JPH10290024A - Light emitting detecting circuit - Google Patents

Light emitting detecting circuit

Info

Publication number
JPH10290024A
JPH10290024A JP9094125A JP9412597A JPH10290024A JP H10290024 A JPH10290024 A JP H10290024A JP 9094125 A JP9094125 A JP 9094125A JP 9412597 A JP9412597 A JP 9412597A JP H10290024 A JPH10290024 A JP H10290024A
Authority
JP
Japan
Prior art keywords
mos transistor
light
light emitting
circuit
pass filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9094125A
Other languages
Japanese (ja)
Other versions
JP2984917B2 (en
Inventor
Yuji Yamamoto
有二 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP9094125A priority Critical patent/JP2984917B2/en
Publication of JPH10290024A publication Critical patent/JPH10290024A/en
Application granted granted Critical
Publication of JP2984917B2 publication Critical patent/JP2984917B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a photodetecting circuit whose sensitivity so signal components is not deteriorated even if under solar beams, by providing a MOS transistor for bypassing the DC components by solar beams, etc. SOLUTION: A drain electrode and a source electrode of a MOS transistor 9 are parallel-connected to a load resistor 4 series-connected to a photodetecting element 2. A gate electrode of the MOS transistor 9 is supplied with a DC component out of the voltage generated on both ends of the load resistor 4. In such a constitution, the MOS transistor 9 is supplied with the DC component only, so that the decline in the sensitivity may be mitigated since the DC component generated by solar beams runs into the MOS transistor 9 even if under the photodetecting conditions such as under solar beams while the signal component runs into the load resistor 4. Furthermore, since MOS transistor 9 is commonly used with a driving transistor for a photoemitting element 3, a new transistor need not be added.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,電子回路の内で受
発光回路に関する。より詳しくは光信号を受信,送信す
る回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting / receiving circuit in an electronic circuit. More specifically, the present invention relates to a circuit for receiving and transmitting an optical signal.

【0002】[0002]

【従来の技術】従来の赤外線リモコン等の受光回路(例
えば特開平3−113924)では,図2に示す様に,
信号の背景にある太陽光などの直流的な光入力により受
光素子2に発生した過大な直流電流を,ダイオード10
を用いてバイパスして,電位Aが,電源電圧に達しない
ようにしている。
2. Description of the Related Art In a conventional light receiving circuit such as an infrared remote controller (for example, JP-A-3-113924), as shown in FIG.
Excessive DC current generated in the light receiving element 2 due to DC light input such as sunlight in the background of the signal is converted into a diode 10
To prevent the potential A from reaching the power supply voltage.

【0003】[0003]

【発明が解決しようとする課題】従来の受光回路では,
信号以外の太陽光が入射し,電位Aがダイオード10が
オンするレベルより大きくなり,ダイオード10に電流
が流れるようになると,信号成分に対する負荷抵抗は,
抵抗4と抵抗11とを並列にしたものになり抵抗値が低
下する。したがってダイオード10がオンすると,信号
に対するゲインが著しく低下するという課題もしくは問
題点があった。
SUMMARY OF THE INVENTION In a conventional light receiving circuit,
When sunlight other than a signal enters and the potential A becomes higher than the level at which the diode 10 turns on, and a current flows through the diode 10, the load resistance for the signal component becomes
The resistor 4 and the resistor 11 are connected in parallel, and the resistance value decreases. Therefore, when the diode 10 is turned on, there has been a problem or problem that the gain for the signal is significantly reduced.

【0004】また,送信時には,別に設けた回路もしく
はトランジスタを用いて発光素子を駆動する必要もあっ
た。
Further, at the time of transmission, it is necessary to drive the light emitting element using a separately provided circuit or transistor.

【0005】[0005]

【課題を解決する為の手段】上記問題点を解決するため
に,本発明では,受光素子の負荷抵抗に並列に入射光の
直流のみをバイパスさせる為のMOSトランジスタを設
け,更に受光素子と発光素子を並列に接続し,送信時に
は該MOSトランジスタで発光素子を駆動するようにし
た。
In order to solve the above problems, in the present invention, a MOS transistor for bypassing only direct current of incident light is provided in parallel with a load resistor of the light receiving element, and a MOS transistor is further provided between the light receiving element and the light emitting element. The elements were connected in parallel, and the light emitting element was driven by the MOS transistor during transmission.

【0006】受信時には,負荷抵抗に並列に接続したM
OSトランジスタのゲート電極には,負荷抵抗の両端の
電圧から,ローパスフィルタで交流分を減衰させた直流
電圧を加える。ゲート電極には,ほとんど直流がかか
り,交流分は少ない。従ってMOSトランジスタを流れ
る電流は,ほとんど直流だけとなる為,直流分のみをバ
イパスさせることが出来る。
At the time of reception, M connected in parallel with a load resistor
A DC voltage whose AC component is attenuated by a low-pass filter from the voltage across the load resistor is applied to the gate electrode of the OS transistor. DC is almost applied to the gate electrode, and AC component is small. Therefore, the current flowing through the MOS transistor is almost DC only, so that only the DC component can be bypassed.

【0007】[0007]

【発明の実施の形態】本発明は,受光素子の負荷抵抗に
並列に,入射光の直流成分のみをバイパスさせる為のM
OSトランジスタを設けている。更に受光素子に発光素
子を並列に接続し,送信時にはMOSトランジスタで発
光素子を駆動するようにしている。MOSトランジスタ
のゲート電圧には,入射光を受光素子で光電変換した電
流の内から,信号として利用する交流成分をローパスフ
ィルタで除いた後の不要な直流成分のみ印可するように
する。MOSトランジスタには,直流電流しか流れなく
なるので入射光の直流成分をバイパスできる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention relates to an M / M for bypassing only a DC component of incident light in parallel with a load resistance of a light receiving element.
An OS transistor is provided. Further, a light emitting element is connected in parallel to the light receiving element, and the light emitting element is driven by a MOS transistor during transmission. The gate voltage of the MOS transistor is applied with only an unnecessary DC component after removing an AC component used as a signal by a low-pass filter from a current obtained by photoelectrically converting incident light with a light receiving element. Since only a DC current flows through the MOS transistor, the DC component of the incident light can be bypassed.

【0008】[0008]

【実施例】以下図面を参照して本発明の好適な実施例を
詳細に説明する。図1に,本発明の一実施例の具体的な
回路構成をしめす。図1の中で,ローパスフィルタ8は
種々の実現方法があるが,そのうちでもっとも構成が容
易な一例を図4に例示した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows a specific circuit configuration of an embodiment of the present invention. In FIG. 1, there are various methods of realizing the low-pass filter 8, and FIG. 4 shows an example of the simplest configuration among them.

【0009】先ず回路構成を図1を用いて説明する。電
源1に直列に受光素子2が接続されている。受光素子2
には発光素子3が並列に接続されている。更に受光素子
2には,負荷抵抗4の一端が接続されている。受光素子
1と負荷抵抗2の接続点Aと受信出力端子5とMOSト
ランジスタ5のドレイン電極は,ローパスフィルタ8の
入力に共通に接続されている。MOSトランジスタ5の
ソース電極は,負荷抵抗4の他端と共通にグランドに接
続され,MOSトランジスタ5のゲート電極は,スイッ
チ7の出力に接続している。スイッチ7はローパスフィ
ルタ8の出力と送信入力6とを選択して出力する。図1
では,スイッチ7は,送信入力6を選択しており回路は
送信状態にある。スイッチ7が,ローパスフィルタ8の
出力を選択した場合には,回路は受信状態になる。
First, the circuit configuration will be described with reference to FIG. The light receiving element 2 is connected to the power supply 1 in series. Light receiving element 2
Are connected to the light emitting elements 3 in parallel. Further, one end of a load resistor 4 is connected to the light receiving element 2. The connection point A between the light receiving element 1 and the load resistor 2, the reception output terminal 5, and the drain electrode of the MOS transistor 5 are commonly connected to the input of the low-pass filter 8. The source electrode of the MOS transistor 5 is connected to the ground in common with the other end of the load resistor 4, and the gate electrode of the MOS transistor 5 is connected to the output of the switch 7. The switch 7 selects and outputs the output of the low-pass filter 8 and the transmission input 6. FIG.
Then, the switch 7 selects the transmission input 6 and the circuit is in the transmission state. When the switch 7 selects the output of the low-pass filter 8, the circuit enters a receiving state.

