KR100363414B1 - Manufacturing method of hot rolled steel sheet with low material deviation of wire end of hot rolled steel sheet - Google Patents

Manufacturing method of hot rolled steel sheet with low material deviation of wire end of hot rolled steel sheet Download PDF

Info

Publication number
KR100363414B1
KR100363414B1 KR10-1998-0053890A KR19980053890A KR100363414B1 KR 100363414 B1 KR100363414 B1 KR 100363414B1 KR 19980053890 A KR19980053890 A KR 19980053890A KR 100363414 B1 KR100363414 B1 KR 100363414B1
Authority
KR
South Korea
Prior art keywords
hot rolled
steel sheet
rolled steel
hot
temperature
Prior art date
Application number
KR10-1998-0053890A
Other languages
Korean (ko)
Other versions
KR20000038781A (en
Inventor
이상로
박시순
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR10-1998-0053890A priority Critical patent/KR100363414B1/en
Publication of KR20000038781A publication Critical patent/KR20000038781A/en
Application granted granted Critical
Publication of KR100363414B1 publication Critical patent/KR100363414B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B2001/225Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length by hot-rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B15/00Arrangements for performing additional metal-working operations specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B2015/0057Coiling the rolled product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/20Temperature

Abstract

본 발명은 열연강판의 제조방법에 있어서, 열연코일강판의 길이방향의 재질편차를 감소시켜 선, 중, 후단부의 재질이 균일한 열연강판을 제조하는 열연강판의 선후단부의 재질편차가 적은 열연강판의 제조방법을 제공하는 데 그 목적이 있다.According to the present invention, in the method for manufacturing a hot rolled steel sheet, the material deviation in the longitudinal direction of the hot rolled coil steel sheet is reduced, so that the material deviation of the front and rear ends of the hot rolled steel sheet to produce a hot rolled steel sheet having a uniform material in the line, middle, and rear ends thereof. The purpose is to provide a method of manufacturing.

본 발명에 따르면, 열연강판 제조방법에 있어서, 열연강판의 성분조성단계과, 열연강판의 원료인 열연바의 열처리 온도의 조절단계를 포함하며, 상기 성분조성단계는 0.04∼0.06wt%의 C, 0.2%∼1.0wt%의 Mn, 0.025wt%이하의 Si, 0.008wt%이하의 S, 0.1wt%이하의 Cr, 0.2wt%이하의 Ni, 0.4wt%이하의 Cu, 0.001∼0.04wt%의 Sn, 0.001∼0.012wt%의 Pb, 0.04∼0.08wt%의 산가용 Al, 150ppm 이하의 N, 0.0002∼0.008wt%의 Ca, 잔부의 Fe 및, 기타 불순물로 강의 성분을 조성하며, 상기 온도의 조절단계는 1차 압연된 열연바를 가열대에서 중앙부보다 선후단부가 40 ~ 60℃ 높게 가열하며, 코일박스의 분위기 온도를 1020℃이상으로 유지하며, 후압연시에 압연온도를 850℃이상에서 압연을 실시하여 열연강판을 제조 후, 선후단부가 중앙부보다 20℃이상 높은 상태로 코일링하는 것을 특징으로 하는 열연강판의 선후단부의 재질편차가 적은 열연강판의 제조방법이 제공된다.According to the present invention, in a method for manufacturing a hot rolled steel sheet, the method may include forming a component of a hot rolled steel sheet and adjusting a heat treatment temperature of a hot rolled bar, which is a raw material of the hot rolled steel sheet, wherein the component composition comprises 0.04 to 0.06 wt% of C, 0.2 % To 1.0 wt% Mn, 0.025 wt% or less Si, 0.008 wt% or less S, 0.1 wt% or less Cr, 0.2 wt% or less Ni, 0.4 wt% or less Cu, 0.001 to 0.04 wt% Sn Steel composition with 0.001 to 0.012 wt% Pb, 0.04 to 0.08 wt% acid value Al, 150 ppm or less N, 0.0002 to 0.008 wt% Ca, balance Fe, and other impurities to control the temperature In the step, the first rolled hot-rolled bar is heated 40 ~ 60 ℃ higher than the center part in the heating table, the atmosphere temperature of the coil box is maintained at 1020 ℃ or higher, and the rolling temperature is rolled at 850 ℃ or higher during post-rolling. After manufacturing the hot rolled steel sheet, the front and rear ends of the hot rolled steel sheet, characterized in that the coil is coiled in a state 20 ℃ or more higher than the center portion The negative material deviation is provided a method of making a small hot-rolled steel sheet.

Description

열연강판의 선후단부의 재질편차가 적은 열연강판의 제조방법Manufacturing method of hot rolled steel sheet with low material deviation of wire end of hot rolled steel sheet

본 발명은 열연강판 제조방법에 관한 것이며, 특히, 열연강판의 선후단부에 재질편차를 줄일 수 있는 열연강판 제조방법에 관한 것이다.The present invention relates to a hot rolled steel sheet manufacturing method, and more particularly, to a hot rolled steel sheet manufacturing method that can reduce the material deviation in the front and rear ends of the hot rolled steel sheet.

일반적으로, 미니밀 공정은 기존의 고로방식 제철법과는 달리 전기로에서 고철을 용해하여 연속주조기에서 박슬라브(두께가 100mm이하)로 주조한 후, 중간설비에서 압연온도를 확보하여 직송열간압연을 실시하는 에너지 저감형, 환경 친화적인 공정이다.In general, unlike the conventional blast furnace steelmaking method, the mini mill process melts scrap metal in an electric furnace and casts it into a thin slab (less than 100 mm thick) in a continuous casting machine, and then performs direct hot rolling by securing a rolling temperature in an intermediate facility. It is an energy-saving, environmentally friendly process.

따라서 미니밀 공정은 박슬라브를 직송열간압연하기 전에 압연온도를 확보하는 것이 미니밀 공정에 있어 중요하다.Therefore, in the mini mill process, it is important for the mini mill process to secure the rolling temperature before directly hot rolling the thin slab.

이러한 압연온도의 확보를 위한 설비로는 CSP(Compact Strip Process)형과 ISP(In-line Strip Process)형 미니밀이 있다.Facilities for securing such a rolling temperature include a compact strip process (CSP) type and an in-line strip process (ISP) type mini mill.

CSP형 미니밀의 경우에는 150m정도의 터널로 (Tunnel Furnace)에서 압연온도를 확보하여 후압연기에서 열연바(Bar)를 열간압연하며, ISP형의 미니밀 경우에는 연속주조 후, 표면온도가 약 900℃까지 되는 1차 압연된 열연바을 인덕티브 히터에서 가열하여 후압연기의 입측온도 1000℃을 확보한다. 그리고, 코일박스(8)의 설비를 거쳐 후압연단계에 이르게 된다.In case of CSP type mini mill, the rolling temperature is secured in tunnel furnace about 150m and hot rolling bar is used in post-roller.In case of ISP type mini mill, surface temperature is about 900 ℃ after continuous casting. The first rolled hot rolled bar is heated in an inductive heater to secure an entrance temperature of 1000 ° C. of the after-roller. Then, after the installation of the coil box (8) to reach the post-rolling step.

ISP형 미니밀의 코일박스(8)는 연속주조기에서 추출된 열연바가 선압연과 후압연 사이에서 코일링된 열연코일바로 일정시간 유지하는 곳이다.Coil box (8) of the ISP-type mini mill is a hot-rolled bar extracted from the continuous casting machine is maintained for a predetermined time with the hot rolled coil bar coiled between the pre-rolling and the post-rolling.

종래의 ISP형의 미니밀 설비의 작동관계에 대하여 상세히 설명하겠다.It will be described in detail the operation relationship of the conventional ISP-type mini-mill facility.

선압연공정에서 20∼30mm의 두께로 1차 압연된 열연바는 표면 온도가 850∼950℃정도가 된다. 이러한 열연바를 코일링하여 후압연하기 위해서는 열연바의 온도를 일정온도 이상 확보하여야 한다. 이러한 일정온도 확보를 위해 코일박스가 설치된다.In the linear rolling process, the hot rolled bar first rolled to a thickness of 20 to 30 mm has a surface temperature of about 850 to 950 ° C. In order to coil the hot rolled bar after rolling, the temperature of the hot rolled bar must be secured to a predetermined temperature or more. Coil box is installed to secure this constant temperature.

인덕티브 히터에서는 유도가열방식으로 열연바를 200∼300℃ 정도 더 가열한다.In the inductive heater, the hot rolled bar is further heated by about 200 to 300 ° C. by induction heating.

가열된 열연바는 가속로를 통과하여 코일박스(8)내에서 코일링된 후, 언코일러로 이송된다. 그리고 언코일러에서 열연코일바는 풀려 후압연기에서 압연된다.The heated hot rolled bar is coiled in the coil box 8 through the acceleration and then transferred to the uncoiler. And in the uncoiler, the hot rolled coil bar is unrolled and rolled in the post-roller.

상기 인덕티브 히터에서 가열된 열연바가 코일박스(8)내에서 코일링될 때, 연속주조속도에 따라 다르지만 평균 15분 정도 머무르게 되고, 이송 도중 낮은 분위기 온도와 언코일러에서 대기하는 시간 때문에 열연코일바 외권부가 과냉되는 문제점이 발생된다.When the hot rolled bar heated by the inductive heater is coiled in the coil box 8, it depends on the continuous casting speed but stays on average for about 15 minutes, and the hot rolled coil bar due to the low atmosphere temperature and the time to wait in the uncoiler during the transfer. There arises a problem that the outer winding is supercooled.

이러한 열연코일바의 외권부가 과냉됨으로써, 열연코일바가 열연강판으로 되면서 열연강판의 선단부의 온도가 미확보되어 두께편차가 발생하고, 낮은 온도에서 후압연이 수행되기 때문에 압연변형조직이 존재하게 된다.When the outer coil portion of the hot rolled coil bar is supercooled, the hot rolled coil bar becomes a hot rolled steel sheet and thus the temperature of the tip portion of the hot rolled steel sheet is not secured, resulting in a thickness deviation, and a rolling deformation structure exists because post rolling is performed at a low temperature.

선후단부에는 중심부에 비하여 미세립대가 형성되어 인장강도가 29.4∼39.2N/mm2상승되고, 연신율이 5∼6% 하락하는 문제점이 발생한다.At the rear end, fine grains are formed in comparison with the center part, the tensile strength is increased by 29.4 to 39.2 N / mm 2 , and the elongation is decreased by 5 to 6%.

또한 코일링할 때, 코일러의 차가운 릴(Reel)에 접촉함으로써, 열연코일바의 내권부 즉, 열연바의 선단부의 온도는 하향되고, 열연코일바의 외권부 즉, 열연바의 후단부는 중심부보다 냉각속도가 빠르기 때문에 조직 미세화가 촉진되어 선후단부 재질편차를 증대시키는 요인이 된다.In addition, when coiling, by contacting the cold reel of the coiler, the temperature of the inner portion of the hot rolled coil bar, that is, the tip of the hot rolled bar is lowered, and the outer portion of the hot rolled coil bar, that is, the rear end of the hot rolled bar, is centered. Since the cooling rate is faster, tissue refinement is promoted, which increases the material deviation of the trailing end.

본 발명은 앞서 설명한 바와 같은 종래 기술의 문제점을 해결하기 위하여 제공된 것으로서, 미니밀 열연강판의 선후단부 재질편차를 낮추어 열연강판 전체에 걸친 재질보증 및 양호한 가공성을 갖는 열연강판을 제조하는 방법을 제공하는데 그 목적이 있다.The present invention is provided to solve the problems of the prior art as described above, to provide a method for manufacturing a hot rolled steel sheet having a material guarantee and good workability throughout the hot rolled steel sheet by lowering the material deviation of the front and rear ends of the mini mill hot rolled steel sheet There is a purpose.

도 1은 일반적인 미니밀의 인덕티브 히터에서 후압연기의 입측까지를 도시한 개략도이며,1 is a schematic diagram showing the induction heater of the general mini-mill to the inlet of the post-roller,

도 2는 본 발명의 한 실시예에 따른 열연바가 열연강판으로 압연되면서 온도강하량을 계산 순서를 나타낸 블록도이다.2 is a block diagram showing a calculation procedure of the temperature drop while the hot rolled bar is rolled into a hot rolled steel sheet according to an embodiment of the present invention.

♠ 도면의 주요부분에 대한 부호의 설명 ♠♠ Explanation of symbols on the main parts of the drawing ♠

1 : 열연바 8 : 코일박스1: hot rolled bar 8: coil box

11 : 코일러 13 : 인덕티브 히터11: coiler 13: inductive heater

17 : 가속로 24 : 언코일러17: acceleration 24: uncoiler

30 : 후압연기 41 : 열연강판30: after-rolling mill 41: hot rolled steel sheet

앞서 설명한 바와 같은 목적을 달성하기 위한 본 발명에 따르면, 열연강판 제조방법에 있어서, 열연강판의 성분조성단계과, 열연강판의 원료인 열연바의 열처리 온도의 조절단계를 포함하며, 상기 성분조성단계는 0.04∼0.06wt%의 C, 0.2%∼1.0wt%의 Mn, 0.025wt%이하의 Si, 0.008wt%이하의 S, 0.1wt%이하의 Cr, 0.2wt%이하의 Ni, 0.4wt%이하의 Cu, 0.001∼0.04wt%의 Sn, 0.001∼0.012wt%의 Pb, 0.04∼0.08wt%의 산가용 Al, 150ppm 이하의 N, 0.0002∼0.008wt%의 Ca, 잔부의 Fe 및 기타 불순물로 강의 성분을 주성하며, 상기 온도의 조절단계는 1차 압연된 열연바를 가열대에서 중앙부보다 선후단부가 40 ~ 60℃ 높게 가열하며, 코일박스의 분위기 온도를 1020℃이상으로 유지하며, 후압연시에 압연온도를 850℃이상에서 압연을 실시하여 열연강판을 제조 후, 선후단부가 중앙부보다 20℃이상 높은 상태로 코일링하는 것을 특징으로 하는 열연강판의 선후단부의 재질편차가 적은 열연강판의 제조방법이 제공된다.According to the present invention for achieving the object as described above, in the method for manufacturing a hot rolled steel sheet, comprising the steps of the composition of the hot rolled steel sheet, and the step of adjusting the heat treatment temperature of the hot rolled bar that is the raw material of the hot rolled steel sheet, the composition 0.04 to 0.06 wt% C, 0.2 to 1.0 wt% Mn, 0.025 wt% or less Si, 0.008 wt% or less S, 0.1 wt% or less Cr, 0.2 wt% or less Ni, 0.4 wt% or less Cu, 0.001 to 0.04 wt% Sn, 0.001 to 0.012 wt% Pb, 0.04 to 0.08 wt% acid value Al, 150 ppm or less N, 0.0002 to 0.008 wt% Ca, balance Fe and other impurities In the step of adjusting the temperature, the first and second hot rolled bars are heated 40 to 60 ° C. higher than the central part in the heating table, and the coil box maintains the ambient temperature at 1020 ° C. or higher at the time of post rolling. After rolling over 850 ℃ to produce hot rolled steel sheet, the coil at the rear end is 20 ℃ higher than the central part. Provided is a method for producing a hot rolled steel sheet having a small material deviation in the front and rear ends of the hot rolled steel sheet.

아래에서, 본 발명에 따른 열연강판의 선후단부의 재질편차가 적은 열연강판의 제조방법의 양호한 실시예를 첨부한 도면을 참조로 하여 상세히 설명하겠다.In the following, with reference to the accompanying drawings, a preferred embodiment of a method for producing a hot rolled steel sheet with less material deviation of the front and rear ends of the hot rolled steel sheet according to the present invention will be described in detail.

도면에서, 도 1은 일반적인 미니밀의 인덕티브 히터에서 후압연기 입측까지를 나타낸 개략도이며,In the drawings, Figure 1 is a schematic diagram showing the induction heater of the general mini-mill to the post-roller entrance,

도 2는 본 발명의 한 실시예에 따른 열연바가 열연강판으로 압연되면서 온도강하량을 계산 순서를 나타내는 블록도이다.2 is a block diagram showing a calculation procedure of a temperature drop amount as a hot rolled bar is rolled into a hot rolled steel sheet according to an embodiment of the present invention.

열연강판의 선후단부의 재질편차가 적은 열연강판의 제조하기 위해서는 강판의 조성성분과 가열온도가 중요하다.The composition of steel sheet and heating temperature are important for the production of hot rolled steel sheet with low material deviation of wire end of hot rolled steel sheet.

먼저, 열연강판의 선후단부의 재질편차가 적은 열연강판의 제조에 사용되는 강판의 조성성분을 상세히 설명하겠다.First, the composition components of the steel sheet used in the production of hot rolled steel sheet with a small material deviation of the front and rear ends of the hot rolled steel sheet will be described in detail.

[실시예]EXAMPLE

표 1과 같은 조성성분을 연속주조하여 생산된 열연바를 선압연하고, 인덕티브 히터에서의 가열 및, 인덕티브 히터에서부터 후압연기까지의 온도를 표 2의 조건으로 관리한 후, 후압연기에서 열연바를 압연하여 열연강판으로 제조한다.The hot rolled bars produced by continuous casting of the composition as shown in Table 1 were pre-rolled, the heating in the inductive heater and the temperature from the inductive heater to the post-roller were managed under the conditions of Table 2, and then the hot-rolled bar was Rolled to produce a hot rolled steel sheet.

T부는 열연바의 선단부이고, M부는 중앙부이며, B부는 후단부이다. 그리고, TS는 인장강도이고, El은 연신율이며, I/H는 인덕티브 히터를 나타내고, 또한 T부의 데이터와 B부의 데이터는 M부의 데이터와 비교한 편차를 나타낸다.The T part is the front end of the hot rolled bar, the M part is the center part, and the B part is the rear end part. In addition, TS is tensile strength, El is elongation, I / H represents an inductive heater, and data of part T and data of part B show deviation compared with data of M part.

상기 표 1과 같은 조성성분의 열연바(1)는 인덕티브 히터(13)의 입측온도계(5)에서 온도를 측정하고, 목표온도까지 인덕티브 히터(13)에서 가열한 후, 출측 온도계(15)에서 가열된 온도를 측정한다. 인덕티브 히터(13)를 거친 열연바는 코일러(20)로 가는 준비시간 확보를 위해 가속기능을 가지는 가속로(17)를 통과한다.The hot rolled bar 1 of the composition as shown in Table 1 measures the temperature in the entry thermometer (5) of the inductive heater 13, and heated in the inductive heater 13 to the target temperature, the exit thermometer (15) Measure the heated temperature. The hot rolled bar passed through the inductive heater 13 passes through an acceleration 17 having an acceleration function to secure a preparation time for going to the coiler 20.

