JPH10283681A - Manufacture of optical disk substrate - Google Patents

Manufacture of optical disk substrate

Info

Publication number
JPH10283681A
JPH10283681A JP8353797A JP8353797A JPH10283681A JP H10283681 A JPH10283681 A JP H10283681A JP 8353797 A JP8353797 A JP 8353797A JP 8353797 A JP8353797 A JP 8353797A JP H10283681 A JPH10283681 A JP H10283681A
Authority
JP
Japan
Prior art keywords
substrate
thickness
molding
cavity
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8353797A
Other languages
Japanese (ja)
Inventor
Masaki Yoshii
正樹 吉井
Hiroki Kuramoto
浩樹 蔵本
Shigehisa Suzuki
重久 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Maxell Holdings Ltd
Original Assignee
Hitachi Ltd
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Maxell Ltd filed Critical Hitachi Ltd
Priority to JP8353797A priority Critical patent/JPH10283681A/en
Publication of JPH10283681A publication Critical patent/JPH10283681A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/263Moulds with mould wall parts provided with fine grooves or impressions, e.g. for record discs

Abstract

PROBLEM TO BE SOLVED: To mold a substrate while utilizing the deformation repulsive force of a viscoelastic body and to uniformize transfer property, double refractivity and thickness by providing the viscoelastic body whose thickness is changed in accordance with the position of a cavity on the back surface of a cavity core. SOLUTION: A viscoelastic plastic material 13 is provided on the back surface of the cavity core of a movable side shape 3 of a molding metallic mold and the thickness is varied so that it becomes thicker as it moves from the center section of the substrate to the outer peripheral section. Let t1 and t0 be the thicknesses of the material 13 at the inner and outer peripheral section, Δδbe the difference in the substrate thickness at the inner and the outer peripheral sections, Δp be the molding pressure difference of the inner and outer peripheral sections, E is the elastic modulus of the material 13 and t0 is obtained from t0 =ti +Δδ.E/Δp where ti satisfies ti <=S.(E/Δp).tc and a molding shrinkage ratio S in the substrate thickness direction is set approximately 1% and tc is the thickness of the cavity. Thus, the thickness of the substrate is molded with an approximately uniform thickness, the pressure value is reduced and the substrate double refractivity is kept at a low level.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光ディスク基板の製
造方法に関する。
The present invention relates to a method for manufacturing an optical disk substrate.

【0002】[0002]

【従来の技術】図1に従来技術による光ディスク基板の
射出成形に用いられる代表的な成形金型1を示す。基板
の成形は、図1に示すように情報ピットやレーザ案内溝
11の成形転写のためのニッケル製のスタンパ4を金型
キャビティ内に装着し、溶融樹脂を基板中心に設けたゲ
ートより充填し、基板中心孔の形成、冷却・固化後離型
して成形を完了する。(図1では、基板を離型する前の
状態を示している。) 光ディスク基板の成形では、サブミクロンオーダの情報
ピットやレーザ案内溝の精密転写、基板複屈折を低く抑
える、基板の反り変形を小さく抑える、さらに基板厚み
精度の向上が要求される。特に、高密度化のために基板
厚みが薄肉化の方向にあるため、この厚みの均一性の向
上を図ることが重要となってきている。
FIG. 1 shows a typical molding die 1 used for injection molding of an optical disk substrate according to the prior art. As shown in FIG. 1, the substrate is formed by mounting a stamper 4 made of nickel for forming and transferring information pits and laser guide grooves 11 in a mold cavity and filling molten resin from a gate provided at the center of the substrate. After forming the center hole of the substrate, cooling and solidifying, the mold is released to complete the molding. (FIG. 1 shows the state before the substrate is released.) In the formation of an optical disk substrate, precise transfer of information pits and laser guide grooves on the order of submicrons, suppression of substrate birefringence, and warpage of the substrate Is required to be small, and furthermore, the accuracy of the substrate thickness is required to be improved. In particular, since the thickness of a substrate is being reduced in order to increase the density, it has become important to improve the uniformity of the thickness.

【0003】従来の射出成形では、充填された樹脂は充
填時差によりキャビティ位置に対して温度,圧力の状態
が異なり、転写性,複屈折,基板厚みの均一性に劣り、
基板変形も大きい。
In the conventional injection molding, the filled resin is different in temperature and pressure with respect to the cavity position due to a difference in filling time, and is inferior in transferability, birefringence, and uniformity of substrate thickness.
Substrate deformation is also large.

【0004】このような課題を解決する一つの方法とし
て、射出圧縮成形法が開発されてきている。この成形法
は、溶融樹脂の射出充填後、基板厚みに直角な方向に基
板全面に亘って圧縮力を負荷するもので、樹脂の配向制
御による複屈折の低減と圧力の均一化による転写性ばら
つきの改善が可能である。
[0004] As one method for solving such a problem, an injection compression molding method has been developed. This molding method applies a compressive force across the entire surface of the substrate in the direction perpendicular to the substrate thickness after injection filling of the molten resin. Can be improved.

【0005】しかし、これらはいずれも充填樹脂の温
度,圧力状態がキャビティ位置に対して異なっているに
もかかわらず、基板全面を同一圧力で同時刻にて負荷す
るため、成形基板内における転写性,複屈折などのばら
つきや基板厚みの不均一を完全に解消することは不可能
である。
[0005] However, these methods apply the same pressure to the entire surface of the substrate at the same time at the same time even though the temperature and pressure of the filling resin are different with respect to the cavity position. It is impossible to completely eliminate variations such as birefringence and unevenness in substrate thickness.

【0006】また、従来の射出圧縮成形における圧縮力
の負荷方法は、圧力源を金型内に設けた油圧機構、
成形機の型締め装置、成形機のプラテン等に設けた油
圧機構等とする能動的負荷方法である。すなわち、圧力
負荷機構を具備し、成形ショット毎に圧力負荷エネルギ
を供給することが基本となり、射出成形に比べて成形機
及び金型等の設備コストとエネルギ供給によるランニン
グコストがかかる、またその応答性などが問題となる。
A conventional method of applying a compressive force in injection compression molding includes a hydraulic mechanism in which a pressure source is provided in a mold,
This is an active loading method using a mold clamping device of a molding machine, a hydraulic mechanism provided on a platen or the like of the molding machine, and the like. In other words, it is basically provided with a pressure load mechanism and supplies pressure load energy for each molding shot, so that the equipment cost of a molding machine and a mold and the running cost due to energy supply are higher than injection molding, and the response Sex is a problem.

【0007】[0007]

【発明が解決しようとする課題】上記したように従来技
術は、均一な転写性,複屈折,基板厚みを得ることは難
しく、しかもコスト的にも問題がある。本発明の課題は
これらの問題を解決することにある。
As described above, in the prior art, it is difficult to obtain uniform transferability, birefringence, and substrate thickness, and there are problems in cost. An object of the present invention is to solve these problems.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明はキャビティコアの背面に粘弾性体を設け、
成形時の樹脂圧力に呼応して上記粘弾性体の変形反力に
よる受動型圧力負荷法を実現するもので、上記粘弾性体
の厚みをキャビティ位置により変化させる、あるいは粘
弾性特性の異なる複数の粘弾性体を用いることにより、
キャビティ内位置における充填樹脂の状態に合わせて圧
縮負荷の条件を変える。
In order to solve the above problems, the present invention provides a viscoelastic body on the back surface of a cavity core,
In response to the resin pressure during molding, it realizes a passive pressure loading method by the deformation reaction force of the viscoelastic body. By using a viscoelastic body,
The condition of the compression load is changed according to the state of the filling resin at the position in the cavity.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施例を説明す
る。
Embodiments of the present invention will be described below.

【0010】(実施例1)粘弾性体としてプラスチック
材13を用い、プラスチック材の厚みを基板中心部から
外周部に向けて厚くするように変化させた実施例を図2
に示す、図2には、成形金型1の可動側型3のキャビテ
ィコア5の背面に、プラスチック材13を設けた例を示
している。
Embodiment 1 FIG. 2 shows an embodiment in which a plastic material 13 is used as a viscoelastic body and the thickness of the plastic material is changed from the center of the substrate toward the outer periphery.
FIG. 2 shows an example in which a plastic material 13 is provided on the back surface of the cavity core 5 of the movable die 3 of the molding die 1.

【0011】通常の射出成形によって成形された、厚み
0.6mm,直径120mmの基板の厚みの内周部と外周部
の差は、0.025mmである。ちなみに、従来技術によ
る射出圧縮成形法では、内外周部の厚み差は、約半分の
0.013mmである。
The difference between the inner peripheral portion and the outer peripheral portion of the thickness of a substrate having a thickness of 0.6 mm and a diameter of 120 mm formed by ordinary injection molding is 0.025 mm. Incidentally, in the injection compression molding method according to the prior art, the thickness difference between the inner and outer peripheral portions is about half, 0.013 mm.

【0012】そこで、この厚み不均一を解消するため
に、成形圧力によって基板外周部の方が内周部より0.
025mmほどキャビティ厚みが大きくなるように、プラ
スチック材の厚みを次式にて定めた。
Therefore, in order to eliminate the uneven thickness, the outer peripheral portion of the substrate is 0.1 mm thicker than the inner peripheral portion by molding pressure.
The thickness of the plastic material was determined by the following equation so that the cavity thickness increased by about 025 mm.

【0013】[0013]

【数1】t0=ti+△δ・E/△p (数1) ここで、tiは基板内周部のプラスチック材の厚み、t0
基板外周部のプラスチック材の厚み、△δは基板の内外
周部の板厚差、△pは内外周部の成形圧力差、Eはプラ
スチック材の弾性率である。ただ、成形圧力によるプラ
スチック材が大きく圧縮変形しキャビティの厚み寸法よ
り厚い基板が成形されるのを防止するため、基板内周部
のプラスチック材の厚みtiは次式を満足するものとし
た。
T 0 = t i + △ δ · E / △ p (Equation 1) where t i is the thickness of the plastic material at the inner peripheral portion of the substrate, t 0 is the thickness of the plastic material at the outer peripheral portion of the substrate, △ δ is the thickness difference between the inner and outer peripheral portions of the substrate, Δp is the molding pressure difference between the inner and outer peripheral portions, and E is the elastic modulus of the plastic material. However, in order to prevent the plastic material from being significantly compressed and deformed by the molding pressure to form a substrate thicker than the thickness of the cavity, the thickness t i of the plastic material on the inner peripheral portion of the substrate satisfies the following expression.

【0014】[0014]

【数2】ti≦S・(E/△p)・tc (数2) ここで、Sは基板板厚方向の成形収縮率(約1%)、tc
はキャビティ厚みである。
T i ≦ S · (E / △ p) · t c (Equation 2) where S is the molding shrinkage in the substrate thickness direction (about 1%), t c
Is the cavity thickness.

【0015】本例では、プラスチック材として耐熱性が
高く弾性率が高いガラス繊維30wt%入りナイロン66
を用いた。その寸法諸元等は表1に示す。
In this embodiment, nylon 66 containing 30 wt% of glass fiber having high heat resistance and high elastic modulus is used as a plastic material.
Was used. The dimensions are shown in Table 1.

【0016】[0016]

【表1】 [Table 1]

【0017】これによって、樹脂充填時には、基板外周
部のキャビティ厚さは内周部よりも0.025mmほど大
きくなる。そのため、成形された基板はほぼ均一な厚み
となる。
Accordingly, when the resin is filled, the cavity thickness at the outer peripheral portion of the substrate becomes larger by about 0.025 mm than that at the inner peripheral portion. Therefore, the formed substrate has a substantially uniform thickness.

【0018】一方、ゲートシール後、樹脂の残留する圧
力の時間変化は図3に示されるように、従来の金属型で
の射出成形では、成形樹脂の冷却収縮に伴って低下し
(A〜B)、B以降は基板に負荷される圧力は0とな
る。本発明による粘弾性体を設けた金型の場合は残留圧
力はA〜Cのように変化し、圧力値は従来の金属型の場
合より低くなるので基板複屈折を低く抑えることができ
る。
On the other hand, as shown in FIG. 3, the time variation of the residual pressure of the resin after the gate seal decreases with the cooling shrinkage of the molding resin in the conventional metal mold injection molding (A to B). ), After B, the pressure applied to the substrate becomes zero. In the case of the mold provided with the viscoelastic body according to the present invention, the residual pressure changes as A to C, and the pressure value becomes lower than in the case of the conventional metal mold, so that the substrate birefringence can be suppressed low.

【0019】(実施例2)図2の実施例1では1種類の
プラスチック材で厚みを変化させたが、図3の実施例2
では、弾性率の異なる複数のプラスチック材を用いて、
弾性率の小さい順にキャビティの外周から内周に向けて
同心円状にプラスチック材13′,13″,13′′′
を配置した。本例では、直径120mmの基板成形の例
で、表2に示すように3種類のプラスチック材を用い
た。なお、各プラスチック材の厚みは、成形圧力差と各
プラスチック材の弾性率から、基板厚みの内外周差0.
025mmを解消できる6.7mmとした。すなわち、樹脂
充填時には、基板外周部のキャビティ厚さは内周部より
も0.025mmほど大きくなり、成形された基板はほぼ
均一な厚みとなる。
(Embodiment 2) In Embodiment 1 of FIG. 2, the thickness is changed with one kind of plastic material.
Now, using multiple plastic materials with different elastic moduli,
Plastic materials 13 ′, 13 ″, 13 ″ ″ concentrically from the outer circumference to the inner circumference of the cavity in order of decreasing elastic modulus.
Was placed. In this example, as shown in Table 2, three types of plastic materials were used in forming a substrate having a diameter of 120 mm. The thickness of each plastic material is determined based on the difference between the molding pressure and the elastic modulus of each plastic material by the difference between the inner and outer peripheral thicknesses of the substrate.
6.7 mm, which can eliminate 025 mm. That is, when the resin is filled, the cavity thickness of the outer peripheral portion of the substrate becomes larger than the inner peripheral portion by about 0.025 mm, and the molded substrate has a substantially uniform thickness.

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【発明の効果】本発明によれば粘弾性体を可動型のコア
の背面に設けたため固定型のコア背面に設けても同様の
効果を得ることができる。
According to the present invention, since the viscoelastic body is provided on the back of the movable core, the same effect can be obtained even if it is provided on the back of the fixed core.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来技術による光ディスク基板成形型の断面
図。
FIG. 1 is a cross-sectional view of a conventional optical disc substrate molding die.

【図2】本発明による光ディスク基板成形型の可動型コ
ア部の断面図。
FIG. 2 is a sectional view of a movable core portion of the optical disk substrate forming die according to the present invention.

【図3】本発明による成形時(保圧完了後)の圧力挙動
を示す特性図。
FIG. 3 is a characteristic diagram showing a pressure behavior during molding (after completion of pressure holding) according to the present invention.

【図4】本発明による光ディスク基板成形型の可動型コ
ア部の断面図。
FIG. 4 is a sectional view of a movable core portion of the optical disc substrate forming die according to the present invention.

【符号の説明】[Explanation of symbols]

3…可動型、4…スタンパ、7…スタンパ内周ホルダ、
9…中心孔形成ポンチ、10…エジェクタ、12…冷却
回路、13…プラスチック材。
3 movable type, 4 stamper, 7 stamper inner peripheral holder,
9: punch for forming a center hole, 10: ejector, 12: cooling circuit, 13: plastic material.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 重久 大阪府茨木市丑寅一丁目1番88号日立マク セル 株式会社内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Shigehisa Suzuki 1-88 Ushitora, Ibaraki-shi, Osaka Hitachi Maxell, Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】光ディスク基板成形方法において、キャビ
ティコアの背面に粘弾性体を設置し、上記粘弾性体の厚
みをキャビティの場所によって変化させた成形型で成形
することを特徴とする光ディスク基板の製造方法。
1. A method for molding an optical disk substrate, comprising: mounting a viscoelastic body on the back surface of a cavity core; and molding the viscoelastic body with a molding die having a thickness changed according to the location of the cavity. Production method.
【請求項2】光ディスク基板成形方法において、キャビ
ティコアの背面に粘弾性特性の異なる複数の粘弾性体を
設置した成形型で成形することを特徴とする光ディスク
基板の製造方法。
2. A method for manufacturing an optical disk substrate, comprising: forming a plurality of viscoelastic bodies having different viscoelastic characteristics on a back surface of a cavity core by using a molding die.
JP8353797A 1997-04-02 1997-04-02 Manufacture of optical disk substrate Withdrawn JPH10283681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8353797A JPH10283681A (en) 1997-04-02 1997-04-02 Manufacture of optical disk substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8353797A JPH10283681A (en) 1997-04-02 1997-04-02 Manufacture of optical disk substrate

Publications (1)

Publication Number Publication Date
JPH10283681A true JPH10283681A (en) 1998-10-23

Family

ID=13805262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8353797A Withdrawn JPH10283681A (en) 1997-04-02 1997-04-02 Manufacture of optical disk substrate

Country Status (1)

Country Link
JP (1) JPH10283681A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7374417B2 (en) 2003-03-31 2008-05-20 Hitachi, Ltd. Stamper and transfer apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7374417B2 (en) 2003-03-31 2008-05-20 Hitachi, Ltd. Stamper and transfer apparatus

Similar Documents

Publication Publication Date Title
EP2119549B1 (en) Resin molding apparatus
KR101144120B1 (en) Injection compression mold that have moved core that form cavity
JP2000176962A (en) Manufacture of silicone resin-metal composite body
JPH08187793A (en) Plastic optical member and production thereof
JP2002166452A (en) Method and apparatus for molding precision molding
JPH10283681A (en) Manufacture of optical disk substrate
JP3550461B2 (en) Plastic molding method and optical disk manufacturing method
JP2774472B2 (en) Optical reflection mirror and its manufacturing method
US6280660B1 (en) Method and apparatus for manufacturing optical recording medium
JPH10302328A (en) Optical disk molding device, stamper disposed at optical disk molding device and optical disk molded by optical disk molding device
JP2014162012A (en) Microstructure molding method and microstructure molding die
JPS6371325A (en) Disk base manufacturing device and manufacture thereof
JP2001058335A (en) Method and mold for molding plastic material
JP6678345B2 (en) Convex stamper and molding method using the same
JPWO2006126435A1 (en) DISC MOLDING DIE, Mirror Surface Plate, AND METHOD FOR MANUFACTURING DISC MOLD
JP2000311397A (en) Metal mold for molding substrate and production of substrate
JPH1064127A (en) Method for molding optical disk and molding device therefor
JP3875807B2 (en) Molding method of molded products
JP2005231239A (en) Molding method, injection molding machine, injection compression molding machine, mold, optical disk original board, and optical disk
JPH08287461A (en) Metal mold for molding magnetic disk substrate and its molding method
JPH0976306A (en) Resin molding tool, molding method, and molding
JPH0416319A (en) Molding die assembly
JPS63151419A (en) Mold for disk base
JP2002074756A (en) Optical disk, method for manufacturing the same and molding die for disk molded body
JPH03354Y2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040706