JP2005231239A - Molding method, injection molding machine, injection compression molding machine, mold, optical disk original board, and optical disk - Google Patents

Molding method, injection molding machine, injection compression molding machine, mold, optical disk original board, and optical disk Download PDF

Info

Publication number
JP2005231239A
JP2005231239A JP2004044550A JP2004044550A JP2005231239A JP 2005231239 A JP2005231239 A JP 2005231239A JP 2004044550 A JP2004044550 A JP 2004044550A JP 2004044550 A JP2004044550 A JP 2004044550A JP 2005231239 A JP2005231239 A JP 2005231239A
Authority
JP
Japan
Prior art keywords
cavity
mold
material resin
movable
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004044550A
Other languages
Japanese (ja)
Inventor
Keiji Ueda
恵司 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2004044550A priority Critical patent/JP2005231239A/en
Publication of JP2005231239A publication Critical patent/JP2005231239A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a molded article having a good shape quality by preventing the molded article from being deformed by a pressure change of a material resin filled into a cavity and achieving a mechanism directly working on the pressure change without complication of the employed mold. <P>SOLUTION: A convex slide cavity wall 17 is formed in a fixed mold 1 to make the cavity 3 a closed space during moving a movable mold 2. The thickness of the cavity is broadened by a mold opening amount 12 from a predetermined thickness 15 using a mold clamping mechanism, and a predetermined amount of the material resin 4 is injected and filled while keeping the stopping state. The cavity forming portion of the movable mold 2 is advanced by a compressing amount 16 decided by the predetermined cavity thickness 15 to a position where the cavity thickness becomes thin to compress the material resin 4 injected and filled into the cavity 3. The material resin 4 is cooled and solidified in the cavity 3. Then the molded article 8 is taken out by retreating the movable mold 2 and opening the cavity 3. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、固定型と可動型の間に形成される所定形状のキャビティ内に溶融させた材料樹脂を射出充填し、前記材料樹脂をキャビティ内にて冷却・固化させた後に型外へ取り出す成形方法、射出成形装置、射出圧縮成形装置、成型用金型に関し、特に高度な形状精度や微細パターンの精密転写が要求される成形品としての光ディスク原盤、さらに製品としての光ディスクに関する。   The present invention is a molding in which a molten material resin is injected and filled in a cavity of a predetermined shape formed between a fixed mold and a movable mold, and the material resin is cooled and solidified in the cavity and then taken out of the mold. The present invention relates to a method, an injection molding apparatus, an injection compression molding apparatus, and a molding die, and more particularly, to an optical disk master as a molded product that requires high shape accuracy and precise pattern fine transfer, and further to an optical disk as a product.

固定型と可動型の間に形成される所定形状のキャビティ内に溶融させた材料樹脂を射出充填し、前記材料樹脂をキャビティ内にて冷却・固化させた後に型外へ取り出す射出成形技術は、同じ形状の部品あるいは製品となる成形品を大量かつ低コストに生産する技術として極めて有利な特長を有している。   An injection molding technique in which a melted material resin is injected and filled in a cavity of a predetermined shape formed between a fixed mold and a movable mold, and the material resin is cooled and solidified in the cavity and then taken out of the mold. This technology has extremely advantageous features as a technology for producing molded parts that are parts or products of the same shape in large quantities and at low cost.

そして近年では、例えばレーザープリンター等で使用されるレンズ等の光学部品・素子、高密度光ディスク基板といった精密な形状品質が要求される部品あるいは製品についても、射出成形によって成形・生産し、前記した射出成形が有する量産性およびコスト優位性を活用する試みが多くなされている。   In recent years, for example, optical parts and elements such as lenses used in laser printers, and parts or products that require precise shape quality such as high-density optical disk substrates are also molded and produced by injection molding. Many attempts have been made to utilize the mass productivity and cost advantages of molding.

図4は射出成形プロセスを示す工程図である。まず固定型1を可動型2によって閉止して所定形状のキャビティ3を形成し(図4(a))、溶融させた材料樹脂4をキャビティ3内に射出充填する(図4(b))。そしてキャビティ3全体に材料樹脂4が射出充填された際に、材料樹脂4を射出充填するための射出圧力5によってキャビティ3内の材料樹脂4に圧力6が発生する(図4(c))。なお、この際、可動型2には成形装置の型締め機構(図示せず)によって予め所定の型締め力7が加えられており、キャビティ3は始めに形成された形状に維持される。したがって、圧力6は、材料樹脂4をキャビティ3の形状に倣うように変形させてキャビティ3内壁に密着させ、材料樹脂4の形状をキャビティ形状と同じにさせる働きをする。続いて材料樹脂4をキャビティ3内で冷却・固化させた(図4(d))後に、可動型2を後退させてキャビティ3を開き、成形品8を取り出す(図4(e))。   FIG. 4 is a process diagram showing an injection molding process. First, the fixed mold 1 is closed by the movable mold 2 to form a cavity 3 having a predetermined shape (FIG. 4A), and the molten material resin 4 is injected and filled into the cavity 3 (FIG. 4B). When the material resin 4 is injected and filled in the entire cavity 3, a pressure 6 is generated in the material resin 4 in the cavity 3 by the injection pressure 5 for injection filling the material resin 4 (FIG. 4C). At this time, a predetermined mold clamping force 7 is applied to the movable mold 2 in advance by a mold clamping mechanism (not shown) of the molding apparatus, and the cavity 3 is maintained in the initially formed shape. Therefore, the pressure 6 functions to deform the material resin 4 so as to follow the shape of the cavity 3 so as to adhere to the inner wall of the cavity 3 and make the shape of the material resin 4 the same as the shape of the cavity. Subsequently, after the material resin 4 is cooled and solidified in the cavity 3 (FIG. 4D), the movable mold 2 is retracted to open the cavity 3, and the molded product 8 is taken out (FIG. 4E).

ところで、前記した精密な形状品質の成形品、言い換えるとキャビティ形状を精密に転写した形状の成形品、を得るために重要な役割を果たしている成形プロセス中の因子の1つが圧力6である。この圧力6が大きいほど材料樹脂4がキャビティ3形状に倣って変形する力が強くなる。そのため、キャビティ3形状を精密に転写した良好な形状品質が要求される光学部品・素子、高密度光ディスク基板等の成形の際には、より大きな圧力6を発生させるための工夫、例えば大きな型締め力7を加える等を行うことが通例である。   Incidentally, the pressure 6 is one of the factors in the molding process that plays an important role in obtaining the above-mentioned molded product having a precise shape quality, in other words, a molded product having a shape in which the cavity shape is precisely transferred. The greater the pressure 6, the stronger the force that the material resin 4 deforms following the shape of the cavity 3. Therefore, when molding optical parts / elements and high-density optical disk substrates that require good shape quality by precisely transferring the shape of the cavity 3, a device for generating a larger pressure 6, such as large clamping It is customary to apply force 7 or the like.

圧力6をより効果的に発生させる方法として射出圧縮成形法がある。図5は射出圧縮成形プロセスの要部工程を示す工程図である。なお、図4と同様の構成要素については、同じ番号を付記している。   As a method for generating the pressure 6 more effectively, there is an injection compression molding method. FIG. 5 is a process diagram showing main processes of the injection compression molding process. In addition, the same number is attached | subjected about the component similar to FIG.

可動型2には圧縮コア9が移動可能に設けられており、この圧縮コア9には、キャビティ3の一部となる形状が含まれている。成形の際には、まず、圧縮コア9を所定の圧縮しろ10だけ後退させて、キャビティ3の厚みを拡げた状態で材料樹脂4を射出充填し(図5(a))、所定量の材料樹脂4がキャビティ3内に充填されたタイミングで成形装置の圧縮機構(図示せず)を作動させて圧縮コア9を前進させ、キャビティ3内に充填された材料樹脂4に所定の圧縮力11を加える(図5(b))。そしてこの圧縮力11によって圧力6をキャビティ3内の材料樹脂4に発生させる。   A movable core 2 is provided with a compression core 9 that can move. The compression core 9 includes a shape that is a part of the cavity 3. At the time of molding, first, the compression core 9 is retracted by a predetermined compression margin 10 and the material resin 4 is injected and filled in a state where the thickness of the cavity 3 is increased (FIG. 5A), and a predetermined amount of material is injected. At the timing when the resin 4 is filled in the cavity 3, a compression mechanism (not shown) of the molding apparatus is operated to advance the compression core 9, and a predetermined compression force 11 is applied to the material resin 4 filled in the cavity 3. It adds (FIG.5 (b)). The compression force 11 generates a pressure 6 on the material resin 4 in the cavity 3.

前記のように射出圧縮成形法は、成形装置の圧縮機構によって直接的に材料樹脂4に圧力6を発生させる操作を行っているので、圧力6をより大きく、また精度良く発生させることが可能となる。さらにこの射出圧縮成形法では、材料樹脂4をキャビティ3に射出充填する操作をキャビティ3の厚みを圧縮しろ10だけ拡げた状態で行うので、同じキャビティ厚みの成形品を射出成形法で成形する場合と比較して、より流動抵抗を低くした状態で射出充填操作を行うことが可能となり、得られる成形品の内部歪みを小さくすることができる。   As described above, in the injection compression molding method, since the operation of generating the pressure 6 on the material resin 4 directly by the compression mechanism of the molding apparatus is performed, the pressure 6 can be generated more accurately and accurately. Become. Further, in this injection compression molding method, the operation of injecting and filling the material resin 4 into the cavity 3 is performed in a state where the thickness of the cavity 3 is expanded by 10 to the extent that the molded product having the same cavity thickness is molded by the injection molding method. Compared to the above, it is possible to perform the injection filling operation with a lower flow resistance, and the internal distortion of the obtained molded product can be reduced.

また、前記した射出圧縮成形法と同様の効果を得ようとする成形方法として、射出工程中における型開き制御を使用した擬似圧縮成形法がある。この成形法は図6に示すように、所定の型開き量12だけキャビティ3を開いた位置にて可動型2を停止させた状態で材料樹脂4を射出充填し(図6(a))、所定量の材料樹脂4がキャビティ3内に充填されたタイミングで成形装置の型締め機構(図示せず)を作動させて可動型2を前進させ、キャビティ3内に充填された材料樹脂4に所定の型締め力7を加える(図6(b))。そしてこの型締め力7によって圧力6をキャビティ3内の材料樹脂4に発生させる。   As a molding method for obtaining the same effect as the above-described injection compression molding method, there is a pseudo compression molding method using mold opening control during the injection process. In this molding method, as shown in FIG. 6, the material resin 4 is injected and filled in a state where the movable mold 2 is stopped at a position where the cavity 3 is opened by a predetermined mold opening amount 12 (FIG. 6A). The mold clamping mechanism (not shown) of the molding apparatus is operated at a timing when a predetermined amount of the material resin 4 is filled in the cavity 3 to advance the movable mold 2, and the material resin 4 filled in the cavity 3 is predetermined. The mold clamping force 7 is applied (FIG. 6B). The mold clamping force 7 generates a pressure 6 on the material resin 4 in the cavity 3.

この擬似圧縮成形法では、成形装置の型締め機構によって直接的に材料樹脂4に圧力6を発生させるためにこの圧力6について、さらに射出充填操作もキャビティ厚みを拡げた型開き状態で行うので材料樹脂の流動状態についても、前記の射出圧縮成形法と同様の効果を得ることができる。また、この擬似圧縮成形法では、射出圧縮成形に使用する金型には必須の圧縮コア構造が不要で、比較的簡単な構造の通常の射出成形用金型を使用することができる。そのため、CD系光ディスクと比較して板厚が薄くなったためにキャビティ内へ材料樹脂を射出充填することが困難になっただけでなく、より緻密なピットおよび案内溝をより正確に転写させるとともに、反りやうねり形状等の形状品質についてもより良好な品質が要求されるDVD系、さらにDVD以上の高密度光ディスクに用いる光ディスク基板成形に対して、この擬似圧縮成形法が広く採用されている。   In this pseudo compression molding method, since the pressure 6 is directly generated on the material resin 4 by the mold clamping mechanism of the molding apparatus, the injection filling operation is performed in a mold open state in which the cavity thickness is increased. The same effects as those of the injection compression molding method can be obtained with respect to the flow state of the resin. Further, in this pseudo compression molding method, an essential compression core structure is not necessary for a mold used for injection compression molding, and a normal injection mold having a relatively simple structure can be used. Therefore, not only has it become difficult to inject and fill the material resin into the cavity because the plate thickness is reduced compared to the CD-based optical disc, but more precise pits and guide grooves are transferred more accurately, This pseudo compression molding method is widely used for DVD systems that require better quality in terms of shape quality such as warpage and waviness, and for optical disk substrate molding used for high-density optical disks higher than DVD.

前記のようにキャビティ内に射出充填された材料樹脂に発生する圧力は、キャビティ形状を材料樹脂、最終的にはその成形品に転写させる重要な働きをする。しかし、材料樹脂に単純に圧力を大きく発生させれば良好な形状品質の成形品が得られるとは限らない。   The pressure generated in the material resin injected and filled in the cavity as described above plays an important role in transferring the cavity shape to the material resin, and finally to the molded product. However, it is not always possible to obtain a molded product with good shape quality if a large pressure is simply generated in the material resin.

例えば、大きな圧力が材料樹脂にまだ発生している状態で冷却工程が完了して成形品がキャビティ外へ取り出された場合、取り出し時に残留していた圧力を緩和するために成形品はその形状を変形させてしまい、結果として良好な形状品質の成形品は得られない。そのため、良好な形状品質の成形品を得るためには、キャビティ内に射出充填された材料樹脂に圧力を発生させてキャビティ形状を転写させた後、発生させた圧力をキャビティ外に取り出された成形品が変形しないレベルにまで低下させる必要がある。   For example, when the cooling process is completed and a molded product is taken out of the cavity while a large pressure is still generated in the material resin, the molded product is reshaped to relieve the pressure remaining at the time of removal. As a result, a molded product with good shape quality cannot be obtained. Therefore, in order to obtain a molded product with good shape quality, pressure is generated on the material resin injected and filled in the cavity to transfer the cavity shape, and then the generated pressure is taken out of the cavity. It is necessary to reduce it to a level where the product does not deform.

材料樹脂に発生させた圧力を低下させる方法の1つが、キャビティ内に射出充填された樹脂を冷却する操作である。材料樹脂は成形装置により加熱され、高温の溶融状態にてキャビティ内に射出充填されるが、キャビティ内に充填されると同時に、自身が有する熱を金型に伝導させて温度が低下、温度低下に伴って材料樹脂は収縮を開始する。この温度低下に伴う材料樹脂の収縮現象を言い換えると、材料樹脂がキャビティ内壁に密着し、押しつける力、つまり圧力が温度低下に伴って低下すると言える。   One method of reducing the pressure generated in the material resin is an operation of cooling the resin injected and filled in the cavity. The material resin is heated by a molding device and injected and filled into the cavity in a molten state at a high temperature. At the same time, it fills the cavity and conducts its own heat to the mold to lower the temperature and lower the temperature. Along with this, the material resin starts to shrink. In other words, it can be said that the shrinkage phenomenon of the material resin accompanying the temperature decrease is that the material resin is brought into close contact with the inner wall of the cavity and the pressing force, that is, the pressure is decreased as the temperature is decreased.

通例の射出成形法あるいは射出圧縮成形法では、キャビティ内に材料樹脂を射出充填した後の冷却工程において材料樹脂を冷却、温度を低下させて溶融状態の材料樹脂を固化させると同時にその圧力も低下させる操作を行っている。そして温度低下に伴って材料樹脂が十分に固化、圧力も成形品形状が変形しないレベルにまで低下させた上で、キャビティ外へ取り出している。   In the usual injection molding method or injection compression molding method, the material resin is cooled in the cooling step after the material resin is injected and filled into the cavity, and the temperature is lowered to solidify the molten material resin, and at the same time the pressure is reduced. The operation is performed. Then, as the temperature is lowered, the material resin is sufficiently solidified and the pressure is lowered to a level at which the shape of the molded product is not deformed, and then taken out of the cavity.

ところが、キャビティ内に射出充填された材料樹脂の温度をキャビティ全体で均一に制御・低下させること、言い換えると圧力を均一に制御・低下させることは非常に困難である。その結果、材料樹脂の温度が不均一になる、つまり圧力が不均一となると、前記圧力の不均一のために成形品内部に発生する応力によってキャビティ外に取り出された成形品は変形してしまう。また成形品の形状に因っては、キャビティ内の材料樹脂の一部に温度あるいは圧力の不均一性が極端に生じ、冷却工程中に材料樹脂が部分的にキャビティ内壁から離型する“ヒケ”が発生しやすくなる。   However, it is very difficult to uniformly control and lower the temperature of the material resin injected and filled in the cavity, in other words, to uniformly control and lower the pressure. As a result, when the temperature of the material resin becomes non-uniform, that is, the pressure becomes non-uniform, the molded product taken out of the cavity is deformed by the stress generated inside the molded product due to the non-uniform pressure. . In addition, depending on the shape of the molded product, temperature or pressure non-uniformity is extremely generated in a part of the material resin in the cavity, and the resin resin partially releases from the cavity inner wall during the cooling process. "Is more likely to occur.

そこで特許文献4においては、成形品の形状によって “ヒケ”が生じやすい箇所のキャビティ相当部分に、“ヒケ防止機構”を加えることによって成形品の“ヒケ”を防止し、所定形状の成形品を得ようと試みたり、特許文献5では、逆に成形品の一部分に意図的な“ヒケ”を生じさせることによって、成形品の所望部分の形状精度を高める工夫を提案している。しかし、これらの方法では使用する金型に複雑な機構を付与し、さらにその複雑な機構を極めて厳密に制御する必要があり、射出成形が有する量産性およびコスト優位性が損なわれてしまう。   Therefore, in Patent Document 4, “sink” is prevented by adding a “sink prevention mechanism” to a portion corresponding to a cavity where a “sink” is likely to occur depending on the shape of the molded product. Japanese Patent Application Laid-Open No. H10-228867 proposes a device for improving the shape accuracy of a desired portion of a molded product by trying to obtain it, or conversely causing intentional “sink” in a part of the molded product. However, in these methods, it is necessary to give a complicated mechanism to the mold to be used and to control the complicated mechanism very strictly, and the mass productivity and cost advantage of injection molding are impaired.

またキャビティ内に射出充填された材料樹脂の圧力を低下させる制御を、前記圧力を発生させる型締め機構あるいは圧縮機構によって行おうとする方法として、特許文献1,2記載の技術がある。
特開2003−170480号公報 特開平8−11178号公報 特開平4−112024号公報 特開2001−293758号公報 特開平11−28745号公報
As a method for reducing the pressure of the material resin injected and filled in the cavity by a mold clamping mechanism or a compression mechanism for generating the pressure, there are techniques described in Patent Documents 1 and 2.
JP 2003-170480 A JP-A-8-11178 Japanese Patent Laid-Open No. 4-112024 JP 2001-293758 A JP-A-11-28745

特許文献1,2記載の成形方法は、キャビティ内に射出充填された材料樹脂に圧力を発生させるために加えた型締め力あるいは圧縮力を冷却工程中に小さく変化させる方法であり、使用する金型に特別な機構を付与する必要がない点において特許文献4,5記載と比較して有利である。しかし、これら型締め力あるいは圧縮力を制御する方法についても下記のような問題を有している。   The molding methods described in Patent Documents 1 and 2 are methods in which the clamping force or compression force applied to generate pressure on the material resin injected and filled in the cavity is changed slightly during the cooling process, and the gold used This is advantageous in comparison with those described in Patent Documents 4 and 5 in that it is not necessary to give a special mechanism to the mold. However, these methods for controlling the clamping force or compression force also have the following problems.

例えば、冷却工程中に型締め力あるいは圧縮力を小さくする操作を行う以前に、これらの方法でもキャビティ内に射出充填された材料樹脂に対して大きな型締め力あるいは圧縮力を加える操作を所定のキャビティ形状を転写させた成形品を得るために行っている。そして前記大きな型締め力あるいは圧縮力を加えた段階にて、図7(a)に示すように射出成形法においては可動型2は固定型1とパーティング面13を当接させ、また図7(b)に示すように射出圧縮成形法においては圧縮コア9を前進限位置14まで前進させることにより、キャビティ3形状が「所定の形状」となる。またその後の冷却工程中においても前記パーティング面13あるいは前進限位置14にてある大きさの型締め力7あるいは圧縮力11を受ける状態を続けているので、キャビティ3形状は「所定の形状」を維持して変化しない。よって、キャビティ3内に射出充填された材料樹脂4の圧力は「一定体積の容器中に封じられた材料樹脂の圧力」として変化する。そのため、キャビティ3内の材料樹脂4の圧力が小さくなる変化に対しては、キャビティ3を封じる力(型締め力7あるいは圧縮力11)が変化すること(小さくなる)より、材料樹脂4自身の温度変化による圧力変化の寄与が大きくなる。結果として冷却工程中に型締め力7あるいは圧縮力11を小さくする操作を行ったとしても、その操作がキャビティ3内に充填された材料樹脂4の圧力変化(低下)として出現する効果は余り大きくならない。   For example, before performing the operation of reducing the mold clamping force or compression force during the cooling process, these methods also apply a predetermined mold clamping force or compression force to the material resin injected and filled in the cavity. This is done to obtain a molded product with the cavity shape transferred. Then, at the stage where the large mold clamping force or compression force is applied, as shown in FIG. 7A, in the injection molding method, the movable mold 2 abuts the fixed mold 1 and the parting surface 13, and FIG. As shown in (b), in the injection compression molding method, the shape of the cavity 3 becomes a “predetermined shape” by advancing the compression core 9 to the forward limit position 14. Further, during the subsequent cooling step, the state of receiving the mold clamping force 7 or the compression force 11 having a certain size at the parting surface 13 or the forward limit position 14 is continued, so the shape of the cavity 3 is “predetermined shape”. Maintaining no change. Therefore, the pressure of the material resin 4 injected and filled in the cavity 3 changes as “the pressure of the material resin sealed in a fixed volume container”. Therefore, for the change in which the pressure of the material resin 4 in the cavity 3 becomes small, the force (sealing force 7 or compression force 11) for sealing the cavity 3 changes (becomes small), so that the material resin 4 itself The contribution of pressure change due to temperature change increases. As a result, even if an operation for reducing the mold clamping force 7 or the compression force 11 is performed during the cooling process, the effect of the operation appearing as a pressure change (decrease) in the material resin 4 filled in the cavity 3 is too great. Don't be.

本発明は上記のような問題に鑑みてなされたもので、射出成形法あるいは射出圧縮成形法における型締め機構あるいは圧縮機構の動作がキャビティ内に充填された材料樹脂の圧力変化に直接作用する機構を、使用する金型を複雑にすることなく付与させ、成形プロセスの全行程中において材料樹脂の圧力を適切に制御することによって良好な形状品質の成形品を得ることを実現した射出成形法および射出成形装置を提供することを目的とする。   The present invention has been made in view of the above problems, and a mechanism in which the operation of the mold clamping mechanism or the compression mechanism in the injection molding method or the injection compression molding method directly affects the pressure change of the material resin filled in the cavity. Injection molding method that realizes obtaining a molded product of good shape quality by giving the mold to be used without complication and appropriately controlling the pressure of the material resin during the whole process of the molding process An object is to provide an injection molding apparatus.

前記目的を達成するため、請求項1に係る発明によれば、固定型と可動型の間に形成される所定形状のキャビティ内に溶融させた材料樹脂を射出充填し、前記材料樹脂をキャビティ内にて冷却・固化させた後に型外へ取り出す成形方法において、前記キャビティの形状を設定する機構の制御を、射出充填工程の開始から冷却工程の完了までの全工程を通してキャビティ厚みを基準として行うことを特徴とする。このような構成により、キャビティ容積、そしてキャビティ内の材料樹脂の圧力を制御することが可能になる。   In order to achieve the above object, according to the first aspect of the present invention, a molten material resin is injected and filled into a cavity of a predetermined shape formed between the fixed mold and the movable mold, and the material resin is injected into the cavity. In the molding method that is cooled and solidified in the mold and taken out of the mold, the mechanism for setting the shape of the cavity is controlled based on the cavity thickness throughout the entire process from the start of the injection filling process to the completion of the cooling process. It is characterized by. Such a configuration makes it possible to control the cavity volume and the pressure of the material resin in the cavity.

請求項2に係る発明によれば、固定型と可動型の間に形成される所定形状のキャビティ内に溶融させた材料樹脂を射出充填し、前記材料樹脂をキャビティ内にて冷却・固化させた後に型外へ取り出す成形方法において、溶融させた材料樹脂をキャビティ内に所定量射出充填した後に、キャビティ厚みが所定の成形品厚み以下の厚みまで可動型のキャビティ形成部を前進させてキャビティ内の材料樹脂を圧縮する操作を行うことを特徴とする。このような構成により、キャビティ内の材料樹脂に高い圧力を発生させてキャビティ形状を転写させるとともに、その後のキャビティ厚み制御操作によってキャビティ内の材料樹脂の圧力を小さくする制御を行う余地を与えることが可能になる。   According to the second aspect of the present invention, the molten material resin is injected and filled into a cavity having a predetermined shape formed between the fixed mold and the movable mold, and the material resin is cooled and solidified in the cavity. In a molding method to be taken out of the mold later, after a predetermined amount of molten material resin is injected and filled into the cavity, the cavity forming portion of the movable mold is advanced to a thickness equal to or less than the predetermined molded product thickness, An operation of compressing the material resin is performed. With such a configuration, it is possible to generate a high pressure on the material resin in the cavity to transfer the cavity shape, and to give room for control to reduce the pressure of the material resin in the cavity by the subsequent cavity thickness control operation. It becomes possible.

請求項3に係る発明によれば、請求項1または2に係る発明において、キャビティ内に射出充填された材料樹脂を圧縮した後の冷却工程中に、材料樹脂の圧力変化と冷却の進行に合わせて可動型のキャビティ形成部を後退させ、キャビティ厚みを拡げる操作を行うことを特徴とする。このような構成により、キャビティ内の材料樹脂の圧力を下げることが可能になる。   According to the invention of claim 3, in the invention of claim 1 or 2, in accordance with the pressure change of the material resin and the progress of cooling during the cooling step after compressing the material resin injected and filled in the cavity. Then, the movable cavity forming portion is retracted to increase the cavity thickness. With such a configuration, the pressure of the material resin in the cavity can be lowered.

請求項4に係る発明によれば、請求項3に係る発明において、冷却工程完了時にキャビティ厚みが所定の成形品厚みとなり、かつキャビティ内の材料樹脂の内部圧力が取り出し後の成形品形状が変形しないレベルにまで低下するように、可動型のキャビティ形成部の後退動作を制御することを特徴とする。このような構成により、所定形状の良好な形状品質を有する成形品を得ることが可能になる。   According to the invention according to claim 4, in the invention according to claim 3, the cavity thickness becomes a predetermined molded product thickness at the completion of the cooling step, and the molded product shape after the internal pressure of the material resin in the cavity is taken out is deformed. The retracting operation of the movable cavity forming portion is controlled so as to be lowered to a level not to be performed. With such a configuration, it is possible to obtain a molded product having a good shape quality with a predetermined shape.

請求項5に係る発明によれば、請求項3または4に係る発明において、材料樹脂が流動性を失う温度に到達する以前に、材料樹脂の内部圧力が所定圧力以下にまで低下するように、可動型のキャビティ形成部の後退動作を制御することを特徴とする。このような構成により、キャビティ外へ取り出した成形品が内部応力によって変形することを回避して良好な形状品質を有する成形品を得ることが可能になる。   According to the invention according to claim 5, in the invention according to claim 3 or 4, before reaching the temperature at which the material resin loses fluidity, the internal pressure of the material resin is reduced to a predetermined pressure or less. It is characterized by controlling the backward movement of the movable cavity forming portion. With such a configuration, it is possible to obtain a molded product having good shape quality by avoiding deformation of the molded product taken out of the cavity due to internal stress.

請求項6に係る発明によれば、請求項1〜5のいずれか1項に係る発明において、固定型と可動型とを組み合わせることによってキャビティを形成し、このキャビティを型締め機構によって維持させることを特徴とする。このような構成により、請求項1から5に係る発明を射出成形によって実現することができる。   According to the invention according to claim 6, in the invention according to any one of claims 1 to 5, a cavity is formed by combining a fixed mold and a movable mold, and the cavity is maintained by a mold clamping mechanism. It is characterized by. With such a configuration, the invention according to claims 1 to 5 can be realized by injection molding.

請求項7に係る発明によれば、請求項1〜5のいずれか1項に係る発明において、可動型に、キャビティの一部となる面を含みかつ可動型本体に対して移動可能な圧縮コアを備え、固定型と可動型とを組み合わせ、圧縮コアを移動させることによってキャビティ形状を決定することを特徴とする。このような構成により、請求項1から5に係る発明を射出圧縮成形によって実現することができる。   According to the invention according to claim 7, in the invention according to any one of claims 1 to 5, the movable mold includes a surface that becomes a part of the cavity and is movable with respect to the movable mold body. The cavity shape is determined by combining the fixed mold and the movable mold and moving the compression core. With such a configuration, the invention according to claims 1 to 5 can be realized by injection compression molding.

請求項8に係る発明によれば、固定型と、可動型と、前記固定型と前記可動型とを組み合わせ両者の間に形成されるキャビティを所定形状に維持させる型締め機構とを有し、前記キャビティに溶融させた材料樹脂を射出充填し、前記材料樹脂をキャビティ内にて冷却・固化させた後に型外へ取り出す射出成形装置において、射出充填工程の開始から冷却工程の完了までの全工程を通してキャビティ厚みあるいは装置本体に対して前記可動型を固定する可動プラテンの位置を基準として前記型締め機構の制御を行うことが可能な制御機構を有することを特徴とする。このような構成により、請求項1から5に係る発明を実現する射出成形装置を提供することができる。   According to the invention according to claim 8, the mold includes a fixed mold, a movable mold, and a mold clamping mechanism that combines the fixed mold and the movable mold to maintain a cavity formed between the two in a predetermined shape. In the injection molding apparatus for injecting and filling molten material resin into the cavity, and cooling and solidifying the material resin in the cavity and taking it out of the mold, all processes from the start of the injection filling process to the completion of the cooling process And a control mechanism capable of controlling the mold clamping mechanism on the basis of a cavity thickness or a position of a movable platen that fixes the movable mold with respect to the apparatus main body. With such a configuration, it is possible to provide an injection molding apparatus that realizes the inventions according to claims 1 to 5.

請求項9に係る発明によれば、固定型と、可動型と、この可動型に設けられ、キャビティの一部となる面を含みかつ前記可動型本体に対して移動可能な圧縮コアと、前記固定型と前記可動型とを組み合わせ、前記圧縮コアを移動させることによってキャビティ形状を決定させる圧縮機構とを有し、前記キャビティに溶融させた材料樹脂を射出充填し、前記圧縮コアを移動させて所定のキャビティ形状に維持し、前記材料樹脂をキャビティ内にて冷却・固化させた後に型外へ取り出す射出圧縮成形装置において、射出充填工程の開始から冷却工程の完了までの全工程を通してキャビティ厚みあるいは圧縮ロッド位置を基準として前記圧縮機構の制御を行うことが可能な制御機構を有することを特徴とする。このような構成により、請求項1から5に係る発明を実現する射出圧縮成形装置を提供することができる。   According to the invention of claim 9, a fixed mold, a movable mold, a compression core that is provided on the movable mold, includes a surface that becomes a part of a cavity, and is movable with respect to the movable mold body; A combination of a fixed mold and the movable mold, and a compression mechanism for determining a cavity shape by moving the compression core, injecting and filling a molten material resin into the cavity, and moving the compression core In an injection compression molding apparatus that maintains a predetermined cavity shape and cools and solidifies the resin material in the cavity and then takes it out of the mold, the cavity thickness or through the entire process from the start of the injection filling process to the completion of the cooling process It has a control mechanism which can control the compression mechanism on the basis of the compression rod position. With such a configuration, an injection compression molding apparatus that realizes the invention according to claims 1 to 5 can be provided.

請求項10に係る発明によれば、固定型と可動型とからなり、前記固定型と前記可動型との間に形成されるキャビティに溶融させた材料樹脂を射出充填し、前記材料樹脂をキャビティ内にて冷却・固化させることによって射出成形する射出成形用の金型において、所定の厚みおよび形状のキャビティを形成した状態において、前記固定型と前記可動型のパーティング面が接触せず、両者の間に所定の間隔が保たれていることを特徴とする。このような構成により、請求項1から5に係る発明を実現する射出成形装置に用いる金型を提供することができる。   According to the tenth aspect of the present invention, a fixed mold and a movable mold are used, and a molten material resin is injected and filled into a cavity formed between the fixed mold and the movable mold, and the material resin is injected into the cavity. In a mold for injection molding that is injection-molded by cooling and solidifying inside, in a state where a cavity having a predetermined thickness and shape is formed, the parting surfaces of the fixed mold and the movable mold are not in contact with each other. A predetermined interval is maintained between the two. With such a configuration, it is possible to provide a mold used in an injection molding apparatus that realizes the inventions according to claims 1 to 5.

請求項11に係る発明によれば、固定型と、可動型と、この可動型に設けられ、キャビティの一部となる面を含みかつ前記可動型本体に対して移動可能な圧縮コアとからなり、前記固定型と前記可動型とを組み合わせ、前記圧縮コアを移動させることによってキャビティ形状を決定させ、前記キャビティに溶融させた材料樹脂を射出充填し、前記圧縮コアを移動させて所定のキャビティ形状に維持し、前記材料樹脂をキャビティ内にて冷却・固化させることによって射出成形する射出圧縮成形用の金型において、所定の厚みおよび形状のキャビティを形成した状態において、前記可動型の前記圧縮コア部が前進限に到達しておらず、前記圧縮コアに所定の前進可能幅が保たれていることを特徴とする。このような構成により、請求項1から5に係る発明を実現する射出圧縮成形装置に用いる金型を提供することができる。   According to the invention of claim 11, it comprises a fixed mold, a movable mold, and a compression core that is provided on the movable mold and includes a surface that becomes a part of a cavity and is movable with respect to the movable mold body. The cavity shape is determined by combining the fixed mold and the movable mold, and the compressed core is moved, and the molten material resin is injected and filled into the cavity, and the compressed core is moved to obtain a predetermined cavity shape. The compression core of the movable mold in a state where a cavity having a predetermined thickness and shape is formed in an injection compression molding mold in which injection molding is performed by cooling and solidifying the material resin in the cavity The portion does not reach the forward limit, and a predetermined advanceable width is maintained in the compression core. With such a configuration, it is possible to provide a mold used in an injection compression molding apparatus that realizes the inventions according to claims 1 to 5.

請求項12に係る発明によれば、請求項1〜7のいずれか1項記載の成型方法によって成形されたことを特徴とする。このような構成により、良好な形状品質の光ディスク原盤を得ることが可能になり、この良好な形状品質から得られる特性を光ディスクの製造に活用することができる。   According to the invention concerning Claim 12, it shape | molded by the shaping | molding method of any one of Claims 1-7, It is characterized by the above-mentioned. With such a configuration, it becomes possible to obtain an optical disc master having a good shape quality, and the characteristics obtained from this good shape quality can be utilized for the production of an optical disc.

請求項13に係る発明によれば、請求項12記載の光ディスク原盤を使用したことを特徴とする。このような構成により、良好な形状品質の光ディスクを得ることが可能になる。   The invention according to claim 13 is characterized in that the optical disc master according to claim 12 is used. With such a configuration, it becomes possible to obtain an optical disk with good shape quality.

請求項1では、固定型と可動型の間に形成される所定形状のキャビティ内に溶融させた材料樹脂を射出充填し、前記材料樹脂をキャビティ内にて冷却・固化させた後に型外へ取り出す成形方法において、成形装置の型締め機構あるいは圧縮機構の制御を、射出充填工程の開始から冷却工程の完了までの全工程を通してキャビティ厚みを基準として行うことによってキャビティ容積を制御し、キャビティ内の材料樹脂の圧力を直接的に制御することが可能となる。   In claim 1, a melted material resin is injected and filled in a cavity of a predetermined shape formed between the fixed mold and the movable mold, and the material resin is cooled and solidified in the cavity and then taken out of the mold. In the molding method, the volume of the cavity is controlled by controlling the mold clamping mechanism or compression mechanism of the molding apparatus based on the cavity thickness throughout the entire process from the start of the injection filling process to the completion of the cooling process. It becomes possible to directly control the pressure of the resin.

請求項2では、固定型と可動型の間に形成される所定形状のキャビティ内に溶融させた材料樹脂を射出充填し、前記材料樹脂をキャビティ内にて冷却・固化させた後に型外へ取り出す成形方法において、溶融させた材料樹脂をキャビティ内に所定量射出充填した後に、キャビティ厚みが所定の成形品厚み以下の厚みまで可動型のキャビティ形成部材を前進させてキャビティ内の材料樹脂を圧縮する操作を行うことによって、キャビティ内の材料樹脂に高い圧力を発生させてキャビティ形状を転写させるとともに、その後のキャビティ厚み制御操作によってキャビティ内の材料樹脂の圧力を小さくする制御を行うことが可能となる。   According to a second aspect of the present invention, a melted material resin is injected and filled into a cavity of a predetermined shape formed between the fixed mold and the movable mold, and the material resin is cooled and solidified in the cavity and then taken out of the mold. In the molding method, after a predetermined amount of molten material resin is injected and filled into the cavity, the movable cavity forming member is advanced to a thickness equal to or less than the predetermined molded product thickness to compress the material resin in the cavity. By performing the operation, it is possible to generate a high pressure on the material resin in the cavity to transfer the cavity shape, and to control the pressure of the material resin in the cavity to be reduced by the subsequent cavity thickness control operation. .

請求項3では、請求項1および請求項2に述べた成形方法において、キャビティ内に射出充填された材料樹脂を圧縮した後の冷却工程中に、材料樹脂の圧力変化と冷却の進行に合わせて可動型のキャビティ形成部材を後退させてキャビティ厚みを拡げてキャビティ容積を大きくする操作を行うことによって、キャビティ内の材料樹脂の圧力を最適な条件で下げることが可能となる。   According to claim 3, in the molding method described in claim 1 and claim 2, during the cooling step after compressing the material resin injected and filled in the cavity, the pressure change of the material resin and the progress of cooling are matched. By performing the operation of retracting the movable cavity forming member to increase the cavity thickness by enlarging the cavity thickness, the pressure of the material resin in the cavity can be reduced under optimum conditions.

請求項4では、請求項3に述べた成型方法において、冷却工程完了時にキャビティ厚みが所定の成形品厚みとなり、かつキャビティ内の材料樹脂の内部圧力が取り出し後の成形品形状が変形しないレベルにまで低下するように、可動型のキャビティ形成部材の後退動作を制御することによって、所定形状の良好な形状品質を有する成形品を得ることが可能となる。   According to a fourth aspect of the present invention, in the molding method described in the third aspect, the cavity thickness becomes a predetermined molded product thickness when the cooling process is completed, and the internal pressure of the material resin in the cavity is at a level at which the molded product shape after taking out is not deformed. By controlling the retracting operation of the movable cavity forming member so as to decrease to a low level, it is possible to obtain a molded product having a good shape quality of a predetermined shape.

