JP2000042675A - Method of hot forging steel for die or tool steel - Google Patents

Method of hot forging steel for die or tool steel

Info

Publication number
JP2000042675A
JP2000042675A JP21674898A JP21674898A JP2000042675A JP 2000042675 A JP2000042675 A JP 2000042675A JP 21674898 A JP21674898 A JP 21674898A JP 21674898 A JP21674898 A JP 21674898A JP 2000042675 A JP2000042675 A JP 2000042675A
Authority
JP
Japan
Prior art keywords
forging
steel
reduction
load
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21674898A
Other languages
Japanese (ja)
Other versions
JP3754563B2 (en
Inventor
Katsuya Imai
克哉 今井
Junji Tsuru
淳史 鶴
Sonoko Kitagawa
園子 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Koshuha Steel Co Ltd
Original Assignee
Nippon Koshuha Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Koshuha Steel Co Ltd filed Critical Nippon Koshuha Steel Co Ltd
Priority to JP21674898A priority Critical patent/JP3754563B2/en
Publication of JP2000042675A publication Critical patent/JP2000042675A/en
Application granted granted Critical
Publication of JP3754563B2 publication Critical patent/JP3754563B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a forging method in which the energy loss for heating can be eliminated, the forging efficiency is improved, and the heavy working can be effected even with a limited capacity of a press. SOLUTION: In hot forging a steel for dies or a tool steel, the press reduction is stopped for a time specified by the formula t=1.75.10-20.ε-1.04e×p(64700/T) [t: standing time (s), ε: work strain, T: forging temperature [material temperature] (K)] when the forging load to be increased along with the press production reaches the value close to the load capacity of a forging machine, and then, the press reduction is continued again.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金型用鋼もしくは
工具鋼の熱間鍛造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for hot forging of mold steel or tool steel.

【0002】[0002]

【従来の技術】鋼材に鍛造等の塑性加工を行うと、図1
に示すように、材料が加工硬化して、ひずみの増加に伴
い変形抵抗が増加する。このため、加工率の増加に伴っ
て加工荷重が増大する。一方、例えば図2に示すような
円柱状の鋼塊Aに据込み加工を行うと、鋼塊Aの高さの
減少に伴ってその断面積は増加していき、材料が加工硬
化しなくても圧下率の増加に伴って加工荷重が増大す
る。一般的な鍛造加工ではこの2つの加工荷重増大因子
が相乗効果として鍛造荷重の増大に影響する。
2. Description of the Related Art When plastic working such as forging is performed on steel, FIG.
As shown in (1), the material is work-hardened, and the deformation resistance increases with an increase in strain. For this reason, the processing load increases as the processing rate increases. On the other hand, when upsetting is performed on a cylindrical ingot A, for example, as shown in FIG. 2, the cross-sectional area of the ingot A increases as the height of the ingot A decreases, and the material does not work harden. Also, as the rolling reduction increases, the processing load increases. In a general forging process, these two processing load increasing factors have a synergistic effect on the forging load increase.

【0003】このような鍛造時の荷重増大特性がある中
で、限られたプレスの機械容量で大型鋼塊の鍛造加工を
行う場合(例えば据込み加工を行う場合)に、一気に圧
縮を行う従来の加工方法では、ある加工量(圧下量)に
達した時点で鍛造荷重がプレスの鍛造荷重容量の限界に
達してしまい、それ以上加工(圧下)が出来なくなる問
題があった。
Under such a load increasing characteristic at the time of forging, when a large steel ingot is forged by a limited press machine capacity (for example, when upsetting is performed), conventional compression is performed at once. In the processing method of (1), when a certain processing amount (reduction amount) is reached, the forging load reaches the limit of the forging load capacity of the press, and there is a problem that further processing (reduction) cannot be performed.

【0004】そこで、従来の加工方法では、さらに加工
を加える必要がある場合には、一旦加熱炉に挿入保持し
て鋼塊の変形抵抗を低下させた(鋼塊内でオーステナイ
ト結晶粒を再結晶させた)後、再度鍛造加工を行った
り、或いは特公平7−39017号公報に開示されてい
る発明のように、鋼塊の鍛造中の温度低下を極力少なく
して、変形抵抗の増加を防止する方法もある。
Therefore, in the conventional processing method, when further processing is necessary, the steel is inserted and held in a heating furnace to reduce the deformation resistance of the steel ingot (recrystallization of austenite crystal grains in the steel ingot). After that, forging is performed again, or as in the invention disclosed in Japanese Patent Publication No. 7-39017, the temperature drop during forging of the steel ingot is minimized to prevent an increase in deformation resistance. There is also a way to do it.

【0005】[0005]

【発明が解決しようとする課題】しかし、前者の加工方
法は、加熱のためのエネルギーロスや加熱時間,再鍛造
用の準備時間等の多くの労力を必要とし、コストアップ
になるといった問題があり、また、特公平7−3901
7号公報に開示された発明の場合には、高温の保温部材
等が必要であり、保温部材の加熱や取扱い等で鍛造作業
が煩雑となり、コストアップになるといった問題点があ
る。
However, the former processing method requires a lot of labor such as energy loss for heating, heating time, preparation time for re-forging, and has a problem that the cost is increased. Also, Tokuho 7-3901
In the case of the invention disclosed in Japanese Patent Publication No. 7, a high-temperature insulating member or the like is required, and there is a problem that the forging operation becomes complicated due to heating and handling of the insulating member and the cost increases.

【0006】[0006]

【課題を解決するための手段】本発明は、上記のような
従来の問題点を解決するために成されたもので、加熱の
ためのエネルギーロスをなくし、鍛造能率の向上を図る
とゝもに、限られたプレスの機械容量でも強加工できる
鍛造方法を提供することを目的としたものであり、その
要旨は、金型用鋼もしくは工具鋼を熱間鍛造するに当た
り、圧下により増加する加工荷重が鍛造機の荷重容量近
くに達した時点で、式 t=1.75・10-20 ・ε-1.04 ・e×p(6470
0/T) ここで、t:静置時間(s)、 ε:加工ひずみ,T:
鍛造温度〔材料温度〕(K)を示すに従う時間以上圧下
を中断して一旦静置した後、再度圧下を継続することを
特徴とする金型用鋼もしくは工具鋼の熱間鍛造方法にあ
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and is intended to eliminate the energy loss for heating and improve the forging efficiency. The purpose of the present invention is to provide a forging method that can perform strong working even with a limited press machine capacity. When the load reaches the load capacity of the forging machine, the equation t = 1.75 · 10 −20 · ε −1.04 · e × p (6470
0 / T) where t: standing time (s), ε: working strain, T:
A hot forging method for die steel or tool steel, characterized in that the reduction is interrupted for a time according to the forging temperature [material temperature] (K), the steel is once allowed to stand, and then the reduction is continued again.

【0007】[0007]

【発明の実施の形態】以下、本発明を詳細に説明する
と、前記従来の技術で説明したように、一般的な鍛造加
工では、材料の加工硬化に起因したひずみの増加に伴う
変形抵抗の増加による加工荷重の増大と、圧下時の材料
の断面積の増加に伴う加工荷重の増大、といったこの2
つの加工荷重増大因子が相乗効果として鍛造荷重の増大
に影響する。したがって、鍛造時に継続して圧下を行え
ば加工荷重は圧下により増大して行き、いずれは鍛造機
の鍛造荷重容量に達してしまい、それ以上の圧下は行え
なくなる。これは熱間鍛造,冷間鍛造いずれにも当ては
まる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below. As described in the above prior art, in general forging, an increase in deformation resistance due to an increase in strain caused by work hardening of a material. This increases the processing load due to the increase in the processing load due to the increase in the cross-sectional area of the material during rolling.
The two processing load increase factors affect the forging load increase as a synergistic effect. Therefore, if rolling is performed continuously during forging, the processing load increases due to the rolling, and eventually reaches the forging load capacity of the forging machine, and further reduction cannot be performed. This applies to both hot forging and cold forging.

【0008】金型用鋼や工具鋼の鋼材は、一般的には溶
解・鋳造後、熱間加工により鍛錬を行って内部の品質や
機械的特性を向上させる。大型鋼材の熱間加工は主に鍛
造により行われているが、金型用鋼もしくは工具鋼は構
造用鋼より合金成分の含有量が多いため、熱間での変形
抵抗は構造用鋼より高い。そのため、金型用鋼もしくは
工具鋼を鍛造する場合、構造用鋼を鍛造する場合と比較
して鍛造機の荷重容量の制限によって限界加工量は少な
くなる。
[0008] The steel for mold and tool steel is generally forged by hot working after melting and casting to improve the internal quality and mechanical properties. Hot working of large steel materials is mainly performed by forging, but since mold steel or tool steel contains more alloying components than structural steel, the deformation resistance during hot is higher than that of structural steel. . Therefore, when forging die steel or tool steel, the limit processing amount is reduced due to the limitation of the load capacity of the forging machine as compared with the case of forging structural steel.

【0009】発明者等は、金型用鋼もしくは工具鋼を熱
間で鍛造するにあたり、オーステナイト結晶粒が再結晶
することにより、それまで蓄積された加工によるひずみ
がキャンセルされる現象を有効に活用できないか鋭意研
究を重ねた結果、以下の知見を得て本発明を完成させた
ものである。
[0009] In hot forging of mold steel or tool steel, the inventors have effectively utilized the phenomenon that austenite crystal grains are recrystallized, thereby canceling the strain caused by the processing accumulated up to that time. The present inventors have completed the present invention with the following findings as a result of intensive studies.

【0010】熱間でオーステナイト結晶粒が再結晶する
場合、加工中に再結晶が起こる動的再結晶と加工後に再
結晶が起こる静的再結晶に分けられること、及び圧延加
工等で動的再結晶による加工荷重の低下が起こることは
知られている。しかし、大型鋼塊等の熱間鍛造では、動
的再結晶に必要な一度に大きなひずみ量が得られにくい
こと、動的再結晶による荷重低下量は加工ひずみをすべ
てキャンセルした場合の荷重低下量よりはるかに小さい
ことなどから、大型鋼塊等の熱間鍛造では動的再結晶に
よる荷重低下を期待できないのが現状であった。
[0010] When austenite crystal grains are recrystallized by heating, they are divided into dynamic recrystallization in which recrystallization occurs during processing and static recrystallization in which recrystallization occurs after processing. It is known that the processing load is reduced by the crystal. However, in hot forging of large ingots, it is difficult to obtain a large amount of strain at a time necessary for dynamic recrystallization, and the amount of load reduction due to dynamic recrystallization is the amount of load reduction when all processing strains are cancelled. At present, it is not possible to expect a decrease in load due to dynamic recrystallization in hot forging of large ingots and the like, because they are much smaller.

【0011】また、低,中炭素鋼等では、1段目の加工
の後に等温保持し、次いで2段目の加工を行った場合
に、ある加工温度以上では等温保持中の静的再結晶によ
って、2段目の加工開始時には1段目加工時からの軟化
が起こっていることは知られている。このことから、こ
れら鋼種では圧下により加工荷重は逐次増大していき、
いずれは鍛造機の鍛造荷重容量限界に達してそれ以上の
圧下は困難になるが、ここで、圧下を一旦中断してある
時間放置すると、オーステナイト結晶粒が再結晶してこ
れまでの圧下による素材の加工硬化分がキャンセルさ
れ、素材の変形抵抗が低下して圧下に必要な加工荷重が
減少することは予想される。
On the other hand, in the case of low- and medium-carbon steel, etc., after the first stage of processing, the isothermal holding is performed, and then the second stage of processing is performed. It is known that at the start of the second stage processing, softening from the first stage processing has occurred. From these facts, in these steel types, the processing load increases gradually due to reduction,
Eventually, the forging machine will reach the forging load capacity limit and further reduction will be difficult.However, if the reduction is temporarily suspended and left for a certain period of time, the austenite crystal grains will recrystallize and the material from the previous reduction It is anticipated that the work hardening of the material will be canceled, the deformation resistance of the material will be reduced, and the processing load required for reduction will be reduced.

【0012】しかし、金型用鋼もしくは工具鋼の場合、
これら鋼種より含有する合金成分が多いため、固溶元素
や炭化物等がオーステナイト結晶粒の再結晶挙動や加工
硬化や軟化に与える影響が不明であり、圧下に必要な加
工荷重の低下量が実用的な値になるか全く不明であっ
た。
However, in the case of mold steel or tool steel,
Because there are more alloying components than these steel types, it is unknown how the solid solution elements and carbides affect the recrystallization behavior and work hardening and softening of austenite crystal grains, and the reduction in working load required under rolling is practical. It was completely unknown what the value would be.

【0013】そこで、発明者等は鋭意実験を重ねた結
果、金型用鋼もしくは工具鋼を熱間で鍛造する場合で
も、圧下により増大する加工荷重が鍛造機の鍛造荷重容
量限界近くに達した時点で、ある必要な時間圧下を中断
して一旦静置し、オーステナイト結晶粒が再結晶した後
引き続いて再度圧下を行うと、静置前に比べてより多く
の圧下を加えることが可能となることを見いだした。
[0013] The inventors have conducted intensive experiments, and as a result, even when hot forging die steel or tool steel, the working load increased by the reduction reached near the forging load capacity limit of the forging machine. At this point, if the reduction is interrupted for a required time and left to stand once, and then reduced again after the austenite crystal grains have recrystallized, it is possible to apply more reduction than before the standing. I found something.

【0014】すなわち、金型用鋼もしくは工具鋼を熱間
で鍛造するにあたり、圧下により加工荷重は逐次増大し
ていき、いずれは鍛造機の鍛造荷重容量限界に達してそ
れ以上の圧下は困難になるが、ここで、圧下を一旦中断
して必要な時間静置すると、オーステナイト結晶粒が再
結晶してこれまでの圧下による素材の加工硬化分がキャ
ンセルされ、素材の変形抵抗が低下して圧下に必要な加
工荷重が減少することがわかった。
That is, in hot forging of die steel or tool steel, the working load is gradually increased due to the reduction, and eventually the forging machine reaches the forging load capacity limit and further reduction is difficult. However, if the reduction is temporarily suspended and left for a required time, the austenite crystal grains are recrystallized and the work hardening of the material due to the previous reduction is canceled, and the deformation resistance of the material is reduced and the reduction is performed. It has been found that the processing load required for cutting is reduced.

