi−6A
l−4Vの場合やNo.39〜46の直径17mmのTi
−3Al−2.5Vの場合も、直径17mmのTi−6A
l−4Vの場合と同様に、保持温度と保持時間が本発明
の範囲の棒は、熱処理後の棒の曲がり量が1mm以下にな
る。
No. 9mm diameter Ti-6A 35-38
No. 1-4V or No. Ti with a diameter of 17 mm from 39 to 46
-3Al-2.5V, Ti-6A with a diameter of 17mm
Similarly to the case of 1-4V, the rod having the holding temperature and the holding time within the range of the present invention has a bending amount of the rod after the heat treatment of 1 mm or less.

【0042】また、鋼製の直棒を一緒に挿入したNo.
5,6,10,12は他より約0.2mmほど熱処理後の
曲がり量が小さい。
In addition, the steel rods No.
5, 6, 10, and 12 have a smaller amount of bending after heat treatment by about 0.2 mm than others.

【0043】熱処理後の棒の曲がり量が1mm以下の場合
には、冷間2ロール矯正後や表面の切削または研削後の
曲がり量も1mm以下になる。しかし、熱処理後の棒の曲
がり量が1mm超の場合には、冷間2ロール矯正後により
曲がり量が1mm以下になる場合があるが、表面の切削ま
たは研削により残留応力のバランスが崩れ、曲がり量が
増加し1mm超になってしまう。
When the bending amount of the rod after the heat treatment is 1 mm or less, the bending amount after the cold roll correction or the surface cutting or grinding is also 1 mm or less. However, if the bending amount of the rod after heat treatment is more than 1 mm, the bending amount may be 1 mm or less after the cold two-roll straightening. The amount increases and exceeds 1 mm.

【0044】[0044]

【発明の効果】粗矯正後の曲がりを有するα+β型チタ
ン合金製の棒の曲がり量を断面が円型、円弧型U字型或
いはV字型の何れかの容器に挿入し、所定の保持温度に
所定の時間以上保持することにより、熱処理時の棒の曲
がりの増加がなく、且つ効率的に棒の曲がりを低減し、
以降の冷間矯正や表面の切削、研削後も安定した真直度
を得ることができる。
According to the present invention, the bending amount of a rod made of an α + β type titanium alloy having a bending after rough correction is inserted into a container having a circular, arc-shaped U-shaped or V-shaped cross section, and a predetermined holding temperature. By holding for a predetermined time or more, there is no increase in bending of the rod during heat treatment, and the bending of the rod is efficiently reduced,
Stable straightness can be obtained even after the subsequent cold straightening, surface cutting, and grinding.

【図面の簡単な説明】[Brief description of the drawings]

【図1】α+β二相域仕上げのTi−6Al−4Vの粗
矯正後の棒を熱処理した時の置き方による棒の曲がり量
の変化を示す図。
FIG. 1 is a diagram showing a change in the amount of bending of a bar depending on how to place the bar after rough correction of Ti-6Al-4V having α + β two-phase region finish after heat treatment.

【図2】(a)〜(h)は本発明の棒の置き方(保持方
法)を示す図で、(a)は鋼管(パイプ)内にTi−6
Al−4Vの粗矯正後の棒を1本、(b)は5本、
(c)は10本挿入した場合、(d)は断面が円弧状、
(e)はU字型、(f)はV字型の容器を用いた場合、
(g)は鋼管(パイプ)内にTi−6Al−4Vの粗矯
正後の棒5本と鋼製の直棒2本をランダムに挿入した場
合、(h)はTi−6Al−4Vの粗矯正後の棒5本の
上部に鋼製の直棒4本を挿入した場合を示す。
2 (a) to 2 (h) are views showing how to place (hold) a rod according to the present invention, and FIG. 2 (a) shows Ti-6 in a steel pipe (pipe).
One rod after Al-4V rough correction, (b) five rods,
(C), when ten are inserted, (d), the cross section is an arc,
(E) uses a U-shaped container, (f) uses a V-shaped container,
(G) When five rods after Ti-6Al-4V rough correction and two steel straight rods were randomly inserted into a steel pipe (pipe), (h) Rough correction of Ti-6Al-4V The case where four steel straight rods are inserted into the upper part of the latter five rods is shown.

【図3】α+β二相域仕上げのTi−6Al−4Vの粗
矯正後の棒をパイプ内に挿入し、熱処理したときの各保
持温度における棒の曲がり量の変化を示す図。
FIG. 3 is a diagram showing a change in the amount of bending of a rod at each holding temperature when a rod after coarse correction of Ti-6Al-4V having an α + β two-phase region finish is inserted into a pipe and subjected to heat treatment.

【図4】β相域仕上げのTi−6Al−4Vの粗矯正後
の棒をパイプ内に挿入し、熱処理したときの各保持温度
における棒の曲がり量の変化を示す図。
FIG. 4 is a diagram showing a change in the amount of bending of a rod at each holding temperature when a rod after rough correction of Ti-6Al-4V having β-phase region finish is inserted into a pipe and subjected to heat treatment.

【図5】α+β二相域仕上げ及びβ相域仕上げのTi−
6Al−4Vの粗矯正後の棒をパイプ内に挿入し、熱処
理したときの熱処理前の棒の曲がり量と熱処理後の曲が
り量が1mm以下に低下する保持温度の関係を示す図。
FIG. 5: Ti + with α + β dual phase finish and β phase finish
The figure which shows the relationship between the amount of bending of the rod before heat treatment at the time of inserting the rod after rough correction | amendment of 6Al-4V into a pipe, and heat-treating, and the holding temperature at which the amount of bending after heat treatment falls to 1 mm or less.

【図6】α+β二相域仕上げ及びβ相域仕上げの粗矯正
後(熱処理前)の曲がり量が5mmのTi−6Al−4V
製の棒で、曲がり量が1mm以下になる熱処理での保持温
度と保持時間の範囲(熱処理での狙いの矯正量Δdが4
mm)を示す図。
FIG. 6: Ti-6Al-4V having a bending amount of 5 mm after rough correction (before heat treatment) of α + β dual-phase finish and β-phase finish
Range of the holding temperature and holding time in the heat treatment in which the bending amount is 1 mm or less (the target correction amount Δd in the heat treatment is 4 mm).
mm).

【符号の説明】[Explanation of symbols]

1:粗矯正後のチタン合金棒 2:チタン合金棒を挿入する鋼管または容器 3:鋼製の直棒 1: Titanium alloy rod after rough correction 2: Steel pipe or container into which titanium alloy rod is inserted 3: Straight steel rod

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22F 1/00 685 C22F 1/00 685Z 686 686A 691 691C 691B 694 694A ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI C22F 1/00 685 C22F 1/00 685Z 686 686A 691 691C 691B 694 694A

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 α+β型チタン合金製の線材コイルを、
冷間で粗矯正した後、該棒を断面が円型、円弧型、U字
型或いはV字型の何れかで、長さが棒の長さ以上ある容
器に長手方向が平行になるように1本以上挿入し、高温
に加熱保持することを特徴とするα+β型チタン合金製
直棒の矯正方法。
1. A wire coil made of an α + β type titanium alloy,
After rough correction in the cold, the rod should be circular, arc-shaped, U-shaped or V-shaped in cross-section, and the length direction should be parallel to the container longer than the length of the rod. A method for straightening an α + β type titanium alloy straight bar, wherein one or more wires are inserted and heated at a high temperature.
【請求項2】 熱間圧延の仕上げ温度がα+β二相域で
あるα+β型チタン合金製の線材コイルを、冷間で粗矯
正した後、該棒を断面が円型、円弧型、U字型或いはV
字型の何れかで、長さが棒の長さ以上ある容器に長手方
向が平行になるように1本以上挿入し、保持温度Tが6
50(℃)以上β変態点未満で、保持時間が狙いの矯正
量Δdに対して(1)式のt1(分)以上の熱処理を行
うことを特徴とするα+β型チタン合金製直棒の矯正方
法。 t1=4.5×10-5×Δd×exp(1.3×104 /(T+273))…(1) ここで、 t1:時間(分) T :保持温度(℃) Δd:狙いの矯正量(mm) (棒1m当たりの狙いの曲がり量に対する粗矯正後の曲
がり量との差)
2. A wire coil made of an α + β type titanium alloy in which the finishing temperature of hot rolling is in the α + β two-phase region is roughly straightened in the cold, and then the cross section of the rod is circular, arcuate or U-shaped. Or V
One or more of them are inserted into a container having a length equal to or greater than the length of the rod so that the longitudinal direction is parallel to the container.
A straightening rod made of an α + β titanium alloy, wherein a heat treatment is performed at a temperature equal to or higher than 50 (° C.) and lower than the β transformation point, and the holding time is equal to or longer than t1 (minute) in equation (1) with respect to the target correction amount Δd Method. t1 = 4.5 × 10 −5 × Δd × exp (1.3 × 10 4 / (T + 273)) (1) where, t1: time (minute) T: holding temperature (° C.) Δd: correction of aim Amount (mm) (Difference between the amount of desired bending per 1 m of rod and the amount of bending after rough correction)
【請求項3】 熱間圧延の仕上げ温度がβ相域であるα
+β型チタン合金製の線材コイルを、冷間で粗矯正した
後、該棒を断面が円型、円弧型、U字型或いはV字型の
何れかで、長さが棒の長さ以上ある容器に長手方向が平
行になるように1本以上挿入し、保持温度Tが750
(℃)以上β変態点未満で、保持時間が狙いの矯正量Δ
dに対して(2)式のt2(分)以上の熱処理を行うこ
とを特徴とするα+β型チタン合合金製直棒の矯正方
法。 t2=1.6×10-4×Δd×exp(1.3×104 /(T+273))…(2) ここで、 t2:時間(分) T :保持温度(℃) Δd:狙いの矯正量(mm) (棒1m当たりの狙いの曲がり量に対する粗矯正後の曲
がり量との差)
3. The finishing temperature of hot rolling is α phase in the β phase region.
After a wire coil made of + β type titanium alloy is roughly corrected in a cold state, the bar has a cross section of any one of a circular shape, an arc shape, a U-shape, and a V-shape, and has a length equal to or greater than the length of the bar. One or more tubes are inserted in the container so that their longitudinal directions are parallel, and the holding temperature T is 750.
(° C) or more and less than the β transformation point, the holding time is the desired correction amount Δ
a straightening rod made of an α + β type titanium alloy alloy, wherein d is subjected to a heat treatment of t2 (minutes) or more in equation (2). t2 = 1.6 × 10 −4 × Δd × exp (1.3 × 10 4 / (T + 273)) (2) where, t2: time (minute) T: holding temperature (° C.) Δd: correction of aim Amount (mm) (Difference between the amount of desired bending per 1 m of rod and the amount of bending after rough correction)
【請求項4】 請求項1,2または3記載の熱処理の際
に、粗矯正したチタン合金棒以外に該チタン合金棒と同
程度の直径を有する鋼製の直棒を1本以上一緒に挿入す
ることを特徴とするα+β型チタン合金製直棒の矯正方
法。
4. The heat treatment according to claim 1, wherein one or more steel straight rods having a diameter similar to that of the titanium alloy rod are inserted together with the titanium alloy rod in addition to the coarsely corrected titanium alloy rod. A straightening method of a straight rod made of an α + β type titanium alloy, characterized in that:
【請求項5】 請求項1,2または3記載の熱処理の際
に、粗矯正したチタン合金棒の上部に該チタン合金棒と
同程度の直径を有する鋼製の直棒を配置することを特徴
とするα+β型チタン合金製直棒の矯正方法。
5. The heat treatment according to claim 1, wherein a straight steel bar having a diameter similar to that of the titanium alloy rod is disposed on the titanium alloy rod which has been roughly corrected. A straightening method for straight rods made of α + β type titanium alloy.
【請求項6】 請求項1,2または3記載の熱処理の際
に、粗矯正したチタン合金棒を1本以上挿入した円筒型
の容器を円筒軸を中心に回転することを特徴とするα+
β型チタン合金製直棒の矯正方法。
6. A process according to claim 1, wherein a cylindrical container into which one or more coarsely corrected titanium alloy rods are inserted is rotated about a cylindrical axis.
Straightening method for straight rod made of β-type titanium alloy.
【請求項7】 請求項1,2または3記載の熱処理の際
に、粗矯正したチタン合金棒以外に該チタン合金棒と同
程度の直径を有する鋼製の直棒を1本以上一緒に挿入し
た円筒型の容器を円筒軸を中心に回転することを特徴と
するα+β型チタン合金製直棒の製造方法。
7. The heat treatment according to claim 1, wherein one or more steel straight rods having the same diameter as the titanium alloy rod are inserted together with the titanium alloy rod in addition to the coarsely corrected titanium alloy rod. A method of manufacturing an α + β-type titanium alloy straight rod, comprising rotating a cylindrical container obtained above around a cylindrical axis.
JP10156197A 1997-04-18 1997-04-18 Straightening method for alpha+beta type titanium alloy straight bar Withdrawn JPH10291029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10156197A JPH10291029A (en) 1997-04-18 1997-04-18 Straightening method for alpha+beta type titanium alloy straight bar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10156197A JPH10291029A (en) 1997-04-18 1997-04-18 Straightening method for alpha+beta type titanium alloy straight bar

Publications (1)

Publication Number Publication Date
JPH10291029A true JPH10291029A (en) 1998-11-04

Family

ID=14303834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10156197A Withdrawn JPH10291029A (en) 1997-04-18 1997-04-18 Straightening method for alpha+beta type titanium alloy straight bar

Country Status (1)

Country Link
JP (1) JPH10291029A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013508550A (en) * 2009-10-20 2013-03-07 オベール エ デュヴァル Stress relaxation heat treatment of titanium alloy parts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013508550A (en) * 2009-10-20 2013-03-07 オベール エ デュヴァル Stress relaxation heat treatment of titanium alloy parts

Similar Documents

Publication Publication Date Title
JP2013543538A5 (en)
JP5644103B2 (en) Method for producing titanium alloy bar
JPS6039744B2 (en) Straightening aging treatment method for age-hardening titanium alloy members
JPH09108762A (en) Method and device for producing straight bar from steel wire rod of hard workability
JP3763041B2 (en) A method to increase the yield strength of cold formed steel shapes.
JPH10291029A (en) Straightening method for alpha+beta type titanium alloy straight bar
US5692899A (en) Wire for orthodontic treatment and its manufacturing method
JP2003112205A (en) METHOD AND DEVICE FOR MANUFACTURING Mg OR Mg ALLOY BAND PLATE
JP3641512B2 (en) Orthodontic wire and method for manufacturing the same
JPS6272430A (en) Straightening equipment provided with induction heating device
JPH0679743B2 (en) Continuous hot tension straightening device
JPS6358656B2 (en)
JP2585168B2 (en) Method for producing high strength low linear expansion Fe-Ni alloy wire
JP2565695B2 (en) Manufacturing method of nominal 13 mm type D deformed PC steel bar
JP3986834B2 (en) Straightening method for high strength copper alloy bar
JP2002302748A (en) Method for manufacturing titanium or titanium alloy rod
JP2862947B2 (en) Manufacturing method of high speed tool steel wire rod
KR100363414B1 (en) Manufacturing method of hot rolled steel sheet with low material deviation of wire end of hot rolled steel sheet
JP2871292B2 (en) Manufacturing method of α + β type titanium alloy sheet
TW202220763A (en) Device and method for reforming steel sheet pile, and method for producing steel sheet pile
JPS59185766A (en) Manufacture of superelastic ni-ti alloy
JPS6026610B2 (en) Hot straightening method for steel pipes
JP2000042675A (en) Method of hot forging steel for die or tool steel
JPH06304656A (en) Roller straightening device
JPH09176810A (en) Production of beta titanium alloy strip

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040706