請求項5では、請求項3および請求項4に述べた成形方法において、材料樹脂が流動性を失う温度に到達する以前に、材料樹脂の内部圧力が所定圧力以下にまで低下するように、可動型のキャビティ形成部材の後退動作を制御することによって、キャビティ外へ取り出した成形品が内部応力によって変形することを回避して良好な形状品質を有する成形品を得ることが可能となる。   According to claim 5, in the molding method described in claim 3 and claim 4, before reaching a temperature at which the material resin loses its fluidity, it is movable so that the internal pressure of the material resin is reduced to a predetermined pressure or less. By controlling the backward movement of the cavity forming member of the mold, it is possible to obtain a molded product having good shape quality by avoiding deformation of the molded product taken out of the cavity due to internal stress.

請求項6では、請求項1から5に係る成形方法を射出成形方法とし、請求項7では、請求項1から5に係る成形方法を射出成形圧縮方法となる。   In claim 6, the molding method according to claims 1 to 5 is an injection molding method, and in claim 7, the molding method according to claims 1 to 5 is an injection molding compression method.

請求項8では、射出充填工程の開始から冷却工程の完了までの全工程を通してキャビティ厚みあるいは可動プラテン位置を基準として型締め機構の制御を行うことが可能な制御機構を有する射出成形装置で、請求項1から5に述べた方法での成形を実現するための装置を提供している。   According to an eighth aspect of the present invention, there is provided an injection molding apparatus having a control mechanism capable of controlling the mold clamping mechanism based on the cavity thickness or the movable platen position throughout the entire process from the start of the injection filling process to the completion of the cooling process. The apparatus for implement | achieving shaping | molding by the method described in claim | item 1 to 5 is provided.

請求項9では、射出充填工程の開始から冷却工程の完了までの全工程を通してキャビティ厚みあるいは圧縮ロッド位置を基準として圧縮機構の制御を行うことが可能な制御機構を有する射出圧縮成形装置で、請求項1から5に述べた方法での成形を実現するための装置を提供している。   According to a ninth aspect of the present invention, there is provided an injection compression molding apparatus having a control mechanism capable of controlling the compression mechanism based on the cavity thickness or the compression rod position throughout the entire process from the start of the injection filling process to the completion of the cooling process. The apparatus for implement | achieving shaping | molding by the method described in claim | item 1 to 5 is provided.

請求項10では、所定の厚み並びに形状でキャビティを形成した状態にて、固定型と可動型のパーティング面が接触せず、両者の間に所定の間隔が保たれていることを特徴とする射出成形用金型で、請求項1から5に述べた方法での成形を実現するための射出成形用金型を提供している。   According to a tenth aspect of the present invention, in a state where the cavity is formed with a predetermined thickness and shape, the fixed part and the movable parting surface are not in contact with each other, and a predetermined interval is maintained between them. An injection mold for realizing molding by the method described in claims 1 to 5 is provided as an injection mold.

請求項11では、所定の厚み並びに形状でキャビティを形成した状態にて、可動型の圧縮コア部分が前進限に到達しておらず、圧縮コアに所定の前進可能幅が保たれていることを特徴とする射出圧縮成形用金型で、請求項1から5に述べた方法での成形を実現するための射出圧縮成形用金型を提供している。   In claim 11, in a state where the cavity is formed with a predetermined thickness and shape, the movable compression core portion does not reach the forward limit, and the predetermined advanceable width is maintained in the compression core. An injection compression molding die for realizing molding by the method described in claims 1 to 5 is provided as a featured injection compression molding die.

請求項12では、請求項1から7に述べた射出成形法あるいは射出圧縮成形法によって成形された光ディスク原盤であり、その良好な形状品質から得られる特性を光ディスクの製造に活用することができる。   According to the twelfth aspect of the present invention, there is provided an optical disc master molded by the injection molding method or the injection compression molding method described in the first to seventh aspects, and the characteristics obtained from the good shape quality can be utilized for the production of the optical disc.

請求項13では、請求項12に述べた光ディスク原盤を使用して製造した光ディスクで、利用している光ディスク原盤の良好な形状品質から得られる特性により、良好な形状品質の光ディスクを得ることができる。   According to the thirteenth aspect, an optical disc manufactured using the optical disc master described in the twelfth aspect can obtain an optical disc having a good shape quality due to the characteristics obtained from the good shape quality of the used optical disc master. .

以下、本発明の実施の形態について、図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の第1実施形態における成形装置の要部構成およびこの成形装置による射出成形(擬似圧縮成形)プロセスを示す概念図であり、17はスライドキャビティ壁を示す。なお、図4〜図7に示した従来技術における部材と同一の部材については同一の符号を付して詳細な説明は省略する。   FIG. 1 is a conceptual diagram showing a main part configuration of a molding apparatus and an injection molding (pseudo compression molding) process by the molding apparatus according to the first embodiment of the present invention, and 17 shows a slide cavity wall. The same members as those in the prior art shown in FIGS. 4 to 7 are denoted by the same reference numerals, and detailed description thereof is omitted.

第1実施形態における成形装置は射出成形方法を用いた装置である。射出成形方法を用いた成形装置における射出成形金型では、金型を形成する重要な要素として、図1(a)に示す型開き状態から図1(b)に示す圧縮状態までのキャビティ厚みの変化に対応してキャビティ3を構成するスライドキャビティ壁17が設けられている。具体的には、固定型1に凸状のスライドキャビティ壁17が形成されており、可動型2に、スライドキャビティ壁17が嵌合する凹部が形成されており、凹部によって囲まれた可動型2の面、スライドキャビティ壁17の壁面およびスライドキャビティ壁17よって囲まれた固定型1の面によって閉じた空間のキャビティ3が構成される。   The molding apparatus in the first embodiment is an apparatus using an injection molding method. In an injection mold in a molding apparatus using an injection molding method, as an important element for forming a mold, the cavity thickness from the mold open state shown in FIG. 1A to the compressed state shown in FIG. A slide cavity wall 17 constituting the cavity 3 corresponding to the change is provided. Specifically, a convex slide cavity wall 17 is formed in the fixed mold 1, and a concave portion in which the slide cavity wall 17 is fitted is formed in the movable mold 2, and the movable mold 2 surrounded by the concave portion. The cavity 3 of the closed space is constituted by the surface of the fixed mold 1 surrounded by the surface of the slide cavity wall 17 and the surface of the slide cavity wall 17.

まず射出成形法では、図示しない型締め機構を用いて所定のキャビティ厚み15あるいはキャビティ厚みを所定のキャビティ厚み15から型開き量12だけ拡げ、この拡げた状態で可動型2のキャビティ形成部を停止させて所定量の材料樹脂4を射出充填し(図1(a))、続いて所定のキャビティ厚み15より規定した量16だけキャビティ厚みが薄くなる位置まで可動型2のキャビティ形成部を前進させてキャビティ3内に射出充填された材料樹脂4を圧縮する(図1(b))。   First, in the injection molding method, a predetermined cavity thickness 15 or cavity thickness is expanded from the predetermined cavity thickness 15 by a mold opening amount 12 using a mold clamping mechanism (not shown), and the cavity forming portion of the movable mold 2 is stopped in this expanded state. Then, a predetermined amount of material resin 4 is injected and filled (FIG. 1 (a)), and then the cavity forming portion of the movable mold 2 is advanced to a position where the cavity thickness is reduced by an amount 16 defined by a predetermined cavity thickness 15. Then, the material resin 4 injected and filled in the cavity 3 is compressed (FIG. 1B).

ここで、背景技術の欄で説明した通例の射出成形法においては、射出充填操作時における可動型2のキャビティ3を設定位置に停止させる操作以降における型締め機構の制御は、型締め機構にて発生させる“力(型締め力)”の大きさを基準に行われるが、本実施形態においては全工程でキャビティ3の厚みを基準に型締め機構が制御される。また、キャビティ厚みを基準として型締め機構を制御する方法としては、金型内に設けた接触式あるいは非接触式の位置センサ(図示せず)によって固定型1と可動型2の間の距離を測定してキャビティ厚みを求め、その測定値を基に型締め機構を制御する方法、あるいは金型の形状寸法と型閉位置および可動プラテン(図示せず。可動型2を成形装置に固定するプレート)位置の関係から計算した可動プラテン位置とキャビティ厚みの相関関係を基に型締め機構を制御する方法がある。   Here, in the usual injection molding method described in the background art section, the mold clamping mechanism is controlled by the mold clamping mechanism after the operation of stopping the cavity 3 of the movable mold 2 at the set position during the injection filling operation. The process is performed based on the magnitude of the “force (clamping force)” to be generated. In the present embodiment, the mold clamping mechanism is controlled based on the thickness of the cavity 3 in all steps. Further, as a method for controlling the mold clamping mechanism based on the cavity thickness, a distance between the fixed mold 1 and the movable mold 2 can be determined by a contact or non-contact position sensor (not shown) provided in the mold. The cavity thickness is obtained by measurement, and the mold clamping mechanism is controlled based on the measured value, or the mold shape, mold closing position, and movable platen (not shown. Plate for fixing the movable mold 2 to the molding apparatus) There is a method for controlling the clamping mechanism based on the correlation between the movable platen position calculated from the positional relationship and the cavity thickness.

また、通例の射出成形法にて使用する金型では、キャビティ厚みが所定厚み15になる位置にて可動型2と固定型1のパーティング面13が接し、可動型2をそれ以上前進させること、すなわちキャビティ厚みを所定厚み15より薄くすることは不可能(図7(a))である。それに対し、本実施形態において使用する金型は所定の厚み並びに形状でキャビティ3を形成した状態にて、固定型1と可動型2のパーティング面が接触せず、両者の間に所定の間隔が保たれる構成を有しているので、キャビティ3内に射出充填された材料樹脂4を、キャビティ厚みが所定厚み15以下になるまで圧縮することが可能となる。   Further, in a mold used in a usual injection molding method, the movable mold 2 and the parting surface 13 of the fixed mold 1 are in contact with each other at a position where the cavity thickness reaches a predetermined thickness 15, and the movable mold 2 is further advanced. That is, it is impossible to make the cavity thickness thinner than the predetermined thickness 15 (FIG. 7A). On the other hand, the mold used in this embodiment is in a state where the cavity 3 is formed with a predetermined thickness and shape, and the parting surfaces of the fixed mold 1 and the movable mold 2 are not in contact with each other, and a predetermined gap is provided between them. Therefore, the material resin 4 injected and filled in the cavity 3 can be compressed until the cavity thickness becomes a predetermined thickness 15 or less.

所定のキャビティ厚み15より規定した量16だけキャビティ厚みが薄くなる位置まで可動型2のキャビティ形成部を前進させてキャビティ3内の材料樹脂4を圧縮し、圧力6を発生させた状態(図1(b))を、キャビティ形状を成形品に転写させるのに必要かつ十分な時間保持した後、図示しない型締め機構により可動型2のキャビティ形成部を後退させてキャビティ厚みを拡げる(図3(a))。このキャビティ厚みを拡げる操作は、すなわち材料樹脂4が占めるキャビティ容量を大きくする操作であり、材料樹脂4の立場から言い換えると体積が(断熱)膨張する操作となって材料樹脂4の圧力は低下する。つまり、型締め機構のキャビティ厚みを拡げる操作によって直接的に材料樹脂4の圧力を低下させる制御を行う。また、前記した型締め機構制御による材料樹脂4の圧力低下と平行して、材料樹脂4は初期の溶融状態から時間の経過にしたがってって温度が低下、同時に圧力も低下する。そこでこの温度低下に伴う圧力低下にも配慮しながら、冷却工程完了時においてキャビティ厚みが所定の成形品8の厚みとなり(図3(b))、かつ同時にキャビティ3内の材料樹脂の内部圧力が取り出し後の成形品形状が変形しないレベルにまで低下するように、型締め機構による可動型2のキャビティ形成部の後退制御を行う。その結果、得られる成形品は所定のキャビティ形状を精密に転写した良好な形状品質を有すようになる。   A state in which pressure 6 is generated by compressing the material resin 4 in the cavity 3 by advancing the cavity forming portion of the movable mold 2 to a position where the cavity thickness is reduced by an amount 16 defined by a predetermined cavity thickness 15 (FIG. 1). (B)) is held for a time necessary and sufficient to transfer the cavity shape to the molded product, and then the cavity forming portion of the movable mold 2 is moved backward by a mold clamping mechanism (not shown) to increase the cavity thickness (FIG. 3 ( a)). The operation of expanding the cavity thickness is an operation of increasing the cavity capacity occupied by the material resin 4. In other words, from the standpoint of the material resin 4, the volume expands (adiabatic) and the pressure of the material resin 4 decreases. . That is, control is performed to directly reduce the pressure of the material resin 4 by an operation of increasing the cavity thickness of the mold clamping mechanism. Further, in parallel with the pressure drop of the material resin 4 by the above-described mold clamping mechanism control, the temperature of the material resin 4 decreases with time from the initial molten state, and the pressure also decreases. Therefore, while considering the pressure drop due to this temperature drop, the cavity thickness becomes the thickness of the predetermined molded article 8 when the cooling process is completed (FIG. 3B), and at the same time, the internal pressure of the material resin in the cavity 3 is The retraction control of the cavity forming portion of the movable mold 2 is performed by the mold clamping mechanism so that the shape of the molded product after taking out is lowered to a level that does not deform. As a result, the obtained molded product has a good shape quality obtained by accurately transferring a predetermined cavity shape.

またキャビティ厚み拡大による材料樹脂4の圧力低下制御は、所定容量の材料樹脂4をより小さな容積にまで圧縮した状態を起点として、所定の成形品厚み、つまり所定の容量になるまでその容積を拡大する操作にて行う。このプロセス中においては材料樹脂4は常に通常容積より圧縮された状態にある。そのため、前記冷却工程中の減圧プロセスにて通例の射出成形にてしばしば出現する“ヒケ”の発生は起こり得ない。   In addition, the pressure drop control of the material resin 4 by increasing the cavity thickness starts from a state in which a predetermined volume of the material resin 4 is compressed to a smaller volume, and the volume is increased until a predetermined molded product thickness, that is, a predetermined volume is reached. To do. During this process, the material resin 4 is always compressed from its normal volume. For this reason, the occurrence of “sinks” that often appear in usual injection molding in the decompression process during the cooling step cannot occur.

図2は本発明の第2実施形態における成形装置の要部構成およびこの成形装置による射出圧縮成形プロセスを示す概念図である。なお、図4〜図7に示した従来技術における部材と同一の部材については同一の符号を付して詳細な説明は省略する。   FIG. 2 is a conceptual diagram showing a main part configuration of a molding apparatus and an injection compression molding process by the molding apparatus in the second embodiment of the present invention. The same members as those in the prior art shown in FIGS. 4 to 7 are denoted by the same reference numerals, and detailed description thereof is omitted.

第2実施形態における成形装置は射出圧縮成形方法を用いた装置である。   The molding apparatus in the second embodiment is an apparatus using an injection compression molding method.

第2実施形態における成形法では、まず、圧縮コア9を所定の圧縮しろ10だけ後退させてキャビティ3の厚みを拡げた状態で材料樹脂4を射出充填し(図2(a))、所定量の材料樹脂4がキャビティ3内に充填されたタイミングで所定のキャビティ厚み15より規定した圧縮量16だけキャビティ厚みが薄くなる位置まで圧縮コア9を前進させてキャビティ3内に射出充填された材料樹脂を圧縮する(図2(b))。なお通例の射出圧縮成形法においては、圧縮コア9の制御を全て圧縮機構にて発生させる“力(圧縮力)”の大きさを基準に行うが、第2実施形態においては全工程でキャビティの厚みを基準に圧縮機構を制御する。キャビティ厚みを基準として圧縮機構を制御する方法は、図1に示した射出成形法と同様に、直接測定したキャビティ厚み測定値を用いる方法と、金型形状寸法と圧縮ロッド(図示せず。圧縮機構の一部で圧縮コア9部に直接接して力を加える)位置の相関から求めた計算値を用いる方法がある。   In the molding method according to the second embodiment, first, the material resin 4 is injected and filled in a state in which the compression core 9 is retracted by a predetermined compression margin 10 and the thickness of the cavity 3 is increased (FIG. 2A), and a predetermined amount. The material resin 4 injected and filled into the cavity 3 by advancing the compression core 9 to a position where the cavity thickness is reduced by a compression amount 16 defined by a predetermined cavity thickness 15 at the timing when the material resin 4 is filled in the cavity 3. Is compressed (FIG. 2B). In the usual injection compression molding method, the control of the compression core 9 is performed based on the magnitude of the “force (compression force)” that is generated by the compression mechanism. The compression mechanism is controlled based on the thickness. The method of controlling the compression mechanism based on the cavity thickness is similar to the injection molding method shown in FIG. 1, using a directly measured cavity thickness measurement value, mold geometry and compression rod (not shown, compression). There is a method of using a calculated value obtained from a correlation between positions) in which a force is applied in direct contact with 9 parts of the compression core in part of the mechanism.

また通例の射出圧縮成形法にて使用する金型では、キャビティ厚みが所定厚み15になる位置にて圧縮コア9は前進限位置14に突き当たり、圧縮コア9をそれ以上前進させること、言い換えればキャビティ厚みを所定厚み15より薄くすることは不可能(図7(b))である。それに対して、第2実施形態にて使用する金型は所定の厚み並びに形状でキャビティ3を形成した状態にて、圧縮コア9と前進限位置14が接触せず、両者の間に所定の間隔が保たれる構成を有しているので、キャビティ3内に射出充填された材料樹脂4を、キャビティ厚みが所定厚み15以下になるまで圧縮することが可能となる。   Further, in the mold used in the usual injection compression molding method, the compression core 9 hits the advance limit position 14 at a position where the cavity thickness reaches a predetermined thickness 15, and the compression core 9 is further advanced, in other words, the cavity. It is impossible to make the thickness thinner than the predetermined thickness 15 (FIG. 7B). In contrast, in the mold used in the second embodiment, the cavity 3 is formed with a predetermined thickness and shape, and the compression core 9 and the forward limit position 14 are not in contact with each other, and a predetermined interval is provided therebetween. Therefore, the material resin 4 injected and filled in the cavity 3 can be compressed until the cavity thickness becomes a predetermined thickness 15 or less.

なお、キャビティ厚みが所定厚み15以下になるまでキャビティ3内に射出充填された材料樹脂4を圧縮する以降の操作については、前述した第1の実施形態とほぼ同様であり、前述した第1の実施形態における“型締め機構”を“圧縮機構”、“可動型2のキャビティ形成部”を“圧縮コア”に置き換えることにより、第2の実施形態における射出圧縮成形法に関する説明となる。したがって、冷却工程中の減圧プロセスにて従来の射出圧縮成形にてしばしば出現する“ヒケ”の発生は起こり得ない。   The operation after the compression of the material resin 4 injected and filled in the cavity 3 until the cavity thickness becomes equal to or less than the predetermined thickness 15 is substantially the same as that of the first embodiment described above. By replacing the “clamping mechanism” in the embodiment with a “compression mechanism” and the “cavity forming portion of the movable mold 2” with a “compression core”, an explanation will be given regarding the injection compression molding method in the second embodiment. Therefore, the occurrence of “sink marks” often appearing in conventional injection compression molding during the decompression process during the cooling process cannot occur.

ところで、実際に前述した第1,第2実施形態にしたがった方法で成形を実施したにもかかわらず、得られる成形品の形状品質が狙いの品質に達しない事例が認められた。その原因について解析を行ったところ、キャビティ3内に射出充填された材料樹脂4の温度が低下し、流動性を失う温度に到達した時点における材料樹脂4の圧力がある大きさ(使用する材料樹脂の種類・物性および成形品形状によって決まる)以上となる条件下では、得られる成形品が大きく変形することが明らかになった。つまり、材料樹脂4が流動性を保っている間の圧力低下プロセスでは、材料樹脂4の分子鎖が比較的自由に移動して内部の圧力を緩和させることが可能である。その一方、流動性を失った後は材料樹脂4内部の分子鎖の動きが限定されて圧力緩和が進まずに内部応力として残留するようになり、この内部応力が、成形品がキャビティ外へ取り出された時に変形する原因となる。   By the way, although the molding was actually performed by the method according to the first and second embodiments described above, there were cases in which the shape quality of the obtained molded product did not reach the target quality. When the cause was analyzed, the temperature of the material resin 4 injected and filled in the cavity 3 decreased, and the pressure of the material resin 4 at the time when it reached the temperature at which the fluidity was lost (the material resin used) It was clarified that the obtained molded product is greatly deformed under the above conditions (determined by the type, physical properties and shape of the molded product). In other words, in the pressure drop process while the material resin 4 maintains fluidity, the molecular chain of the material resin 4 can move relatively freely to relieve the internal pressure. On the other hand, after the fluidity is lost, the movement of the molecular chain inside the material resin 4 is limited and pressure relaxation does not proceed, and it remains as an internal stress, and this internal stress is taken out of the cavity. Cause deformation.

そこで、材料樹脂4の温度が流動性を失う温度まで低下する以前においては、可動型2のキャビティ形成部を比較的速い速度で後退させる操作を行って、材料樹脂4の圧力をある大きさ以下になるまで急速に低下させる。続いて可動型2のキャビティ形成部を材料樹脂4の温度低下、および温度低下に起因する圧力低下とも合わせながら比較的遅い速度にて後退させる制御を行うこととした。   Therefore, before the temperature of the material resin 4 drops to a temperature at which the fluidity is lost, an operation of retracting the cavity forming portion of the movable mold 2 at a relatively high speed is performed to reduce the pressure of the material resin 4 below a certain level. Decrease rapidly until Subsequently, the cavity forming portion of the movable mold 2 is controlled to retract at a relatively slow speed while being combined with the temperature drop of the material resin 4 and the pressure drop caused by the temperature drop.

そして、前述のようなキャビティ厚みを基準とした型締め機構の制御を行い、キャビティ3内に射出充填された材料樹脂4の圧力を直接的かつ最適に制御することによって、キャビティ形状を精密に転写した良好な形状品質を有する成形品が“ヒケ”等の成形不良トラブルもなく得られるようになった。またこの成形方法にて得られた成形品は、光学部品・素子等の精密な形状精度が要求される成形品として利用される場合においても、非常に優れた特性を有するものとなり、さらにこれら成形品を使用した製品も優れた品質となる。   Then, the mold clamping mechanism is controlled based on the cavity thickness as described above, and the cavity shape is precisely transferred by directly and optimally controlling the pressure of the material resin 4 injected and filled in the cavity 3. Molded products with good shape quality can be obtained without molding defects such as “sink marks”. In addition, the molded product obtained by this molding method has very excellent characteristics even when used as a molded product that requires precise shape accuracy such as optical parts and elements. Products that use products also have excellent quality.

次に、本発明の第1の実施形態の成形装置および成型方法を用いて光ディスク基板を作成する場合の具体例について説明する。   Next, a specific example in the case of producing an optical disk substrate using the molding apparatus and molding method according to the first embodiment of the present invention will be described.

厚さ0.60mmの高密度光ディスク基板を金型温度123℃にて射出成形(擬似圧縮成形)する。型締め機構を操作してキャビティ厚みを0.62mmに拡げた状態で所定容量のポリカーボネート材料を射出充填(シリンダ設定温度の最高温度:380℃)し、キャビティ厚みを0.57mmまで前進させて材料樹脂を圧縮する。その状態を0.15sec保持した後、材料樹脂温度がおよそ160℃まで低下する以前に樹脂圧力が70kg/cm以下まで低下するように型締め機構を制御して急速にキャビティ厚みを拡大する。そしてさらに材料樹脂の温度低下および温度低下に起因する圧力低下とも合わせながら比較的遅い速度にてキャビティ厚みを拡げ、冷却工程完了時(冷却時間10秒)においてキャビティ厚みが0.60mm、樹脂圧力が5kg/cm以下となるように型締め機構を制御し、高密度光ディスク基板を成形した。なおキャビティ厚みの制御は、金型形状寸法と可動プラテン位置の相関関係より計算した可動プラテン位置を基に行った。そして得られた高密度光ディスク基板は、要求される案内溝等の微細形状を精密に転写していると同時に、反り・うねりの小さい優れた平坦性を有する光ディスク基板となった。 A high density optical disk substrate having a thickness of 0.60 mm is injection molded (pseudo compression molding) at a mold temperature of 123 ° C. The mold clamping mechanism is operated and the cavity thickness is expanded to 0.62 mm. A predetermined volume of polycarbonate material is injected and filled (maximum cylinder setting temperature: 380 ° C.), and the cavity thickness is advanced to 0.57 mm. Compress the resin. After maintaining this state for 0.15 sec, the cavity thickness is rapidly expanded by controlling the mold clamping mechanism so that the resin pressure decreases to 70 kg / cm 2 or less before the material resin temperature decreases to approximately 160 ° C. Further, the cavity thickness is increased at a relatively slow speed while being combined with the temperature drop of the material resin and the pressure drop due to the temperature drop. When the cooling process is completed (cooling time 10 seconds), the cavity thickness is 0.60 mm and the resin pressure is The mold clamping mechanism was controlled so as to be 5 kg / cm 2 or less, and a high-density optical disk substrate was molded. The cavity thickness was controlled based on the movable platen position calculated from the correlation between the mold shape and the movable platen position. The obtained high-density optical disk substrate accurately transferred the required fine shape such as guide grooves, and at the same time, became an optical disk substrate having excellent flatness with little warpage and undulation.

本発明は、光ディスク、光学レンズを初めとする光学素子等、高度な形状精度や微細パターンの精密転写が要求される成形品の成形法、成形装置および成形品に関わる。   The present invention relates to a molding method, a molding apparatus, and a molded product of a molded product that requires high shape accuracy and precise transfer of a fine pattern, such as an optical element such as an optical disk and an optical lens.

本発明の第1実施形態における成形装置の要部構成およびこの成形装置による射出成形(擬似圧縮成形)プロセスを示す概念図FIG. 1 is a conceptual diagram showing a main configuration of a molding apparatus according to a first embodiment of the present invention and an injection molding (pseudo compression molding) process by the molding apparatus. 本発明の第2実施形態における成形装置の要部構成およびこの成形装置による射出圧縮成形プロセスを示す概念図The key map showing the principal part composition of the molding device in a 2nd embodiment of the present invention, and the injection compression molding process by this molding device. 成形後のプロセスを示す概念図Conceptual diagram showing the process after molding 射出成形プロセスを示す工程図Process chart showing injection molding process 射出圧縮成形プロセスの要部工程を示す工程図Process diagram showing the main steps of the injection compression molding process 擬似圧縮成形プロセスの要部工程を示す工程図Process diagram showing the main steps of the pseudo compression molding process 冷却工程中におけるキャビティの状態を示す概念図Conceptual diagram showing the state of the cavity during the cooling process

符号の説明Explanation of symbols

1 固定型
2 可動型
3 キャビティ
4 材料樹脂
5 射出圧力
6 圧力
7 型締め力
8 成形品
9 圧縮コア
10 圧縮しろ
11 圧縮力
12 型開き量
13 パーティング面
14 前進限位置
15 キャビティ厚み
16 規定圧縮量
17 スライドキャビティ壁
DESCRIPTION OF SYMBOLS 1 Fixed type | mold 2 Movable type | mold 3 Cavity 4 Material resin 5 Injection pressure 6 Pressure 7 Clamping force 8 Molded product 9 Compression core 10 Compression margin 11 Compression force 12 Parting surface 14 Advance limit position 15 Cavity thickness 16 Specified compression Quantity 17 Slide cavity wall

Claims (13)

固定型と可動型の間に形成される所定形状のキャビティ内に溶融させた材料樹脂を射出充填し、前記材料樹脂をキャビティ内にて冷却・固化させた後に型外へ取り出す成形方法において、前記キャビティの形状を設定する機構の制御を、射出充填工程の開始から冷却工程の完了までの全工程を通してキャビティ厚みを基準として行うことを特徴とする成形方法。   In a molding method in which a melted material resin is injected and filled into a cavity of a predetermined shape formed between a fixed mold and a movable mold, and the material resin is cooled and solidified in the cavity and then taken out of the mold. A molding method characterized in that the mechanism for setting the shape of the cavity is controlled based on the cavity thickness throughout the entire process from the start of the injection filling process to the completion of the cooling process. 固定型と可動型の間に形成される所定形状のキャビティ内に溶融させた材料樹脂を射出充填し、前記材料樹脂をキャビティ内にて冷却・固化させた後に型外へ取り出す成形方法において、溶融させた材料樹脂をキャビティ内に所定量射出充填した後に、キャビティ厚みが所定の成形品厚み以下の厚みまで可動型のキャビティ形成部を前進させてキャビティ内の材料樹脂を圧縮する操作を行うことを特徴とする成形方法。   In a molding method in which a melted material resin is injected and filled into a cavity of a predetermined shape formed between a fixed mold and a movable mold, and the material resin is cooled and solidified in the cavity and then taken out of the mold. After a predetermined amount of injected material resin is injected and filled into the cavity, the movable cavity forming portion is advanced to a thickness where the cavity thickness is equal to or less than the predetermined molded product thickness, and the operation of compressing the material resin in the cavity is performed. A characteristic molding method. キャビティ内に射出充填された材料樹脂を圧縮した後の冷却工程中に、材料樹脂の圧力変化と冷却の進行に合わせて可動型のキャビティ形成部を後退させ、キャビティ厚みを拡げる操作を行うことを特徴とする請求項1または2記載の成形方法。   During the cooling process after compressing the material resin injected and filled in the cavity, the movable cavity forming part is retracted to expand the cavity thickness according to the pressure change of the material resin and the progress of cooling. The molding method according to claim 1, wherein the molding method is characterized. 冷却工程完了時にキャビティ厚みが所定の成形品厚みとなり、かつキャビティ内の材料樹脂の内部圧力が取り出し後の成形品形状が変形しないレベルにまで低下するように、可動型のキャビティ形成部の後退動作を制御することを特徴とする請求項3記載の成形方法。   When the cooling process is completed, the movable cavity forming part moves backward so that the cavity thickness reaches the predetermined molded product thickness and the internal pressure of the resin material in the cavity drops to a level at which the molded product shape does not deform after removal. The molding method according to claim 3, wherein control is performed. 材料樹脂が流動性を失う温度に到達する以前に、材料樹脂の内部圧力が所定圧力以下にまで低下するように、可動型のキャビティ形成部の後退動作を制御することを特徴とする請求項3または4記載の成形方法。   4. The retracting operation of the movable cavity forming portion is controlled so that the internal pressure of the material resin drops to a predetermined pressure or less before reaching the temperature at which the material resin loses fluidity. Or the shaping | molding method of 4. 固定型と可動型とを組み合わせることによってキャビティを形成し、このキャビティを型締め機構によって維持させることを特徴とする請求項1〜5のいずれか1項記載の成形方法。   The molding method according to claim 1, wherein a cavity is formed by combining a fixed mold and a movable mold, and the cavity is maintained by a mold clamping mechanism. 可動型に、キャビティの一部となる面を含みかつ可動型本体に対して移動可能な圧縮コアを備え、固定型と可動型とを組み合わせ、圧縮コアを移動させることによってキャビティ形状を決定することを特徴とする請求項1〜5のいずれか1項記載の成形方法。   The movable mold includes a compression core that includes a surface that becomes a part of the cavity and is movable with respect to the movable mold body. The cavity shape is determined by combining the fixed mold and the movable mold and moving the compression core. The molding method according to claim 1, wherein: 固定型と、可動型と、前記固定型と前記可動型とを組み合わせ両者の間に形成されるキャビティを所定形状に維持させる型締め機構とを有し、前記キャビティに溶融させた材料樹脂を射出充填し、前記材料樹脂をキャビティ内にて冷却・固化させた後に型外へ取り出す射出成形装置において、
射出充填工程の開始から冷却工程の完了までの全工程を通してキャビティ厚みあるいは装置本体に対して前記可動型を固定する可動プラテンの位置を基準として前記型締め機構の制御を行うことが可能な制御機構を有することを特徴とする射出成形装置。
A fixed mold, a movable mold, and a mold clamping mechanism for maintaining a cavity formed between the fixed mold and the movable mold in a predetermined shape, and injecting a molten material resin into the cavity In an injection molding device that fills and cools and solidifies the material resin in the cavity and then takes it out of the mold,
A control mechanism capable of controlling the mold clamping mechanism based on the cavity thickness or the position of the movable platen that fixes the movable mold to the apparatus body throughout the entire process from the start of the injection filling process to the completion of the cooling process. An injection molding apparatus comprising:
固定型と、可動型と、この可動型に設けられ、キャビティの一部となる面を含みかつ前記可動型本体に対して移動可能な圧縮コアと、前記固定型と前記可動型とを組み合わせ、前記圧縮コアを移動させることによってキャビティ形状を決定させる圧縮機構とを有し、前記キャビティに溶融させた材料樹脂を射出充填し、前記圧縮コアを移動させて所定のキャビティ形状に維持し、前記材料樹脂をキャビティ内にて冷却・固化させた後に型外へ取り出す射出圧縮成形装置において、
射出充填工程の開始から冷却工程の完了までの全工程を通してキャビティ厚みあるいは圧縮ロッド位置を基準として前記圧縮機構の制御を行うことが可能な制御機構を有することを特徴とする射出圧縮成形装置。
A fixed mold, a movable mold, a compression core that is provided in the movable mold, includes a surface that becomes a part of a cavity and is movable with respect to the movable mold body, and the fixed mold and the movable mold are combined. A compression mechanism for determining a cavity shape by moving the compression core, injecting and filling a melted material resin into the cavity, moving the compression core to maintain a predetermined cavity shape, and the material In the injection compression molding device that takes out the resin after cooling and solidifying the resin in the cavity,
An injection compression molding apparatus comprising a control mechanism capable of controlling the compression mechanism based on a cavity thickness or a compression rod position throughout the entire process from the start of an injection filling process to the completion of a cooling process.
固定型と可動型とからなり、前記固定型と前記可動型との間に形成されるキャビティに溶融させた材料樹脂を射出充填し、前記材料樹脂をキャビティ内にて冷却・固化させることによって射出成形する射出成形用の金型において、
所定の厚みおよび形状のキャビティを形成した状態において、前記固定型と前記可動型のパーティング面が接触せず、両者の間に所定の間隔が保たれていることを特徴とする成形用金型。
It consists of a fixed mold and a movable mold. Injection is performed by injecting and filling molten material resin into a cavity formed between the fixed mold and the movable mold, and cooling and solidifying the material resin in the cavity. In the mold for injection molding,
A molding die characterized in that in a state where a cavity having a predetermined thickness and shape is formed, the parting surfaces of the fixed mold and the movable mold do not contact each other, and a predetermined interval is maintained between them. .
固定型と、可動型と、この可動型に設けられ、キャビティの一部となる面を含みかつ前記可動型本体に対して移動可能な圧縮コアとからなり、前記固定型と前記可動型とを組み合わせ、前記圧縮コアを移動させることによってキャビティ形状を決定させ、前記キャビティに溶融させた材料樹脂を射出充填し、前記圧縮コアを移動させて所定のキャビティ形状に維持し、前記材料樹脂をキャビティ内にて冷却・固化させることによって射出成形する射出圧縮成形用の金型において、
所定の厚みおよび形状のキャビティを形成した状態において、前記可動型の前記圧縮コア部が前進限に到達しておらず、前記圧縮コアに所定の前進可能幅が保たれていることを特徴とする成形用金型。
A fixed mold, a movable mold, and a compression core that is provided on the movable mold and includes a surface that is a part of a cavity and is movable with respect to the movable mold body. In combination, the cavity shape is determined by moving the compression core, the molten material resin is injected and filled into the cavity, the compression core is moved to maintain the predetermined cavity shape, and the material resin is moved into the cavity. In the mold for injection compression molding that is injection-molded by cooling and solidifying with
In a state in which a cavity having a predetermined thickness and shape is formed, the movable compression core portion does not reach the advance limit, and a predetermined advanceable width is maintained in the compression core. Mold for molding.
請求項1〜7のいずれか1項記載の成型方法によって成形されたことを特徴とする光ディスク原盤。   An optical disc master formed by the molding method according to claim 1. 請求項12記載の光ディスク原盤を使用したことを特徴とする光ディスク。   An optical disc comprising the optical disc master according to claim 12.
JP2004044550A 2004-02-20 2004-02-20 Molding method, injection molding machine, injection compression molding machine, mold, optical disk original board, and optical disk Pending JP2005231239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004044550A JP2005231239A (en) 2004-02-20 2004-02-20 Molding method, injection molding machine, injection compression molding machine, mold, optical disk original board, and optical disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004044550A JP2005231239A (en) 2004-02-20 2004-02-20 Molding method, injection molding machine, injection compression molding machine, mold, optical disk original board, and optical disk

Publications (1)

Publication Number Publication Date
JP2005231239A true JP2005231239A (en) 2005-09-02

Family

ID=35014667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004044550A Pending JP2005231239A (en) 2004-02-20 2004-02-20 Molding method, injection molding machine, injection compression molding machine, mold, optical disk original board, and optical disk

Country Status (1)

Country Link
JP (1) JP2005231239A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014151449A (en) * 2013-02-05 2014-08-25 Ube Machinery Corporation Ltd Injection molding die and injection molding method
JPWO2015186417A1 (en) * 2014-06-04 2017-04-20 オリンパス株式会社 Injection molding method for resin molded products and identification method of clamping force
US20200353658A1 (en) * 2017-12-15 2020-11-12 Konica Minolta, Inc. Injection molded article

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014151449A (en) * 2013-02-05 2014-08-25 Ube Machinery Corporation Ltd Injection molding die and injection molding method
JPWO2015186417A1 (en) * 2014-06-04 2017-04-20 オリンパス株式会社 Injection molding method for resin molded products and identification method of clamping force
US20200353658A1 (en) * 2017-12-15 2020-11-12 Konica Minolta, Inc. Injection molded article
US11565450B2 (en) * 2017-12-15 2023-01-31 Otsuka Pharmaceutical Co., Ltd. Injection molded article

Similar Documents

Publication Publication Date Title
JP4646181B2 (en) Method and apparatus for manufacturing thick optical lenses
JP2002166452A (en) Method and apparatus for molding precision molding
JP2005231239A (en) Molding method, injection molding machine, injection compression molding machine, mold, optical disk original board, and optical disk
JPH11221842A (en) Method for molding concave lens and its molding mold
JP2000141413A (en) Manufacture of plastic molded product
KR100763475B1 (en) Disc molding die, adjusting member and disc board molding method
JP2014151449A (en) Injection molding die and injection molding method
JPS62222820A (en) Process for molding plastic
JPWO2005032796A1 (en) Injection molding machine and injection molding method
JP2013230652A (en) Molding device, molding method, and molded article
JP2002361692A (en) Disc molding apparatus and method for manufacturing disc substrate
JP2001058335A (en) Method and mold for molding plastic material
JPS615913A (en) Mold assembly of discoid recording medium base
JPH08127032A (en) Manufacture of plastic molded product
JP4574900B2 (en) Plastic optical element injection molding method and injection mold
JP2002187177A (en) Method for manufacturing injection compression molded article
JPH07148795A (en) Plastic part and molding thereof
JPS62198415A (en) Injection molding method of disklike recording base
JP2661656B2 (en) Injection molding method
JP2002166453A (en) Injection compression molding method for disk-shaped molding, information recording medium, and injection compression molding apparatus
JP2003053786A (en) Injection molding machine for molding resin substrate
JP3536506B2 (en) Injection molding method
JP3876407B2 (en) Optical disk substrate molding method and optical disk substrate molding apparatus
JP2977239B2 (en) Method for forming optical disk substrate and apparatus for manufacturing the same
JP2006231643A (en) Molding method, mold, molding formed by it, and information recording medium