【0015】しかし、圧下の一時中断時間は、工業生産
の面から種々鍛造条件ごとに必要最小限でなければなら
ないが、金型用鋼もしくは工具鋼を熱間で鍛造する場合
の圧下の一時中断時間を決定する方法がこれまで無かっ
た。それは先ず、鋼種,圧下量,鍛造温度によって再結
晶完了時間が異なり、かつ鍛造温度(材料温度)は鍛造
中逐次変化するため、圧下の一時中断時間を一義的に決
定することが出来なかったこと、更に、圧下の中断時間
が短すぎると再結晶が不十分で十分な変形抵抗の低下が
起こらず、また混粒組織となって鍛造品の機械的性質が
悪化すること、一方、圧下の中断時間が再結晶完了時間
をはるかに超えて長すぎると、鍛造時間を必要以上に増
加させて鍛造能率を悪化させるばかりでなく、材料温度
が低下してかえって変形抵抗の増大を招くことになるか
らである。
[0015] However, from the viewpoint of industrial production, the time period for temporarily stopping the reduction must be the minimum necessary for each of the various forging conditions. There has been no way to determine the time. First, the recrystallization completion time differs depending on the steel type, reduction amount, and forging temperature, and the forging temperature (material temperature) changes successively during forging, so that the temporary suspension time for reduction could not be determined uniquely. Further, if the interruption time of reduction is too short, recrystallization is insufficient and sufficient reduction of deformation resistance does not occur, and a mixed grain structure deteriorates the mechanical properties of the forged product. If the time is much longer than the recrystallization completion time, not only does the forging time increase unnecessarily and the forging efficiency deteriorates, but also the material temperature decreases and the deformation resistance increases. It is.

【0016】発明者等は、金型用鋼もしくは工具鋼の熱
間鍛造時におけるオーステナイト結晶粒の再結晶に関し
て種々実験による検討を重ねた結果、オーステナイト結
晶粒が再結晶して、これまでの圧下による素材の加工硬
化分がキャンセルされるに必要な圧下の一時中断時間
(静置時間)は次式(1)により求められることを見い
だした。すなわち、t:静置時間(s),ε:加工ひず
み,T:鍛造温度(材料温度)(K)とした場合、静置
時間tは次式(1)で求められた。 t=1.75・10-20 ・ε-1.04 ・e×p(64700/T)・・(1)
As a result of various experiments on the recrystallization of austenite grains during hot forging of mold steel or tool steel, the inventors have found that the austenite grains are recrystallized, and the reduction of the austenitic grains is reduced. It has been found that the temporary interruption time (rest time) required for canceling the work hardening of the material due to the above can be obtained by the following equation (1). That is, when t: standing time (s), ε: working strain, and T: forging temperature (material temperature) (K), the standing time t was obtained by the following equation (1). t = 1.75 · 10 -20 · ε -1.04 · e × p (64700 / T) ·· (1)

【0017】ここで、加工ひずみεと鍛造温度Tは、加
工後の再結晶開始時間と完了時間に密接に関連する因子
であり、加工ひずみが大きいほど、また鍛造温度が高い
ほど再結晶完了時間は短くなることになる。
Here, the processing strain ε and the forging temperature T are factors closely related to the recrystallization start time and the completion time after the processing, and the recrystallization completion time increases as the processing strain increases and the forging temperature increases. Will be shorter.

【0018】なお、含有する合金成分が再結晶時間に及
ぼす影響としては、Cr,Mo,VはCと炭化物を生成
し、またそれ自身がマトリクスの鉄中に固溶して再結晶
を遅らせる作用があると考えられ、またCrはCと炭化
物を生成するがその大部分は巨大な共晶炭化物となり、
この巨大共晶炭化物は再結晶の遅延にそれほど作用しな
いことも考えられた。
The effects of the contained alloy components on the recrystallization time are as follows: Cr, Mo, and V form C and carbides, and themselves act as a solid solution in the matrix iron to delay recrystallization. It is thought that Cr forms carbides with C, but most of them become huge eutectic carbides,
It was also thought that this giant eutectic carbide did not significantly affect the recrystallization delay.

【0019】そこで、加工後のオーステナイト結晶粒の
再結晶におよぼす上記合金成分の影響を種々調査した
が、C:0.15〜1.60%,Cr:1.00〜1
3.00%,Mo:0.18〜1.60%,V:0.0
8〜1.20%の範囲内では、圧下の一時中断時間(静
置時間)tは上記式により表されることを確認した。
Therefore, various effects of the above-mentioned alloy components on the recrystallization of austenite crystal grains after working were investigated. C: 0.15 to 1.60%, Cr: 1.00 to 1
3.00%, Mo: 0.18 to 1.60%, V: 0.0
Within the range of 8 to 1.20%, it was confirmed that the temporary interruption time (resting time) t under rolling was represented by the above equation.

【0020】そして上記式(1)により、例えば、C:
0.35%,Cr:5.0%,Mo:1.2%,V:
0.8%を含有する鋼を1150℃で、ひずみ0.55
まで加工した時の圧下の一時中断時間(静置時間)は
1.8秒となり、この程度の時間圧下を一時中断静置し
ても、鍛造能率の悪化や材料温度の低下による鍛造荷重
の増大がほとんど起こらないことが判る。
According to the above formula (1), for example, C:
0.35%, Cr: 5.0%, Mo: 1.2%, V:
A steel containing 0.8% is strained at 1150 ° C. with a strain of 0.55
The temporary suspension time (resting time) of the reduction when processing to the maximum is 1.8 seconds, and even if the reduction is temporarily suspended for this length of time, the forging load increases due to the deterioration of the forging efficiency and the decrease in the material temperature. It turns out that hardly occurs.

【0021】なお、上記式(1)より求められる時間t
は必要な静置時間の下限であって、実生産上は上記式の
時間に完全に合わせることは困難で幾分長くなるが、金
型用鋼もしくは工具鋼を熱間で鍛造するに当たり、圧下
により増大する加工荷重が鍛造機の鍛造荷重容量の限界
近くに達した時点で、圧下を中断して上記の式(1)で
求められる時間t以上で一旦静置し、オーステナイト結
晶粒が再結晶した後引き続いて再度圧下を行うことによ
り、鍛造能率を悪化させることなく、一気に圧下する場
合に比べてより多くの圧下を加えることに成功し、本発
明の完成を成し遂げたものである。
The time t obtained from the above equation (1)
Is the lower limit of the required standing time.In actual production, it is difficult to completely adjust to the time of the above formula, and it will be somewhat longer.However, when hot forging die steel or tool steel, When the processing load increased by the forging reaches the limit of the forging load capacity of the forging machine, the reduction is interrupted, and the steel sheet is allowed to stand still for a time t or more obtained by the above equation (1), and the austenite crystal grains are recrystallized. Then, the rolling is performed again successively, thereby succeeding in applying a larger amount of rolling than at a stretch without lowering the forging efficiency, thereby completing the present invention.

【0022】なお、圧下により増大する加工荷重が鍛造
機の鍛造荷重容量限界近くに達した時点である必要な時
間圧下を中断して一旦静置し、オーステナイト結晶粒が
再結晶した後引き続いて再度圧下を行うと静置前に比べ
てより多くの圧下を加えることが可能となることを見い
だしたが、鋼塊のある個所を圧下した後その部分は圧下
を中断してオーステナイト結晶粒が再結晶するまで静置
する間に他の個所を圧下しておいても、前記圧下を中断
していた個所がオーステナイト結晶粒が再結晶した後再
度圧下を行うと、静置前に比べてより多くの圧下を加え
ることが可能となるのは同様であり、鋼塊の2個所以上
について圧下後の静置の間に他の部分を圧下しておき、
更にその部分の静置の間に再度元の圧下した部分を圧下
することを交互に繰り返すと、より効率的に鍛造加工を
行うことが出来る。
It is to be noted that the reduction is interrupted for a necessary time when the processing load increased by the reduction reaches the limit of the forging load capacity of the forging machine, and the steel is once allowed to stand. It has been found that when rolling is performed, it is possible to apply a larger amount of rolling than before standing, but after rolling down a certain part of the steel ingot, that part is interrupted and the austenite crystal grains are recrystallized. Even if the other parts are reduced while being allowed to stand still, if the part where the reduction is interrupted is reduced again after the austenite crystal grains are recrystallized, more parts are reduced compared to before the standing. It is the same that it is possible to apply the reduction, and at least two parts of the ingot are reduced during resting after the reduction,
Further, when the original reduced portion is alternately reduced while the portion is still standing, forging can be performed more efficiently.

【0023】[0023]

【実施例】図4に本発明方法の1実施例を示す。これ
は、JIS鋼種SKD11の直径8mm×高さ12mm
の鋳造組織材を、1100℃に加熱して高さ方向(軸方
向)にひずみ速度0.1s-1で圧縮加工を行った。鍛造
機の最大負荷荷重を600kgfに制限して、従来の一
気に加工する方法で圧縮を行った結果、図3に示すよう
に、加工荷重が鍛造機の上限荷重600kgfに達した
時点の1.4mmまでしか圧下出来なかった。
FIG. 4 shows an embodiment of the method of the present invention. This is JIS steel type SKD11 diameter 8mm × height 12mm
Was heated to 1100 ° C. and compression-processed at a strain rate of 0.1 s −1 in the height direction (axial direction). As shown in FIG. 3, the maximum load of the forging machine was limited to 600 kgf, and compression was performed by the conventional method of processing at once. As a result, as shown in FIG. 3, 1.4 mm when the processing load reached the upper limit of 600 kgf of the forging machine. I was only able to reduce it.

【0024】上記と同様に、鍛造機の最大負荷荷重を6
00kgfに制限して、本発明の鍛造方法、すなわち圧
下により増大する加工荷重が鍛造機の鍛造荷重容量近く
に達した時点で、前述の式(1)に従う時間以上圧下を
中断して一旦静置した後、再度圧下を継続する加工方法
で圧縮を行った結果、図4に示すように、従来方法で圧
縮した場合よりはるかに多い2.3mmのトータル圧下
量が得られた。
As described above, the maximum load of the forging machine is set to 6
The forging method of the present invention is limited to 00 kgf, that is, when the processing load increased by the reduction reaches near the forging load capacity of the forging machine, the reduction is interrupted for a time in accordance with the above-mentioned formula (1) and temporarily settled. After that, compression was performed by a processing method in which the reduction was continued again. As a result, as shown in FIG. 4, a total reduction amount of 2.3 mm was obtained, which was much larger than that in the conventional method.

【0025】本発明の実施例を図5により詳細に説明す
ると、まず1段目の圧縮加工では従来の加工方法と同様
に圧下に伴って加工荷重は逐次増加していき、鍛造機の
上限荷重600kgfに次第に近づく()。そして、
加工荷重が鍛造機の荷重容量限界(600kgf)近く
に達した時点、すなわち従来の加工方法による圧下限界
と同様の圧下量1.4mmで圧下を中断して静置する
と、加工荷重は一旦低下する()。この静置時間は本
加工条件に対して前述の式(1)より求まる20秒とし
た。
The embodiment of the present invention will be described in more detail with reference to FIG. 5. First, in the first stage of compression working, the working load gradually increases with the reduction as in the conventional working method, and the upper limit load of the forging machine is increased. It gradually approaches 600 kgf (). And
When the processing load reaches the load capacity limit (600 kgf) of the forging machine, that is, when the reduction is interrupted and allowed to stand at a reduction amount of 1.4 mm similar to the reduction limit by the conventional processing method, the processing load temporarily decreases. (). The standing time was set to 20 seconds obtained from the above-described equation (1) for the main processing conditions.

【0026】次いで再度圧下を再開すると、1段目の圧
縮加工の時に材料が変形させられ初期形状より断面積が
増加していることから加工荷重は急激に上昇する()
が、前述の1段目の加工後の静置によって材料は軟化し
ており、1段目の最終加工荷重600kgfより低い荷
重から材料の変形が開始する()。このため、鍛造機
の上限荷重600kgfに達するトータル圧下量2.3
mmまでさらに圧下が可能()となった。なお、本実
施例では静置回数を1回,圧下回数を2回としたが、静
置回数と圧下回数を複数回繰り返して鍛造加工を行って
も大きな効果が得られることは明白である。
Then, when the rolling is resumed again, the material is deformed at the time of the first stage of compression working, and the working load increases sharply because the cross-sectional area is increased from the initial shape.
However, the material is softened by the standing after the first-stage processing, and the deformation of the material starts from a load lower than the final processing load of 600 kgf of the first stage (). For this reason, the total reduction amount 2.3 which reaches the upper limit load of 600 kgf of the forging machine is 2.3.
mm, further reduction was possible. In the present embodiment, the number of times of standing is set to 1 and the number of times of reduction is set to 2. However, it is obvious that a great effect can be obtained even if the forging is performed by repeating the number of times of setting and the number of times of reduction.

【0027】図6は、同様にSKD11の直径8mm×
高さ12mmの鋳造組織材を、950℃に加熱して高さ
方向(軸方向)にひずみ速度0.1s-1で圧縮加工を行
ったものであるが、鍛造機の最大負荷荷重を1250k
gfに制限して、圧下により増大する加工荷重が鍛造機
の鍛造荷重容量近くに達した時点で、前述の式(1)で
求められる時間より短い30秒の間圧下を中断して一旦
静置した後、再度圧下を継続する加工方法で圧縮を行っ
た結果である。
FIG. 6 is a view similar to FIG.
A 12 mm high cast structure material was heated to 950 ° C. and subjected to compression processing in the height direction (axial direction) at a strain rate of 0.1 s −1 , but the maximum load of the forging machine was 1250 k.
gf, when the processing load increased by the reduction reaches near the forging load capacity of the forging machine, the reduction is interrupted for 30 seconds, which is shorter than the time obtained by the above-mentioned formula (1), and the system is once settled. This is a result of compression performed by a working method of continuing the reduction after the compression.

【0028】このように、本発明の鍛造方法、すなわち
前述の式(1)で得られる圧下の一時中断時間(静置時
間)よりも実際の静置時間が短いと、図7に示すよう
に、従来の一気に加工する方法で圧縮した場合と殆ど変
わらない圧下量しか得られないことが分かる。したがっ
て、上記式(1)より求められる時間tは必要な静置時
間の下限であることは明らかである。
As described above, when the forging method of the present invention, that is, the actual standing time is shorter than the temporary suspension time (resting time) under the rolling obtained by the above-mentioned formula (1), as shown in FIG. It can be seen that only a reduction amount that is almost the same as that obtained by compression by the conventional method of processing at once can be obtained. Therefore, it is clear that the time t obtained from the above equation (1) is the lower limit of the required standing time.

【0029】[0029]

【発明の効果】本発明に係わる熱間鍛造方法は、上記の
ような構成であるから、限られたプレスの機械容量で大
型鋼塊の鍛造加工を行う場合に、一気に圧縮を行う従来
の加工方法では、ある加工量(圧下量)に達した時点で
鍛造荷重がプレスの鍛造荷重容量限界に達してしまいそ
れ以上加工(圧下)が出来なくなるのに対し、本発明方
法ではより多くの圧下を加えることが可能となる。また
従来の加工方法における更に加工を加える必要がある場
合での、一旦加熱炉に挿入保持して鋼塊内でオーステナ
イト結晶粒を再結晶させた後、再度鍛造加工を行う場合
は、加熱のためのエネルギーロスや加熱時間,再鍛造用
の準備時間等の多くの労力を必要とし、コストアップに
なる問題があったが、本発明方法によれば加熱のエネル
ギーロスや鍛造能率の悪化を格段に低下することが可能
となる、といった諸効果がある。
The hot forging method according to the present invention has a structure as described above. Therefore, when forging a large steel ingot with a limited press machine capacity, conventional hot forging is performed at once. According to the method, when the forging load reaches the forging load capacity limit of the press when a certain processing amount (reduction amount) is reached, the processing (reduction) cannot be performed any more. On the other hand, the method of the present invention requires more reduction. It is possible to add. In the case where further processing is required in the conventional processing method, once the austenite crystal grains are recrystallized in the steel ingot by once inserting and holding in a heating furnace, and then forging is performed again, heating is required. However, the method of the present invention requires a lot of labor such as energy loss, heating time, preparation time for re-forging, etc., and there is a problem that the cost increases. However, according to the method of the present invention, the energy loss of heating and the deterioration of the forging efficiency are markedly reduced. There are various effects such as being able to decrease.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ひずみと変形抵抗の関係を示す図である。FIG. 1 is a diagram showing the relationship between strain and deformation resistance.

【図2】据込鍛造時の説明図である。FIG. 2 is an explanatory view at the time of upsetting forging.

【図3】従来の一気に加工する方法で圧縮した場合の圧
下量と加工荷重の関係を示す図である。
FIG. 3 is a diagram showing a relationship between a reduction amount and a processing load when compressed by a conventional method of processing at once.

【図4】本発明方法による圧下量と加工荷重の関係を示
す図である。
FIG. 4 is a diagram showing the relationship between the amount of reduction and the processing load according to the method of the present invention.

【図5】図4の説明図である。FIG. 5 is an explanatory diagram of FIG.

【図6】本発明方法より短い時間静置した後、再度圧下
を継続した場合の圧下量と加工荷重の関係を示す図であ
る。
FIG. 6 is a view showing the relationship between the amount of reduction and the processing load when the reduction is continued again after standing for a shorter time than the method of the present invention.

【図7】従来の一気に加工する方法で圧縮した場合の圧
下量と加工荷重の関係を示す図である。
FIG. 7 is a diagram showing a relationship between a reduction amount and a processing load when compressed by a conventional method of processing at once.

フロントページの続き (72)発明者 北川 園子 富山県新湊市八幡町3丁目10番15号 日本 高周波鋼業株式会社富山製造所内 Fターム(参考) 4E087 AA01 AA10 BA02 CA32 CB01 CB11 DB11 DB15 DB22 DB23 EA12 EC22 ED04 HA71 Continued on the front page (72) Inventor Sonoko Kitagawa 3-10-15, Yawata-cho, Shinminato-shi, Toyama Japan High-frequency Steel Industry Co., Ltd. Toyama Works F-term (reference) 4E087 AA01 AA10 BA02 CA32 CB01 CB11 DB11 DB15 DB22 DB23 EA12 EC22 ED04 HA71

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 金型用鋼もしくは工具鋼を熱間鍛造する
にあたり、圧下により増加する加工荷重が鍛造機の荷重
容量近くに達した時点で、式 t=1.75・10-20 ・ε-1.04 ・e×p(6470
0/T) ここで、t:静置時間(s)、 ε:加工ひずみ,T:
鍛造温度〔材料温度〕(K)を示す。に従う時間以上圧
下を中断して一旦静置した後、再度圧下を継続すること
を特徴とする金型用鋼もしくは工具鋼の熱間鍛造方法。
In the hot forging of mold steel or tool steel, when the working load increased by rolling approaches the load capacity of a forging machine, the formula t = 1.75 · 10 −20 · ε -1.04.e × p (6470
0 / T) where t: standing time (s), ε: working strain, T:
The forging temperature [material temperature] (K) is shown. A method for hot forging die steel or tool steel, wherein the reduction is interrupted for a time longer than or equal to and the steel is once left to stand still and then reduced again.
JP21674898A 1998-07-31 1998-07-31 Hot forging method for mold steel or tool steel Expired - Fee Related JP3754563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21674898A JP3754563B2 (en) 1998-07-31 1998-07-31 Hot forging method for mold steel or tool steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21674898A JP3754563B2 (en) 1998-07-31 1998-07-31 Hot forging method for mold steel or tool steel

Publications (2)

Publication Number Publication Date
JP2000042675A true JP2000042675A (en) 2000-02-15
JP3754563B2 JP3754563B2 (en) 2006-03-15

Family

ID=16693313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21674898A Expired - Fee Related JP3754563B2 (en) 1998-07-31 1998-07-31 Hot forging method for mold steel or tool steel

Country Status (1)

Country Link
JP (1) JP3754563B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106475501A (en) * 2016-09-28 2017-03-08 四川六合锻造股份有限公司 A kind of forging heating method of big ingot shape cold work die steel
JP2017177119A (en) * 2016-03-28 2017-10-05 株式会社神戸製鋼所 Numerical value simulation method
JP2021062391A (en) * 2019-10-14 2021-04-22 株式会社デンソー Forging device for steel material and manufacturing method for steel material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017177119A (en) * 2016-03-28 2017-10-05 株式会社神戸製鋼所 Numerical value simulation method
CN106475501A (en) * 2016-09-28 2017-03-08 四川六合锻造股份有限公司 A kind of forging heating method of big ingot shape cold work die steel
CN106475501B (en) * 2016-09-28 2019-01-01 四川六合锻造股份有限公司 A kind of forging heating method of big ingot shape cold work die steel
JP2021062391A (en) * 2019-10-14 2021-04-22 株式会社デンソー Forging device for steel material and manufacturing method for steel material
JP7272588B2 (en) 2019-10-14 2023-05-12 株式会社デンソー Steel forging device and steel manufacturing method

Also Published As

Publication number Publication date
JP3754563B2 (en) 2006-03-15

Similar Documents

Publication Publication Date Title
US7601232B2 (en) α-β titanium alloy tubes and methods of flowforming the same
US5538566A (en) Warm forming high strength steel parts
JP2007332464A (en) Warm forming of high-strength steel structural member
MXPA97002792A (en) Procedure for manufacturing steel tubes without cost
CA2093905C (en) High-strength steel parts and method of making
JP2000042675A (en) Method of hot forging steel for die or tool steel
JP2512984B2 (en) Manufacturing method of seamless steel pipe for spring
JPS60141823A (en) Production of nonmagnetic steel working member
JPH089045B2 (en) Cavity roll for cold tube rolling mill and method for manufacturing the same
JPS6135249B2 (en)
JPS62284053A (en) Method for forging titanium alloy material
JP3432428B2 (en) Deformed bar for reinforcing steel and method for producing the same
JPH033008B2 (en)
JPH06277783A (en) Method for hot-forging metallic material
JP2735411B2 (en) Forming method and equipment for large diameter square steel pipe
JP2004217992A (en) Electric resistance welded tube and production method therefor
JP3881793B2 (en) Hot forging method for mold steel or tool steel
JPH0810804A (en) Method for rolling plate
JP2852311B2 (en) Forming method and equipment for large diameter square steel pipe
JPH08332544A (en) Upsetting method of long size stock
CA2166713C (en) Warm forming high strength steel parts
JP4430222B2 (en) Manufacturing method of welded steel pipe with excellent formability
CN111495984A (en) Production method of reducing round bar rolled steel
JP2871292B2 (en) Manufacturing method of α + β type titanium alloy sheet
JP2000140906A (en) Manufacture of ultra-heavy steel plate at extremely large reduction ratio

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050117

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Written amendment

Effective date: 20050323

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20051122

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20051216

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20081222

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees