JPH0984142A - Remote control receiving circuit - Google Patents

Remote control receiving circuit

Info

Publication number
JPH0984142A
JPH0984142A JP7239790A JP23979095A JPH0984142A JP H0984142 A JPH0984142 A JP H0984142A JP 7239790 A JP7239790 A JP 7239790A JP 23979095 A JP23979095 A JP 23979095A JP H0984142 A JPH0984142 A JP H0984142A
Authority
JP
Japan
Prior art keywords
circuit
output
power supply
control line
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7239790A
Other languages
Japanese (ja)
Inventor
Yuji Yamamoto
有二 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP7239790A priority Critical patent/JPH0984142A/en
Publication of JPH0984142A publication Critical patent/JPH0984142A/en
Pending legal-status Critical Current

Links

Landscapes

  • Details Of Television Systems (AREA)
  • Selective Calling Equipment (AREA)
  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce a chip area and to save power consumption in comparison with a case providing a constant current circuit at every circuit block by preventing a signal from going around from a filter, a detection circuit and a comparing circuit with large signal amplitude level to a first stage amplifier and a limitter having large gain and reducing a malfunction. SOLUTION: Infrared-ray light 32 is converted into an electric signal by a photoelectric transducer 34, it is amplified by the first stage amplifier 3, amplitude limit is executed by the limitter 4, only a signal component is picked-up by the filter 5, A.C. amplitude is converted into a D.C. level by the detection circuit 6 and the D.C. level is compared with a threshold value by the comparing circuit 7 so as to be outputted in a remote control receiving circuit 10. The circuit 10 controls the power source current of the first stage amplifier 3 and the limitter 4 by a power source current control line 21 outputted from the first constant current circuit 8 and controls the power source current of the filter 5, the detection circuit 6 and the comparing circuit 7 by the power source current control line 22 outputted from the independently provided second constant current circuit 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はテレビ,ビデオ等々
の赤外線リモートコントロール装置に関する。さらに詳
しくは,該リモートコントロール装置のうち,赤外線を
受光したときに検出出力を出すリモコン受信回路の集積
回路化に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared remote control device for televisions, videos and the like. More specifically, the present invention relates to an integrated circuit of a remote control receiving circuit that outputs a detection output when infrared rays are received in the remote control device.

【0002】[0002]

【従来の技術】従来集積回路内で,各回路ブロックの動
作に必要な電流や電圧を供給する為には,例えば日本放
送協会編,「NHKカラーテレビ教科書(上)」,日本
放送出版協会,1977,p63〜68,等々に見られ
るように種々の定電流源,定電圧源が所謂バイアス手段
として用いられる。
2. Description of the Related Art Conventionally, in order to supply current and voltage required for the operation of each circuit block in an integrated circuit, for example, "NHK Color Television Textbook (above)" edited by Japan Broadcasting Corporation, Japan Broadcast Publishing Association, 1977, p63-68, etc., various constant current sources and constant voltage sources are used as so-called bias means.

【0003】該バイアス手段を集積回路内に配置する場
合に,最も多く用いる場合は,該バイアス手段を各回路
ブロック毎に一つずつ設ければよく,又最も少なく用い
る場合は,集積回路内に一つだけバイアス手段を設けれ
ばよい。各回路ブロック毎に該バイアス手段を設けれ
ば,チップ面積と消費電力は増大する。単独のバイアス
手段を用いた場合にはチップ面積と消費電力は小さい
が,該バイアス手段を通じて回路ブロック間の干渉が生
じやすい。
When the bias means are arranged in the integrated circuit most when they are used, one bias means may be provided for each circuit block, and when the least are used, they are arranged in the integrated circuit. Only one bias means needs to be provided. Providing the bias means for each circuit block increases the chip area and power consumption. When a single bias means is used, the chip area and power consumption are small, but interference between circuit blocks easily occurs through the bias means.

【0004】[0004]

【発明が解決しようとする課題】集積回路内での該バイ
アス手段は,必要最小限の個数を用いるのが消費電力と
面積にとって最も良いが,各ブロック間の干渉が防げる
必要最小限の個数は,集積回路の用途および,用途から
要求される性能等により夫々の集積回路において夫々決
定しなければならないという課題がある。
It is best for the power consumption and the area to use the minimum required number of the bias means in the integrated circuit, but the minimum required number that can prevent the interference between the blocks is. However, there is a problem in that each integrated circuit must be determined depending on the application of the integrated circuit and the performance required from the application.

【0005】かかる,従来の技術の課題あるいは問題点
に鑑み,本発明は,MOS集積回路化に適し,各々の回
路ブロック間の干渉による信号の回りこみを少なくし,
該バイアス手段の個数を必要最小限としたリモコン受信
回路を提供することを目的とする。
In view of the problems or problems of the prior art, the present invention is suitable for MOS integrated circuit, and reduces signal sneak due to interference between circuit blocks,
It is an object of the present invention to provide a remote control receiving circuit in which the number of bias means is minimized.

【0006】[0006]

【課題を解決する為の手段】上述した従来の技術の課題
を解決し,本発明の目的を達成する為に,図1に示す手
段を講じた。即ち本発明にかかるリモコン受信回路10
は,第1の定電流回路8と,該定電流回路8から出力さ
れて初段増幅器3とリミッタ4の電源電流制御を行う電
源電流制御線21を備えている。更に第2の定電流回路
9と,該定電流回路9から出力されてフィルタ5と検波
回路6と比較回路7の電源電流制限をおこなう電源電流
制御線22を備えている。 リモコン受信回路10にお
いて,入力端子1の信号電圧は,標準的なリモコン送信
機から実用限界まで距離を離して送信し,標準的な光電
変換素子34を用いて赤外光32を光電変換すると,最
小数10μVppになる。一方比較回路7の入力では,
数100mV程度の振幅があれば出力端子2にHig
h,又はLowレベルの検出出力を出すことが出来る。
従って入力端子1から初段増幅器3,リミッタ4,フィ
ルタ5,検波6までで増幅率は概ね一万倍必要とする。
In order to solve the above-mentioned problems of the prior art and achieve the object of the present invention, the means shown in FIG. 1 was taken. That is, the remote control receiving circuit 10 according to the present invention
Includes a first constant current circuit 8 and a power supply current control line 21 that is output from the constant current circuit 8 and controls the power supply current of the first stage amplifier 3 and the limiter 4. Further, it is provided with a second constant current circuit 9 and a power supply current control line 22 which is outputted from the constant current circuit 9 and limits the power supply current of the filter 5, the detection circuit 6 and the comparison circuit 7. In the remote control receiving circuit 10, the signal voltage of the input terminal 1 is transmitted at a distance from a standard remote control transmitter up to a practical limit, and when the infrared light 32 is photoelectrically converted by using the standard photoelectric conversion element 34, The minimum number is 10 μVpp. On the other hand, at the input of the comparison circuit 7,
If there is an amplitude of about several hundred mV, output terminal 2 will be High.
It is possible to output a detection output of h or Low level.
Therefore, the amplification factor from the input terminal 1 to the first stage amplifier 3, the limiter 4, the filter 5, and the detection 6 needs to be approximately 10,000 times.

【0007】フィルタ5においても,フィルタ5の内部
で発生する雑音より大きな一定の入力電圧を必要とする
為,前記増幅率の大部分は,初段増幅器3とリミッタ4
で実現する必要がある。従って,初段増幅器3とリミッ
タ4は高い増幅率を持っている。又入力端子1の信号成
分対して高い増幅率を持つだけでなく,後段のフィルタ
5,検波回路6,比較回路7からの干渉成分に対しても
高い増幅率を持って増幅してしまう為,回路動作が不安
定になりやすい。
Since the filter 5 also requires a constant input voltage larger than the noise generated inside the filter 5, most of the amplification factor is in the first stage amplifier 3 and the limiter 4.
Must be realized in. Therefore, the first stage amplifier 3 and the limiter 4 have a high amplification factor. In addition to having a high amplification factor for the signal component of the input terminal 1, it also amplifies the interference component from the filter 5, detection circuit 6, and comparison circuit 7 in the subsequent stage with a high amplification factor. Circuit operation tends to be unstable.

【0008】図1に示したリモコン受信回路10におい
ては,高い増幅率を持つ初段増幅器3とリミッタ4の電
源電流制御を,第1の定電流回路8から出力された電源
電流制御線21で行い,比較的低い増幅率をもつフィル
タ5,検波回路6,比較回路7の電源電流制御を,第2
の定電流回路9から出力された電源電流制御線22で行
っている。即ち,高い増幅率を持つ回路ブロックの電源
電流制御線21と,低い増幅率をもつ回路ブロックの電
源電流制御線22とを分離して設けている。
In the remote controller receiving circuit 10 shown in FIG. 1, the power supply current control of the first stage amplifier 3 and the limiter 4 having a high amplification factor is performed by the power supply current control line 21 output from the first constant current circuit 8. , The power supply current control of the filter 5, the detection circuit 6, and the comparison circuit 7, which have a relatively low amplification factor,
The power supply current control line 22 output from the constant current circuit 9 of FIG. That is, the power supply current control line 21 of the circuit block having a high amplification factor and the power supply current control line 22 of the circuit block having a low amplification factor are separately provided.

【0009】本発明によれば,高い増幅率を持つ初段増
幅器3とリミッタ4に対し一つの定電流回路8を設け,
電源電流制御線21で電源電流を制御し,低い増幅率を
もつフィルタ5,検波回路6,比較回路7に対し一つの
定電流回路9を設け,電源電流制御線22で別に電源電
流を制御している。従って,フィルタ5,検波回路6,
比較回路7から電源電流制御線を通して,高い増幅率を
持つ初段増幅器3とリミッタ4に信号が洩れこむことは
なくなる。 又,初段増幅器3,リミッタ4,フィルタ
5,検波回路6,比較回路7の各々の回路に夫々定電流
回路を設けた場合よりも消費電力,チップ面積は小さく
なる。
According to the present invention, one constant current circuit 8 is provided for the first stage amplifier 3 having a high amplification factor and the limiter 4,
The power supply current control line 21 controls the power supply current, and one constant current circuit 9 is provided for the filter 5, the detection circuit 6, and the comparison circuit 7 having a low amplification factor, and the power supply current control line 22 controls the power supply current separately. ing. Therefore, the filter 5, the detection circuit 6,
No signal leaks from the comparison circuit 7 to the first stage amplifier 3 and the limiter 4 having a high amplification factor through the power supply current control line. Further, the power consumption and the chip area are smaller than in the case where the constant current circuit is provided in each of the first stage amplifier 3, the limiter 4, the filter 5, the detection circuit 6, and the comparison circuit 7.

【0010】[0010]

【発明の実施の形態】以下図面を参照して,本発明の好
適な実施例を詳細に説明する。図2は,本発明にかかる
リモコン受信回路のより具体的な一実施例を示す回路図
である。図2において,図1と対応する箇所には,同じ
参照番号を付けて理解を容易にしている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 2 is a circuit diagram showing a more specific embodiment of the remote control receiving circuit according to the present invention. 2, parts corresponding to those in FIG. 1 are designated by the same reference numerals to facilitate understanding.

【0011】リモコン受信回路10は,初段増幅器3,
リミッタ4,フィルタ5,検波回路6,比較回路7と,
前記初段増幅器3とリミッタ4の電源電流を制御する第
1の電源電流制御線21と,前記第1の電源電流制御線
21を出力する定電流回路8と,前記フィルタ5,検波
回路6,比較回路7の電源電流を制御する第2の電源電
流制御線22と,前記第2の電源電流制御線22を出力
する定電流回路9とで構成されている。各回路ブロック
3〜9については,電源電流の流れる経路のみ図示して
いる。
The remote control receiver circuit 10 includes a first stage amplifier 3,
Limiter 4, filter 5, detection circuit 6, comparison circuit 7,
A first power supply current control line 21 that controls the power supply currents of the first stage amplifier 3 and the limiter 4, a constant current circuit 8 that outputs the first power supply current control line 21, the filter 5, a detection circuit 6, and a comparison. It is composed of a second power supply current control line 22 for controlling the power supply current of the circuit 7 and a constant current circuit 9 for outputting the second power supply current control line 22. For each of the circuit blocks 3 to 9, only the path through which the power supply current flows is shown.

【0012】第1の定電流回路8の内部では,電源端子
VddにPchMOSトランジスタ(以下PMOST
r)のソース電極が接続され,該PMOSTrのゲート
電極は共通に,ドレイン電極と第1の電源電流制御線2
1と定電流源の一端に接続され,該定電流源の他端はグ
ランド電位に接続されている。
Inside the first constant current circuit 8, a PchMOS transistor (hereinafter referred to as PMOST) is connected to the power supply terminal Vdd.
The source electrode of r) is connected, and the gate electrode of the PMOSTr is commonly connected to the drain electrode and the first power supply current control line 2
1 and one end of the constant current source, and the other end of the constant current source is connected to the ground potential.

【0013】初段増幅器3の内部では,複数個のPMO
STrのソース電極が電源端子Vddに共通に接続さ
れ,ゲート電極は共通に電源電流制御線21に接続され
ている。該PMOSTrのドレイン電極は,初段増幅器
3の内部回路に接続されていて,電流供給量が,各々I
A1,IA2になっている。第1の定電流回路8の内部
PMOSTrと,初段増幅器3のPMOSTrはゲート
・ソース電極間電圧が等しく所謂カレントミラーを構成
しているので,前記電流供給量IA1,IA2は,トラ
ンジスタサイズ比に比例して設定できる。
Inside the first stage amplifier 3, a plurality of PMOs are provided.
Source electrodes of the STr are commonly connected to the power supply terminal Vdd, and gate electrodes thereof are commonly connected to the power supply current control line 21. The drain electrode of the PMOSTr is connected to the internal circuit of the first stage amplifier 3, and the current supply amount is I
It is A1 and IA2. Since the internal PMOSTr of the first constant current circuit 8 and the PMOSTr of the first-stage amplifier 3 have the same gate-source electrode voltage and constitute a so-called current mirror, the current supply amounts IA1 and IA2 are proportional to the transistor size ratio. Can be set.

【0014】リミッタ4の内部では,n個のPMOST
rのソース電極が電源端子Vddに共通に接続されてい
て,ゲート電極は共通に電源電流制御線21に接続され
ている。該PMOSTrのドレイン電極は,リミッタ4
の内部回路に接続されていて,電流の供給量が各々IL
1,IL2,・・・ILnになっている。第1の定電流
回路8の内部PMOSTrとリミッタ4のPMOSTr
は所謂カレントミラーを構成しているので電流比はトラ
ンジスタサイズ比と同じになる。
Inside the limiter 4, there are n PMOSTs.
The source electrode of r is commonly connected to the power supply terminal Vdd, and the gate electrode thereof is commonly connected to the power supply current control line 21. The drain electrode of the PMOSTr is a limiter 4
Connected to the internal circuit of the
1, IL2, ... ILn. The internal PMOSTr of the first constant current circuit 8 and the PMOSTr of the limiter 4
Since it constitutes a so-called current mirror, the current ratio is the same as the transistor size ratio.

【0015】第2の定電流回路9の内部では,電源端子
VddにPMOSTrのソース電極が接続され,該PM
OSTrのゲート電極は共通に,ドレイン電極と第2の
電源電流制御線22と定電流源の一端に接続され,該定
電流源の他端はグランド電位に接続されている。
Inside the second constant current circuit 9, the source electrode of the PMOSTr is connected to the power supply terminal Vdd and the PM
The gate electrode of the OSTr is commonly connected to the drain electrode, the second power supply current control line 22 and one end of the constant current source, and the other end of the constant current source is connected to the ground potential.

【0016】フィルタ5の内部では,n個のPMOST
rのソース電極が電源端子Vddに共通に接続されてい
て,ゲート電極は共通に電源電流制御線22に接続され
ている。該PMOSTrのドレイン電極は,フィルタ5
の内部回路に接続されていて,電流の供給量が各々IF
1,IF2,・・・IFnになっている。第2の定電流
回路9の内部PMOSTrとフィルタ5のPMOSTr
は所謂カレントミラーを構成しているので電流比はトラ
ンジスタサイズ比と同じになる。
Inside the filter 5, n PMOSTs are provided.
The source electrode of r is commonly connected to the power supply terminal Vdd, and the gate electrode thereof is commonly connected to the power supply current control line 22. The drain electrode of the PMOSTr is the filter 5
Connected to the internal circuit of the
1, IF2, ... IFn. The internal PMOSTr of the second constant current circuit 9 and the PMOSTr of the filter 5
Since it constitutes a so-called current mirror, the current ratio is the same as the transistor size ratio.

【0017】検波回路6の内部では,複数個のPMOS
Trのソース電極が電源端子Vddに共通に接続され,
ゲート電極は共通に電源電流制御線22に接続されてい
る。該PMOSTrのドレイン電極は,検波回路6の内
部回路に接続されていて,電流供給量が,各々IR1,
IR2になっている。第2の定電流回路9の内部PMO
STrと,検波回路6のPMOSTrは所謂カレントミ
ラーを構成しているので,前記電流供給量IR1,IR
2は,トランジスタサイズ比に比例して設定できる。
Inside the detection circuit 6, a plurality of PMOSs are provided.
The source electrode of Tr is commonly connected to the power supply terminal Vdd,
The gate electrodes are commonly connected to the power supply current control line 22. The drain electrode of the PMOSTr is connected to the internal circuit of the detection circuit 6, and the current supply amounts are IR1 and IR1, respectively.
It is IR2. Internal PMO of the second constant current circuit 9
Since the STr and the PMOSTr of the detection circuit 6 constitute a so-called current mirror, the current supply amounts IR1, IR
2 can be set in proportion to the transistor size ratio.

【0018】比較回路7の内部では,複数個のPMOS
Trのソース電極が電源端子Vddに共通に接続され,
ゲート電極は共通に電源電流制御線22に接続されてい
る。該PMOSTrのドレイン電極は,比較回路7の内
部回路に接続されていて,電流供給量が,各々IC1,
IC2になっている。第2の定電流回路9の内部PMO
STrと,比較回路7のPMOSTrは所謂カレントミ
ラーを構成しているので,前記電流供給量IC1,IC
2は,トランジスタサイズ比に比例して設定できる。
Inside the comparison circuit 7, a plurality of PMOSs are provided.
The source electrode of Tr is commonly connected to the power supply terminal Vdd,
The gate electrodes are commonly connected to the power supply current control line 22. The drain electrode of the PMOSTr is connected to the internal circuit of the comparison circuit 7, and the current supply amounts are IC1 and IC1, respectively.
It is IC2. Internal PMO of the second constant current circuit 9
Since the STr and the PMOSTr of the comparison circuit 7 form a so-called current mirror, the current supply amounts IC1, IC
2 can be set in proportion to the transistor size ratio.

【0019】リモコン受信回路10の入力端子1には,
前述したように最小数10μVppの振幅をもつ交流信
号が入力される。該入力信号は,初段増幅器3で増幅さ
れ初段増幅器3の出力11を通してリミッタ4に入力さ
れる。リミッタ4では振幅制限が行なわれ一定値に振幅
制限された信号がリミッタ4の出力12に出力される。
即ち入力信号の振幅が,リモコンの送信機とリモコン受
信回路10の距離により,数10μVから最大100m
Vと大きく変化してもリミッタ4の出力12は常に一定
振幅となる。
At the input terminal 1 of the remote control receiving circuit 10,
As described above, the AC signal having the minimum amplitude of 10 μVpp is input. The input signal is amplified by the first stage amplifier 3 and input to the limiter 4 through the output 11 of the first stage amplifier 3. The limiter 4 limits the amplitude and outputs a signal whose amplitude is limited to a constant value to the output 12 of the limiter 4.
That is, the amplitude of the input signal varies from several tens of μV to a maximum of 100 m depending on the distance between the remote controller transmitter and the remote controller receiving circuit 10.
The output 12 of the limiter 4 always has a constant amplitude even when the output voltage V changes greatly.

【0020】初段増幅器3とリミッタ4は,前述の最小
交流信号振幅数10μVを,フィルタ5の動作に十分な
信号振幅数10mV以上になるように,二段で合計して
約1000倍〜約5000倍の増幅率を持っている。フ
ィルタ5は,リミッタ4の出力12の中から送信された
信号の持つ周波数成分のものだけを取り出して,フィル
タ5の出力としている。更に検波回路6はフィルタ5の
出力13の交流振幅値を直流レベルに変換し検波回路6
の出力14としている。比較回路7は,検波回路6の出
力14を予め定められた閾値と比較して,High又は
Lowの出力を出力端子2に出力する。
The first-stage amplifier 3 and the limiter 4 have a total of about 1000 times to about 5000 times in two stages so that the minimum AC signal amplitude number of 10 μV described above becomes a signal amplitude number of 10 mV or more sufficient for the operation of the filter 5. Has a double amplification factor. The filter 5 extracts only the frequency component of the transmitted signal from the output 12 of the limiter 4 and uses it as the output of the filter 5. Further, the detection circuit 6 converts the AC amplitude value of the output 13 of the filter 5 into a DC level and detects it.
Output 14 of the above. The comparison circuit 7 compares the output 14 of the detection circuit 6 with a predetermined threshold value and outputs a High or Low output to the output terminal 2.

【0021】ここで,容量15〜20は,集積回路内の
配線間容量と,PMOSTrのゲート・ドレイン電極間
の容量を代表して表現している。信号の結合による干渉
は,該容量15〜20を通して行なわれる。初段増幅器
3とリミッタ4は,前述したようにゲイン(増幅率)が
高いので,電源電流制御線21が変動すると容量15,
16,20の内,特に入力側に近い容量15,20を介
して初段増幅器3の入力(入力端子1)やリミッタ4の
入力11に洩れこんだ信号以外の干渉成分も大きく増幅
してしまう為,発振等の不安定動作を生じやすい。即
ち,電源電流制御線21は干渉に対して感度が高いと言
える。従って,安定な動作を得る為には,電源電流制御
線21の変動をなるべく抑える必要がある。
Here, the capacitances 15 to 20 are represented as the capacitance between wirings in the integrated circuit and the capacitance between the gate and drain electrodes of the PMOSTr. Interference due to signal coupling takes place through the capacitors 15-20. Since the first stage amplifier 3 and the limiter 4 have high gains (amplification factors) as described above, when the power supply current control line 21 fluctuates, the capacitance 15,
Of the components 16 and 20, the interference components other than the signal leaked to the input (input terminal 1) of the first-stage amplifier 3 and the input 11 of the limiter 4 are greatly amplified through the capacitors 15 and 20 particularly close to the input side. , Instability such as oscillation is likely to occur. That is, it can be said that the power supply current control line 21 has high sensitivity to interference. Therefore, in order to obtain a stable operation, it is necessary to suppress the fluctuation of the power supply current control line 21 as much as possible.

【0022】本発明においては,電源電流制御線21と
電源電流制御線22は独立している。従って,フィルタ
5の出力13,検波回路6の出力14,比較回路7の出
力2が,容量17,18,19を通して,電源電流制御
線22を変動させることはあるが,電源電流制御線21
には影響を与えず,安定な動作が期待出来る。
In the present invention, the power supply current control line 21 and the power supply current control line 22 are independent. Therefore, although the output 13 of the filter 5, the output 14 of the detection circuit 6, and the output 2 of the comparison circuit 7 may change the power supply current control line 22 through the capacitors 17, 18, and 19, the power supply current control line 21 may be changed.
Stable operation can be expected without affecting the.

【0023】図3は,本発明にかかるリモコン受信回路
の更なる実施例を示す回路図である。図2では,定電流
回路9は独立しているが,図3の実施例では,定電流回
路9を,定電流回路8に従属するように構成している。
その他は,電源電流制御線21,22がそれぞれ独立し
ているのを含めて同一で,図2と図3の回路の対応する
部分には,同一の参照番号を付して理解を容易にしてい
る。
FIG. 3 is a circuit diagram showing a further embodiment of the remote control receiving circuit according to the present invention. In FIG. 2, the constant current circuit 9 is independent, but in the embodiment of FIG. 3, the constant current circuit 9 is configured to be subordinate to the constant current circuit 8.
The other parts are the same including the fact that the power supply current control lines 21 and 22 are independent of each other. Corresponding parts of the circuits of FIGS. 2 and 3 are given the same reference numerals to facilitate understanding. There is.

