JPH10284125A - Polymer electrolyte battery - Google Patents

Polymer electrolyte battery

Info

Publication number
JPH10284125A
JPH10284125A JP9092146A JP9214697A JPH10284125A JP H10284125 A JPH10284125 A JP H10284125A JP 9092146 A JP9092146 A JP 9092146A JP 9214697 A JP9214697 A JP 9214697A JP H10284125 A JPH10284125 A JP H10284125A
Authority
JP
Japan
Prior art keywords
porous film
point value
bubble point
battery
porosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9092146A
Other languages
Japanese (ja)
Other versions
JP3378761B2 (en
Inventor
Mikiya Yamazaki
幹也 山崎
Shiori Maeda
紫織 前田
Hiromichi Ota
裕道 太田
Hiroshi Nakagawa
弘 中川
Yasunobu Kodama
康伸 児玉
Yoshihiro Nishimoto
好宏 西本
Tsutomu Sonozaki
勉 園崎
Takanori Fujii
孝則 藤井
Ikurou Nakane
育朗 中根
Kazuo Terashi
和生 寺司
Satoshi Ubukawa
訓 生川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP09214697A priority Critical patent/JP3378761B2/en
Publication of JPH10284125A publication Critical patent/JPH10284125A/en
Application granted granted Critical
Publication of JP3378761B2 publication Critical patent/JP3378761B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase a discharge capacity while suppressing occurrence of shortcircuit in a battery by suppressing decrease of ion conductivity, by regulating a bubble point value and a porosity of porous film used for a separator within a specific range. SOLUTION: A battery is equipped with a positive electrode having mainly composite oxide containing lithium, a negative electrode having mainly carbon material and a separator in which polymer electrolyte in gel is held on porous film. A bubble point value of the porous film in the separator is set at 0.1-100 kg/cm<2> , and a porosity of the porous film is set at 40-90. Polyolefinic porous film and the like are used for the porous film. If the bubble point value becomes less than 0.1 kg/cm<2> , a gap of a hole with the maximum diameter on the porous film becomes too big, so that mechanical strength of the porous film decreases, and shortcircuit occurs in the battery when manufacturing the batteries. If the bubble point value exceeds 100 kg/cm<2> , the gap of the hole with the maximum diameter becomes too small, so that ion conductivity of the porous film decreases and the discharge capacity becomes small.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ポリマー電解質電
池に係わり、詳しくは多孔質膜にゲル状ポリマー電解質
が保持されたセパレータを備えるポリマー電解質電池に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer electrolyte battery, and more particularly, to a polymer electrolyte battery provided with a separator in which a gel polymer electrolyte is held in a porous membrane.

【0002】[0002]

【従来の技術】固体電解質を用いた電池は従来の液系の
電解質を用いた電池に比べて外部への液もれの心配がな
い、加工性が優れているなどの利点があるが、固体電解
質を用いた電池は溶液系を用いた電池に比べてイオン導
電性が低く、放電容量(特に、高率放電時の容量)が小
さくなるという課題を有していた。
2. Description of the Related Art A battery using a solid electrolyte has advantages over a battery using a conventional liquid electrolyte in that there is no fear of liquid leakage to the outside and excellent workability. A battery using an electrolyte has a problem that ionic conductivity is lower than that of a battery using a solution system, and a discharge capacity (particularly, a capacity at a high rate discharge) is reduced.

【0003】そこで、電解質としてゲル状ポリマー電解
質を用いた電池が提案されている。当該電池では、固体
電解質を用いた電池に比べてイオン導電性を向上させる
ことができるので、放電容量の増大を図ることができる
が、ポリマー電解質の機械的強度が小さいため、電池組
み立て時に電池内で短絡が多発するという課題を有して
いた。このようなことを考慮して、多孔質膜にゲル状ポ
リマー電解質を保持させる構造のセパレータを備えた電
池が提案されている。
Accordingly, a battery using a gel polymer electrolyte as an electrolyte has been proposed. In the battery, the ionic conductivity can be improved as compared with the battery using the solid electrolyte, so that the discharge capacity can be increased. In this case, there is a problem that short circuits frequently occur. In view of the above, a battery provided with a separator having a structure in which a porous polymer membrane holds a gel polymer electrolyte has been proposed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、単に多
孔質膜にゲル状ポリマー電解質を保持させただけでは、
固体電解質を用いた場合と同様、電解質のイオン導電性
が低下して、やはり放電容量が小さくなったり、多孔質
膜の機械的強度が小さいため、電池組み立て時に電池内
で短絡が発生することがあるという課題を有していた。
本発明は、以上の事情に鑑みなされたものであって、電
池内で短絡が発生するのを抑制しつつ、放電容量(特
に、高率放電時の放電容量)の増大を図ることができる
ポリマー電解質電池の提供を目的とする。
However, simply holding the gel-like polymer electrolyte on the porous membrane is not enough.
As in the case of using a solid electrolyte, the ionic conductivity of the electrolyte is reduced, the discharge capacity is also reduced, and the mechanical strength of the porous membrane is low, so that a short circuit may occur in the battery during battery assembly. There was a problem that there is.
The present invention has been made in view of the above circumstances, and a polymer capable of increasing a discharge capacity (particularly, a discharge capacity at a high rate discharge) while suppressing occurrence of a short circuit in a battery. The purpose is to provide an electrolyte battery.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明のうちで請求項1記載の発明は、リチウム含
有複合酸化物を主体とする正極と、炭素材料を主体とす
る負極と、多孔質膜にゲル状ポリマー電解質が保持され
たセパレータとを備えるポリマー電解質電池において、
前記多孔質膜のバブルポイント値が0.1〜100kg
/cm2 であり、且つ多孔質膜の空隙率が40〜90%
であることを特徴とする
Means for Solving the Problems In order to achieve the above object, the invention according to claim 1 of the present invention provides a positive electrode mainly composed of a lithium-containing composite oxide and a negative electrode mainly composed of a carbon material. In a polymer electrolyte battery comprising a porous membrane and a separator in which a gel polymer electrolyte is held,
The bubble point value of the porous membrane is 0.1 to 100 kg
/ Cm 2 and the porosity of the porous membrane is 40 to 90%
Is characterized by

【0006】このように、バブルポイント値を上記の如
く規制するのは、以下に示す理由による。即ち、バブル
ポイント値とは多孔質膜の孔のうち最大径の孔がどの程
度であるかを示す尺度として用いられるが、当該バブル
ポイント値が0.1kg/cm2未満になると、多孔質
膜における最大径を有する孔の空隙が大きくなり過ぎ
て、多孔質膜の機械的強度が低下する結果、電池作製時
に電池内で短絡が発生する一方、バブルポイント値が1
00kg/cm2 を超えると、多孔質膜における最大径
を有する孔の空隙が小さくなり過ぎて、多孔質膜のイオ
ン導電性が低下する結果、放電容量(特に、高率放電時
の放電容量)が小さくなるからである。
The reason why the bubble point value is regulated as described above is as follows. That is, the bubble point value is used as a scale indicating the size of the pore having the largest diameter among the pores of the porous membrane. When the bubble point value becomes less than 0.1 kg / cm 2 , As a result, the pores having the maximum diameter in the above-mentioned case become too large, and the mechanical strength of the porous membrane is reduced. As a result, a short circuit occurs in the battery during battery fabrication, while the bubble point value is 1
If it exceeds 00 kg / cm 2 , the voids of the pores having the largest diameter in the porous membrane become too small, and the ionic conductivity of the porous membrane is reduced. As a result, the discharge capacity (particularly, the discharge capacity at high rate discharge) Is smaller.

【0007】また、多孔質膜の空隙率を上記の如く規制
するのは、空隙率が40%未満になると、バブルポイン
ト値を上記の如く0.1〜100kg/cm2 に規制し
ても多孔質膜全体としての空隙が余りに少ないため、イ
オン導電性が低下し、放電容量(特に、高率放電時の放
電容量)が小さくなる一方、空隙率が90%を超える
と、バブルポイント値を上記の如く0.1〜100kg
/cm2 に規制しても多孔質膜全体としての空隙が余り
に多いため、多孔質膜の機械的強度が低下して、電池作
製時に電池内で短絡が発生するからである。
Further, the porosity of the porous film is regulated as described above. When the porosity is less than 40%, the porosity is regulated even if the bubble point value is regulated to 0.1 to 100 kg / cm 2 as described above. When the porosity exceeds 90%, the bubble point value increases when the porosity exceeds 90% because the ionic conductivity decreases and the discharge capacity (especially, discharge capacity during high-rate discharge) decreases. 0.1 ~ 100kg like
This is because, even when regulated to / cm 2 , the porous membrane as a whole has too many voids, so that the mechanical strength of the porous membrane is reduced and a short circuit occurs in the battery during battery production.

【0008】また、請求項2記載の発明は、請求項1記
載の発明において、多孔質膜がポリオレフィン系多孔質
膜から成ることを特徴とするものである。このように構
成することにより、上記の作用が円滑に達成されること
になる。
Further, the invention according to claim 2 is characterized in that, in the invention according to claim 1, the porous membrane is made of a polyolefin-based porous membrane. With such a configuration, the above operation is smoothly achieved.

【0009】[0009]

【発明の実施の形態】図1は本発明電池を模式的に示す
断面図であり、図示の本発明電池は、正極1、負極2、
これら両電極を離間するセパレータ3、正極缶4、負極
缶5、正極集電体6、負極集電体7、及び絶縁パッキン
グ8からなる。正極1及び負極2は、多孔質膜にゲル状
ポリマー電解質が保持されたセパレータ3を介して配置
されており、正極1は正極集電体6を介して正極缶4
に、また負極2は負極集電体7を介して負極缶5に接続
され、電池内部で生じた化学エネルギーを電気エネルギ
ーとして外部へ取り出し得るようになっている。ここ
で、上記構造の電池を、以下のようにして作製した。
FIG. 1 is a sectional view schematically showing a battery of the present invention. The battery of the present invention shown in FIG.
It comprises a separator 3, a positive electrode can 4, a negative electrode can 5, a positive electrode current collector 6, a negative electrode current collector 7, and an insulating packing 8 separating these electrodes. The positive electrode 1 and the negative electrode 2 are disposed via a separator 3 in which a gel-like polymer electrolyte is held on a porous membrane. The positive electrode 1 is connected via a positive electrode current collector 6 to a positive electrode can 4.
In addition, the negative electrode 2 is connected to the negative electrode can 5 via the negative electrode current collector 7 so that chemical energy generated inside the battery can be taken out as electric energy. Here, the battery having the above structure was manufactured as follows.

【0010】〔正極〕700〜900℃の温度で熱処理
したLiCoO2 (正極活物質)と、導電剤としてのカ
ーボン粉末と、結着剤としてのフッ素樹脂粉末とを、重
量比85:10:5の割合で混合してスラリーを調製し
た後、このスラリーをドクターブレード法にて正極集電
体としてのアルミニウム箔上に塗布した(この際、スラ
リーとアルミニウム箔との総厚みは100μmであ
る。)。この後、これを100〜150°Cで真空熱処
理して正極を作製した。
[Positive electrode] LiCoO 2 (positive electrode active material) heat-treated at a temperature of 700 to 900 ° C., a carbon powder as a conductive agent, and a fluororesin powder as a binder are mixed in a weight ratio of 85: 10: 5. And a slurry was prepared by mixing at a ratio of 1 to 3. The slurry was applied on an aluminum foil as a positive electrode current collector by a doctor blade method (at this time, the total thickness of the slurry and the aluminum foil was 100 μm). . Thereafter, this was subjected to a vacuum heat treatment at 100 to 150 ° C. to produce a positive electrode.

【0011】〔負極〕負極活物質としての黒鉛粉末と、
結着剤としてのフッ素樹脂とを、重量比95:5の割合
で混合してスラリーを調製した後、このスラリーをドク
ターブレード法にて負極集電体としての銅箔上に塗布し
た(この際、スラリーと銅箔との総厚みは80μmであ
る。)。この後、これを100〜150°Cで真空熱処
理して負極を作製した。
[Negative electrode] A graphite powder as a negative electrode active material,
A slurry was prepared by mixing a fluororesin as a binder in a weight ratio of 95: 5, and the slurry was applied on a copper foil as a negative electrode current collector by a doctor blade method (at this time, a slurry was prepared). , The total thickness of the slurry and the copper foil is 80 μm.) Thereafter, this was subjected to a vacuum heat treatment at 100 to 150 ° C. to produce a negative electrode.

【0012】〔ゲル状ポリマー電解質〕下記化1に示す
ポリエチレングリコールジアクリレート(分子量:10
00)と下記化2に示すポリエチレングリコールエチル
エーテルアクリレート(分子量:400)とを重量比が
1:1となるように混合した混合物(ゲル化剤)と、エ
チレンカーボネートとジエチルカーボネートとの混合溶
媒(体積比1:1)に過塩素酸リチウムを1M(モル/
リットル)の割合で溶かして溶液とを、重量比1:1の
割合で混合してモノマーを作製した。
[Gel Polymer Electrolyte] Polyethylene glycol diacrylate (molecular weight: 10)
00) and polyethylene glycol ethyl ether acrylate (molecular weight: 400) shown in Chemical Formula 2 below (gelling agent) and a mixed solvent of ethylene carbonate and diethyl carbonate (gelling agent). Lithium perchlorate was added to 1 M (mol /
Liter) and mixed with the solution at a weight ratio of 1: 1 to prepare a monomer.

【0013】[0013]

【化1】 Embedded image

【0014】[0014]

【化2】 Embedded image

【0015】次に、このモノマーに、下記化3に示す重
合開始剤としての2,2−ジメトキシ−2−アセトフェ
ノンを1000ppmと、下記化4に示す重合抑制剤と
しての1,4−ジメトキシベンゼン1000ppmとを
添加した後、これをポリエチレン多孔質体(バブルポイ
ント値:0.1kg/cm2 、空隙率90%)上に滴下
し、更に紫外線(1mW/cm2 )を3分間照射して、
ゲル状ポリマー電解質を作製した。尚、このようにして
作製したゲル状ポリマー電解質の厚みは45μmであっ
た。
Next, 1,000 ppm of 2,2-dimethoxy-2-acetophenone as a polymerization initiator and 1,000 ppm of 1,4-dimethoxybenzene as a polymerization inhibitor shown in Was added dropwise onto a polyethylene porous material (bubble point value: 0.1 kg / cm 2 , porosity 90%), and further irradiated with ultraviolet rays (1 mW / cm 2 ) for 3 minutes.
A gel polymer electrolyte was prepared. The gel polymer electrolyte thus produced had a thickness of 45 μm.

【0016】[0016]

【化3】 Embedded image

【0017】[0017]

【化4】 Embedded image

【0018】〔電池の作製〕上記正極と負極とによりゲ
ル状ポリマー電解質を挟み込んで発電要素を作製した
後、この発電要素を正極缶、負極缶、及び絶縁パッキン
グにより封止することにより電池を作製した。
[Preparation of Battery] A power generation element is prepared by sandwiching a gel polymer electrolyte between the positive electrode and the negative electrode, and the power generation element is sealed with a positive electrode can, a negative electrode can, and an insulating packing to prepare a battery. did.

【0019】尚、正極材料としては、上記LiCoO2
に限定するものではなく、例えば、LiNiO2 、Li
MnO2 、LiFeO2 であっても良い。また、負極材
料としては、上記黒鉛粉末に限定するものではなく、コ
ークス等のリチウム又はリチウムイオンを吸蔵、放出し
得る炭素材料であれば良い。
The above-mentioned LiCoO 2 is used as a cathode material.
However, for example, LiNiO 2 , Li
MnO 2 or LiFeO 2 may be used. Further, the negative electrode material is not limited to the above graphite powder, but may be any carbon material such as coke which can occlude and release lithium or lithium ions.

【0020】更に、溶媒としては、上記エチルカーボネ
ートとジエチルカーボネートとの混合溶媒に限定するも
のではなく、エチレンカーボネート、ビニレンカーボネ
ート、プロピレンカーボネートなどの有機溶媒や、これ
らとジメチルカーボネート、ジエチルカーボネート、
1,2−ジメトキシエタン、1,2−ジエトキシエタ
ン、エトキシメトキシエタンなどの低沸点溶媒との混合
溶媒であっても良く、また溶質としては、上記LiCl
4 に限定されるものではなく、LiPF6 、LiCF
3 SO3 などを用いても良い。
Further, the solvent is not limited to the above-mentioned mixed solvent of ethyl carbonate and diethyl carbonate, but may be an organic solvent such as ethylene carbonate, vinylene carbonate or propylene carbonate, or dimethyl carbonate, diethyl carbonate, or the like.
A mixed solvent with a low boiling point solvent such as 1,2-dimethoxyethane, 1,2-diethoxyethane or ethoxymethoxyethane may be used.
It is not limited to O 4 , but may be LiPF 6 , LiCF
3 SO 3 or the like may be used.

【0021】[0021]

【実施例】 〔実験1〕空隙率を所定値(各々40%、65%、90
%)に固定し、バブルポイント値を変化させ、バブルポ
イント値と高率放電時の放電容量及びショート発生率と
の関係を調べたので、それらの結果を各々図2〜図4に
示す。尚、放電容量の測定は、1Cの電流値で充電終止
電圧が4.20Vになるまで充電(室温)した後、1C
の電流値で放電終止電圧が2.75Vになるまで放電
(室温)し、この放電時の容量を測定することにより行
った。また、ショート発生率は、電池組み立て時におけ
るショート発生率を示すものであり、下記数1から算出
される。
EXAMPLES [Experiment 1] The porosity was set to a predetermined value (40%, 65%, 90%, respectively).
%), The bubble point value was changed, and the relationship between the bubble point value and the discharge capacity during high-rate discharge and the occurrence rate of short circuits were examined. The results are shown in FIGS. 2 to 4, respectively. Note that the discharge capacity was measured at a current value of 1 C until the end-of-charge voltage reached 4.20 V (at room temperature).
The discharge was performed at room temperature until the discharge end voltage reached 2.75 V at the current value of, and the capacity at the time of this discharge was measured. The short-circuit occurrence rate indicates the short-circuit occurrence rate at the time of assembling the battery, and is calculated from the following equation (1).

【0022】[0022]

【数1】 (Equation 1)

【0023】また、空隙率の測定と、バブルポイント値
の測定とは以下のようにして行った。 (空隙率の測定)100mm角のサンプル(多孔質膜)
を用意し、このサンプルの重量Wと厚みtとを測定し、
これらの値を下記数2に代入することにより算出した。
The measurement of the porosity and the measurement of the bubble point value were performed as follows. (Measurement of porosity) 100 mm square sample (porous membrane)
Was prepared, and the weight W and thickness t of this sample were measured.
The values were calculated by substituting these values into Equation 2 below.

【0024】[0024]

【数2】 (Equation 2)

【0025】(バブルポイント値の測定)バブルポイン
ト値の測定はASTMのE−128−61に準じて行っ
た。具体的には、直径75mmのサンプル(多孔質膜)
を測定装置内に配置した後、サンプルの孔内をエタノー
ルで置換し、更にサンプルを測定装置に固定した。次
に、測定装置内に窒素ガスを送り込む。この際、測定装
置に設けられた圧力調整器でガス圧を徐々に高めてい
き、サンプルの表面から気泡が出始めるときの圧力を読
み取る。この圧力値がバブルポイント値である。尚、測
定温度は25±5℃であり、また多孔質膜の最大孔径D
とバブルポイント値Pとの関係を下記数3に示す。
(Measurement of Bubble Point Value) The measurement of the bubble point value was performed according to ASTM E-128-61. Specifically, a sample (porous membrane) with a diameter of 75 mm
Was placed in the measuring device, the inside of the sample was replaced with ethanol, and the sample was fixed to the measuring device. Next, nitrogen gas is fed into the measuring device. At this time, the gas pressure is gradually increased by a pressure regulator provided in the measuring device, and the pressure at which bubbles start to emerge from the surface of the sample is read. This pressure value is the bubble point value. The measurement temperature is 25 ± 5 ° C., and the maximum pore size D of the porous membrane is
And the bubble point value P is shown in Equation 3 below.

【0026】[0026]

【数3】 (Equation 3)

【0027】図2〜図4から明らかなように、空隙率の
如何に関わらず、バブルポイント値が0.1〜100k
g/cm2 の範囲であれば、高率放電時の放電容量が大
きく且つショート発生率が低くなっていることが認めら
れる。
As apparent from FIGS. 2 to 4, the bubble point value is 0.1 to 100 k regardless of the porosity.
In the range of g / cm 2 , it is recognized that the discharge capacity at the time of high-rate discharge is large and the short-circuit occurrence rate is low.

【0028】〔実験2〕バブルポイント値を所定値(各
々0.1kg/cm2 、100kg/cm2 )に固定
し、空隙率を変化させ、空隙率と高率放電時の放電容量
及びショート発生率との関係を調べたので、それらの結
果を各々図5及び図6に示す。尚、放電容量の測定とシ
ョート発生率の測定とは、上記実験1と同様にして行っ
た。
[0028] [Experiment 2] The bubble point value is fixed to a predetermined value (each 0.1kg / cm 2, 100kg / cm 2), changing the porosity, when porosity and high rate discharge discharge capacity and a short generation Since the relationship with the ratio was examined, the results are shown in FIGS. 5 and 6, respectively. Note that the measurement of the discharge capacity and the measurement of the short-circuit occurrence rate were performed in the same manner as in Experiment 1 described above.

【0029】図5及び図6から明らかなように、バブル
ポイント値の如何に関わらず、空隙率が40〜90%の
範囲であれば、高率放電時の放電容量が大きく且つショ
ート発生率が低くなっていることが認められる。
As apparent from FIGS. 5 and 6, regardless of the bubble point value, if the porosity is in the range of 40 to 90%, the discharge capacity at the time of high-rate discharge is large and the short-circuit occurrence rate is low. It is recognized that it is lower.

【0030】[0030]

【発明の効果】以上説明したように、本発明によれば、
多孔質膜のバブルポイント値と空隙率とを所定範囲に規
制しているので、機械的強度が小さくなり過ぎず、しか
もイオン導電性の低下を抑制することができる。この結
果、電池内で短絡が発生するのを抑制しつつ、放電容量
(特に、高率放電時の放電容量)の増大を図ることがで
きるという優れた効果を奏する。
As described above, according to the present invention,
Since the bubble point value and the porosity of the porous film are regulated within a predetermined range, the mechanical strength does not become too small, and the decrease in ionic conductivity can be suppressed. As a result, there is an excellent effect that the discharge capacity (particularly, the discharge capacity at the time of high-rate discharge) can be increased while suppressing the occurrence of a short circuit in the battery.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明電池の断面図である。FIG. 1 is a sectional view of a battery of the present invention.

【図2】空隙率40%でバブルポイント値を変化させた
ときの、バブルポイント値と放電容量及びショート発生
率との関係を示すグラフである。
FIG. 2 is a graph showing a relationship between a bubble point value, a discharge capacity, and a short circuit occurrence rate when a bubble point value is changed at a porosity of 40%.

【図3】空隙率65%でバブルポイント値を変化させた
ときの、バブルポイント値と放電容量及びショート発生
率との関係を示すグラフである。
FIG. 3 is a graph showing a relationship between a bubble point value, a discharge capacity, and a short-circuit occurrence rate when a bubble point value is changed at a porosity of 65%.

【図4】空隙率90%でバブルポイント値を変化させた
ときの、バブルポイント値と放電容量及びショート発生
率との関係を示すグラフである。
FIG. 4 is a graph showing a relationship between a bubble point value, a discharge capacity, and a short-circuit occurrence rate when a bubble point value is changed at a porosity of 90%.

【図5】バブルポイント値0.1kg/cm2 で空隙率
を変化させたときの、空隙率と放電容量及びショート発
生率との関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the porosity, the discharge capacity, and the occurrence rate of short circuits when the porosity is changed at a bubble point value of 0.1 kg / cm 2 .

【図6】バブルポイント値100kg/cm2 で空隙率
を変化させたときの、空隙率と放電容量及びショート発
生率との関係を示すグラフである。
FIG. 6 is a graph showing a relationship between the porosity, the discharge capacity, and the short-circuit occurrence rate when the porosity is changed at a bubble point value of 100 kg / cm 2 .

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 1 positive electrode 2 negative electrode 3 separator

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年6月16日[Submission date] June 16, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図2[Correction target item name] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図2】 FIG. 2

【手続補正2】[Procedure amendment 2]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図3[Correction target item name] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図3】 FIG. 3

【手続補正3】[Procedure amendment 3]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図4[Correction target item name] Fig. 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図4】 FIG. 4

【手続補正4】[Procedure amendment 4]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図5[Correction target item name] Fig. 5

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図5】 FIG. 5

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中川 弘 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 児玉 康伸 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 西本 好宏 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 園崎 勉 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 藤井 孝則 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 中根 育朗 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 寺司 和生 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 生川 訓 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ──────────────────────────────────────────────────の Continuing on the front page (72) Hiroshi Nakagawa 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Yasunobu Kodama 2-5-2 Keihanhondori, Moriguchi-shi, Osaka No. 5 Sanyo Electric Co., Ltd. (72) Yoshihiro Nishimoto 2-5-5, Keihanhondori, Moriguchi-shi, Osaka 2-5 Sanyo Electric Co., Ltd. 2-5-5, Sanyo Electric Co., Ltd. (72) Inventor Takanori Fujii 2-5-5, Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Ikuo Nakane Moriguchi, Osaka 2-5-5 Keihanhondori Sanyo Electric Co., Ltd. (72) Inventor Kazuo Terashi 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Ikukawa Kunio Keihan, Moriguchi City, Osaka Prefecture Through 2-chome No. 5 No. 5 Sanyo Electric Co., Ltd. in

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 リチウム含有複合酸化物を主体とする正
極と、炭素材料を主体とする負極と、多孔質膜にゲル状
ポリマー電解質が保持されたセパレータとを備えるポリ
マー電解質電池において、 前記多孔質膜のバブルポイント値が0.1〜100kg
/cm2 であり、且つ多孔質膜の空隙率が40〜90%
であることを特徴とするポリマー電解質電池。
1. A polymer electrolyte battery comprising: a positive electrode mainly composed of a lithium-containing composite oxide; a negative electrode mainly composed of a carbon material; and a separator in which a gel polymer electrolyte is held in a porous film. The bubble point value of the membrane is 0.1-100kg
/ Cm 2 and the porosity of the porous membrane is 40 to 90%
A polymer electrolyte battery, characterized in that:
【請求項2】 前記多孔質膜がポリオレフィン系多孔質
膜から成る請求項1記載のポリマー電解質電池。
2. The polymer electrolyte battery according to claim 1, wherein the porous film is a polyolefin-based porous film.
JP09214697A 1997-04-10 1997-04-10 Polymer electrolyte battery Expired - Fee Related JP3378761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09214697A JP3378761B2 (en) 1997-04-10 1997-04-10 Polymer electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09214697A JP3378761B2 (en) 1997-04-10 1997-04-10 Polymer electrolyte battery

Publications (2)

Publication Number Publication Date
JPH10284125A true JPH10284125A (en) 1998-10-23
JP3378761B2 JP3378761B2 (en) 2003-02-17

Family

ID=14046305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09214697A Expired - Fee Related JP3378761B2 (en) 1997-04-10 1997-04-10 Polymer electrolyte battery

Country Status (1)

Country Link
JP (1) JP3378761B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001243988A (en) * 2000-02-28 2001-09-07 Nitto Denko Corp Film shape electrolyte
KR100787418B1 (en) * 2001-03-02 2007-12-21 삼성에스디아이 주식회사 Lithium secondary cells which have improved ion conductivity and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001243988A (en) * 2000-02-28 2001-09-07 Nitto Denko Corp Film shape electrolyte
JP4601114B2 (en) * 2000-02-28 2010-12-22 日東電工株式会社 Thin film electrolyte
KR100787418B1 (en) * 2001-03-02 2007-12-21 삼성에스디아이 주식회사 Lithium secondary cells which have improved ion conductivity and method for producing the same

Also Published As

Publication number Publication date
JP3378761B2 (en) 2003-02-17

Similar Documents

Publication Publication Date Title
CA2117730C (en) Manufacturing method of a separator for a lithium secondary battery and an organic electrolyte lithium secondary battery using the same separator
TW480763B (en) Non-aqueous electrolytic solution secondary battery
JP5334156B2 (en) Method for producing non-aqueous electrolyte secondary battery
KR100331209B1 (en) Non-aqueous Electrolyte Secondary Battery
JP3822445B2 (en) Electrochemical devices
JP2012033503A (en) Lithium electrochemical battery comprising at least one bipolar electrode with conductive aluminum or aluminum alloy substrate
JP2008166156A (en) Storage element
JP2000123867A (en) Nonaqueous secondary battery
JP3854382B2 (en) Polymer matrix for forming gelled solid electrolyte, solid electrolyte and battery
JP2008041504A (en) Nonaqueous electrolyte battery
KR20060049828A (en) Lithium ion secondary battery and charging method therefor
JP2002008730A (en) Lithium secondary battery
JP2003331838A (en) Lithium secondary battery
JP4553468B2 (en) Non-aqueous secondary battery and charging method thereof
JP4193248B2 (en) Gel electrolyte battery
JP3587982B2 (en) Polymer solid electrolyte and lithium secondary battery and electric double layer capacitor using the same
JP2004039443A (en) Battery and its manufacturing method
JP5553169B2 (en) Lithium ion secondary battery
TW567628B (en) Secondary cell of non-aqueous electrolyte using a film outer package
JP3378761B2 (en) Polymer electrolyte battery
JP2005032632A (en) Manufacturing method of non-aqueous secondary battery
JPH10261437A (en) Polymer electrolyte and lithium polymer battery using it
JP4266290B2 (en) Solid electrolyte battery
JPH08162155A (en) Nonaqueous electrolytic battery
JP4974404B2 (en) Non-aqueous secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111206

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121206

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131206

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees