JPH10290144A - 半導体装置 - Google Patents

半導体装置

Info

Publication number
JPH10290144A
JPH10290144A JP9099201A JP9920197A JPH10290144A JP H10290144 A JPH10290144 A JP H10290144A JP 9099201 A JP9099201 A JP 9099201A JP 9920197 A JP9920197 A JP 9920197A JP H10290144 A JPH10290144 A JP H10290144A
Authority
JP
Japan
Prior art keywords
comparator
temperature
detection
voltage
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9099201A
Other languages
English (en)
Inventor
Yoshiaki Yatani
佳明 八谷
Yuji Yamanishi
雄司 山西
Yoshihiro Mori
吉弘 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP9099201A priority Critical patent/JPH10290144A/ja
Priority to US09/059,214 priority patent/US6069501A/en
Priority to KR1019980013544A priority patent/KR100282997B1/ko
Priority to CNB981088872A priority patent/CN1137517C/zh
Publication of JPH10290144A publication Critical patent/JPH10290144A/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45479Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/01Shaping pulses
    • H03K5/08Shaping pulses by limiting; by thresholding; by slicing, i.e. combined limiting and thresholding
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/22Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral
    • H03K5/24Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being amplitude
    • H03K5/2409Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being amplitude using bipolar transistors
    • H03K5/2418Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being amplitude using bipolar transistors with at least one differential stage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Manipulation Of Pulses (AREA)
  • Electronic Switches (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

(57)【要約】 【課題】 検出電圧を基板内に集積した検出素子から
得、基準電圧を外付け基準素子から得るようにしたコン
パレータを内蔵する半導体装置において、検出電圧の温
度特性と基準電圧の温度特性の間のずれを低減する。 【解決手段】 コンパレータ2の検出側回路と基準側回
路のいずれか一方、若しくは両方に、温度依存性半導体
素子(検出側回路にはダイオード9、基準側回路には抵
抗素子13)を設ける。内蔵されたパワー素子18の発熱に
より検出電圧が変動しても、ダイオード9や抵抗素子13
等の各温度特性が、検出電圧と基準電圧の各温度特性の
ずれを低減するように作用する。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、半導体装置に係
り、特に、パワー素子とコンパレータとを同一半導体基
板に集積化したもので、検出電圧は温度特性の変化が大
きい基板内部の半導体素子から得、基準電圧は温度特性
の変化が非常に少ない外付け部品から得るようにした半
導体装置におけるコンパレータの温度変化に対する出力
特性の変動を低減する回路技術に関する。
【0002】
【従来の技術】コンパレータは、温度変化に対する出力
特性の変動を抑えるために、検出電圧を得るための素子
(以下、検出素子と略す)と基準電圧を得るための素子
(以下、基準素子と略す)の温度特性を合わせて考慮され
る。例えばコンパレータを内蔵する半導体装置では、検
出素子と基準素子を共に半導体基板に内蔵させる、又は
共に外付け部品で対応するのが一般的である。前者の半
導体基板に内蔵させる構成では、コンパレータの出力特
性は温度変化に対し安定するが、コンパレータの出力特
性は固定されるため、使用者がコンパレータの出力特性
を自由に設定することはできない。後者の共に外付け部
品で対応する構成では、使用者がコンパレータの出力特
性を自由に設定することはできるが、外部接続端子がコ
ンパレータ一つに対し2端子増えることになり、半導体
装置全体の外部端子数が増えることになる。半導体装置
の小型化と外部端子数の減少化を図り、且つコンパレー
タの出力特性を自由に設定できるようにするには、コン
パレータの基準電圧を外付け部品により得る必要があ
る。
【0003】コンパレータの基準電圧を外付け部品によ
り得る従来技術を用いた例を図7に示す。図7におい
て、1はコンパレータ2と半導体素子である検出抵抗3
とを半導体基板中に内蔵した半導体装置である。4はコ
ンパレータ2の基準電圧のための外部接続端子、5はコ
ンパレータ2の出力端子である。外部接続端子4には定
電流源6と基準用外付け抵抗7が接続されている。コン
パレータ2は、定電流源8、トランジスタ10およびトラ
ンジスタ11からなる検出側回路と、定電流源12、トラン
ジスタ14およびトランジスタ15からなる基準側回路と、
定電流源16とで構成されている。コンパレータ2の基準
電圧は基準用外付け抵抗7で発生する電圧であり、コン
パレータ2の検出電圧は検出抵抗3で発生する電圧であ
る。コンパレータの基準端子は、コンパレータの出力特
性を基準用外付け抵抗7で発生する基準電圧により自由
に設定するために外部接続端子となっている。
【0004】
【発明が解決しようとする課題】しかしながら、図7の
コンパレータ2を使用したとき、コンパレータ2の基準
電圧は基準用外付け抵抗7で発生する電圧であり、且つ
基準用外付け抵抗7は外付け部品であるため、基準電圧
の温度変化に対する変動が小さい。一方、コンパレータ
2の検出電圧は検出抵抗3で発生する電圧であり、且つ
検出抵抗3は半導体基板に内蔵されているために、検出
電圧の温度変化に対する変動が大きい。そのために、コ
ンパレータ2の基準電圧と検出電圧の温度特性にずれが
生じ、コンパレータの出力特性は温度により変動する。
特に半導体基板にパワー素子が内蔵されている場合、パ
ワー素子の発熱により、検出抵抗3の温度変化に対する
変動が更に大きくなるため、コンパレータの出力特性は
温度により大きく変動することになる。
【0005】本発明は、このように、検出電圧を半導体
基板に内蔵する検出素子から得、基準電圧を外付け基準
素子から得るようにしたコンパレータにおいて、検出電
圧と基準電圧の温度特性のずれを低減するようにした半
導体装置を提供することを目的とする。そして、パワー
素子がコンパレータとともに集積化された半導体装置に
おいて特に有効である。
【0006】
【課題を解決するための手段】上記目的を達成するため
に、本発明の半導体装置は、コンパレータの検出電圧と
基準電圧の温度特性を合わせるために、コンパレータの
検出側回路若しくは基準側回路の少なくとも一方に温度
依存性半導体素子を備えたものである。検出側回路に設
ける温度依存性半導体素子としてダイオードが、基準側
回路に設ける温度依存性半導体素子として抵抗素子があ
る。検出側回路にダイオードを設けると、ダイオードの
整特性が温度の上昇に伴い減少するため、検出電圧の温
度に対する変化が低減され、コンパレータの検出電圧と
基準電圧の温度特性ずれが低減される。また、基準側回
路に抵抗素子を設けると、温度の上昇に伴い抵抗値が増
加するため、基準電圧の温度に対する変化が増加し、検
出電圧と基準電圧の温度特性ずれが低減される。検出側
回路にダイオードを内蔵させ、基準側回路に抵抗素子を
内蔵させると、コンパレータの検出電圧と基準電圧の温
度特性ずれはより効果的に低減される。
【0007】そこで、本発明の請求項1に記載の発明
は、コンパレータを内蔵し、そのコンパレータに検出電
圧を供給する検出素子は半導体基板に一体的に集積化さ
れており、前記コンパレータの基準電圧は外部接続端子
を介して外付け部品から供給される半導体装置におい
て、前記コンパレータの検出電圧が供給される検出側回
路若しくは基準電圧が供給される基準側回路の少なくと
も一方に、検出電圧と基準電圧の温度特性のずれを低減
するための温度依存性半導体素子を備えた構成とするも
のである。
【0008】また、本発明の請求項2に記載の発明は、
コンパレータの検出側回路に備えた温度依存性半導体素
子がダイオードからなるものである。
【0009】また、本発明の請求項3に記載の発明は、
コンパレータの基準側回路に備えた温度依存性半導体素
子が抵抗素子からなるものである。
【0010】また、本発明の請求項4に記載の発明は、
請求項1,2または3記載の半導体装置において、半導
体基板にパワー素子が内蔵されているものである。
【0011】また、本発明の請求項5に記載の発明は、
温度依存性半導体素子が少なくとも検出側回路若しくは
基準側回路にスイッチを介して設けられているものであ
る。
【0012】さらに、本発明の請求項6に記載の発明
は、外付け部品により基準電圧を変え、コンパレータの
出力特性を任意に設定するようにしたものである。
【0013】
【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を参照しながら詳細に説明する。 (実施の形態1)図1は、本発明の実施の形態1におけ
る半導体装置を示したものである。図1において、図7
中の構成要素に付された符号と同一符号のものは同一の
構成要素を表しており、また、9はコンパレータ2の検
出電圧が供給される検出側回路に設けられた温度依存性
半導体素子としてのダイオードであり、スイッチング素
子であるトランジスタ10と直列に接続されている。ダイ
オード9は、温度上昇に伴い両端の電圧が減少する温度
特性を有している。
【0014】さらに、具体的に説明する。図1におい
て、定電流源6の電流をI1とする。またトランジスタ1
0,11,14,15およびダイオード9において、ベース・
エミッタ間電圧をVF、温度係数を−△αとし、検出抵
抗3の温度係数を△βとする。基準用外付け抵抗7の温
度依存性は検出抵抗3に比べて低いので温度係数はゼロ
とする。コンパレータ2のA点とB点の電圧が等しくな
り、出力端子5の出力が“H”から“L”に反転すると
きの検出抵抗3の抵抗値をR3、検出抵抗3に流れる検
出電流をIsとし、基準用外付け抵抗7の抵抗値をR7
すると、A点における電圧VaとB点における電圧Vb
は、以下のようになる。
【0015】
【数1】Va=Is・(1+△β)R3+2(1−△α)VF
【0016】
【数2】Vb=I1・R7+(1−△α)VF 上記(数1)、(数2)より、検出電流Isは
【0017】
【数3】 Is={I1・R7−(1−△α)VF}/{(1+△β)R3} (数3)において、右辺の分母の(1+△β)R3は温度上
昇に伴い増加し、右辺の分子の(1−△α)VFは温度上
昇に伴い減少し、右辺の分子全体としては増加する。結
果として、温度上昇により発生する検出電流Isのずれ
は低減される。
【0018】(実施の形態2)図2は、本発明の実施の形
態2における半導体装置を示したものである。ここで
は、図1のダイオード9の代りにコンパレータの基準電
圧が供給される基準側回路に抵抗素子13が、スイッチン
グ素子であるトランジスタ14と直列に設けられたもので
ある。抵抗素子13は温度上昇に伴い抵抗値が増加し、両
端の電圧が増加する温度依存性半導体素子である。
【0019】図2において、実施の形態1と同様に、定
電流源6の電流をI1とし、トランジスタ10,11,14,1
5のベース・エミッタ間電圧をVF、温度係数を−△αと
し、検出抵抗3と抵抗13の温度係数を△βとする。ま
た、基準用外付け抵抗7の温度依存性は検出抵抗3のそ
れに比べて低いので、その温度係数はゼロとする。コン
パレータ2のA点とB点の電圧が等しくなり、出力端子
5の出力が“H”から“L”に反転するときの検出抵抗
3の抵抗値をR3、検出抵抗3に流れる検出電流をIs、
定電流源12の電流をI2、基準用外付け抵抗7の抵抗値
をR7、抵抗13の抵抗値をR13とすると、A点における
電圧VaとB点における電圧Vbは以下のようになる。
【0020】
【数4】Va=Is・(1+△β)R3+(1−△α)VF
【0021】
【数5】 Vb=I1・R7+(1−△α)VF+I2・(1+△β)R13 上記(数4)、(数5)より、検出電流Isは以下のように
表される。
【0022】
【数6】Is={I1・R7+I2・(1+△β)R13}/{(1
+△β)R3} (数6)において、右辺の分母の(1+△β)R3は温度上
昇に伴い増加し、右辺の分子のI2・(1+△β)R13
温度上昇に伴い増加し、右辺の分子全体としては増加す
る。結果として、温度上昇により発生する検出電流Is
のずれは低減される。
【0023】(実施の形態3)図3は、本発明の実施の形
態3における半導体装置を示したものである。ここで
は、コンパレータ2の検出電圧が供給される検出側回路
にダイオード9が、基準電圧が供給される基準側回路に
抵抗素子13がそれぞれ設けられたものである。図3にお
いて、実施の形態1および2と同様に、定電流源6の電
流をI1とし、トランジスタ10,11,14,15およびダイ
オード9のベース・エミッタ間電圧をVF、温度係数を
−△αとし、検出抵抗3と抵抗13の温度係数を△βとす
る。また、基準用外付け抵抗7の温度依存性は検出抵抗
3のそれに比べて低いので温度係数はゼロとする。コン
パレータ2のA点とB点の電圧が等しくなり、出力端子
5の出力が“H”から“L”に反転するときの検出抵抗
3の抵抗値をR3、検出抵抗3に流れる検出電流をIs、
定電流源12の電流をI2、基準用外付け抵抗7の抵抗値
をR7、抵抗13の抵抗値をR13とすると、A点における
電圧VaとB点における電圧Vbは以下のようになる。
【0024】
【数7】Va=Is・(1+△β)R3+2(1−△α)VF
【0025】
【数8】 Vb=I1・R7+(1−△α)VF+I2・(1+△β)R13 上記(数7)、(数8)より、検出電流Isは以下のように
表される。
【0026】
【数9】Is={I1・R7+I2・(1+△β)R13−(1−
△α)VF}/{(1+△β)R3} (数9)において、右辺の分母の(1+△β)R3は温度上
昇に伴い増加する。右辺の分子のI2・(1+△β)R13
は温度上昇に伴い増加し、(1−△α)VFは減少するた
め、右辺の分子全体としては増加する。結果として、温
度上昇により発生する検出電流Isのずれは低減され
る。
【0027】(実施の形態4)図4は、本発明の実施の形
態4における半導体装置を示したものである。ここで17
はパワー素子18とパワー素子18の過電流検出用コンパレ
ータとして機能するコンパレータ2と検出抵抗3と抵抗
19とを内蔵した半導体装置である。なお、図1中の構成
要素と同一のものには同一符号を付してある。
【0028】図4において、コンパレータ2はパワー素
子18の過電流検出用コンパレータとして動作する。コン
パレータ2がパワー素子18と集積化されていることを除
けば、検出電圧と基準電圧の温度特性ずれの低減手段と
しては実施の形態1と同じである。トランジスタ10,1
1,14,15およびダイオード9において、ベース・エミ
ッタ間電圧をVF、温度係数を−△αとし、検出抵抗3
の温度係数を△βとする。また、パワー素子18のオン抵
抗と温度係数をそれぞれRon,△γ、検出抵抗3の抵抗
値をR3とする。また、基準用外付け抵抗7の温度依存
性は検出抵抗3のそれに比べて低いので温度係数はゼロ
とする。コンパレータ2のA点とB点の電圧が等しくな
り、出力端子5の出力が“H”から“L”に反転すると
きのパワー素子18に流れる過電流をIoc1、基準用外付
け抵抗7の抵抗値をR7、抵抗19の抵抗値をR19とする
と、A点における電圧VaとB点における電圧Vbは以下
のようになる。
【0029】
【数10】Va=Ioc1・(1+△γ)Ron・R3/(R3
19)+2(1−△α)VF
【0030】
【数11】Vb=I1・R7+(1−△α)VF 上記(数10)、(数11)より、過電流Ioc1は以下のように
表される。
【0031】
【数12】Ioc1=(R3+R19)・{I1・R7−(1−△
α)VF}/{R3・(1+△γ)Ron} (数12)において、右辺の分母のR3・(1+△γ)Ronは
温度上昇に伴い増加し、右辺の分子の(1−△α)VF
温度上昇に伴い減少して、右辺の分子全体としては増加
する。結果として、検出電流Ioc1の温度上昇により発
生するずれは低減される。
【0032】(実施の形態5)図5は、本発明の実施の形
態5における半導体装置を示したものである。ここで
は、図4のダイオード9の代りにコンパレータの基準側
回路に抵抗素子13が設けられたものである。
【0033】図5において、コンパレータ2はパワー素
子18の過電流検出用コンパレータとして動作する。コン
パレータ2がパワー素子18と集積化されていることを除
けば、検出電圧と基準電圧の温度特性ずれの低減手段と
しては実施の形態2と同じである。トランジスタ10,1
1,14,15において、ベース・エミッタ間電圧をVF、温
度係数を−△αとし、検出抵抗3の温度係数を△βとす
る。また、パワー素子18のオン抵抗と温度係数をそれぞ
れRon,△γ、検出抵抗3の抵抗値をR3とする。基準
用外付け抵抗7の温度依存性は検出抵抗3のそれに比べ
て低いので温度係数はゼロとする。コンパレータ2のA
点とB点の電圧が等しくなり、出力端子5の出力が
“H”から“L”に反転するときのパワー素子18に流れ
る過電流をIoc1、定電流源12の電流をI2、基準用外付
け抵抗7の抵抗値をR7、抵抗13の抵抗値をR13、抵抗1
9の抵抗値をR19とすると、A点における電圧VaとB点
における電圧Vbは以下のようになる。
【0034】
【数13】Va=Ioc1・(1+△γ)Ron・R3/(R3
19)+(1−△α)VF
【0035】
【数14】 Vb=I1・R7+(1−△α)VF+I2・(1+△β)R13 上記(数13)、(数14)より、過電流Ioc1は以下のように
表される。
【0036】
【数15】Ioc1=(R3+R19)・{I1・R7+I2・(1
+△β)R13}/{R3・(1+△γ)Ron} (数15)において、右辺の分母のR3・(1+△γ)Ronは
温度上昇に伴い増加し、右辺の分子のI2・(1+△β)
13も温度上昇に伴い増加し、右辺の分子全体としては
増加する。結果として、温度上昇により発生する検出電
流Ioc1のずれは低減される。
【0037】(実施の形態6)図6は、本発明の実施の形
態6における半導体装置を示したものである。ここで
は、コンパレータ2の検出側回路にダイオード9が、基
準側回路に抵抗素子13がそれぞれ設けられたものであ
る。コンパレータ2はパワー素子18の過電流検出用コン
パレータとして動作する。コンパレータがパワー素子と
ともに集積化されていることを除けば、検出電圧と基準
電圧の温度特性ずれの低減手段としては実施の形態3と
同じである。
【0038】トランジスタ10,11,14,15およびダイオ
ード9において、ベース・エミッタ間電圧をVF、温度
係数を−△αとし、検出抵抗3の温度係数を△βとす
る。また、パワー素子18のオン抵抗と温度係数をそれぞ
れRon,△γ、検出抵抗3の抵抗値をR3とする。ま
た、基準用外付け抵抗7の温度依存性は検出抵抗3のそ
れに比べて低いので温度係数はゼロとする。コンパレー
タ2のA点とB点の電圧が等しくなり、出力端子5の出
力が“H”から“L”に反転するときのパワー素子18に
流れる過電流をIoc1、定電流源12の電流をI2、基準用
外付け抵抗7の抵抗値をR7、抵抗13の抵抗値をR13
抵抗19の抵抗値をR19とすると、A点における電圧Va
とB点における電圧Vbは以下のようになる。
【0039】
【数16】Va=Ioc1・(1+△γ)Ron・R3/(R3
19)+2(1−△α)VF
【0040】
【数17】 Vb=I1・R7+(1−△α)VF+I2・(1+△β)R13 上記(数16)、(数17)より、過電流Ioc1は以下のように
表される。
【0041】
【数18】Ioc1=(R3+R19)/{R3・(1+△γ)Ro
n}・{I1・R7+I2・(1+△β)R13−(1−△α)VF} (数18)において、右辺の分母のR3・(1+△γ)Ronは
温度上昇に伴い増加し、右辺の分子において、I2・(1
+△β)R13は温度上昇に伴い増加し、また(1−△α)
Fは減少するため、右辺の分子全体としては増加す
る。結果として、温度上昇により発生する検出電流Ioc
1のずれは低減される。
【0042】なお、コンパレータの検出電圧を供給する
検出素子の温度特性と基準電圧を供給する基準素子の温
度特性が異なる場合においても、コンパレータの温度変
化に対する出力特性の変動を抑えることができる。ま
た、コンパレータ及び検出素子を内蔵したパワー素子の
4端子デバイスを得ることができる。通常、これは5端
子化して使用・販売されている。他の機能を生かして外
部端子数を増やすことも可能である。
【0043】
【発明の効果】以上説明したように、本発明によれば、
コンパレータの出力特性を基準側で自由に設定するため
に、コンパレータの基準電圧を、外部接続用端子を介し
て外付け部品から供給するようにした半導体装置におい
て、コンパレータの検出側回路および基準側回路の少な
くとも一方に、温度依存性半導体素子を内蔵させること
により、コンパレータに接続する半導体素子の温度特性
に依存することなく、検出電圧と基準電圧の各温度特性
ずれを低減することができるという効果を奏する。
【図面の簡単な説明】
【図1】本発明の実施の形態1における半導体装置の回
路図である。
【図2】本発明の実施の形態2における半導体装置の回
路図である。
【図3】本発明の実施の形態3における半導体装置の回
路図である。
【図4】本発明の実施の形態4における半導体装置の回
路図である。
【図5】本発明の実施の形態5における半導体装置の回
路図である。
【図6】本発明の実施の形態6における半導体装置の回
路図である。
【図7】従来例の半導体装置の回路図である。
【符号の説明】
1,17…半導体装置、 2…コンパレータ、 3…検出
抵抗、 4…コンパレータの基準電圧供給用の外部接続
端子、 5…コンパレータの出力端子、 6,8,12,16
…定電流源、 7…基準用外付け抵抗、 9…温度依存
性半導体素子としてのダイオード、 10,11,14,15…ト
ランジスタ、 13…温度依存性半導体素子としての抵抗
素子、 18…パワー素子、 19…抵抗。

Claims (6)

    【特許請求の範囲】
  1. 【請求項1】 コンパレータを内蔵し、そのコンパレー
    タに検出電圧を供給する検出素子は半導体基板に一体的
    に集積化されており、前記コンパレータの基準電圧は外
    部接続端子を介して外付け部品から供給される半導体装
    置において、前記コンパレータの検出電圧が供給される
    検出側回路若しくは基準電圧が供給される基準側回路の
    少なくとも一方に、検出電圧と基準電圧の温度特性のず
    れを低減するための温度依存性半導体素子を備えている
    ことを特徴とする半導体装置。
  2. 【請求項2】 コンパレータの検出側回路に備えた温度
    依存性半導体素子がダイオードからなることを特徴とす
    る請求項1記載の半導体装置。
  3. 【請求項3】 コンパレータの基準側回路に備えた温度
    依存性半導体素子が抵抗素子からなることを特徴とする
    請求項1記載の半導体装置。
  4. 【請求項4】 半導体基板にパワー素子を含むことを特
    徴とする請求項1,2または3記載の半導体装置。
  5. 【請求項5】 温度依存性半導体素子がスイッチを介し
    て設けられていることを特徴とする請求項1記載の半導
    体装置。
  6. 【請求項6】 外付け部品により基準電圧を変え、コン
    パレータの出力特性を任意に設定することを特徴とする
    請求項1記載の半導体装置。
JP9099201A 1997-04-16 1997-04-16 半導体装置 Pending JPH10290144A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP9099201A JPH10290144A (ja) 1997-04-16 1997-04-16 半導体装置
US09/059,214 US6069501A (en) 1997-04-16 1998-04-13 Semiconductor device
KR1019980013544A KR100282997B1 (ko) 1997-04-16 1998-04-16 반도체 장치
CNB981088872A CN1137517C (zh) 1997-04-16 1998-04-16 半导体器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9099201A JPH10290144A (ja) 1997-04-16 1997-04-16 半導体装置

Publications (1)

Publication Number Publication Date
JPH10290144A true JPH10290144A (ja) 1998-10-27

Family

ID=14241045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9099201A Pending JPH10290144A (ja) 1997-04-16 1997-04-16 半導体装置

Country Status (4)

Country Link
US (1) US6069501A (ja)
JP (1) JPH10290144A (ja)
KR (1) KR100282997B1 (ja)
CN (1) CN1137517C (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100697776B1 (ko) 2005-06-07 2007-03-20 주식회사 유니테스트 반도체 테스트 장치
JP2009008501A (ja) * 2007-06-27 2009-01-15 Nec Electronics Corp コンデンサ容量測定装置
JP2009071534A (ja) * 2007-09-12 2009-04-02 Rohm Co Ltd 電圧比較回路およびそれを利用した電源管理回路および電子機器
US7532063B2 (en) 2005-11-29 2009-05-12 Hynix Semiconductor Inc. Apparatus for generating reference voltage in semiconductor memory apparatus
US8362748B2 (en) 2007-09-12 2013-01-29 Rohm Co., Ltd. Voltage comparison circuit

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6265857B1 (en) 1998-12-22 2001-07-24 International Business Machines Corporation Constant current source circuit with variable temperature compensation
US6181191B1 (en) * 1999-09-01 2001-01-30 International Business Machines Corporation Dual current source circuit with temperature coefficients of equal and opposite magnitude
JP2006067660A (ja) * 2004-08-25 2006-03-09 Mitsubishi Electric Corp 半導体装置
US7621671B2 (en) * 2007-05-16 2009-11-24 Infineon Technologies Ag Method and apparatus for thermal protection in an integrated circuit
CN107769757B (zh) * 2017-10-10 2020-12-01 西安微电子技术研究所 一种比较器抗静电电路及其工作方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4198581A (en) * 1977-10-13 1980-04-15 Rca Corporation Temperature compensating comparator
US4746823A (en) * 1986-07-02 1988-05-24 Dallas Semiconductor Corporation Voltage-insensitive and temperature-compensated delay circuit for a monolithic integrated circuit
JPH05289760A (ja) * 1992-04-06 1993-11-05 Mitsubishi Electric Corp 基準電圧発生回路
US5873029A (en) * 1997-02-19 1999-02-16 Motorola, Inc. High dynamic range millimeter wave power detector with temperature compensation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100697776B1 (ko) 2005-06-07 2007-03-20 주식회사 유니테스트 반도체 테스트 장치
US7532063B2 (en) 2005-11-29 2009-05-12 Hynix Semiconductor Inc. Apparatus for generating reference voltage in semiconductor memory apparatus
JP2009008501A (ja) * 2007-06-27 2009-01-15 Nec Electronics Corp コンデンサ容量測定装置
JP2009071534A (ja) * 2007-09-12 2009-04-02 Rohm Co Ltd 電圧比較回路およびそれを利用した電源管理回路および電子機器
US8362748B2 (en) 2007-09-12 2013-01-29 Rohm Co., Ltd. Voltage comparison circuit

Also Published As

Publication number Publication date
US6069501A (en) 2000-05-30
CN1137517C (zh) 2004-02-04
KR100282997B1 (ko) 2001-03-02
KR19980081445A (ko) 1998-11-25
CN1208857A (zh) 1999-02-24

Similar Documents

Publication Publication Date Title
KR930010102B1 (ko) 전류 검출 기능 부착 트랜지스터
US8398304B2 (en) Multiple sensor thermal management for electronic devices
TWI448671B (zh) 溫度感測裝置
US20020140447A1 (en) On-chip temperature detection device
WO2005112217A1 (ja) 過電流検出回路及びこれを有する電源装置
JP4012472B2 (ja) 電界効果トランジスタ内の電流を並列検知する回路
CN107870259B (zh) 对工艺/温度和电源变化具有低灵敏度的hv电压比较器
JPH04266110A (ja) バンドギャップ基準回路
JPH075225A (ja) 金属・酸化物・半導体電界効果トランジスタのドレイン電流を監視する回路構造体
JPH10290144A (ja) 半導体装置
KR960011540B1 (ko) 온도계수를 갖는 전원장치
CN112838850A (zh) 上电复位电路、集成电路以及电子设备
JPS6223494B2 (ja)
JP2001345686A (ja) 電流検出回路
JPS62191907A (ja) 半導体回路
JPH09257840A (ja) 過電流検知回路
KR900001169B1 (ko) 전류 미러회로
US11480989B2 (en) High accuracy zener based voltage reference circuit
JP2003177828A (ja) 定電流回路
JP3092062B2 (ja) 半導体装置
US6768139B2 (en) Transistor configuration for a bandgap circuit
JP3239052B2 (ja) 半導体集積回路
JP2000241252A (ja) 温度検出回路
JP2004045305A (ja) 過電流検出回路
JP2000146711A (ja) 温度センサ装置