【0024】図3の定電流回路9は,定電流回路8から
出力された,電源電流制御線21を,PMOSTr28
のゲート電極に接続している。PMOSTr28はソー
ス電極を電源端子Vddに接続しており,定電流回路8
のPMOSTrと所謂カレントミラーを構成しているの
で,電流比はトランジスタサイズに比例している。
In the constant current circuit 9 of FIG. 3, the power supply current control line 21 output from the constant current circuit 8 is connected to the PMOSTr28.
Connected to the gate electrode of. The source electrode of the PMOSTr 28 is connected to the power supply terminal Vdd, and the constant current circuit 8
Since it forms a so-called current mirror with the PMOSTr, the current ratio is proportional to the transistor size.

【0025】PMOSTr28のドレイン電極は,NM
OSTr30のドレイン電極とゲート電極を共通に接続
されている。従ってPMOSTr28とNMOSTr3
0には同じ電流が流れる。更にNMOSTr30のゲー
ト電極とNMOSTr31のゲート電極は共通に接続さ
れ,NMOSTr30のソース電極とNMOSTr31
のソース電極は共通にグランド電位に接続しており,所
謂カレントミラーを構成しているので,NMOSTr3
0とNMOSTr31に流れる電流比はトランジスタサ
イズ比に比例している。。
The drain electrode of the PMOSTr28 is NM
The drain electrode and the gate electrode of the OSTr 30 are commonly connected. Therefore, PMOSTr28 and NMOSTr3
The same current flows through 0. Further, the gate electrode of the NMOSTr30 and the gate electrode of the NMOSTr31 are commonly connected, and the source electrode of the NMOSTr30 and the NMOSTr31 are connected.
The source electrodes of are commonly connected to the ground potential and constitute a so-called current mirror.
The ratio of 0 and the current flowing through the NMOS Tr31 is proportional to the transistor size ratio. .

【0026】更にNMOSTr31のドレインは,PM
OSTr29のドレイン電極とゲート電極とに共通に接
続している。PMOSTr29のソース電極は電源端子
Vddに共通に接続しているので,NMOSTr31と
PMOSTr29には,同一の電流が流れる。PMOS
Tr29のゲート電極は電源電流制御線22と接続して
いる。電源電流制御線22は,フィルタ5,検波回路
6,比較回路7の中のPMOSTrのゲート電極に共通
に接続されていて,該PMOSTrは,定電流回路9の
中のPMOSTr29とカレントミラーを構成しトラン
ジスタサイズ比により電流比を設定している。
Further, the drain of the NMOSTr31 is PM
The drain electrode and the gate electrode of the OSTr 29 are commonly connected. Since the source electrodes of the PMOSTr29 are commonly connected to the power supply terminal Vdd, the same current flows through the NMOSTr31 and the PMOSTr29. PMOS
The gate electrode of Tr29 is connected to the power supply current control line 22. The power supply current control line 22 is commonly connected to the gate electrode of the PMOSTr in the filter 5, the detection circuit 6, and the comparison circuit 7, and the PMOSTr constitutes a current mirror together with the PMOSTr 29 in the constant current circuit 9. The current ratio is set by the transistor size ratio.

【0027】図3において,電源電流制御線21の変動
は,PMOSTr28,NMOSTr30,31,PM
OSTr28の順で変動が伝達し,電源電流制御線22
の変動になる。しかし,電源電流制御線22の変動はP
MOSTr29のゲート電極を変動させ,PMOSTr
29のドレイン電流を増加させるだけで,NMOSTr
31の電流は変動せず,電源電流制御線21の変動とは
ならない。即ち,図3の回路においても,干渉に対して
感度が高い電源電流制御線21の変動が抑えられる。従
って,図2の回路と同様に安定な動作が期待できる。
In FIG. 3, the fluctuation of the power supply current control line 21 is caused by the PMOSTr 28, NMOSTr 30, 31 and PM.
The fluctuation is transmitted in the order of OSTr28, and the power supply current control line 22
Changes. However, the fluctuation of the power supply current control line 22 is P
By changing the gate electrode of the MOSTr29,
Only by increasing the drain current of 29, NMOSTr
The current of 31 does not change, and does not change of the power supply current control line 21. That is, also in the circuit of FIG. 3, the fluctuation of the power supply current control line 21 having high sensitivity to interference can be suppressed. Therefore, stable operation can be expected as in the circuit of FIG.

【0028】定電流回路8,9の実現方法は種々知られ
ているが,例えば図4の回路でも実現が可能である。P
MOSTr27を流れる電流Idは,NMOSTr25
の閾値電圧をVth,抵抗26の抵抗値をR26とする
と,良く知られているように,Id=Vth/R26と
なり電源電圧には無関係に定電流値を設定でき,電源電
圧が変動しても定電流値はあまり変動しない。図4の回
路は,同一サイズのPMOSTr24とPMOSTr2
7によって所謂カレントミラーを構成して,抵抗26と
NMOSTr25に流れる電流を等しくしている。NM
OSTr25のゲート・ソース電極間電圧が,所謂閾値
電圧Vthをわずかに超えた時,NMOSTr25はオ
ンして電流が流れ,回路が平衡状態になる。電源電流制
御線21,22は,PMOSTr27のゲート電極から
取り出す。
Various methods of realizing the constant current circuits 8 and 9 are known, but the constant current circuits 8 and 9 can also be realized by the circuit of FIG. 4, for example. P
The current Id flowing through the MOSTr27 is
Assuming that the threshold voltage of Vth is Vth and the resistance value of the resistor 26 is R26, it is well known that Id = Vth / R26 and a constant current value can be set regardless of the power supply voltage, and the power supply voltage fluctuates. The constant current value does not change much. The circuit of FIG. 4 has PMOSTr24 and PMOSTr2 of the same size.
A so-called current mirror is constituted by 7, and the currents flowing through the resistor 26 and the NMOSTr 25 are made equal. NM
When the gate-source electrode voltage of the OSTr25 slightly exceeds the so-called threshold voltage Vth, the NMOSTr25 is turned on and a current flows, and the circuit enters a balanced state. The power supply current control lines 21 and 22 are taken out from the gate electrode of the PMOSTr 27.

【0029】[0029]

【発明の効果】以上説明したように本発明によれば,定
電流回路を2個設け,第1の定電流回路で高いゲインを
持つ初段増幅回路とリミッタ回路の電源電流制御を行な
い,第2の定電流回路で後段のフィルタ回路,検波回
路,比較回路の電源電流制御を行なったリモコン受信回
路を構成している。従って各回路ブロック毎に定電流回
路を設けるよりもチップ面積と消費電流が小さく,又リ
モコン受信回路全体で一つの定電流回路を設けるより
も,各回路ブロック間の干渉が少ないという効果があ
る。
As described above, according to the present invention, two constant current circuits are provided, and the first constant current circuit controls the power supply current of the first stage amplifier circuit and the limiter circuit having a high gain. The constant current circuit of Fig. 2 constitutes a remote control receiver circuit that controls the power supply current of the subsequent filter circuit, detection circuit, and comparison circuit. Therefore, the chip area and current consumption are smaller than the constant current circuit provided for each circuit block, and there is less interference between the circuit blocks than the case where one constant current circuit is provided for the entire remote control reception circuit.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるリモコン受信回路の一実施例を示
す回路図。
FIG. 1 is a circuit diagram showing an embodiment of a remote control receiving circuit according to the present invention.

【図2】本発明によるリモコン受信回路の一実施例を示
す回路図。
FIG. 2 is a circuit diagram showing an embodiment of a remote control receiving circuit according to the present invention.

【図3】本発明によるリモコン受信回路の一実施例を示
す回路図。
FIG. 3 is a circuit diagram showing an embodiment of a remote control receiving circuit according to the present invention.

【図4】本発明によるリモコン受信回路に適用可能な定
電流回路。
FIG. 4 is a constant current circuit applicable to the remote control receiving circuit according to the present invention.

【符号の説明】[Explanation of symbols]

1 入力端子 2 出力端子 3 初段増幅器 4 リミッタ 5 フィルタ 6 検波回路 7 比較回路 8,9 定電流回路 10 リモコン受信回路 11 初段増幅器3の出力 12 リミッタ4の出力 13 フィルタ5の出力 14 検波回路6の出力 15,16,17,18,19,20 容量 21,22 電源電流制御線 23,25,30,31 NチャンネルMOSトランジ
スタ 24,27,28,29 PチャンネルMOSトランジ
スタ 26 抵抗 32 赤外光 34 光電変換素子
1 Input Terminal 2 Output Terminal 3 First Stage Amplifier 4 Limiter 5 Filter 6 Detection Circuit 7 Comparison Circuit 8, 9 Constant Current Circuit 10 Remote Control Receiver 11 Output of First Stage Amplifier 3 12 Output of Limiter 4 13 Output of Filter 5 14 Detection Circuit 6 Output 15, 16, 17, 18, 18, 19, 20 Capacitance 21,22 Power supply current control line 23, 25, 30, 31 N-channel MOS transistor 24, 27, 28, 29 P-channel MOS transistor 26 Resistor 32 Infrared light 34 Photoelectric Conversion element

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H04B 10/14 10/04 10/06 H04N 5/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location H04B 10/14 10/04 10/06 H04N 5/00

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】送信機により発射された赤外光を,光電変
換素子により電気信号に変換したものを入力とし,入力
された該電気信号の交流分を増幅し出力とする増幅回路
と,該増幅回路の出力を振幅制限して出力とするリミッ
タと,該リミッタの出力から特定の周波数のものを選択
して出力とするフィルタと,該フィルタの出力の交流振
幅値を直流レベルに変換し出力とする検波回路と,該検
波回路の出力と閾値との大小を比較し比較結果を出力と
する比較回路とで構成されたリモコン受信回路におい
て,第1の定電流回路から出力した第1の電源電流制御
線を前記増幅回路と前記リミッタの電源電流制御線とに
共通に接続し,別に設けた第2の定電流回路から出力し
た第2の電源電流制御線を前記フィルタと前記検波回路
と前記比較回路の電源電流制御線とに共通に接続したこ
とを特徴とするリモコン受信回路。
1. An amplifier circuit which receives infrared light emitted from a transmitter as an electric signal converted by a photoelectric conversion element and amplifies an alternating current component of the inputted electric signal to output the amplified electric signal. A limiter for limiting the amplitude of the output of the amplifier circuit to obtain an output, a filter for selecting an output having a specific frequency from the output of the limiter and providing the output, and converting the AC amplitude value of the output of the filter into a direct current level and outputting it. In the remote control receiving circuit configured by a detection circuit that performs the comparison, and a comparison circuit that compares the output of the detection circuit with the threshold value and outputs the comparison result, the first power supply output from the first constant current circuit. A current control line is commonly connected to the amplifier circuit and the power supply current control line of the limiter, and a second power supply current control line output from a separately provided second constant current circuit is used as the filter, the detection circuit, and the Comparison circuit power Remote control receiver circuit, characterized in that connected in common to a current control line.
JP7239790A 1995-09-19 1995-09-19 Remote control receiving circuit Pending JPH0984142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7239790A JPH0984142A (en) 1995-09-19 1995-09-19 Remote control receiving circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7239790A JPH0984142A (en) 1995-09-19 1995-09-19 Remote control receiving circuit

Publications (1)

Publication Number Publication Date
JPH0984142A true JPH0984142A (en) 1997-03-28

Family

ID=17049922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7239790A Pending JPH0984142A (en) 1995-09-19 1995-09-19 Remote control receiving circuit

Country Status (1)

Country Link
JP (1) JPH0984142A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100365435B1 (en) * 2000-11-22 2002-12-18 주식회사 하이닉스반도체 Automatic gain controller of remote control receiver
CN106941358A (en) * 2017-01-23 2017-07-11 厦门思力科电子科技有限公司 A kind of infrared radiation receiving circuit with fast charge mode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100365435B1 (en) * 2000-11-22 2002-12-18 주식회사 하이닉스반도체 Automatic gain controller of remote control receiver
CN106941358A (en) * 2017-01-23 2017-07-11 厦门思力科电子科技有限公司 A kind of infrared radiation receiving circuit with fast charge mode
CN106941358B (en) * 2017-01-23 2019-05-14 厦门思力科电子科技有限公司 A kind of infrared radiation receiving circuit with fast charge mode

Similar Documents

Publication Publication Date Title
CN102771047B (en) Bias circuit, LNA, LNB, receiver for communication, transmitter for communication, and sensor system
US7253679B2 (en) Operational amplifier and method for canceling offset voltage of operational amplifier
US6359517B1 (en) Photodiode transimpedance circuit
US7231152B2 (en) Infrared remote control receiver (IRCR) having semiconductor signal processing device therein
JP3678939B2 (en) AGC circuit with temperature compensation
US20050152705A1 (en) Gain variable amplifier, carrier detection system, and infrared remote-control receiver using them
CN106781424B (en) Infrared receiving circuit
US20040130397A1 (en) Transimpedance amplifier for photodiode
US6084232A (en) Optical receiver pre-amplifier which prevents ringing by shunting an input current of the pre-amplifier
JP3551642B2 (en) Amplifier circuit
US5510699A (en) Voltage regulator
HU207186B (en) Switching circuit with a cascade-connected switch stage
US20040189387A1 (en) Frequency characteristics-variable amplifying circuit and semiconductor integrated circuit device
US7288754B2 (en) Optical receiver
JPH0984142A (en) Remote control receiving circuit
US6100764A (en) Remote control preamp circuit
US20040129862A1 (en) Wideband transimpedance amplifier with automatic gain control
US5432389A (en) Gain stage circuit with automatic level control
JP3534209B2 (en) Light receiving circuit
CN106504513B (en) Infrared receiving circuit
JP2003332929A (en) Radio frequency tuner and circuit stage therefor
US20040240892A1 (en) Method and apparatus for detecting interruption of an input signal
JP3217318B2 (en) Preamplifier for optical reception and peak detector with variable offset voltage
US6470084B1 (en) Current amplifier, particularly for a telephone line
JP3531770B2 (en) Limiter circuit