JPH10286434A - Decomposing method of fluorine-containing gas - Google Patents

Decomposing method of fluorine-containing gas

Info

Publication number
JPH10286434A
JPH10286434A JP9097150A JP9715097A JPH10286434A JP H10286434 A JPH10286434 A JP H10286434A JP 9097150 A JP9097150 A JP 9097150A JP 9715097 A JP9715097 A JP 9715097A JP H10286434 A JPH10286434 A JP H10286434A
Authority
JP
Japan
Prior art keywords
fluorine
alumina
gas
containing compound
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9097150A
Other languages
Japanese (ja)
Inventor
Takashi Atokuchi
隆 後口
Hirohide Yada
博英 矢田
Tsunemi Sugimoto
常実 杉本
Tokuo Matsuzaki
徳雄 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP9097150A priority Critical patent/JPH10286434A/en
Publication of JPH10286434A publication Critical patent/JPH10286434A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]

Landscapes

  • Fire-Extinguishing Compositions (AREA)
  • Treating Waste Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable continuous decomposition of a perfluoro compd. even among fluorine-contg. compds. by bringing a gaseous fluorine-contg. compd. into contact with molecular oxygen in the presence of alumina. SOLUTION: When a gaseous fluorine-contg. compd. (such as perfluoro compds. and fluorinated hydrocarbons) used as a chamber cleaning gas for plasma CVD in a semiconductor factory is to be decomposed, the fluorine-contg. gas is brought into contact with molecular oxygen in the presence of alumina as a catalyst. As for the alumina, for example, γ-alumina and δ-alumina can be used, and the specific surface area of the alumina is preferably about 120 to 200 m<2> /g. The shape of the alumina is not limited but properly selected such as granules and a honeycomb according to the reactor and the reaction method. As for the molecular oxygen, a gas prepared by diluting oxygen gas with inert gas such as nitrogen can be used, however, air is preferably used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、フッ素含有化合
物、特に半導体工場でのプラズマCVDのチャンバーク
リーニングガス等に使用されているガス状のフッ素含有
化合物(パーフルオロ化合物、フッ化炭化水素等)や、
冷媒等に使用されているガス状のフッ素含有化合物(フ
ロン等)の分解方法に関する。
[0001] The present invention relates to a fluorine-containing compound, particularly a gaseous fluorine-containing compound (perfluoro compound, fluorinated hydrocarbon, etc.) used as a plasma CVD chamber cleaning gas in a semiconductor factory, and the like. ,
The present invention relates to a method for decomposing a gaseous fluorine-containing compound (such as chlorofluorocarbon) used in a refrigerant or the like.

【0002】[0002]

【従来の技術】フッ素含有化合物(ガス状のフッ素含有
化合物)はオゾン層の破壊に関与するなど、地球環境に
影響を及ぼすため、その排出は極力抑える必要がある。
このうち、パーフルオロ化合物(以下、PFCと略す
る)は、炭化水素の水素原子が全てフッ素原子で置換さ
れたものなどで、フロンとは異なり塩素を含まず、かつ
非常に安定であるため、オゾン層の破壊には関与しない
ものの、地球温暖化係数が大きく、使用後の排出は今後
規制される可能性がある。
2. Description of the Related Art Fluorine-containing compounds (gaseous fluorine-containing compounds) affect the global environment, for example, by being involved in the destruction of the ozone layer.
Of these, perfluoro compounds (hereinafter abbreviated as PFCs) are those in which all of the hydrogen atoms of the hydrocarbon are replaced with fluorine atoms, and unlike fluorocarbon, do not contain chlorine and are very stable. Although not involved in the depletion of the ozone layer, it has a large global warming potential, and emissions after use may be regulated in the future.

【0003】このようなガス状のフッ素含有化合物の排
出を抑制するためには、使用後の排ガスを何らかの方法
で回収又は分解する必要があるが、方法の簡便さを考慮
すれば、後者の排ガスを分解する方法が好ましい。しか
しながら、フッ素含有化合物のうち、PFCは非常に安
定であるため、通常のフロン分解で用いられる方法では
処理が困難である。例えば、燃料と共に燃焼処理して分
解する方法では、1000℃以上の高温が必要とされる
など、実用的にはまだ解決されるべき問題が残されてい
る。また、シリカやゼオライト等を分解剤として用いて
分解する方法(特開平7−116466号公報、同7−
132211号公報)では、PFCを十分な速度で分解
するために同様に1000〜1500℃程度の高温が必
要とされ、更に、粉体の分解剤を供給しながら分解を行
うなど、操作的、装置的にも複雑かつ煩雑であり、更な
る改良が必要である。
In order to suppress the emission of such gaseous fluorine-containing compounds, it is necessary to recover or decompose the used exhaust gas by some method. However, considering the simplicity of the method, the latter exhaust gas is required. Is preferred. However, among the fluorine-containing compounds, PFC is very stable, so that it is difficult to treat the PFC by a method used in the usual chlorofluorocarbon decomposition. For example, in the method of decomposing by burning together with fuel, a high temperature of 1000 ° C. or more is required. In addition, a method of decomposing using silica, zeolite, or the like as a decomposing agent (Japanese Patent Application Laid-Open No. 7-116466,
No. 132211) requires a high temperature of about 1000 to 1500 ° C. in order to decompose PFC at a sufficient rate. It is complicated and complicated, and further improvement is required.

【0004】[0004]

【発明が解決しようとする課題】前記のような技術背景
に鑑み、本発明は、フッ素含有化合物(ガス状のフッ素
含有化合物)、中でもPFCを連続的に分解できる方
法、特に触媒的に連続分解できる方法を提供することを
課題とする。
SUMMARY OF THE INVENTION In view of the above technical background, the present invention relates to a method capable of continuously decomposing a fluorine-containing compound (a gaseous fluorine-containing compound), in particular, a PFC, particularly a catalytic continuous decomposition. It is an object to provide a method that can be used.

【0005】[0005]

【課題を解決するための手段】本発明の課題は、ガス状
のフッ素含有化合物をアルミナ存在下で分子状酸素と接
触させることを特徴とするフッ素含有化合物の分解方法
によって達成される。
The object of the present invention is achieved by a method for decomposing a fluorine-containing compound, which comprises contacting a gaseous fluorine-containing compound with molecular oxygen in the presence of alumina.

【0006】[0006]

【発明の実施の形態】フッ素含有化合物としては、半導
体工場でのプラズマCVDのチャンバークリーニングガ
ス等に使用されているガス状のフッ素含有化合物(パー
フルオロ化合物(PFC)、フッ化炭化水素等)や、冷
媒等に使用されているガス状のフッ素含有化合物(フロ
ン等)が使用される。これらのフッ素含有化合物(ガス
状のフッ素含有化合物)は、ヘリウム、アルゴン、窒素
等の不活性ガスで希釈されていてもよく、また、単独で
あっても二種以上の混合物であってもよい。
BEST MODE FOR CARRYING OUT THE INVENTION Examples of the fluorine-containing compound include gaseous fluorine-containing compounds (perfluoro compounds (PFC), fluorinated hydrocarbons, etc.) used in plasma CVD chamber cleaning gases at semiconductor factories. A gaseous fluorine-containing compound (such as chlorofluorocarbon) used for a refrigerant or the like is used. These fluorine-containing compounds (gaseous fluorine-containing compounds) may be diluted with an inert gas such as helium, argon, or nitrogen, or may be used alone or as a mixture of two or more. .

【0007】PFCとしては、CF4 、C2 6 、C3
8 等の炭化水素の水素原子が全てフッ素原子で置換さ
れたパーフルオロカーボン(飽和、不飽和を含む)や、
NF 3 等のフッ化窒素や、SF6 等のフッ化硫黄などが
挙げられる。フッ化炭化水素としては、CH3 F、CH
2 2 、(CH2 F)2 等の炭化水素の水素原子の一部
がフッ素原子で置換されたものなどが挙げられる。フロ
ンとしては、C2 Cl3 3 (フロン−113)、C2
Cl2 4 (フロン−114)、C2 ClF5 (フロン
−115)などが挙げられる。
As PFC, CFFour, CTwoF6, CThree
F8All hydrogen atoms of hydrocarbons such as
Perfluorocarbons (including saturated and unsaturated),
NF ThreeSuch as nitrogen fluoride and SF6Such as sulfur fluoride
No. As the fluorinated hydrocarbon, CHThreeF, CH
TwoFTwo, (CHTwoF)TwoPart of hydrogen atoms of hydrocarbons such as
Is substituted with a fluorine atom. Flow
As CTwoClThreeFThree(CFC-113), CTwo
ClTwoFFour(CFC-114), CTwoClFFive(CFC
-115).

【0008】本発明では、触媒としてアルミナを存在さ
せて、前記フッ素含有ガスを分子状酸素と接触させるこ
とによって、フッ素含有ガスの分解が行われる。アルミ
ナとしては、例えば、γ−アルミナ、δ−アルミナ、θ
−アルミナ等の市販のアルミナを使用することができ
る。なお、アルミナの比表面積は120〜200m2
g程度であることが好ましい。アルミナの形状は特に限
定されるものではなく、反応器及び反応方法に合わせ
て、粒状、粉末状、ハニカム状など、それぞれに適した
形状のものを選ぶことができる。
In the present invention, the fluorine-containing gas is decomposed by bringing the fluorine-containing gas into contact with molecular oxygen in the presence of alumina as a catalyst. As the alumina, for example, γ-alumina, δ-alumina, θ
-Commercially available alumina such as alumina can be used. The specific surface area of alumina is 120 to 200 m 2 /
It is preferably about g. The shape of the alumina is not particularly limited, and a shape suitable for each, such as a granular shape, a powder shape, and a honeycomb shape, can be selected according to the reactor and the reaction method.

【0009】前記のアルミナは、窒素等の不活性ガス気
流中又は空気中で100〜1000℃、特に400〜8
00℃で数時間焼成した後に、フッ素含有ガスの分解に
使用されることが好ましい。このとき、余りに高い温度
で焼成すると、表面積の減少が起こって好ましくない。
この焼成は、マッフル炉等を用いて行ってもよく、ま
た、フッ素含有ガスを分解する反応器(反応管)に充填
して分解反応を始める前に予め行ってもよい。
The above alumina is used at 100 to 1000 ° C., particularly 400 to 8 ° C. in an inert gas stream such as nitrogen or air.
After baking at 00 ° C. for several hours, it is preferably used to decompose the fluorine-containing gas. At this time, firing at an excessively high temperature is not preferable because the surface area decreases.
This baking may be performed using a muffle furnace or the like, or may be performed in advance before filling the reactor (reaction tube) for decomposing the fluorine-containing gas to start the decomposition reaction.

【0010】分子状酸素としては、酸素ガスを窒素等の
不活性ガスで希釈したものも使用できるが、空気が好適
に使用される。分子状酸素の供給量は前記フッ素含有化
合物中の炭素分(炭素原子)を二酸化炭素及び一酸化炭
素に変換するのに十分な量であれば、特に制限されるも
のではない。即ち、分子状酸素の供給量は、前記フッ素
含有化合物中の炭素原子に対して、等モル以上、好まし
くは等モルから10倍モル程度である。分子状酸素の供
給方法は特に制限されず、例えば、フッ素含有化合物と
混合して反応器(反応管)に供給する方法などが挙げら
れる。
[0010] As the molecular oxygen, oxygen gas diluted with an inert gas such as nitrogen can be used, but air is preferably used. The supply amount of molecular oxygen is not particularly limited as long as it is an amount sufficient to convert the carbon content (carbon atom) in the fluorine-containing compound into carbon dioxide and carbon monoxide. That is, the supply amount of molecular oxygen is at least equimolar to the carbon atom in the fluorine-containing compound, preferably about equimolar to about 10 times. The method for supplying molecular oxygen is not particularly limited, and examples thereof include a method of mixing with a fluorine-containing compound and supplying the mixture to a reactor (reaction tube).

【0011】本発明では、前記の接触において、水を添
加することもできる。水を添加することによって、単位
アルミナ重量あるいは容量当たりのフッ素含有化合物の
処理量を増大させることができる。水を添加しない場合
は、分解反応の進行に伴ってアルミナ表面にフッ化物等
が蓄積して、フッ素含有化合物の分解率が徐々に低下す
るが、水を添加すると定常活性が維持されるようにな
る。水の添加量は前記フッ素含有化合物中のハロゲン分
(フッ素原子及び塩素原子)と等モル以上、好ましくは
等モルから10倍モル程度であればよい。例えば、CF
4 であれば4倍モル以上、好ましくは4〜40倍モルで
あって、C2 6 であれば6倍モル以上、好ましくは6
〜60倍モル程度であればよい。水の添加方法は特に制
限されず、例えば、マイクロフィーダーを用いて液体と
して反応器(反応管)に供給する方法、サチュレーター
を用いてフッ素含有化合物に同伴させる方法などが挙げ
られる。
In the present invention, water can be added in the contact. By adding water, the throughput of the fluorine-containing compound per unit alumina weight or volume can be increased. When water is not added, fluoride and the like accumulate on the alumina surface as the decomposition reaction proceeds, and the decomposition rate of the fluorine-containing compound gradually decreases. Become. The amount of water added may be at least equimolar to the halogen content (fluorine atom and chlorine atom) in the fluorine-containing compound, and preferably about equimolar to about 10-fold molar. For example, CF
If 4 4 moles or more, preferably a 4 to 40-fold moles, C 2 F 6 in the case when 6 moles or more, preferably 6
It may be about 60-fold molar. The method of adding water is not particularly limited, and examples thereof include a method of supplying a liquid to a reactor (reaction tube) using a microfeeder, and a method of using a saturator to accompany the fluorine-containing compound.

【0012】本発明のフッ素含有化合物の分解は、例え
ば、前記フッ素含有化合物及び分子状酸素の混合ガス
(必要であれば水を含有する)を、300〜1000
℃、好ましくは400〜800℃で、アルミナを充填し
た反応器(反応管)に供給することによって行われる。
このとき、混合ガスの供給速度は50000hr-1
下、好ましくは100〜10000hr-1程度である。
また、反応圧力は1torrの減圧から100atmの
加圧まで広い範囲が可能であるが、好ましくは常圧から
10atm程度である。分解反応は流通式又はバッチ式
で行うことができるが、簡便であることから前者の流通
式が好ましい。また、流通式の場合、固定床、流動床い
ずれの形態でも反応を行いうる。
In the decomposition of the fluorine-containing compound of the present invention, for example, a mixed gas of the above-mentioned fluorine-containing compound and molecular oxygen (containing water if necessary) is mixed with 300 to 1000.
C., preferably at 400 to 800.degree. C., by feeding to a reactor (reaction tube) filled with alumina.
At this time, the feed rate of the mixed gas is 50000Hr -1 or less, preferably 100~10000hr about -1.
Further, the reaction pressure can be in a wide range from a reduced pressure of 1 torr to a pressurized pressure of 100 atm, but is preferably from normal pressure to about 10 atm. The decomposition reaction can be carried out by a flow system or a batch system, but the former flow system is preferred because of its simplicity. In the case of a flow type, the reaction can be carried out in any of a fixed bed and a fluidized bed.

【0013】[0013]

【実施例】次に、実施例及び比較例を挙げて本発明を具
体的に説明する。なお、以下の操作は特に記載しない限
り常圧下で行った。また、フッ素含有化合物(C
2 6 )の転化率は次式により求めた。
Next, the present invention will be described specifically with reference to examples and comparative examples. The following operations were performed under normal pressure unless otherwise specified. In addition, fluorine-containing compounds (C
Conversion of 2 F 6) was determined by the following equation.

【0014】[0014]

【数1】 (Equation 1)

【0015】実施例1 内径10mmの反応管に粒状のγ−アルミナ(1.0m
l)を充填し、窒素気流中、600℃で1時間焼成し
た。その後、C2 6 /空気混合ガス(C2 6:1容
量%)を100ml/minで、水を0.96g/hr
でそれぞれ反応管に供給して同温度で分解反応を行っ
た。出口ガス中のC2 6 濃度(C2 6 残存量)をガ
スクロマトグラフィーにより分析したところ、C2 6
転化率は反応開始1時間後で4.5%であった。なお、
反応生成物としては、二酸化炭素がガスクロマトグラフ
ィーにより、一酸化炭素がFT−IRによりそれぞれ確
認された。
Example 1 A granular γ-alumina (1.0 m) was placed in a reaction tube having an inner diameter of 10 mm.
l) and fired at 600 ° C. for 1 hour in a nitrogen stream. Thereafter, a C 2 F 6 / air mixed gas (C 2 F 6 : 1% by volume) was supplied at a rate of 100 ml / min, and water was supplied at a rate of 0.96 g / hr.
And supplied to the reaction tubes to perform a decomposition reaction at the same temperature. When the concentration of C 2 F 6 in the outlet gas (remaining amount of C 2 F 6 ) was analyzed by gas chromatography, it was found that C 2 F 6
The conversion was 4.5% one hour after the start of the reaction. In addition,
As reaction products, carbon dioxide was confirmed by gas chromatography, and carbon monoxide was confirmed by FT-IR.

【0016】実施例2 実施例1において、反応温度を700℃に変えた以外
は、実施例1と同様に反応を行った。その結果、C2
6 転化率は反応開始1時間後で10.0%であった。
Example 2 A reaction was carried out in the same manner as in Example 1 except that the reaction temperature was changed to 700 ° C. As a result, C 2 F
6 The conversion was 10.0% one hour after the start of the reaction.

【0017】比較例1〜4 実施例1において、γ−アルミナの代わりに、シリカ、
シリカ−チタニア、チタニア、ジルコニアをそれぞれ
1.0ml用いた以外は、実施例1と同様に反応を行っ
た。その結果、C2 6 転化率は反応開始1時間後でそ
れぞれ0.0%、0.0%、0.0%、0.2%であっ
た。
Comparative Examples 1-4 In Example 1, silica instead of γ-alumina was used.
The reaction was carried out in the same manner as in Example 1 except that 1.0 ml of each of silica-titania, titania and zirconia was used. As a result, the C 2 F 6 conversion was 0.0%, 0.0%, 0.0%, and 0.2%, respectively, one hour after the start of the reaction.

【0018】実施例3 実施例1において、粒状のγ−アルミナを5.0ml充
填し、C2 6 /空気混合ガス(C2 6 :1容量%)
を20ml/minで、水を0.36g/hrでそれぞ
れ供給した以外は、実施例1と同様に反応を行った。そ
の結果、C2 6 転化率は反応開始1時間後で59%、
反応開始2時間後で21%であった。
Example 3 In Example 1, 5.0 ml of granular γ-alumina was charged, and a mixed gas of C 2 F 6 / air (C 2 F 6 : 1% by volume) was used.
The reaction was carried out in the same manner as in Example 1 except that water was supplied at 20 ml / min and water was supplied at 0.36 g / hr. As a result, the C 2 F 6 conversion was 59% one hour after the start of the reaction,
Two hours after the start of the reaction, it was 21%.

【0019】実施例4 実施例3において、反応温度を700℃に変え、水を供
給しなかった以外は、実施例3と同様に反応を行った。
その結果、C2 6 転化率は反応開始2時間後で100
%、3時間後で71%であった。
Example 4 A reaction was carried out in the same manner as in Example 3 except that the reaction temperature was changed to 700 ° C. and water was not supplied.
As a result, the C 2 F 6 conversion was 100 hours after the start of the reaction.
% After 3 hours.

【0020】[0020]

【発明の効果】本発明によれば、入手が容易でかつ比較
的安価なアルミナを触媒として用いて、簡便な反応装置
において、非常に安定で処理が難しいPFC等の半導体
工場でのプラズマCVDのチャンバークリーニングガス
等に使用されているフッ素含有化合物を連続的に分解す
ることが可能である。この方法は、生成するガスも二酸
化炭素等であり、地球環境に極めて優しい、ガス状のフ
ッ素含有化合物の処理方法である。
According to the present invention, it is possible to use a readily available and relatively inexpensive alumina as a catalyst in a simple reactor and to perform plasma CVD in a semiconductor plant such as PFC which is very stable and difficult to process. It is possible to continuously decompose a fluorine-containing compound used for a chamber cleaning gas or the like. This method is a method for treating a gaseous fluorine-containing compound, which is very friendly to the global environment because the generated gas is carbon dioxide or the like.

フロントページの続き (72)発明者 松崎 徳雄 山口県宇部市大字小串1978番地の5 宇部 興産株式会社宇部研究所内Continued on the front page (72) Inventor Tokuo Matsuzaki 5 Ube Kogushi 1978 Kobe, Ube City, Yamaguchi Prefecture

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ガス状のフッ素含有化合物をアルミナ存
在下で分子状酸素と接触させることを特徴とするフッ素
含有化合物の分解方法。
1. A method for decomposing a fluorine-containing compound, comprising contacting a gaseous fluorine-containing compound with molecular oxygen in the presence of alumina.
【請求項2】 ガス状のフッ素含有化合物がパーフルオ
ロ化合物、フッ化炭化水素、又はフロンであることを特
徴とする請求項1記載のフッ素含有化合物の分解方法。
2. The method for decomposing a fluorine-containing compound according to claim 1, wherein the gaseous fluorine-containing compound is a perfluoro compound, a fluorinated hydrocarbon or chlorofluorocarbon.
JP9097150A 1997-04-15 1997-04-15 Decomposing method of fluorine-containing gas Pending JPH10286434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9097150A JPH10286434A (en) 1997-04-15 1997-04-15 Decomposing method of fluorine-containing gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9097150A JPH10286434A (en) 1997-04-15 1997-04-15 Decomposing method of fluorine-containing gas

Publications (1)

Publication Number Publication Date
JPH10286434A true JPH10286434A (en) 1998-10-27

Family

ID=14184553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9097150A Pending JPH10286434A (en) 1997-04-15 1997-04-15 Decomposing method of fluorine-containing gas

Country Status (1)

Country Link
JP (1) JPH10286434A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001302551A (en) * 2000-04-19 2001-10-31 Japan Pionics Co Ltd Method for recovering perfluorocarbon and method decomposition the same
US6949225B1 (en) 1999-11-18 2005-09-27 Ebara Corporation Method and apparatus for treating a waste gas containing fluorine-containing compounds
US7128882B2 (en) * 2001-03-16 2006-10-31 Hitachi, Ltd. Method and apparatus for treating perfluorocompounds
JP2007216229A (en) * 2007-06-01 2007-08-30 Ebara Corp Apparatus for treating exhaust gas including fluorine-containing compound
US7285250B2 (en) 1999-11-26 2007-10-23 Hitachi, Ltd. Apparatus for treating perfluorocompound gas
KR100808618B1 (en) * 2001-02-02 2008-02-29 가부시키가이샤 에바라 세이사꾸쇼 Process and apparatus for treating gas containing fluorine-containing compounds and co

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6949225B1 (en) 1999-11-18 2005-09-27 Ebara Corporation Method and apparatus for treating a waste gas containing fluorine-containing compounds
US7285250B2 (en) 1999-11-26 2007-10-23 Hitachi, Ltd. Apparatus for treating perfluorocompound gas
KR100821452B1 (en) * 1999-11-26 2008-04-10 가부시키가이샤 히타치세이사쿠쇼 Method and Apparatus for Treating PFC Gas
JP2001302551A (en) * 2000-04-19 2001-10-31 Japan Pionics Co Ltd Method for recovering perfluorocarbon and method decomposition the same
KR100808618B1 (en) * 2001-02-02 2008-02-29 가부시키가이샤 에바라 세이사꾸쇼 Process and apparatus for treating gas containing fluorine-containing compounds and co
US7128882B2 (en) * 2001-03-16 2006-10-31 Hitachi, Ltd. Method and apparatus for treating perfluorocompounds
JP2007216229A (en) * 2007-06-01 2007-08-30 Ebara Corp Apparatus for treating exhaust gas including fluorine-containing compound

Similar Documents

Publication Publication Date Title
TW510819B (en) Method and apparatus for treating a waste gas containing fluorine-containing compounds
JP5562638B2 (en) High-pressure catalyst activation method and catalyst produced thereby
JP4237942B2 (en) Method and apparatus for treating exhaust gas containing fluorine-containing compound
RU2548902C2 (en) Method of producing 2,3,3,3-tetrafluoropropene by gas-phase fluorination of pentachloropropane
JP5132555B2 (en) Method for producing high purity hexafluoropropylene and cleaning gas
EP4043421A1 (en) Method for purifying fluid that includes trifluoroethylene, and method for producing trifluoroethylene
US6482367B1 (en) Method and apparatus for removing harmful components in an exhaust gas
JPH10286434A (en) Decomposing method of fluorine-containing gas
JP4080336B2 (en) Decomposition of fluorine-containing compounds
JPH09241186A (en) Production of hexafluoroethane
JPH10286438A (en) Decomposing method of fluorine-containing compound
JPH10286439A (en) Decomposing method of fluorine-containing compound
RU2008131767A (en) METHOD AND REACTOR OF FLUORATION
EP0798043A1 (en) Regeneration of gas phase fluorination catalysts
JP3650588B2 (en) Perfluoro compound recycling method
JP2000015060A (en) Method for decomposing fluorine compound by using catalyst
JPH02115135A (en) Isomerization of hydrogen-containing fluorohydrocarbon
KR100433081B1 (en) Process for the hydrogenolysis of chlorofluorocarbons and of chlorofluorohydrocarbons
JP2002324785A (en) Method for recycling perfluorocompound
JP2007237150A (en) Catalyst detoxifying treatment method of emission gas
JP3570136B2 (en) Method for treating gas containing organic halogen compound and catalyst for decomposing organic halogen compound
KR100283711B1 (en) Method for preparing hexafluoroethane
JPH11179201A (en) Catalyst for decomposition of fluorine-containing compound and fluorine-containing compound
JPH09122442A (en) Decomposition process for halogenated material gas
SU1398893A1 (en) Method of cleaning waste from chloroorganic compounds