가속로(17)를 통과한 열연바(1)는 코일러(20)까지 공기중에 노출된 상태로 진행된다. 코일러(20)에 도착된 열연바(1)는 코일링된다. 코일링할 때, 열연코일바의 외경은 대기온도에 따라 복사에 의한 열전달이 일어나고, 한바퀴 이상 코일링된 열연코일바(11)의 경우 내권부 및 외권부를 제외하고는 열연코일바(11)간에 접촉되어 있으므로 열대류에 의한 열전달이 이루어진다.The hot rolled bar 1 passing through the accelerator 17 proceeds to the coiler 20 in the state exposed to the air. The hot rolled bar 1 arriving at the coiler 20 is coiled. When coiling, the outer diameter of the hot rolled coil bar is heat transfer by radiation according to the air temperature, and in the case of the hot rolled coil bar 11 coiled more than one turn, except for the inner and outer parts of the hot rolled coil bar 11 Since it is in contact with the liver, heat transfer by tropical flow is achieved.

코일링된 열연코일바(11)는 이송장치를 통해 유지로(22)에 안착된다. 유지로(22)는 연속주조공정과 후압연공정 사이에 어느 한 공정에 이상이 발생하였을 때, 조정할 수 있도록 최대 6코일을 60분간 보관하는 곳이다.The coiled hot rolled coil bar 11 is seated in the holding furnace 22 through the transfer device. The holding furnace 22 is a place for storing a maximum of six coils for 60 minutes so that when an abnormality occurs in any one process between the continuous casting process and the post-rolling process.

유지로(22)의 열연코일바(11)는 언코일러(24)로 이송되고, 언코일러(24)에서 풀린다.The hot rolled coil bar 11 of the holding furnace 22 is transferred to the uncoiler 24 and is unwound by the uncoiler 24.

후압연기(30)의 입측온도계(25)에서 열연바(1)의 온도를 측정하여 후압연기(30)의 압연온도를 설정한다. 언코일러(24)에서 풀린 열연바(1)는 디스케일러(27), 후압연기(30)를 거쳐 열연강판(41)으로 형성되며, 수냉각대(28)에서 냉각되어 열연강판의 코일러(29)에 코일링된다. 그럼으로써, 열연바(1)는 열연강판(41)으로 제조된다.The rolling temperature of the post-roller 30 is set by measuring the temperature of the hot-rolled bar 1 by the entry thermometer 25 of the after-roller 30. The hot rolled bar 1 unrolled from the uncoiler 24 is formed of a hot rolled steel sheet 41 through a descaler 27 and a post-roller 30, and cooled by a water cooling table 28 to coiler of the hot rolled steel sheet ( Coiled to 29). As a result, the hot rolled bar 1 is made of a hot rolled steel sheet 41.

다음은 인덕티브 히터(13)에서 후압연기(30) 전까지의 열연바(1)의 온도 변화를 계산하는 과정을 설명하겠다.Next, the process of calculating the temperature change of the hot rolled bar 1 from the inductive heater 13 to the post-roller 30 will be described.

도 2는 본 발명의 한 실시예에 따른 열연바가 열연강판으로 압연되면서 온도강하량을 계산 순서를 나타낸 블록도이다.2 is a block diagram showing a calculation procedure of the temperature drop while the hot rolled bar is rolled into a hot rolled steel sheet according to an embodiment of the present invention.

선압연기에서 압연을 마친 열연바는 인덕티브 히터에서 인덕티브 목표온도로 가열되어 인덕티브 히터 출측에서 표면온도가 측정된다(S1).The hot rolled bar which is finished rolling in the linear rolling mill is heated to the inductive target temperature in the inductive heater, and the surface temperature is measured at the inductive heater exit side (S1).

인덕티브 히터는 특성상 표면부위가 급속 가열되기 때문에 두께 방향으로 온도 분포가 불균일하다. 그럼으로써, 인덕티브 히터의 열연바의 표면 가열도를 고려하여 열연바의 두께방향 온도분포를 유한차분법을 활용하여 시뮬레이션한다.The inductive heater has a nonuniform temperature distribution in the thickness direction because of its rapid heating on its surface. Thus, in consideration of the surface heating degree of the hot rolled bar of the inductive heater, the thickness distribution in the thickness direction of the hot rolled bar is simulated using the finite difference method.

가속로에서 가해지는 열은 복사와 대류에 의해 열연바의 표면에 전달되고, 열연바의 내부에는 열전도에 의해 열이 전달된다.Heat applied in the accelerator is transferred to the surface of the hot rolled bar by radiation and convection, and heat is transferred by heat conduction inside the hot rolled bar.

일반적으로 가속로에서 분위기 온도는 1000℃이상의 고온이며, 이 때, 대류와 복사를 동시에 고려하면 표면에서의 열유속은 다음과 같다.In general, the atmospheric temperature in the accelerator is a high temperature of 1000 ℃ or more, at this time, considering the convection and radiation at the same time the heat flux on the surface is as follows.

q=Aat(TS-TO)q = Aat (T S -T O )

at=a+εδ(TS 2+TO 2)⋅(TS+TO)at = a + εδ (T S 2 + T O 2 ) ⋅ (T S + T O )

q : 열유속 ( Kcal/m2·hr )q: heat flux (Kcal / m 2 · hr)

αt : 복사와 대류를 고려한 열전달 계수αt: Heat transfer coefficient considering radiation and convection

A : 면적 ( m2)A: Area (m 2 )

TS : 열연바의 표면 온도TS: Surface temperature of hot rolled bar

To : 열연바의 표면과 접촉하는 분위기 온도To: Atmosphere temperature in contact with the surface of hot rolled bar

ε: 방사율 ( 0 ≤ε ≤ 1 )ε: emissivity (0 ≤ ε ≤ 1)

ο: stefan - Boltzman 상수 ( 5.57 x 10-8 W/m2K4)ο: stefan-Boltzman constant (5.57 x 10-8 W / m 2 K 4 )

시간에 따른 열전달은 다음과 같은 방정식으로 계산된다.Heat transfer over time is calculated with the equation

k : 열전도도 ( W/hr·m·K )k: thermal conductivity (W / hrmK)

ρ: 밀도 ( kg/m3)ρ: density (kg / m 3 )

Cp : 비열 ( W / kg·K )Cp: Specific Heat (W / kgK)

가속로에서 통과시간은 열연바의 진행속도와 가속로 길이로 계산되고, 분위기 온도를 고려하여 열연바의 두께방향으로의 온도분포를 계산한다(S2).The passage time in the accelerator is calculated by the progress speed of the hot rolled bar and the length of the accelerator, and the temperature distribution in the thickness direction of the hot rolled bar is calculated in consideration of the ambient temperature (S2).

가속로와 코일러까지의 온도강하량은 가속로에서와 같은 방법으로 계산된다(S3). 하지만, 이 때의 분위기 온도는 열연바가 대기중에 노출된 상태이므로 가속로의 고온조건과는 다르다.The temperature drop to the accelerator and the coiler is calculated in the same manner as in the accelerator (S3). However, the atmospheric temperature at this time is different from the high temperature conditions of the accelerator because the hot rolled bar is exposed to the atmosphere.

한편 열연바는 가속로를 지나 코일러에서 코일링된다. 코일링단계에서 온도강하량 계산은 원형으로 코일링되기 때문에 열해석 모델과 해석조건들이 변한다.On the other hand, the hot rolled bar is coiled in the coiler through the acceleration. Since the temperature drop calculation is coiled circularly in the coiling step, the thermal analysis model and analysis conditions change.

코일링이 시작될 때는 열연바의 양 표면이 복사와 대류에 의해 열전달이 이루어지지만, 2겹 이상 감기면 열연코일바의 내권부와 외권부는 복사와 대류에 의해 열전달이 이루어고 접촉된 열연바의 표면은 대류와 열전도에 의해 열전달이 일어난다.When the coiling starts, both surfaces of the hot rolled bar are heat-transferd by radiation and convection, but when two or more layers are wound, the inner and outer parts of the hot-rolled coil bar are heat-transferd by radiation and convection. The surface is heat transfer by convection and heat conduction.

따라서, 대류와 열전달을 고려한 등가 열전달 계수가 도입된다.Thus, equivalent heat transfer coefficients are introduced, taking into account convection and heat transfer.

코일링단계에서의 온도강하량은 먼저 코일러에서 코일링되는 열연바의 길이를 계산하고(S4), 코일링할 때의 시간을 계산하고(S5), 분위기 온도 및 코일링되는 형상인자들을 고려하여 코일링할 때의 온도강하량을 계산한다(S6).The temperature drop in the coiling step is first calculated the length of the hot rolled bar coiled in the coiler (S4), the time when coiling (S5), considering the ambient temperature and the coiled shape factors Calculate the amount of temperature drop when coiling (S6).

코일러에 코일링된 열연코일바는 유지로에서 최장 60분간 유지되며, 이 때, 온도강하량 계산은 코일링 완료시의 온도강하량 계산과 동일하게 계산한다(S7).The hot rolled coil bar coiled to the coiler is maintained in the holding furnace for up to 60 minutes, at which time, the temperature drop amount calculation is calculated in the same manner as the temperature drop amount calculation at the completion of the coiling (S7).

언코일러에서 열연코일바의 온도강하량은 코일링할 때와는 반대로 계산한다(S8). 그러나 짧은 언코일링시간 때문에 온도에 미치는 영향은 적으며, 언코일러에서 후압연기의 입측온도계까지의 온도강하량을 측정한다(S9).The temperature drop of the hot rolled coil bar in the uncoiler is calculated as opposed to when coiling (S8). However, due to the short uncoiling time, the effect on temperature is small, and the temperature drop from the uncoiler to the entrance thermometer of the post-mill is measured (S9).

그리고 후압연기 전에 설치된 온도계에 의해 후압연기의 초기 설정치 온도를 결정한다(S10). 이상의 계산방법에 따라 인덕티브 히터 출측온도로부터 후압연기의 입측온도까지의 온도강하량을 계산하여 열연바의 선단부터 후단까지의 온도분포를 예측한다.And it determines the initial setpoint temperature of the after-roller by a thermometer installed before the after-roller (S10). According to the above calculation method, the temperature drop from the induction heater exit temperature to the entrance temperature of the after-roller is calculated to predict the temperature distribution from the front end to the rear end of the hot rolling bar.

앞서 상세히 설명한 바와 같이, 본 발명의 열연강판의 선단부와 후단부 및 중앙부의 온도분포를 균일하게 함으로써, 열연강판의 재질을 균일화할 수 있다는 장점이 있다.As described in detail above, by uniformizing the temperature distribution of the front end, the rear end and the central portion of the hot rolled steel sheet of the present invention, there is an advantage that the material of the hot rolled steel sheet can be made uniform.

상기와 같은 장점을 확인하기 위해 표 1의 조성성분을 가지는 열연바를 표 2와 같은 온도조건에서 관리한 후, 후압연공정을 거쳐 제조된 열연강판을 선단부와 후단부의 각각 3m지점과 중앙부에서 샘플링을 하여 인장강도와 연신율을 측정하였다.In order to confirm the above advantages, the hot rolled bar having the compositional components of Table 1 was managed under the temperature conditions as shown in Table 2, and then the hot rolled steel sheet manufactured through the post-rolling process was sampled at the 3m points and the center of the front and rear ends, respectively. Tensile strength and elongation were measured.

표 1의 조성성분을 가지는 강에서는 인장강도가 20N/mm2이내, 연신율이 3% 이내로 측정되었다. 비교강에서는 인장강도가 30∼50N/mm2이고, 연신율이 5%이내 이다. 따라서 인장강도의 편차와 연신율의 편차가 작아짐을 알 수 있다.In the steel having the composition component of Table 1, the tensile strength was measured within 20N / mm 2 , the elongation is within 3%. In the comparative steel, the tensile strength is 30 to 50 N / mm 2 and the elongation is less than 5%. Therefore, it can be seen that the variation in tensile strength and the variation in elongation decrease.

이상에서 본 발명의 열연강판의 선후단부의 재질편차가 적은 열연강판의 제조방법에 대한 기술사상을 첨부도면과 함께 서술하였지만, 이는 본 발명의 가장 양호한 실시예를 예시적으로 설명한 것이지 본 발명을 한정하는 것은 아니다. 또한, 이 기술분야의 통상의 지식을 가진 자이면 누구나 본 발명의 기술사상의 범주를 이탈하지 않는 범위 내에서 다양한 변형 및 모방이 가능함은 명백한 사실이다.Although the technical concept of the method for manufacturing a hot rolled steel sheet having a low material deviation at the front and rear ends of the hot rolled steel sheet according to the present invention has been described with the accompanying drawings, this is illustrative of the best embodiments of the present invention and the present invention is limited. It is not. In addition, it is obvious that any person skilled in the art can make various modifications and imitations without departing from the scope of the technical idea of the present invention.

Claims (1)

열연강판 제조방법에 있어서,In the hot rolled steel sheet manufacturing method, 열연강판의 성분조성단계과, 열연강판의 원료인 열연바의 열처리 온도의 조절단계를 포함하며,Comprising the composition of the hot rolled steel sheet, and the step of adjusting the heat treatment temperature of the hot rolled bar which is the raw material of the hot rolled steel sheet, 상기 성분조성단계는 0.04∼0.06wt%의 C, 0.2%∼1.0wt%의 Mn, 0.025wt%이하의 Si, 0.008wt%이하의 S, 0.1wt%이하의 Cr, 0.2wt%이하의 Ni, 0.4wt%이하의 Cu, 0.001∼0.04wt%의 Sn, 0.001∼0.012wt%의 Pb, 0.04∼0.08wt%의 산가용 Al, 150ppm 이하의 N, 0.0002∼0.008wt%의 Ca, 잔부의 Fe 및 기타 불순물로 강의 성분을 조성하며,The ingredient composition step is 0.04 to 0.06wt% C, 0.2% to 1.0wt% Mn, 0.025wt% or less Si, 0.008wt% or less S, 0.1wt% or less Cr, 0.2wt% or less Ni, 0.4wt% or less Cu, 0.001-0.04wt% Sn, 0.001-0.012wt% Pb, 0.04-0.08wt% acid value Al, 150ppm or less N, 0.0002-0.008wt% Ca, balance Fe and The composition of the steel with other impurities, 상기 온도의 조절단계는 1차 압연된 열연바를 가열대에서 중앙부보다 선후단부가 40 ~ 60℃ 높게 가열하며, 코일박스의 분위기 온도를 1020℃이상으로 유지하며, 후압연시에 압연온도를 850℃이상에서 압연을 실시하여 열연강판을 제조 후, 선후단부가 중앙부보다 20℃이상 높은 상태로 코일링하는 것을 특징으로 하는 열연강판의 선후단부의 재질편차가 적은 열연강판의 제조방법.The step of adjusting the temperature is to heat the first rolled hot-rolled bar 40 ~ 60 ℃ higher than the center portion in the heating table in the heating zone, maintain the ambient temperature of the coil box at 1020 ℃ or more, the rolling temperature at the time of post-rolling 850 ℃ or more After manufacturing the hot-rolled steel sheet by rolling in the coil, the method of manufacturing a hot-rolled steel sheet having a small material deviation of the front and rear ends of the hot-rolled steel sheet, characterized in that the coil is coiled in a state where the front and rear ends 20 ° C or more higher than the center portion.
KR10-1998-0053890A 1998-12-09 1998-12-09 Manufacturing method of hot rolled steel sheet with low material deviation of wire end of hot rolled steel sheet KR100363414B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1998-0053890A KR100363414B1 (en) 1998-12-09 1998-12-09 Manufacturing method of hot rolled steel sheet with low material deviation of wire end of hot rolled steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1998-0053890A KR100363414B1 (en) 1998-12-09 1998-12-09 Manufacturing method of hot rolled steel sheet with low material deviation of wire end of hot rolled steel sheet

Publications (2)

Publication Number Publication Date
KR20000038781A KR20000038781A (en) 2000-07-05
KR100363414B1 true KR100363414B1 (en) 2003-02-19

Family

ID=19561994

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1998-0053890A KR100363414B1 (en) 1998-12-09 1998-12-09 Manufacturing method of hot rolled steel sheet with low material deviation of wire end of hot rolled steel sheet

Country Status (1)

Country Link
KR (1) KR100363414B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100946052B1 (en) * 2002-12-28 2010-03-09 주식회사 포스코 Method for manufacturing linepipe steel strips to minimize the deviation of yield strength through the longitudinal direction

Also Published As

Publication number Publication date
KR20000038781A (en) 2000-07-05

Similar Documents

Publication Publication Date Title
EP2470679B1 (en) Process to manufacture grain-oriented electrical steel strip
KR100363414B1 (en) Manufacturing method of hot rolled steel sheet with low material deviation of wire end of hot rolled steel sheet
US20120305212A1 (en) Process and device for producing hot-rolled strip from silicon steel
US5637157A (en) Method for making non-oriented magnetic steel sheet
JP2001026826A (en) Production of stainless hot rolled steel strip
JP4003821B2 (en) Method for producing ferritic stainless steel sheet with excellent ridging resistance
JP3449310B2 (en) Method for producing hot-rolled steel sheet with excellent pickling properties and uniformity of coil material
KR100306142B1 (en) Method for setting inductive heating patterns in mini-mill process
JPH0655202A (en) Method for rolling warm rolled strip
JP3917320B2 (en) Method for producing ferritic stainless steel sheet with excellent ridging resistance
WO2023277169A1 (en) Method for manufacturing oriented electromagnetic steel sheet and rolling equipment for manufacturing oriented electromagnetic steel sheet
JP3319898B2 (en) Method for producing non-oriented electrical steel strip with uniform magnetic properties in coil
JP2004090065A (en) Heavy reduction rolling method and method for manufacturing hot-rolled steel strip by using the same
JP2001234246A5 (en)
JP3646448B2 (en) Method for producing non-oriented electrical steel sheet
JP2001131636A (en) Method for producing non-oriented silicon steel sheet uniform in magnetism
JPH05237606A (en) Sheet pass method of rapid solidified thin for nonoriented silicon steel sheet
CN114369701A (en) Method for improving pickling quality of Cr-containing hot forming steel
WO2023277170A1 (en) Grain-oriented electromagnetic steel sheet manufacturing method and rolling equipment for manufacturing grain-oriented electromagnetic steel sheet
JPH04247829A (en) Manufacture of hot rolled steel sheet excellent in surface property and formability
JPH11181526A (en) Production of hot rolled steel plate excellent in workability and non-aging characteristic
CN115867680A (en) Method and apparatus for manufacturing grain-oriented electrical steel sheet
JPH0463232A (en) Manufacture of cold rolled steel sheet excellent in press formability by continuous annealing
JP2000104121A (en) Production of thin sheet having uniform mechanical property
JP2000297326A (en) Manufacture of nonoriented silicon steel sheet with uniform magnetic property

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20081121

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee