JPH10290997A - Device for detecting ammoniacal nitrogen concentration - Google Patents

Device for detecting ammoniacal nitrogen concentration

Info

Publication number
JPH10290997A
JPH10290997A JP11639897A JP11639897A JPH10290997A JP H10290997 A JPH10290997 A JP H10290997A JP 11639897 A JP11639897 A JP 11639897A JP 11639897 A JP11639897 A JP 11639897A JP H10290997 A JPH10290997 A JP H10290997A
Authority
JP
Japan
Prior art keywords
concentration
ammonia nitrogen
container
sample liquid
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11639897A
Other languages
Japanese (ja)
Inventor
Hironori Nakamura
裕紀 中村
Hitoshi Yoshikawa
均 吉川
Hideaki Kawahara
英明 川原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP11639897A priority Critical patent/JPH10290997A/en
Publication of JPH10290997A publication Critical patent/JPH10290997A/en
Pending legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To precisely detect the ammoniacal nitrogen concn. in a short time even if the ammoniacal nitrogen concn. of a liq. sample ranges widely from low to high concn. SOLUTION: A carrier 1 immobilizing nitrifying bacteria is held in a vessel 3, a fixed amt. of treated water, etc., is introduced as a liq. sample from a nitrification tank 8 for removing nitrogen from waste water by a sampling pump 9, and air is supplied by an air pump 4 through an air flow controller 5. The ammoniacal nitrogen concn. is reduced and detected by an arithmetic unit 7 based on the value (dissolved oxygen concn.) measured by a dissolved oxygen densitometer 6 and changing as the batch reaction proceeds in the vessel 3. When the detection is finished, the following liq. sample is introduced by the pump 9, and the measured liq. sample is simultaneously discharged from a return pipeline 10. The detection of ammoniacal nitrogen concn. is repated in this way.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、廃水処理プロセス
における脱窒槽、硝化槽の各反応槽内の液や処理水など
のアンモニア性窒素濃度を生物学的に検出する装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for biologically detecting the concentration of ammonia nitrogen in a liquid or treated water in a denitrification tank or a nitrification tank in a wastewater treatment process.

【0002】[0002]

【従来の技術】廃水の生物学的処理法の中で、BODと
窒素を同時に除去する方法として、活性汚泥微生物によ
る硝化・脱窒反応を利用した窒素除去法が実用化されて
いる。この方法は、好気条件で活性汚泥中の硝化細菌の
働きによりアンモニア性窒素(NH4 −N)を亜硝酸又
は硝酸に酸化する硝化工程と、嫌気条件で脱窒細菌の働
きにより亜硝酸、硝酸を窒素ガスに還元し、廃水中から
除去する脱窒工程からなる。この方法では、硝化反応を
担う硝化細菌の増殖速度が遅く、また、水温などの影響
を受けやすいことから、安定した窒素除去性能を得るた
めには、硝化工程で充分に硝化反応を行うための運転条
件の適正な管理が必要である。そのために、硝化反応槽
内の液や処理水に残存するアンモニア性窒素濃度の検出
をはじめ、前段に位置する脱窒反応槽内の液中のアンモ
ニア性窒素濃度を検出し、硝化反応槽が受け持つ窒素負
荷を把握することが必要である。
2. Description of the Related Art Among biological treatment methods for wastewater, a nitrogen removal method utilizing a nitrification and denitrification reaction by activated sludge microorganisms has been put to practical use as a method for simultaneously removing BOD and nitrogen. This method comprises a nitrification step of oxidizing ammonium nitrogen (NH 4 -N) to nitrite or nitric acid by the action of nitrifying bacteria in activated sludge under aerobic conditions, and a nitrite treatment by the action of denitrifying bacteria under anaerobic conditions. It consists of a denitrification step of reducing nitric acid to nitrogen gas and removing it from wastewater. In this method, the growth rate of the nitrifying bacteria responsible for the nitrification reaction is slow, and since it is easily affected by water temperature, etc., in order to obtain a stable nitrogen removal performance, it is necessary to perform a sufficient nitrification reaction in the nitrification step. It is necessary to properly manage operating conditions. For that purpose, including the detection of the concentration of ammonia nitrogen remaining in the liquid and treated water in the nitrification reaction tank, the detection of the concentration of ammonia nitrogen in the liquid in the denitrification reaction tank located at the preceding stage, and the nitrification reaction tank takes charge It is necessary to know the nitrogen load.

【0003】廃水の窒素除去プロセスにおける反応槽内
の液や処理水のアンモニア性窒素濃度を検出する装置と
して、特開昭61−100657号公報には、2個の小
型曝気槽と曝気排ガスから酸素消費速度を測定する手段
を備えた装置が開示されており、この装置において、実
際に廃水を処理する反応槽の活性汚泥の一部を小型曝気
槽に導入し、反応を回分的に継続する方法が提案されて
いる。この方法は、一方の小型曝気槽には硝化抑制剤を
添加し、他方には硝化抑制剤を添加しないで曝気処理を
行い、曝気排ガスから測定された酸素消費量の差を積分
値として求め、これをアンモニア性窒素濃度に換算する
ものである。この装置及び方法では、反応槽の活性汚泥
をろ過する必要がなく、オンラインでのアンモニア性窒
素濃度の検出が可能である。しかしながら、この方法で
は、硝化細菌の増殖に対する温度の影響が大きいばかり
でなく、小型曝気槽での回分反応の際、硝化抑制剤を注
入しない場合と注入する場合の二通りの操作をする必要
があり、装置や操作方法が複雑になる。そのため、硝化
抑制剤を用いずに、簡単な装置及び1回の操作によりア
ンモニア性窒素濃度を検出する方法が望まれている。
Japanese Patent Application Laid-Open No. 61-100657 discloses an apparatus for detecting the concentration of ammonia nitrogen in the liquid in the reaction tank and the treated water in the nitrogen removal process of waste water. Disclosed is an apparatus provided with a means for measuring a consumption rate, in which a part of activated sludge of a reaction tank for actually treating wastewater is introduced into a small aeration tank and the reaction is continued batchwise. Has been proposed. In this method, a nitrification inhibitor is added to one small aeration tank, and aeration treatment is performed without adding a nitrification inhibitor to the other small aeration tank, and a difference in oxygen consumption measured from the aeration exhaust gas is obtained as an integrated value. This is converted to an ammonia nitrogen concentration. With this apparatus and method, it is not necessary to filter the activated sludge in the reaction tank, and the ammonia nitrogen concentration can be detected online. However, in this method, not only the effect of temperature on the growth of nitrifying bacteria is large, but also in the case of a batch reaction in a small aeration tank, it is necessary to perform two operations, that is, the case where the nitrification inhibitor is not injected and the case where the nitrification inhibitor is injected. Yes, the equipment and operation method become complicated. Therefore, a method for detecting the concentration of ammoniacal nitrogen with a simple apparatus and one operation without using a nitrification inhibitor is desired.

【0004】そこで、特開平8−281288号公報に
おいては、硝化抑制剤を使用せず、開閉可能な採水口を
有する測定容器を硝化槽内に浸漬し、その採水口から微
生物混合液を試料液として採取し、1回の回分反応操作
でアンモニア性窒素濃度を検出する方法が提案されてい
る。この容器内の酸素消費を伴う回分反応は、次の二つ
の反応に分けられる。 (a)硝化細菌による試料液中のアンモニア性窒素の硝
化反応、及び (b)BOD酸化細菌による試料液中の有機物及び汚泥
蓄積有機物の酸化反応 このうち、(b)の反応に関係する有機物量について詳
細に調査したところ、下水などの窒素除去プロセスの硝
化槽では、溶解性BOD濃度は数mg/Lであるのに対
し、汚泥蓄積有機物量は通常100〜300mg/Lと
はるかに高い。また、各槽の活性汚泥混合液を容器に採
取してエアレーションを継続した場合、汚泥蓄積有機物
量(BOD量)の変化は、次式で表される。ちなみに、
これらは脱窒槽の活性汚泥混合液についても同様のこと
が成り立つ。 A=Ao・exp(−k・t) k=0.105exp(0.0655(T−20)) ここで、Aは時間t後の汚泥蓄積有機物量(mg−BO
D/g−SS)、Aoは初期の汚泥蓄積有機物量(mg
−BOD/g−SS)、kは汚泥蓄積有機物の代謝速度
定数(l/h)、tは時間(h)、Tは水温(℃)を意
味する。
Therefore, in Japanese Patent Application Laid-Open No. 8-281288, a measurement vessel having a water sampling port that can be opened and closed is immersed in a nitrification tank without using a nitrification inhibitor. And a method of detecting the concentration of ammoniacal nitrogen by one batch reaction operation has been proposed. The batch reaction involving the consumption of oxygen in the container is divided into the following two reactions. (A) Nitrification reaction of ammoniacal nitrogen in the sample solution by nitrifying bacteria, and (b) Oxidation reaction of organic matter and sludge accumulated organic matter in the sample solution by BOD oxidizing bacteria. Of these, the amount of organic matter related to the reaction of (b) In detail, the concentration of soluble BOD in the nitrification tank of the nitrogen removal process such as sewage is several mg / L, whereas the amount of accumulated sludge is usually 100 to 300 mg / L, which is much higher. When the activated sludge mixture in each tank is collected in a container and aeration is continued, the change in the amount of accumulated sludge organic matter (BOD amount) is expressed by the following equation. By the way,
The same applies to the activated sludge mixture in the denitrification tank. A = Ao.exp (-kt) k = 0.105exp (0.0655 (T-20)) Here, A is the amount of sludge accumulated organic matter after time t (mg-BO).
D / g-SS), Ao is the initial amount of accumulated sludge organic matter (mg)
-BOD / g-SS), k means metabolic rate constant of sludge accumulated organic matter (l / h), t means time (h), and T means water temperature (° C).

【0005】すなわち、各水温でほぼ一定の代謝速度定
数が得られる上、例えば20℃のとき、エアレーション
時間が30分〜1時間程度であれば、汚泥蓄積有機物は
90〜95%残存するため、その酸化反応速度に大きな
変化がない。したがって、30分〜1時間の間は、前記
(b)の反応に伴う酸素消費速度は、概ね一定値で推移
し、前記(a)の硝化反応に伴う酸素消費速度のみの変
化が、回分反応における全体の酸素消費速度の変化とな
って現れる。それ故、試料液中のアンモニア性窒素が完
全に硝化され、酸素濃度が定常値を示すまでの酸素濃度
の経時変化から、試料液の初期のアンモニア性窒素濃度
及び硝化速度などを換算することが可能となる。
That is, a substantially constant metabolic rate constant can be obtained at each water temperature, and if the aeration time is about 30 minutes to 1 hour at, for example, 20 ° C., 90 to 95% of the sludge accumulated organic matter remains. There is no significant change in the oxidation reaction rate. Therefore, during the period of 30 minutes to 1 hour, the oxygen consumption rate accompanying the reaction (b) generally changes at a constant value, and the change in only the oxygen consumption rate accompanying the nitrification reaction (a) is a batch reaction. In the overall oxygen consumption rate at Therefore, it is possible to convert the initial ammonia nitrogen concentration and the nitrification rate of the sample liquid from the time-dependent change of the oxygen concentration until the ammonia concentration in the sample liquid is completely nitrified and the oxygen concentration shows a steady value. It becomes possible.

【0006】しかしながら、この方法でアンモニア性窒
素濃度を検出するには、次のような問題点があった。試
料液の硝化速度が小さく、かつアンモニア性窒素濃度が
高く、容器内における硝化反応が終了するのに1時間以
上を要する場合には、前記(b)の反応が無視できなく
なるため、アンモニア性窒素濃度の検出精度が低下す
る。そのうえ、流入負荷が時間単位で変動するような硝
化槽に対し、運転条件をリアルタイムで適正に管理する
ための指標になりにくくなる。ちなみに、30分又は1
時間で検出が可能な試料液のアンモニア性窒素濃度の範
囲は、各硝化速度において、図8に示した線図の斜線部
のとおりである。ただし、浮遊汚泥のみを用いる通常の
硝化槽では、硝化速度として10mg/L・h以上を得
ることは困難である。したがって、アンモニア性窒素濃
度の高い液や、微生物混合液をほとんど含まず、硝化速
度が極めて小さい処理水のアンモニア性窒素濃度を検出
することは、困難であった。
However, detecting the ammonia nitrogen concentration by this method has the following problems. When the nitrification rate of the sample solution is low and the concentration of ammonia nitrogen is high, and it takes one hour or more to complete the nitrification reaction in the container, the reaction of (b) cannot be ignored. The accuracy of density detection is reduced. In addition, it becomes difficult to be an index for appropriately managing the operating conditions in real time in a nitrification tank in which the inflow load varies in units of time. By the way, 30 minutes or 1
The range of the ammonia nitrogen concentration of the sample liquid that can be detected by time is as shown by the hatched portion in the diagram shown in FIG. 8 at each nitrification rate. However, in a normal nitrification tank using only suspended sludge, it is difficult to obtain a nitrification rate of 10 mg / L · h or more. Therefore, it has been difficult to detect the concentration of ammonia nitrogen in treated water which contains almost no liquid having a high concentration of ammonia nitrogen or a mixture of microorganisms and has a very low nitrification rate.

【0007】[0007]

【発明が解決しようとする課題】本発明は、前記の従来
技術の問題点を解消し、廃水の窒素除去プロセスにおい
て、脱窒槽、硝化槽の各反応槽の微生物混合液や処理水
などを試料液とすることができ、試料液のアンモニア性
窒素濃度が低濃度から高濃度まで広範囲にわたっても、
アンモニア性窒素濃度を、薬品を添加せずに簡単な装置
及び操作により短時間で精度よく検出しうるアンモニア
性窒素濃度の検出装置を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, and in the process of removing nitrogen from wastewater, a sample mixture of microorganisms and treated water in each reaction tank such as a denitrification tank and a nitrification tank is sampled. Liquid, and the ammoniacal nitrogen concentration of the sample solution can be varied over a wide range from low to high.
An object of the present invention is to provide an ammonia nitrogen concentration detecting device capable of detecting an ammonia nitrogen concentration accurately and in a short time by a simple device and operation without adding a chemical.

【0008】[0008]

【課題を解決するための手段】本発明は、試料液のサン
プリングを外部取り出し方式にし、反応槽の外部に設置
した測定容器内に硝化細菌を固定化した担体を保持する
ことによって容器内の硝化能力を高め、高いアンモニア
性窒素濃度に対応できるようにするとともに、容器内の
担体保持量を試料液のアンモニア性窒素濃度に応じて変
動させることによって試料液のアンモニア性窒素濃度が
低濃度から高濃度まで広範囲にわたっても対応できるよ
うにすることによって、上記の目的を達成したものであ
る。すなわち、本発明のアンモニア性窒素濃度の検出装
置は、硝化細菌を固定化した担体と試料液を内部に保持
する容器と、この容器に接続された試料液のサンプリン
グ手段と、空気供給装置から容器に吹き込む空気の流量
調整装置と、溶存酸素濃度計と、この濃度計の測定値か
らアンモニア性窒素濃度を演算する演算装置と、試料液
の返送配管とを備えたことを特徴とする。
SUMMARY OF THE INVENTION According to the present invention, a sample solution is sampled by an external take-out system, and a nitrifying bacteria-immobilized carrier is held in a measuring container installed outside a reaction tank. In addition to increasing the capacity to cope with high ammonia nitrogen concentration, the amount of carrier held in the container is varied according to the ammonia nitrogen concentration of the sample solution to change the ammonia nitrogen concentration of the sample solution from low to high. The above object has been achieved by making it possible to cope with a wide range of concentrations. That is, the ammonia nitrogen concentration detecting device of the present invention comprises a container holding a carrier on which nitrifying bacteria are immobilized and a sample solution, a sample solution sampling means connected to the container, and a container from the air supply device. The apparatus is characterized by comprising a flow rate adjusting device for air blown into the apparatus, a dissolved oxygen concentration meter, an arithmetic device for calculating an ammonia nitrogen concentration from a measured value of the concentration meter, and a sample liquid return pipe.

【0009】本発明はさらに、酸素溶解槽と、硝化細菌
を固定化した担体を保持する容器と、酸素溶解槽と容器
との間で試料液を循環させる循環手段とを有し、酸素溶
解槽には、その槽に接続された試料液のサンプリング手
段と、空気供給装置から容器に吹き込む空気の流量調整
装置と、溶存酸素濃度計と、この濃度計の測定値からア
ンモニア性窒素濃度を演算する演算装置と、試料液の返
送配管とを備えたことを特徴とするアンモニア性窒素濃
度の検出装置を提供するものである。
The present invention further comprises an oxygen dissolving tank, a vessel for holding a carrier on which nitrifying bacteria are immobilized, and circulating means for circulating a sample liquid between the oxygen dissolving vessel and the vessel. Means for sampling the sample liquid connected to the tank, a device for adjusting the flow rate of air blown into the container from the air supply device, a dissolved oxygen concentration meter, and calculate the ammonia nitrogen concentration from the measured value of the concentration meter. It is an object of the present invention to provide an ammonia nitrogen concentration detecting device comprising an arithmetic unit and a sample liquid return pipe.

【0010】[0010]

【発明の実施の形態】本発明の検出装置においては、容
器内に硝化細菌を固定化した担体を保持しておいてもよ
いが、実際の廃水処理に固定化担体を用いている硝化槽
を対象とする場合には、硝化槽内の浮遊汚泥を含む混合
液(試料液)とともに固定化担体を容器内に採取し、容
器の硝化反応に利用することができる。また、処理水を
試料液とする場合には、固定化担体を予め容器内に保持
しておく必要がある。本発明において、硝化細菌の固定
化とは、硝化細菌を担体の表面や内部に付着又は包括固
定することを意味する。固定化に使用する担体として
は、特に制限はなく、例えば、ポリエチレングリコー
ル、ポリアクリルアミド等の重合体ゲル、高分子樹脂、
無機物などが挙げられる。硝化細菌を固定化した担体
は、通常、立方体、円柱状、球状などのペレットの形で
使用される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the detection apparatus of the present invention, a carrier on which nitrifying bacteria are immobilized may be held in a container, but a nitrification tank using the immobilized carrier for actual wastewater treatment is used. In the case of a target, an immobilization carrier can be collected in a container together with a mixed liquid (sample liquid) containing suspended sludge in a nitrification tank and used for the nitrification reaction of the container. When the treated water is used as the sample liquid, the immobilized carrier must be held in the container in advance. In the present invention, immobilizing nitrifying bacteria means attaching or entrapping the nitrifying bacteria to the surface or inside of the carrier. The carrier used for immobilization is not particularly limited, for example, polyethylene glycol, a polymer gel such as polyacrylamide, a polymer resin,
And inorganic substances. The carrier on which the nitrifying bacteria are immobilized is usually used in the form of a cube, a column, or a pellet.

【0011】固定化担体中の有機物の代謝速度定数k値
の大きさは、活性汚泥の場合と同等以下であり、試料液
のアンモニア性窒素が完全に硝化され、酸素濃度が定常
値を示すまでの時間を1時間以内、好ましくは30分以
内に調整すれば、有機物の酸化に伴う酸素消費速度の変
化量は、無視しうる程度である。なお通常、硝化槽の水
面近くでは流動する担体の分布量が少なくなっており、
特開平8−281288号公報記載の装置において、装
置を硝化槽の水面近くに浸漬し、側面の採水口から試料
液を採取するものでは、たとえ硝化槽内に硝化細菌を固
定化した担体が用いられていても、採水口から充分量の
担体が容器内に入り込むことはできなかった。
The magnitude of the metabolic rate constant k value of the organic matter in the immobilized carrier is equal to or less than that of the activated sludge, and until the ammonia nitrogen of the sample liquid is completely nitrified and the oxygen concentration shows a steady value. If the time is adjusted within 1 hour, preferably within 30 minutes, the amount of change in the oxygen consumption rate due to the oxidation of organic matter is negligible. Usually, the distribution amount of the flowing carrier is small near the water surface of the nitrification tank,
In the apparatus described in JP-A-8-281288, in which the apparatus is immersed near the water surface of a nitrification tank and a sample solution is collected from a water sampling port on the side, a carrier having nitrifying bacteria immobilized in the nitrification tank is used. However, a sufficient amount of the carrier could not enter the container from the water sampling port.

【0012】高いアンモニア性窒素濃度に合わせて容器
内の固定化担体量を多くし、硝化速度を大きくした状態
で低いアンモニア性窒素濃度を検出する場合には、容器
内の酸素濃度の変化速度が大きくなり、溶存酸素濃度計
での測定に時間遅れを生じ、結果的にアンモニア性窒素
濃度の検出精度が低下することが判明した。そのため、
本発明の検出装置を用いて低いアンモニア性窒素濃度を
測定する場合には、試料液のアンモニア性窒素濃度に応
じて容器内の担体保持量を変化させるのが好ましい。ま
た、そのとき固定化担体の保持量に合わせて酸素供給速
度を変化させ、容器全体の硝化速度に見合った酸素供給
をすることが望ましい。この場合、試料液の初期のアン
モニア性窒素濃度に応じて、容器内の担体保持量及び酸
素供給速度を変化させ、試料液のアンモニア性窒素が完
全に硝化され、酸素濃度が定常値を示すまでの時間を1
時間以内、好ましくは30分以内に調整する。
When the amount of the immobilized carrier in the container is increased in accordance with the high ammonia nitrogen concentration and the low ammonia nitrogen concentration is detected in a state where the nitrification rate is increased, the rate of change of the oxygen concentration in the container is increased. It became clear that the measurement with a dissolved oxygen concentration meter caused a time delay, and as a result, the detection accuracy of the ammonia nitrogen concentration was reduced. for that reason,
When a low ammonia nitrogen concentration is measured using the detection device of the present invention, it is preferable to change the amount of the carrier held in the container according to the ammonia nitrogen concentration of the sample solution. At that time, it is desirable to change the oxygen supply rate in accordance with the amount of the immobilized carrier held, and to supply oxygen in accordance with the nitrification rate of the entire container. In this case, the carrier holding amount and the oxygen supply rate in the container are changed in accordance with the initial ammonia nitrogen concentration of the sample solution, until the ammonia nitrogen of the sample solution is completely nitrified and the oxygen concentration shows a steady value. Time 1
Adjust within hours, preferably within 30 minutes.

【0013】[0013]

【実施例】次に、図面を参照して本発明を実施例に基づ
いてさらに詳細に説明する。図1は、本発明の第一の実
施例を示すアンモニア性窒素濃度の検出装置の系統図で
ある。図1に示した装置は、硝化細菌を固定化した担体
1とアンモニア性窒素を含む試料液2を内部に保持する
容器3、この容器に空気を供給するエアポンプ4、空気
流量を一定に調節するためのエア流量調整装置5、さら
に試料液中の溶存酸素濃度を測定する溶存酸素濃度計6
及び演算装置7から構成される。廃水の窒素除去プロセ
スの硝化槽8から活性汚泥混合液の一部、又は場合によ
り活性汚泥を含まない処理水の一部が試料液としてサン
プリングポンプ9により容器内に一定量導入される。容
器3内での回分反応に伴って変化する溶存酸素濃度計6
の測定値(溶存酸素濃度)を基に、演算装置7でアンモ
ニア性窒素濃度が換算、検出される。検出操作が終了す
ると、次回の試料液がサンプリングポンプ9により導入
されると同時に、測定済み試料液が返送配管10から導
出される。このようにして、アンモニア性窒素濃度の検
出操作が繰り返される。この実施例では、担体1はスク
リーン11によって容器内に常時保持され、空気により
充分に流動される。硝化槽8で実際の廃水処理に硝化細
菌の固定化担体18が用いられている場合には、スクリ
ーン19の外側から浮遊汚泥を含む処理水、又は浮遊汚
泥を用いない場合には処理水のみが容器3内に導入され
る。
Next, the present invention will be described in more detail with reference to the drawings. FIG. 1 is a system diagram of an ammonia nitrogen concentration detecting apparatus according to a first embodiment of the present invention. The apparatus shown in FIG. 1 has a container 3 for holding a carrier 1 on which nitrifying bacteria are immobilized and a sample solution 2 containing ammoniacal nitrogen, an air pump 4 for supplying air to the container, and a constant flow rate of air. Flow rate adjusting device 5 for measuring the dissolved oxygen concentration in the sample liquid
And an arithmetic unit 7. A part of the activated sludge mixed liquid or a part of the treated water which does not contain activated sludge is introduced into the container by the sampling pump 9 as a sample liquid from the nitrification tank 8 in the nitrogen removal process of the wastewater by the sampling pump 9 in some cases. Dissolved oxygen concentration meter 6 that changes with the batch reaction in vessel 3
Based on the measurement value (dissolved oxygen concentration), the arithmetic device 7 converts and detects the ammonia nitrogen concentration. When the detection operation is completed, the next sample liquid is introduced by the sampling pump 9 and, at the same time, the measured sample liquid is led out from the return pipe 10. In this way, the operation for detecting the concentration of ammonia nitrogen is repeated. In this embodiment, the carrier 1 is always held in the container by the screen 11 and is sufficiently fluidized by air. In the case where the nitrifying bacteria-immobilized carrier 18 is used for actual wastewater treatment in the nitrification tank 8, only treated water containing suspended sludge from the outside of the screen 19, or only treated water is used when suspended sludge is not used. It is introduced into the container 3.

【0014】図2は、本発明の第一の実施例で硝化槽か
ら浮遊汚泥を採取し、試料液とした場合の、アンモニア
性窒素濃度の検出操作における溶存酸素濃度計6の溶存
酸素濃度値の経時変化を示すグラフ、図3は、図2に示
された溶存酸素濃度値から計算によって求められる酸素
消費速度の経時変化を示すグラフである。酸素消費速度
Rr(mg/L・h)は、容器3への空気供給による総
括酸素移動容量係数KLa(l/h)とから次式により
計算される。 Rr=KLa(Cs−C)−dC/dt ここで、Csは飽和酸素濃度(mg/L)、Cは各時刻
に測定された溶存酸素濃度値(mg/L)、dC/dt
はその溶存酸素濃度値の時間変化(mg/L・h)を意
味する。
FIG. 2 shows the dissolved oxygen concentration value of the dissolved oxygen concentration meter 6 in the operation of detecting the concentration of ammonia nitrogen when the suspended sludge is collected from the nitrification tank and used as a sample liquid in the first embodiment of the present invention. FIG. 3 is a graph showing the change over time in the oxygen consumption rate obtained by calculation from the dissolved oxygen concentration value shown in FIG. The oxygen consumption rate Rr (mg / Lh) is calculated from the overall oxygen transfer capacity coefficient KLa (l / h) by air supply to the container 3 according to the following equation. Rr = KLa (Cs-C) -dC / dt Here, Cs is a saturated oxygen concentration (mg / L), C is a dissolved oxygen concentration value (mg / L) measured at each time, dC / dt.
Means a time change (mg / L · h) of the dissolved oxygen concentration value.

【0015】図2及び図3に示したグラフは、容器内の
担体量を容器の容積の10%とし、水温が20℃、KL
aが16.0(l/h)の場合であり、20秒ごとに溶
存酸素濃度値を測定し、溶存酸素濃度値の時間変化dC
/dtを求めた。これらのグラフから判るように、試料
液を容器3内に導入した時点が時間0であり、その後の
回分反応で硝化が進行し、試料液中に残存するアンモニ
ア性窒素濃度が減少するのに従い、硝化速度とそれに伴
う酸素消費速度が徐々に低下し、容器内の溶存酸素濃度
が上昇する。やがて、約20分後にアンモニア性窒素が
完全に硝化され、溶存酸素濃度及び酸素消費速度が一定
値を示すようになる。酸素消費速度の一定値は、前述の
ように主に有機物の酸化反応に伴うものであり、この値
は30分〜1時間以内では大きく変化しないと見なすこ
とができる。すなわち、図3に示した、その一定値から
上の斜線部の面積が、硝化反応に伴う酸素消費量であ
り、これから、試料液中にに初期に残存したアンモニア
性窒素濃度を換算することができる。
The graphs shown in FIGS. 2 and 3 show that the amount of the carrier in the container is 10% of the volume of the container, the water temperature is 20 ° C., the KL
a is 16.0 (l / h), the dissolved oxygen concentration value is measured every 20 seconds, and the time change dC of the dissolved oxygen concentration value is measured.
/ Dt was determined. As can be seen from these graphs, the time when the sample solution was introduced into the container 3 was time 0, and nitrification progressed in the subsequent batch reaction, and as the concentration of ammonia nitrogen remaining in the sample solution decreased, The nitrification rate and the accompanying oxygen consumption rate gradually decrease, and the concentration of dissolved oxygen in the vessel increases. Eventually, after about 20 minutes, the ammonia nitrogen is completely nitrified, and the dissolved oxygen concentration and the oxygen consumption rate show constant values. As described above, the constant value of the oxygen consumption rate is mainly associated with the oxidation reaction of organic substances, and it can be considered that this value does not significantly change within 30 minutes to 1 hour. That is, the area of the shaded area above the certain value shown in FIG. 3 is the oxygen consumption due to the nitrification reaction, and from this, it is possible to convert the concentration of ammonia nitrogen that initially remained in the sample solution. it can.

【0016】上記実験例では、アンモニア性窒素濃度の
検出値として1.3mg/Lが得られた。このときのア
ンモニア性窒素の硝化に伴い、硝化細菌の合成に使われ
るアンモニア性窒素の比率(収率)は、2%程度の小さ
い値が報告されている。また、廃水として下水を対象と
した場合、NH4 −NはほとんどNO3 −Nまで硝化さ
れ、化学量論的には4.57倍の酸素が消費される。こ
れらのことから換算係数として、4.5程度の値を用い
ることが適当であると判断される。なお、容器3への空
気の供給によるKLaは、非定常法や、担体を含む試料
液の酸素消費速度を別途測定する定常法により容易に求
められる。
In the above experimental example, 1.3 mg / L was obtained as the detected value of the ammonia nitrogen concentration. With the nitrification of ammonia nitrogen at this time, the ratio (yield) of ammonia nitrogen used for the synthesis of nitrifying bacteria has been reported to be as small as about 2%. When sewage is used as wastewater, NH 4 —N is almost nitrified to NO 3 —N, and stoichiometrically 4.57 times as much oxygen is consumed. From these facts, it is determined that it is appropriate to use a value of about 4.5 as the conversion coefficient. Note that KLa by supplying air to the container 3 can be easily obtained by an unsteady method or a steady method in which the oxygen consumption rate of a sample solution containing a carrier is separately measured.

【0017】図4は、第一の実施例により検出したアン
モニア性窒素濃度と、試料液のNo.5Aろ紙のろ液を
JIS K0102に準じて分析した場合の分析値との
関係を示す。検出値と分析値に高い相関が得られた。こ
れらの検出実験では、容器内に保持する担体量を容器の
容積の10%とした。試料液と担体を合わせた容器全体
の硝化速度は、8〜20mg−N/L・hであり、溶存
酸素濃度及び酸素消費速度が一定値を示し、アンモニア
性窒素濃度の検出が終了するまでの時間は、いずれのプ
ロットでも20〜40分程度であった。
FIG. 4 shows the ammonia nitrogen concentration detected in the first embodiment and the sample liquid No. The relationship with the analysis value when the filtrate of 5A filter paper was analyzed according to JIS K0102 is shown. High correlation was obtained between the detection value and the analysis value. In these detection experiments, the amount of the carrier held in the container was 10% of the volume of the container. The nitrification rate of the entire container including the sample liquid and the carrier is 8 to 20 mg-N / L · h, and the dissolved oxygen concentration and the oxygen consumption rate show constant values, and the nitrification rate is determined until the detection of the ammonia nitrogen concentration is completed. The time was about 20 to 40 minutes in each plot.

【0018】図5は、本発明の第二の実施例を示すアン
モニア性窒素濃度の検出装置の系統図である。この実施
例においては、硝化槽8にも、実際の廃水処理に硝化細
菌の固定化担体18が用いられている。この場合、スク
リーン19の内側から浮遊汚泥(試料液)と同時に担体
18を採取し、容器3内に導入することができる。これ
により、実際の廃水処理用の固定化担体の硝化能力を利
用してアンモニア性窒素濃度の検出をすることができ
る。なお、この実施例では、充分量の担体18を採取す
るため、硝化槽8の水面近くではなく、担体の分布量が
多い箇所から採取するように構成されている。なお、図
1に示した本発明の第一の実施例で用いられていたスク
リーン11は、ここでは不要となる。
FIG. 5 is a system diagram of an ammonia nitrogen concentration detecting apparatus according to a second embodiment of the present invention. In this embodiment, the nitrification tank 8 also uses the immobilizing carrier 18 for nitrifying bacteria for actual wastewater treatment. In this case, the carrier 18 can be collected simultaneously with the suspended sludge (sample liquid) from the inside of the screen 19 and introduced into the container 3. This makes it possible to detect the concentration of ammonia nitrogen using the nitrification ability of the actual immobilization carrier for wastewater treatment. In this embodiment, in order to collect a sufficient amount of the carrier 18, the carrier 18 is configured to be collected not from near the water surface of the nitrification tank 8 but from a place where the amount of the carrier distribution is large. The screen 11 used in the first embodiment of the present invention shown in FIG. 1 is not required here.

【0019】図6は、本発明の第三の実施例を示すアン
モニア性窒素濃度の検出装置の系統図である。この実施
例においては、担体1と試料液2を内部に保持する容器
3とは別に酸素溶解槽12を設け、試料液をまず酸素溶
解槽12に導入し、ここで空気を供給して試料液に酸素
を溶解させ、この槽内の液を循環ポンプ13によって容
器3に循環し、担体1と試料液2に溶存酸素を供給する
ように構成したものである。担体1は、容器3に充填し
ておくか、もしくは容器3から流出しないように流動さ
れる。この実施例は、第一の実施例における以下の点を
さらに改良したものである。 第一の実施例では、容器内の硝化速度が数mg−N/
L・h以下と低い場合に、それに合わせて供給する空気
量を少なくして運転する必要があり、担体量が10%程
度(容積比)のとき空気による担体の流動性が不安定と
なる。その結果、酸素消費速度の算出に必要なKLaの
値が安定しない場合があった。 担体量が20%を超えると、空気の気泡径が不安定に
なるなどの理由で、KLaの値が安定しない場合があっ
た。 自動的なKLa値の確認が困難である。
FIG. 6 is a system diagram of an ammonia nitrogen concentration detecting apparatus according to a third embodiment of the present invention. In this embodiment, an oxygen dissolving tank 12 is provided separately from the container 3 holding the carrier 1 and the sample liquid 2 therein, and the sample liquid is first introduced into the oxygen dissolving tank 12, where air is supplied and the sample liquid is supplied. The solution in this tank is circulated to the container 3 by the circulation pump 13 to supply dissolved oxygen to the carrier 1 and the sample solution 2. The carrier 1 is filled in the container 3 or is flowed so as not to flow out of the container 3. This embodiment is a further improvement of the following points in the first embodiment. In the first embodiment, the nitrification rate in the container is several mg-N /
When the flow rate is as low as L · h or less, the operation needs to be performed with a reduced amount of supplied air. When the amount of the support is about 10% (volume ratio), the flowability of the support by air becomes unstable. As a result, the value of KLa required for calculating the oxygen consumption rate may not be stable. When the amount of the carrier exceeds 20%, the value of KLa may not be stable because the bubble diameter of air becomes unstable. It is difficult to automatically check the KLa value.

【0020】これに対し、本発明の第三の実施例では、
担体を保持する容器3とは別に試料液に空気を供給する
酸素溶解槽12を設けたため、安定したKLa値が得ら
れる。また、担体量を、酸素溶解槽12と容器3の容器
の合計に対して40%近くまで保持できるため、より高
いアンモニア性窒素濃度の検出が可能になる。さらに、
アンモニア性窒素濃度の各検出操作の間に、次のような
操作により定期的、自動的にKLa値を確認し、酸素消
費速度の算出に用いる際のKLa値を修正することがで
きる。すなわち、脱窒槽や硝化槽などの反応槽15から
試料液2を容器3内に採取し、循環ポンプ13で循環さ
せながらエアポンプ4で一旦、短時間のエアレーション
をし、溶存酸素濃度値を所定値まで高める。その後、空
気供給を止め、以後の溶存酸素濃度値の変化を記録す
る。溶存酸素濃度値の減少速度から担体を含む試料液の
酸素消費速度が求められる。さらに、再度、同じ試料液
を採取し、空気を連続的に供給する通常のアンモニア性
窒素濃度の検出操作において、回分反応の初期に現れる
溶存酸素濃度の安定値が得られる。これらの酸素消費速
度と溶存酸素の安定値とから定常法によりKLaが算出
できる。なお、KLaの確認に使用する試料液をアンモ
ニア性窒素濃度が3mg/L程度以上のものとすること
により、空気供給を止めた際の溶存酸素濃度値が直線的
に低下し、空気を連続供給した回分反応の初期に現れる
溶存酸素濃度の安定値の継続時間が比較的長く、精度の
よいKLaが算出できる。
On the other hand, in a third embodiment of the present invention,
Since the oxygen dissolving tank 12 for supplying air to the sample liquid is provided separately from the container 3 holding the carrier, a stable KLa value can be obtained. In addition, since the amount of the carrier can be held to nearly 40% of the total amount of the oxygen dissolving tank 12 and the container 3, a higher ammonia nitrogen concentration can be detected. further,
During each detecting operation of the ammonia nitrogen concentration, the KLa value is periodically and automatically confirmed by the following operation, and the KLa value used for calculating the oxygen consumption rate can be corrected. That is, the sample liquid 2 is collected into the container 3 from a reaction tank 15 such as a denitrification tank or a nitrification tank, and once circulated by the air pump 4 for a short time while being circulated by the circulating pump 13 so that the dissolved oxygen concentration value becomes a predetermined value. Up to. Thereafter, the air supply is stopped, and the subsequent change in the dissolved oxygen concentration value is recorded. From the decreasing rate of the dissolved oxygen concentration value, the oxygen consumption rate of the sample solution containing the carrier is determined. Furthermore, the same sample solution is collected again, and a stable value of the dissolved oxygen concentration appearing at the beginning of the batch reaction can be obtained in a normal operation for detecting the concentration of ammoniacal nitrogen which continuously supplies air. KLa can be calculated from the oxygen consumption rate and the stable value of dissolved oxygen by a steady method. In addition, by making the sample liquid used for confirmation of KLa have an ammonia nitrogen concentration of about 3 mg / L or more, the dissolved oxygen concentration value when the air supply is stopped decreases linearly, and the air is continuously supplied. The duration of the stable value of the dissolved oxygen concentration appearing at the beginning of the batch reaction is relatively long, and KLa can be calculated with high accuracy.

【0021】図7は、本発明の第四の実施例を示すアン
モニア性窒素濃度の検出装置の系統図である。この実施
例では、酸素溶解槽12への試料液の流入をバルブ14
a又は14bを介して行うとともに、酸素溶解槽12内
の液を循環ポンプ13によって容器3に循環する際に、
容器3への循環液の流入位置をバルブ17a及び17b
により2ケ所のいずれかに切り替えられるように構成し
たものである。この実施例によれば、試料液のアンモニ
ア性窒素濃度が、採取するごとに大きく変化する場合で
も、循環液流路の切り替えにより、アンモニア性窒素濃
度の検出操作が1時間以内、好ましくは30分以内に終
了し、正確な検出ができるようにしたものである。
FIG. 7 is a system diagram of an ammonia nitrogen concentration detecting apparatus according to a fourth embodiment of the present invention. In this embodiment, the flow of the sample liquid into the oxygen
a or 14b, and when the liquid in the oxygen dissolving tank 12 is circulated to the container 3 by the circulation pump 13,
The position of the circulating fluid flowing into the container 3 is determined by the valves 17a and 17b.
To switch to one of two locations. According to this embodiment, even if the ammonia nitrogen concentration of the sample liquid changes greatly each time the sample is collected, the operation of detecting the ammonia nitrogen concentration can be performed within 1 hour, preferably 30 minutes by switching the circulating fluid flow path. The processing is completed within a period of time so that accurate detection can be performed.

【0022】この実施例では、廃水の窒素除去プロセス
の硝化槽8と脱窒槽16の活性汚泥混合液を、交互に試
料液として採取することができる。アンモニア性窒素濃
度が高い脱窒槽16から試料液を採取する場合、バルブ
14aとバルブ17aを開放し、酸素溶解槽12内の試
料液2は、容器3内の担体1の充填層の最下部から流入
する。一方、アンモニア性窒素濃度が低い硝化槽8から
試料液を採取する場合には、バルブ14bとバルブ17
bを開放し、試料液2は容器3の担体の充填層の中間部
から流入する。したがって、高濃度のアンモニア性窒素
は高い担体充填率で、低濃度のアンモニア性窒素は低い
担体充填率で硝化することとなる。例えば、廃水として
下水を対象とする場合、通常、硝化槽のアンモニア性窒
素濃度は2mg/L程度以下、脱窒槽のアンモニア性窒
素濃度は5〜20mg/L程度である。担体の充填率
(容積%)は、酸素溶解槽12と容器3の循環液通過部
の容積の合計に対して、硝化槽アンモニア性窒素用には
5〜10%(循環液通過部の容積の合計に対する硝化速
度として5〜10mg−N/L・h程度)、脱窒槽アン
モニア性窒素用には20〜30%程度(同じく20〜3
0mg−N/L・h程度)に設定することにより、アン
モニア性窒素濃度の検出操作は、概ね30分程度以内に
終了する。
In this embodiment, the activated sludge mixed liquid in the nitrification tank 8 and the denitrification tank 16 in the nitrogen removal process of wastewater can be alternately sampled. When the sample liquid is collected from the denitrification tank 16 having a high ammonia nitrogen concentration, the valve 14a and the valve 17a are opened, and the sample liquid 2 in the oxygen dissolution tank 12 is discharged from the bottom of the packed bed of the carrier 1 in the container 3. Inflow. On the other hand, when the sample liquid is collected from the nitrification tank 8 having a low ammonia nitrogen concentration, the valve 14b and the valve 17
b is opened, and the sample liquid 2 flows from the intermediate portion of the packed bed of the carrier in the container 3. Therefore, a high concentration of ammonia nitrogen is nitrified at a high carrier loading, and a low concentration of ammonia nitrogen is nitrified at a low carrier loading. For example, when sewage is targeted as wastewater, the ammonia nitrogen concentration in the nitrification tank is usually about 2 mg / L or less, and the ammonia nitrogen concentration in the denitrification tank is about 5 to 20 mg / L. The filling rate (volume%) of the carrier is 5 to 10% (for the volume of the circulating liquid passage portion) for the ammonia nitrogen in the nitrification tank with respect to the total volume of the circulating liquid passage portion of the oxygen dissolving tank 12 and the container 3. The nitrification rate with respect to the total is about 5 to 10 mg-N / L · h, and about 20 to 30% for ammonia nitrogen in the denitrification tank (also about 20 to 3%).
By setting to about 0 mg-N / Lh, the operation of detecting the concentration of ammonia nitrogen is completed within about 30 minutes.

【0023】ちなみに、低濃度アンモニア性窒素の試料
液を高い担体充填率で硝化した場合には、アンモニア性
窒素の硝化に伴う溶存酸素濃度の変化速度が大きく、溶
存酸素濃度計の応答が追従できず、検出精度が低下して
しまう場合があり、適切ではない。この実施例は、試料
液のアンモニア性窒素濃度に応じて、適切な担体充填率
で硝化されるように、循環液の流路を選択できるように
したものである。さらに、酸素溶解槽12に供給する空
気量についても、硝化速度に合わせ、担体充填率が高い
場合には増加し、低い場合には減少させるように空気流
量調節装置5を調節することが望ましい。
Incidentally, when the sample solution of low-concentration ammonia nitrogen is nitrified at a high carrier filling rate, the change rate of the dissolved oxygen concentration accompanying the nitrification of ammonia nitrogen is large, and the response of the dissolved oxygen concentration meter can follow. However, the detection accuracy may be reduced, which is not appropriate. In this embodiment, the flow path of the circulating liquid can be selected so that nitrification is performed at an appropriate carrier filling rate in accordance with the ammonia nitrogen concentration of the sample liquid. Further, it is desirable to adjust the air flow controller 5 so that the amount of air supplied to the oxygen dissolving tank 12 increases according to the nitrification rate when the carrier filling rate is high and decreases when the carrier filling rate is low.

【0024】第四の実施例では、硝化槽8と脱窒槽16
の活性汚泥混合液を試料液として交互に採取し、両槽の
アンモニア性窒素濃度を検出することができ、廃水の窒
素除去プロセスを好適に制御することが可能となる。ま
た、脱窒槽のアンモニア性窒素濃度が極端に高く、30
分〜1時間以内の検出が不可能になった場合には、例え
ば、脱窒槽の活性汚泥混合液と、アンモニア性窒素濃度
が低い硝化槽のそれとを同時に半分量ずつ採取して試料
液とし、そのアンモニア性窒素濃度を検出した後、硝化
槽のアンモニア性窒素濃度から脱窒槽のアンモニア性窒
素濃度を換算することも可能である。
In the fourth embodiment, the nitrification tank 8 and the denitrification tank 16
Activated sludge mixed liquids are sampled alternately as sample liquids, and the ammonia nitrogen concentration in both tanks can be detected, so that the nitrogen removal process of wastewater can be suitably controlled. In addition, the concentration of ammonia nitrogen in the denitrification tank is extremely high,
When detection within minutes to 1 hour becomes impossible, for example, half of the activated sludge mixed solution in the denitrification tank and that in the nitrification tank with a low ammonia nitrogen concentration are simultaneously sampled to obtain a sample solution, After detecting the ammonia nitrogen concentration, it is also possible to convert the ammonia nitrogen concentration in the denitrification tank from the ammonia nitrogen concentration in the nitrification tank.

【0025】以上の実施例では、溶存酸素濃度計を用い
て測定した試料液中の溶存酸素濃度の変化から酸素消費
量を求め、アンモニア性窒素濃度に換算したが、気相
(排ガス)中の酸素濃度の変化から酸素消費量を求める
ことも可能である。しかし、この場合には、試料液の回
分反応の最初と終了時の溶存酸素濃度の差として生じる
酸素消費量が誤差となるため、それを補正することが望
ましい。また、上記の実施例では、試料液として窒素除
去プロセスの反応槽内の活性汚泥混合液を用いた場合と
して説明したが、活性汚泥が分離された処理水や、有機
物濃度が低い場合であればアンモニア性窒素を含む廃水
などにも適用することができる。
In the above embodiment, the oxygen consumption was determined from the change in the dissolved oxygen concentration in the sample solution measured using the dissolved oxygen concentration meter and converted to the ammonia nitrogen concentration. It is also possible to obtain the oxygen consumption from the change in the oxygen concentration. However, in this case, the difference between the dissolved oxygen concentration at the beginning and the end of the batch reaction of the sample solution, which results in an error in the amount of oxygen consumed, results in an error. Further, in the above embodiment, the case where the activated sludge mixed liquid in the reaction tank of the nitrogen removal process is used as the sample liquid has been described, but the treated water from which the activated sludge is separated, or the case where the organic matter concentration is low. It can also be applied to wastewater containing ammonia nitrogen.

【0026】[0026]

【発明の効果】本発明のアンモニア性窒素濃度の検出装
置によれば、廃水の窒素除去プロセスにおいて、脱窒
槽、硝化槽の各反応槽の微生物混合液や処理水などを試
料液とすることができ、試料液のアンモニア性窒素が低
濃度から高濃度まで広範囲にわたっても、アンモニア性
窒素濃度を、薬品の添加が不要な簡単な装置及び操作方
法により短時間で精度よく検出することができる。
According to the apparatus for detecting the concentration of ammoniacal nitrogen in the present invention, in the process of removing nitrogen from wastewater, a mixed solution of microorganisms in each of the reaction tanks such as a denitrification tank and a nitrification tank and treated water can be used as a sample liquid. Thus, even in a wide range from a low concentration to a high concentration of ammonia nitrogen in a sample solution, the concentration of ammonia nitrogen can be accurately detected in a short time with a simple apparatus and operation method that does not require the addition of chemicals.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一の実施例を示すアンモニア性窒素
濃度の検出装置の系統図である。
FIG. 1 is a system diagram of an ammonia nitrogen concentration detecting apparatus according to a first embodiment of the present invention.

【図2】本発明の第一の実施例でのアンモニア性窒素濃
度の検出操作における溶存酸素濃度の経時変化図であ
る。
FIG. 2 is a diagram showing a change with time of a dissolved oxygen concentration in an operation for detecting an ammonia nitrogen concentration in the first embodiment of the present invention.

【図3】本発明の第一の実施例でのアンモニア性窒素濃
度の検出操作における酸素消費速度の経時変化図であ
る。
FIG. 3 is a graph showing the change over time of the oxygen consumption rate in the operation of detecting the concentration of ammoniacal nitrogen in the first embodiment of the present invention.

【図4】本発明の第一の実施例によるアンモニア性窒素
濃度の検出値と分析値との関係図である。
FIG. 4 is a relationship diagram between a detected value and an analytical value of the concentration of ammoniacal nitrogen according to the first embodiment of the present invention.

【図5】本発明の第二の実施例を示すアンモニア性窒素
濃度の検出装置の系統図である。
FIG. 5 is a system diagram of an ammonia nitrogen concentration detecting apparatus according to a second embodiment of the present invention.

【図6】本発明の第三の実施例を示すアンモニア性窒素
濃度の検出装置の系統図である。
FIG. 6 is a system diagram of an ammonia nitrogen concentration detecting apparatus according to a third embodiment of the present invention.

【図7】本発明の第四の実施例を示すアンモニア性窒素
濃度の検出装置の系統図である。
FIG. 7 is a system diagram of an ammonia nitrogen concentration detecting apparatus according to a fourth embodiment of the present invention.

【図8】容器内の試料液の各硝化速度における、試料液
のアンモニア性窒素濃度の検出可能な範囲を示す説明図
である。
FIG. 8 is an explanatory diagram showing a detectable range of the ammonia nitrogen concentration of the sample liquid at each nitrification rate of the sample liquid in the container.

【符号の説明】[Explanation of symbols]

1 担体 2 試料液 3 容器 4 エアポンプ 5 空気流量調整装置 6 溶存酸素濃度計 7 演算装置 8 硝化槽 9 サンプリングポンプ 10 返送配管 11 スクリーン 12 酸素溶解槽 13 循環ポンプ 15 反応槽 16 脱窒槽 18 硝化槽内担体 19 硝化槽スクリーン Reference Signs List 1 carrier 2 sample liquid 3 container 4 air pump 5 air flow controller 6 dissolved oxygen concentration meter 7 arithmetic unit 8 nitrification tank 9 sampling pump 10 return pipe 11 screen 12 oxygen dissolution tank 13 circulation pump 15 reaction tank 16 denitrification tank 18 in nitrification tank Carrier 19 nitrification tank screen

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 硝化細菌を固定化した担体と試料液を内
部に保持する容器と、この容器に接続された試料液のサ
ンプリング手段と、空気供給装置から容器に吹き込む空
気の流量調整装置と、溶存酸素濃度計と、この濃度計の
測定値からアンモニア性窒素濃度を演算する演算装置
と、試料液の返送配管とを備えたことを特徴とするアン
モニア性窒素濃度の検出装置。
1. A container holding a carrier on which nitrifying bacteria are immobilized and a sample liquid, a sample liquid sampling means connected to the container, a device for adjusting the flow rate of air blown into the container from an air supply device, An apparatus for detecting the concentration of ammonia nitrogen, comprising: a dissolved oxygen concentration meter, an arithmetic device for calculating the concentration of ammonia nitrogen from the measured value of the concentration meter, and a return pipe for a sample liquid.
【請求項2】 容器内に硝化細菌を固定化した担体を保
持し、その容器の上部に硝化細菌を固定化した担体の流
出を防止するスクリーンを有する請求項1記載のアンモ
ニア性窒素濃度の検出装置。
2. The ammonia nitrogen concentration detection according to claim 1, wherein a carrier holding the nitrifying bacteria is held in the container, and a screen for preventing the outflow of the carrier having the nitrifying bacteria fixed thereon is provided on the upper part of the container. apparatus.
【請求項3】 酸素溶解槽と、硝化細菌を固定化した担
体を保持する容器と、酸素溶解槽と容器との間で試料液
を循環させる循環手段とを有し、酸素溶解槽には、その
槽に接続された試料液のサンプリング手段と、空気供給
装置から容器に吹き込む空気の流量調整装置と、溶存酸
素濃度計と、この濃度計の測定値からアンモニア性窒素
濃度を演算する演算装置と、試料液の返送配管とを備え
たことを特徴とするアンモニア性窒素濃度の検出装置。
3. An oxygen dissolving tank, a container for holding a carrier on which nitrifying bacteria are immobilized, and a circulating means for circulating a sample liquid between the oxygen dissolving tank and the container. A sample liquid sampling means connected to the tank, a flow rate adjusting device for air blown into the container from the air supply device, a dissolved oxygen concentration meter, and an arithmetic device for calculating the ammonia nitrogen concentration from the measured value of the concentration meter. And a sample liquid return pipe.
【請求項4】 酸素溶解槽から硝化細菌を固定化した担
体を保持する容器への試料液の流入口を容器の底部及び
中間部に設け、試料液のアンモニア性窒素濃度に応じて
いずれか一方の流入口から試料液を流入させる開閉弁を
設けた請求項3記載のアンモニア性窒素濃度の検出装
置。
4. An inlet for a sample liquid from an oxygen dissolving tank to a container holding a carrier on which nitrifying bacteria are immobilized is provided at a bottom portion and an intermediate portion of the container, and one of them is provided depending on the ammonia nitrogen concentration of the sample solution. 4. The ammonia nitrogen concentration detecting device according to claim 3, further comprising an on-off valve for allowing a sample liquid to flow from an inlet of the ammonia gas.
【請求項5】 試料液のサンプリング手段が、脱窒槽及
び硝化槽内の試料液のサンプリングを切り替える弁を備
えたものである請求項3又は4記載のアンモニア性窒素
濃度の検出装置。
5. The ammonia nitrogen concentration detecting apparatus according to claim 3, wherein the sample liquid sampling means includes a valve for switching sampling of the sample liquid in the denitrification tank and the nitrification tank.
JP11639897A 1997-04-18 1997-04-18 Device for detecting ammoniacal nitrogen concentration Pending JPH10290997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11639897A JPH10290997A (en) 1997-04-18 1997-04-18 Device for detecting ammoniacal nitrogen concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11639897A JPH10290997A (en) 1997-04-18 1997-04-18 Device for detecting ammoniacal nitrogen concentration

Publications (1)

Publication Number Publication Date
JPH10290997A true JPH10290997A (en) 1998-11-04

Family

ID=14686063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11639897A Pending JPH10290997A (en) 1997-04-18 1997-04-18 Device for detecting ammoniacal nitrogen concentration

Country Status (1)

Country Link
JP (1) JPH10290997A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111670362A (en) * 2018-01-31 2020-09-15 奥加诺株式会社 System and method for measuring hydrogen peroxide concentration
CN112666285A (en) * 2020-12-17 2021-04-16 广东省科学院生态环境与土壤研究所 Device for measuring nitrogen in anaerobic environment by external inert gas purging and measuring method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111670362A (en) * 2018-01-31 2020-09-15 奥加诺株式会社 System and method for measuring hydrogen peroxide concentration
CN111670362B (en) * 2018-01-31 2022-04-05 奥加诺株式会社 System and method for measuring hydrogen peroxide concentration
CN112666285A (en) * 2020-12-17 2021-04-16 广东省科学院生态环境与土壤研究所 Device for measuring nitrogen in anaerobic environment by external inert gas purging and measuring method thereof
CN112666285B (en) * 2020-12-17 2022-09-16 广东省科学院生态环境与土壤研究所 Device for measuring nitrogen in anaerobic environment by external inert gas purging and measuring method thereof

Similar Documents

Publication Publication Date Title
Stenstrom et al. Effects of oxygen transport limitation on nitrification in the activated sludge process
US8916046B2 (en) Method for controlling oxygen supply for treating wastewater, and facility for implementing same
JP2003200190A (en) Device for controlling quality of water at sewage treatment plant
JP4304453B2 (en) Operation control device for nitrogen removal system
WO1998054100A1 (en) A process for wastewater treatment using intermittently decanted extended aeration process
JPH07299495A (en) Nitrification accelerating method for activated sludge circulation modulating method and method for predicting nitrification rate
JPH10290997A (en) Device for detecting ammoniacal nitrogen concentration
CN212476266U (en) Anaerobic ammonia oxidation sewage autotrophic denitrification device based on pulse aeration
JP4623295B2 (en) Method and apparatus for measuring reaction ratio
JPS6339698A (en) Method for controlling biological nitrification process
JP2001314892A (en) Method for controlling denitrification apparatus of wastewater
JPH0133236B2 (en)
KR101066892B1 (en) System for controlling the dosage of external carbon source using continuous measurement device of nitrogen ion
JPS61249597A (en) Method for controlling methanol injection in biological denitrification process
JP2006116480A (en) Method and apparatus for treating and measuring waste water
JP3260558B2 (en) Control method of intermittent aeration type activated sludge method
JPH0362480B2 (en)
JPH08192179A (en) Device for setting residence time of sludge in activated sludge process
JPS62155996A (en) Device for controlling injection of organic carbon source in biological denitrification process
JPH091172A (en) Biological treatment device
JPH05253597A (en) Nitrification reaction control device in activated sludge treatment
JP3260575B2 (en) Control method of intermittent aeration type activated sludge method
JP2005103337A (en) Nitrification activity detecting device for activated sludge treating tank
JP3127776B2 (en) Apparatus and method for monitoring nitrogen removal performance of wastewater
JP2001038381A (en) Method for removing phosphorus in waste water