【0010】まず送信状態の回路動作について説明す
る。スイッチ7は,送信入力6を選択している。送信入
力6から入力された送信データは,MOSトランジスタ
9のゲートを駆動する。MOSトランジスタ9は,ゲー
ト電極に電圧が印可されるとドレイン電極とソース電極
の間が導通し電流が流れる状態になる。ドレイン電極と
ソース電極の間が導通すると,電流は電源1から発光素
子3を通して流れ発光素子3から光が送出される。
First, the circuit operation in the transmission state will be described. The switch 7 selects the transmission input 6. The transmission data input from the transmission input 6 drives the gate of the MOS transistor 9. When a voltage is applied to the gate electrode, the MOS transistor 9 conducts between the drain electrode and the source electrode and enters a state in which current flows. When a current flows between the drain electrode and the source electrode, a current flows from the power supply 1 through the light emitting element 3, and light is emitted from the light emitting element 3.

【0011】次に受信状態の回路動作について説明す
る。スイッチ7は,ローパスフィルタ8の出力を選択し
ている。太陽光等の背景光の入射がなく,信号光のみを
受光している場合は,信号光の入射光を受光素子2によ
り光電変換した電流をi1とし,負荷抵抗4の抵抗値を
RLとすると,負荷抵抗4の両端つまり受信出力5には
i1×RLの電圧が発生する。
Next, the operation of the circuit in the receiving state will be described. The switch 7 selects the output of the low-pass filter 8. When only the signal light is received without the incidence of background light such as sunlight, the current obtained by photoelectrically converting the incident light of the signal light by the light receiving element 2 is represented by i1, and the resistance value of the load resistor 4 is represented by RL. , A voltage of i1 × RL is generated at both ends of the load resistor 4, that is, at the reception output 5.

【0012】太陽光等の背景光の入射がある場合は,背
景光の入射強度の増加に伴い,背景光を受光素子2で光
電変換した直流電流が増加し電位Aの電圧が増加する。
電位Aの電圧の増加は,ローパスフィルタ8,スイッチ
7を通してMOSトランジスタ9のゲート電圧も増加さ
せる。更に背景光の強度が増すと直流電流も更に増加
し,MOSトランジスタ9のゲート電圧も更に増加し,
閾値電圧(以下Vth)を超えると,MOSトランジス
タ9はオンする。MOSトランジスタ9がオンすると,
背景光による直流電流は,負荷抵抗4だけでなくMOS
トランジスタ9のドレイン電極とソース電極の間に流れ
るようになる。その結果今までより以上に背景光による
直流電流が増加しても,増加した電流分はMOSトラン
ジスタ9を流れ,電位Aは,MOSトランジスタ9のV
thよりあまり増加しなくなる。
When background light such as sunlight is incident, the DC current obtained by photoelectrically converting the background light by the light receiving element 2 increases and the voltage of the potential A increases with the increase in the incident intensity of the background light.
The increase in the potential A also increases the gate voltage of the MOS transistor 9 through the low-pass filter 8 and the switch 7. Further, as the intensity of the background light increases, the DC current further increases, and the gate voltage of the MOS transistor 9 further increases.
When the voltage exceeds a threshold voltage (hereinafter, Vth), the MOS transistor 9 is turned on. When the MOS transistor 9 turns on,
The DC current caused by the background light is not only the load resistance 4 but also the MOS
The current flows between the drain electrode and the source electrode of the transistor 9. As a result, even if the DC current due to the background light increases more than ever, the increased current flows through the MOS transistor 9 and the potential A becomes the V of the MOS transistor 9.
It does not increase much more than th.

【0013】MOSトランジスタ9が背景光によりオン
している状態で,信号光が背景光に重畳して入力した場
合を考える。信号光は交流なのでローパスフィルタ8の
出力は変化しない。したがって信号光を光電変換した電
流は,MOSトランジスタ9を流れず負荷抵抗4のみを
流れる。信号光の入射光を受光素子により光電変換した
電流をi1とすると,負荷抵抗4の両端,つまり受信出
力5にはi1×RLの電圧が発生する。更に詳しく説明
すると,受信出力5の電圧振幅はローパスフィルタ8の
入力振幅に等しく,ローパスフィルタ8の特性は信号光
の周波数をほとんど通過させないように設定してあるの
で,ローパスフィルタ8の入力に,入力振幅があって
も,ローパスフィルタ8の出力は一定電圧のままほとん
ど振れない。ローパスフィルタ8の出力からスイッチ7
を通して接続しているMOSトランジスタ9のゲート電
極も一定電圧のままほとんど振れず,MOSトランジス
タ9には,ほとんど直流電流のみが流れる。信号光によ
る交流電流i1は,ほとんど負荷抵抗4を流れる為,背
景光により光電流が増してもゲインはあまり低下しな
い。
Consider a case where the signal light is input while being superimposed on the background light while the MOS transistor 9 is turned on by the background light. Since the signal light is alternating current, the output of the low-pass filter 8 does not change. Therefore, the current obtained by photoelectrically converting the signal light flows only through the load resistor 4 without flowing through the MOS transistor 9. Assuming that a current obtained by photoelectrically converting the incident light of the signal light by the light receiving element is i1, a voltage of i1 × RL is generated at both ends of the load resistor 4, that is, at the reception output 5. More specifically, the voltage amplitude of the reception output 5 is equal to the input amplitude of the low-pass filter 8, and the characteristics of the low-pass filter 8 are set so that the frequency of the signal light hardly passes. Even if there is an input amplitude, the output of the low-pass filter 8 hardly swings at a constant voltage. Switch 7 from output of low pass filter 8
The gate electrode of the MOS transistor 9 connected through the MOS transistor 9 also hardly swings at a constant voltage, and almost only a direct current flows through the MOS transistor 9. Since the AC current i1 due to the signal light almost flows through the load resistor 4, the gain does not decrease so much even if the photocurrent increases due to the background light.

【0014】図3には,背景光による光電流を横軸と
し,縦軸には電位Aの電圧およびi1×RLの値をゲイ
ンとして示す。背景光による光電流が少ないときには,
背景光による光電流も,受信信号による光電流も負荷抵
抗4を流れるので,電位Aは光電流に比例して増加す
る。背景光による光電流が増加して電位AがMOSトラ
ンジスタ9のVthを超すと,背景光による光電流は,
MOSトランジスタ9流れるので電位Aは増加しなくな
るが,受信信号による光電流は負荷抵抗4を流れるため
ゲインはあまり低下していない。
In FIG. 3, the horizontal axis represents the photocurrent due to the background light, and the vertical axis represents the voltage of the potential A and the value of i1 × RL as the gain. When the photocurrent due to the background light is small,
Since both the photocurrent due to the background light and the photocurrent due to the received signal flow through the load resistor 4, the potential A increases in proportion to the photocurrent. When the photocurrent due to the background light increases and the potential A exceeds the Vth of the MOS transistor 9, the photocurrent due to the background light becomes
Although the potential A does not increase because the MOS transistor 9 flows, the gain does not decrease so much because the photocurrent due to the received signal flows through the load resistor 4.

【0015】ローパスフィルタ8に要求される特性は,
まず太陽光のような直流もしくは周波数成分の低いもの
は通過させる必要がある。次に,信号光のような交流成
分は十分減衰させる必要がある。又,ローパスフィルタ
8の出力はMOSトランジスタ9と負荷抵抗4とで増幅
されて,ローパスフィルタ8の入力に帰還される形式に
なっている。即ち,ローパスフィルタ8以外で位相が1
80度回る負帰還ループを構成している。該負帰還ルー
プを安定にする為には,当然ローパスフィルタ8での位
相回りを180度以下にする必要があり,その為には,
ローパスフィルタ8の次数は,90度しか位相が回らな
い一次のフィルタか,又は一次に近似出来るようなフィ
ルタが最適である。一次のフィルタは,最も単純には図
4に示したように,抵抗と容量各々1個づつで構成でき
る。
The characteristics required of the low-pass filter 8 are as follows:
First, it is necessary to pass a direct current or a low frequency component such as sunlight. Next, it is necessary to sufficiently attenuate AC components such as signal light. The output of the low-pass filter 8 is amplified by the MOS transistor 9 and the load resistor 4 and fed back to the input of the low-pass filter 8. That is, the phase is 1 except for the low-pass filter 8.
A negative feedback loop that rotates by 80 degrees is configured. In order to stabilize the negative feedback loop, it is necessary to make the phase rotation in the low-pass filter 8 180 degrees or less.
As the order of the low-pass filter 8, a first-order filter whose phase is turned only by 90 degrees or a filter that can be approximated to the first order is optimal. The simplest filter can be composed of one resistor and one capacitor as shown in FIG.

【0016】以下図1の回路の特性を定量的に述べる。
ここでローパスフィルタ8は,図4に一例として示した
抵抗12と容量13とで構成された最も簡単なものを使
って説明する。受光素子が光を感じて発生する電流を,
i1の電流源で,MOSトランジスタを,ゲート電極の
入力振幅v1に対し,コンダクタンスgmの値を持つ電
圧制御電流源で表現し,抵抗12,容量13の値を各々
Rf,Cfとすると,図1の回路の交流等価回路は,図
7に示したようになる。入出力の伝達関数(Vout/
(i1・RL))は, Vout/i1・RL=(1+S・Cf・Rf)/(gm・RL+1+S・Cf・Rf) (数1) になる。数式1の絶対値(ゲイン)を,横軸を角周波数
として図示すると,図8のようになる。従って(gm・
RL+1)/(Cf・Rf)の値が,利用する信号周波
数より十分低くなるように,Rf,Cfの値を設定すれ
ばよい。そうすれば,太陽光の様に周波数成分が低いも
のは,ゲイン(Vout/(i1・RL))を低く,信
号周波数ではゲインを高くすることができる。
Hereinafter, the characteristics of the circuit shown in FIG. 1 will be described quantitatively.
Here, the low-pass filter 8 will be described using the simplest filter composed of the resistor 12 and the capacitor 13 shown as an example in FIG. The current generated when the light receiving element senses light
In the current source i1, the MOS transistor is represented by a voltage-controlled current source having a value of conductance gm with respect to the input amplitude v1 of the gate electrode, and the values of the resistor 12 and the capacitor 13 are Rf and Cf, respectively. The AC equivalent circuit of the above circuit is as shown in FIG. Input / output transfer function (Vout /
(I1 · RL)) is as follows: Vout / i1 · RL = (1 + S · Cf · Rf) / (gm · RL + 1 + S · Cf · Rf) (Equation 1) FIG. 8 shows the absolute value (gain) of Equation 1 as an angular frequency on the horizontal axis. Therefore (gm
The values of Rf and Cf may be set so that the value of (RL + 1) / (Cf · Rf) is sufficiently lower than the signal frequency to be used. Then, a low frequency component such as sunlight can lower the gain (Vout / (i1.RL)), and can increase the gain at the signal frequency.

【0017】図5には,本発明の他の実施例を示す。受
光素子2に直列にスイッチ14が接続されている他は,
図1の実施例と同一である。スイッチ14は,送信状態
すなわち発光素子3から光を放射する場合に開き,受信
状態すなわち受光素子2で信号を受信する場合には閉じ
る。受光素子2と発光素子3の光学的な距離が十分で無
い場合などに,発光素子3からの放出光を受光素子2で
受信し,無駄な電流が流れるのを防止する。スイッチ1
4の動作以外は,図4の回路は,図1の回路とまったく
同一の動作を行う。
FIG. 5 shows another embodiment of the present invention. Except that the switch 14 is connected in series to the light receiving element 2,
This is the same as the embodiment of FIG. The switch 14 is opened in a transmission state, that is, when light is emitted from the light emitting element 3, and is closed in a reception state, that is, when the light receiving element 2 receives a signal. When the optical distance between the light receiving element 2 and the light emitting element 3 is not sufficient, the light emitted from the light emitting element 3 is received by the light receiving element 2 to prevent unnecessary current from flowing. Switch 1
Except for the operation of FIG. 4, the circuit of FIG. 4 performs exactly the same operation as the circuit of FIG.

【0018】図6は,本発明による受発光回路15を,
赤外線送受信機16に適用した実施例を示す。赤外線送
受信機16では,送信データ入力端子19から入力され
た1又は0の送信データを,符号化回路17で符号化す
る。符号化回路では,用途に応じ1又は0の送信データ
に対して,発光する時間や発光する回数などを決定す
る。符号化回路17の出力は,本発明の受発光回路15
の送信入力端子6に加えられて送信を行う。
FIG. 6 shows a light emitting / receiving circuit 15 according to the present invention.
An embodiment applied to an infrared transceiver 16 is shown. In the infrared transceiver 16, 1 or 0 transmission data input from the transmission data input terminal 19 is encoded by the encoding circuit 17. The encoding circuit determines the light emission time, the light emission frequency, and the like for the transmission data of 1 or 0 according to the application. The output of the encoding circuit 17 is the light emitting / receiving circuit 15 of the present invention.
To the transmission input terminal 6 for transmission.

【0019】受発光回路15で受信した信号は,受信出
力端子5から,符号化回路17と逆の機能を有する複号
化回路18で復号して受信データ出力端子20から出力
する。赤外線送受信機16では本発明の受光回路15を
用いているので,前述したように太陽光下のような直流
的な背景光のある環境下でも感度低下が少ない。また,
新たに発光素子を駆動するためのトランジスタを追加す
ることなく送信が可能である。
The signal received by the light receiving / emitting circuit 15 is decoded from the reception output terminal 5 by a decoding circuit 18 having a function opposite to that of the encoding circuit 17 and output from a reception data output terminal 20. Since the infrared transceiver 16 uses the light receiving circuit 15 of the present invention, the sensitivity is less reduced even in an environment with DC background light such as under sunlight as described above. Also,
Transmission can be performed without adding a new transistor for driving a light emitting element.

【0020】[0020]

【発明の効果】本発明によれば,入射光の中から直流成
分のみをバイパスするMOSトランジスタを設けたこと
により,直流はMOSトランジスタを流れ,交流は本来
の負荷抵抗を流れる様にしている。したがって太陽光下
のような直流的な背景光のある環境下でも感度低下の少
ない受光回路を提供できる。
According to the present invention, by providing a MOS transistor that bypasses only a DC component from incident light, DC flows through the MOS transistor and AC flows through the original load resistance. Therefore, it is possible to provide a light receiving circuit with less decrease in sensitivity even in an environment having a DC background light such as under sunlight.

【0021】また,信号を光電変換して得られる電流値
よりも,太陽光を光電変換した直流電流値は,はるかに
大きい。したがって,太陽光を光電変換した直流電流を
バイパスするMOSトランジスタ9には,サイズが大き
いものを用いる必要がある。また,発光素子を駆動する
ためには,大きな駆動電流を必要とするので大きなサイ
ズのMOSトランジスタで駆動する必要がある。本発明
によればサイズの大きな MOSトランジスタを受信と
送信で共用できるので,実装面積を低減できる。
The DC current value obtained by photoelectrically converting sunlight is much larger than the current value obtained by photoelectrically converting a signal. Therefore, it is necessary to use a large-sized MOS transistor 9 for bypassing the DC current obtained by photoelectrically converting sunlight. Further, in order to drive the light emitting element, a large driving current is required, so that it is necessary to drive the light emitting element with a large size MOS transistor. According to the present invention, since a large-sized MOS transistor can be shared for reception and transmission, the mounting area can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す回路図である。FIG. 1 is a circuit diagram showing one embodiment of the present invention.

【図2】従来の受発光回路の一例を示す回路図である。FIG. 2 is a circuit diagram illustrating an example of a conventional light emitting / receiving circuit.

【図3】本発明の受発光回路の特性を示すグラフであ
る。
FIG. 3 is a graph showing characteristics of the light emitting and receiving circuit of the present invention.

【図4】本発明の一実施例に使用するローパスフィルタ
の一例をしめす回路図である。
FIG. 4 is a circuit diagram showing an example of a low-pass filter used in one embodiment of the present invention.

【図5】本発明の他の実施例を示す回路図である。FIG. 5 is a circuit diagram showing another embodiment of the present invention.

【図6】本発明による受発光回路を適用した赤外線送受
信機のブロック図である。
FIG. 6 is a block diagram of an infrared transceiver to which the light emitting and receiving circuit according to the present invention is applied.

【図7】本発明による受光回路の交流等価回路である。FIG. 7 is an AC equivalent circuit of a light receiving circuit according to the present invention.

【図8】本発明による受光回路の周波数特性を示すグラ
フである。
FIG. 8 is a graph showing frequency characteristics of the light receiving circuit according to the present invention.

【符号の説明】[Explanation of symbols]

1 電源 2 受光素子 3 発光素子 4、11,12 抵抗 5 受信出力端子 6 送信入力端子 7、14 スイッチ 8 ローパスフィルタ 9 NチャンネルMOSトランジスタ 10 ダイオード 13 容量 15 受発光回路 16 赤外線送受信機 17 符号化回路 18 復号化回路 19 送信データ入力端子 20 受信データ出力端子 REFERENCE SIGNS LIST 1 power supply 2 light receiving element 3 light emitting element 4, 11, 12 resistance 5 reception output terminal 6 transmission input terminal 7, 14 switch 8 low-pass filter 9 N-channel MOS transistor 10 diode 13 capacitance 15 light receiving / emitting circuit 16 infrared transceiver 17 encoding circuit 18 Decoding circuit 19 Transmit data input terminal 20 Receive data output terminal

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H04B 10/04 10/06 ──────────────────────────────────────────────────の Continued on front page (51) Int.Cl. 6 Identification code FI H04B 10/04 10/06

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 入射光の強弱を電流の強弱に変換する受
光素子と,前記受光素子に並列に接続した電流の強弱を
光の強弱に変換する発光素子と,前記受光素子に直列に
接続した抵抗と,前記抵抗の両端の電圧を入力とするロ
ーパスフィルタと,前記ローパスフィルタの出力と外部
からの送信信号とを選択して出力とするスイッチと,前
記抵抗の一端がドレイン電極,前記抵抗の他端がソース
電極,前記スイッチの出力がゲート電極に各々接続され
たMOSトランジスタとから成る受発光回路
1. A light receiving element for converting the intensity of incident light into a current level, a light emitting element connected in parallel to the light receiving element for converting the current level into light level, and a light emitting element connected in series to the light receiving element. A resistor, a low-pass filter that receives the voltage across the resistor as input, a switch that selects and outputs an output of the low-pass filter and an external transmission signal, one end of the resistor is a drain electrode, and A light emitting / receiving circuit comprising a source electrode at the other end, and MOS transistors each having an output of the switch connected to a gate electrode.
【請求項2】 前記受光素子に直列にスイッチを接続し
たことを特徴とする請求項1記載の受発光回路
2. The light emitting and receiving circuit according to claim 1, wherein a switch is connected to the light receiving element in series.
JP9094125A 1997-04-11 1997-04-11 Light receiving / emitting circuit Expired - Fee Related JP2984917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9094125A JP2984917B2 (en) 1997-04-11 1997-04-11 Light receiving / emitting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9094125A JP2984917B2 (en) 1997-04-11 1997-04-11 Light receiving / emitting circuit

Publications (2)

Publication Number Publication Date
JPH10290024A true JPH10290024A (en) 1998-10-27
JP2984917B2 JP2984917B2 (en) 1999-11-29

Family

ID=14101708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9094125A Expired - Fee Related JP2984917B2 (en) 1997-04-11 1997-04-11 Light receiving / emitting circuit

Country Status (1)

Country Link
JP (1) JP2984917B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002084178A (en) * 2000-09-08 2002-03-22 Keyence Corp Photoelectric switch
JP2013005326A (en) * 2011-06-20 2013-01-07 Seiwa Electric Mfg Co Ltd Amplifier circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002084178A (en) * 2000-09-08 2002-03-22 Keyence Corp Photoelectric switch
JP2013005326A (en) * 2011-06-20 2013-01-07 Seiwa Electric Mfg Co Ltd Amplifier circuit

Also Published As

Publication number Publication date
JP2984917B2 (en) 1999-11-29

Similar Documents

Publication Publication Date Title
US6275541B1 (en) Digital receiver circuit
US8121495B2 (en) Current mirror circuit and optical receiver circuit using the same
JPH10200342A (en) Bias voltage supply circuit
US20070222511A1 (en) Auto gain controller
JP4692577B2 (en) Receiving machine
JP2984917B2 (en) Light receiving / emitting circuit
JP3534209B2 (en) Light receiving circuit
JP3717718B2 (en) Receiver
JP4133897B2 (en) Optical receiver
US5432389A (en) Gain stage circuit with automatic level control
US5990576A (en) Power supply voltage supplying circuit
JP2002171142A (en) Photoreceiver
JPH11284444A (en) Preamplifier circuit and preamplification method therefor
JPH01245725A (en) Optical reception circuit
JP3179838B2 (en) Noise detection circuit
JP2000353924A (en) Light receiving circuit
CN117233458B (en) Power detection circuit and power detection system
US8143564B2 (en) Photodetection circuit
JP2804678B2 (en) Photodetector
JPH07135488A (en) Light receiving circuit for av optical space transmission
JPH098740A (en) Light reception circuit system
JPH01205610A (en) Optical reception circuit
JPH10290134A (en) Limiter circuit
JPS6211172Y2 (en)
JPH0984142A (en) Remote control receiving circuit

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071001

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 11

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees