JPH10282273A - Reference frequency generation device - Google Patents

Reference frequency generation device

Info

Publication number
JPH10282273A
JPH10282273A JP8477997A JP8477997A JPH10282273A JP H10282273 A JPH10282273 A JP H10282273A JP 8477997 A JP8477997 A JP 8477997A JP 8477997 A JP8477997 A JP 8477997A JP H10282273 A JPH10282273 A JP H10282273A
Authority
JP
Japan
Prior art keywords
frequency
temperature
voltage
time
fluctuation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8477997A
Other languages
Japanese (ja)
Inventor
Hitoshi Ujiie
仁 氏家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Priority to JP8477997A priority Critical patent/JPH10282273A/en
Publication of JPH10282273A publication Critical patent/JPH10282273A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To generate a more accurate and stable reference frequency by allowing an estimation operation part being installed at an operation means for frequency control to receive the detection signal of a temperature in a device and correcting a frequency fluctuation due to a temperature fluctuation quickly. SOLUTION: An ambient temperature detection means 60 detects a temperature in a device and sends the temperature signal to an operation means 13 for controlling frequency. An estimation operation part 22 being installed at the operation means 13 for controlling frequency receives temperature data Tdnew from the ambient temperature detection means 60 and inputs temperature data Tdold that was subjected to temperature correction and was executed last time and then obtains the temperature difference between the both. When the temperature difference exceeds a specific temperature difference Tddiff , a condition is shifted from a normal control state to a temperature correction control state. Then, a relatively fast frequency control is performed to a degree for following a temperature change. Therefore, a frequency can be corrected even for a short frequency fluctuation accompanying a temperature fluctuation in a device, thus generating a further accurate and stable reference frequency.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、原子周波数標準
器を内蔵する人工衛星からの電波あるいはこれに類する
超高精度の時刻信号を受信して、高精度な基準周波数を
発生する基準周波数発生装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reference frequency generator for receiving a radio wave from an artificial satellite having a built-in atomic frequency standard or an ultra-high-precision time signal similar thereto and generating a high-precision reference frequency. About.

【0002】[0002]

【従来の技術】従来技術例について図7に基準周波数発
生装置の構成図を示す。尚、人工衛星からの電波を受信
して、高精度な基準周波数を発生する基準周波数発生装
置の従来公知技術としては、特開平06−314192
号公報の「基準周波数発生装置」がある。
2. Description of the Related Art FIG. 7 shows a configuration diagram of a reference frequency generating apparatus for a prior art example. As a conventional known technology of a reference frequency generating device that receives a radio wave from an artificial satellite and generates a high-precision reference frequency, Japanese Patent Application Laid-Open No. 06-314192 is known.
There is a "reference frequency generator" in Japanese Patent Publication No.

【0003】この基準周波数発生装置の構成は、図7に
示すように、衛星電波受信器11と、時間間隔測定部1
2と、周波数制御用演算手段13と、D/A変換器14
と、分周器15と、周波数変換器A17と、電圧制御発
振器10と、温度センサー29とで成る。上述構成によ
れば、周波数制御用演算手段13内の推定演算部による
長大な時定数のデジタルフィルタによる周波数制御アル
ゴリズムとなっている。この制御アルゴリズムでは、電
圧制御発振器10自体が有する比較的短時間の周波数変
動に対しては追従制御されないという難点があった。こ
の短時間な周波数変動要因に伴い、更なる高確度で安定
な周波数発生装置の実現向上ができなかった。尚、温度
センサー29と周波数制御用演算手段13内のバッファ
メモリと温度変動補正演算部と加算器Bとによる周囲温
度補正手段は、予め個々の電圧制御発振器10の温度特
性を求めておき、これに基づき温度補正するものであ
る。しかしながら、この温度補正方法は、予め個々の電
圧制御発振器10の温度特性を求めておく必要がある難
点があり、更に電圧制御発振器10自体は経時変動しな
いものとした条件での温度補正であり、必ずしも最適な
温度補正とはならない場合がある。
[0003] As shown in FIG. 7, the configuration of this reference frequency generating device includes a satellite radio receiver 11 and a time interval measuring unit 1.
2, a frequency control operation unit 13, and a D / A converter 14
, A frequency divider 15, a frequency converter A17, a voltage-controlled oscillator 10, and a temperature sensor 29. According to the above-described configuration, the frequency control algorithm is performed by a digital filter having a long time constant by the estimation calculation unit in the frequency control calculation unit 13. In this control algorithm, there is a problem that the following control is not performed with respect to a relatively short-time frequency fluctuation of the voltage controlled oscillator 10 itself. Due to this short-term frequency fluctuation factor, it has not been possible to realize and improve a more accurate and stable frequency generator. The ambient temperature compensating means including the temperature sensor 29, the buffer memory in the frequency controlling computing means 13, the temperature fluctuation compensating computing section, and the adder B obtains the temperature characteristics of the individual voltage controlled oscillators 10 in advance. The temperature is corrected based on the temperature. However, this temperature correction method has a drawback in that it is necessary to obtain the temperature characteristics of each voltage-controlled oscillator 10 in advance, and further, the temperature correction is performed under the condition that the voltage-controlled oscillator 10 itself does not fluctuate with time. The temperature correction may not always be optimal.

【0004】ところで衛星電波は地球軌道上を周回して
いる。この為、捕捉可能な衛星に順次切替えながら周波
数同期動作させている。しかしまれにアンテナの設置場
所によっては受信できない状態に陥ることがある。この
衛星電波の受信不能時は、内蔵の電圧制御発振器10の
現時点の出力周波数を保持しながら周波数出力する。や
がて受信状態が回復すると再び衛星時刻信号S1pps
と内部時刻信号V1ppsとの時間間隔を時間間隔測定
部12で測定し、位相同期動作が再開される。
[0004] By the way, satellite radio waves orbit around the earth orbit. For this reason, frequency synchronization is performed while sequentially switching to a satellite that can be captured. However, in rare cases, reception may not be possible depending on the installation location of the antenna. When the satellite radio wave cannot be received, the frequency output is performed while maintaining the current output frequency of the built-in voltage controlled oscillator 10. When the receiving state recovers, the satellite time signal S1pps is restored again.
The time interval between the internal clock signal V1pps and the internal time signal V1pps is measured by the time interval measuring unit 12, and the phase synchronization operation is restarted.

【0005】上述における比較的短時間の周波数変動の
代表的な要因としては、電圧制御発振器10の周辺温度
変動がある。電圧制御発振器10は恒温槽に入れられて
温度安定化された水晶発振器であるが、1E−11程度
の超高安定が要求される電圧制御発振器においてはわず
かな環境温度の変動にも影響を受ける。ここでEは指数
表現を意味する。尚、周辺温度変動の例としては、隣接
装置からの発熱影響や空調装置からの温冷風や暖房装置
の影響や直射日光の輻射熱等の影響例がありランダムな
温度変動を受ける。これを改善する手段として二重構造
の恒温槽とした電圧制御発振器10とする方法や装置全
体を恒温槽とする改善方法があるが、設置スペースが大
きく装置が大型かつ重くなる難点と、大きな消費電力が
必要となってくる難点と、高価になる難点があり、可搬
性が要求される装置としては実用上好ましくない。
A typical cause of the above-mentioned relatively short-time frequency fluctuation is a fluctuation in the temperature around the voltage-controlled oscillator 10. The voltage-controlled oscillator 10 is a crystal oscillator whose temperature is stabilized by being put in a constant temperature bath. However, a voltage-controlled oscillator that requires ultra-high stability of about 1E-11 is affected by a slight change in environmental temperature. . Here, E means an exponential expression. Examples of the ambient temperature fluctuation include a heat generation effect from an adjacent device, a hot / cold air from a air conditioner, a heating device, and an radiant heat of direct sunlight. As a means for improving this, there are a method of using a voltage controlled oscillator 10 having a double-structured thermostat and an improvement method of using a thermostat for the entire device. However, the installation space is large and the device becomes large and heavy, and large consumption is required. There are drawbacks that require power and drawbacks that are expensive, and are not practically preferable as a device that requires portability.

【0006】また、従来の周波数制御アルゴリズムで長
大なデジタルフィルタの時定数(例えば時定数=3時
間)を、逆に小さくして比較的短時間の周波数変動に対
応させようとすると、人工衛星の電波に重畳される電波
伝播雑音や、超高精度の時刻信号を故意に変更して生じ
る擾乱を除去することができず、逆に出力周波数の不安
定を招くことになり好ましくない。
On the other hand, if the time constant (for example, time constant = 3 hours) of a long digital filter is reduced by a conventional frequency control algorithm so as to correspond to a relatively short-time frequency fluctuation, the artificial satellite needs to be changed. Radio wave propagation noise superimposed on radio waves and disturbance caused by intentionally changing an ultra-high-precision time signal cannot be removed, and on the contrary, output frequency becomes unstable, which is not preferable.

【0007】[0007]

【発明が解決しようとする課題】そこで、本発明が解決
しようとする課題は、装置内温度変動に伴う比較的短時
間の周波数変動に対しても、これに追従して周波数補正
し、一層高精度で安定な基準周波数発生装置を実現する
ことである。
SUMMARY OF THE INVENTION Therefore, the problem to be solved by the present invention is to correct the frequency of a relatively short-time frequency fluctuation caused by a temperature fluctuation in the apparatus by following the frequency fluctuation, thereby achieving a higher frequency. An object of the present invention is to realize an accurate and stable reference frequency generator.

【0008】[0008]

【課題を解決するための手段】第1図と第3図は、本発
明に係る解決手段を示している。第1に、上記課題を解
決するために、本発明の構成では、装置内温度を検出し
て周波数制御用演算手段13に供給する周囲温度検出手
段60を設け、周囲温度検出手段60からの温度信号を
受けて、温度変動に伴う周波数変動を短時間に補正する
温度変動補正手段を周波数制御用演算手段13に追加し
て設ける構成手段とする。これにより、印加される直流
電圧で発振周波数が制御される電圧制御発振器10を有
し、外部からの高精度な基準周波数信号を受けて、入力
時刻信号に復調する受信器11を有し、電圧制御発振器
10の出力周波数を分周器15で分周した内部時刻信号
V1ppsと入力時刻信号との時間間隔を測定する時間
間隔測定部12を有し、時間間隔測定部12の測定値か
ら電圧制御発振器10の発振周波数を同期させる周波数
制御用演算手段13を有し、周波数制御用演算手段13
で電圧制御発振器10の電圧制御入力端を制御する基準
周波数発生装置において、装置内温度変動に伴う比較的
短時間の周波数変動に対しても、これに追従して周波数
補正して、一層高精度で安定な基準周波数発生装置を実
現する。
FIGS. 1 and 3 show a solution according to the present invention. First, in order to solve the above-mentioned problem, in the configuration of the present invention, an ambient temperature detecting means 60 for detecting the temperature inside the apparatus and supplying the detected temperature to the frequency control calculating means 13 is provided. A temperature fluctuation correcting means for correcting a frequency fluctuation caused by a temperature fluctuation in a short time in response to a signal is added to the frequency control calculating means 13 as a constituent means. Accordingly, it has a voltage-controlled oscillator 10 whose oscillation frequency is controlled by an applied DC voltage, and has a receiver 11 which receives a high-precision reference frequency signal from the outside and demodulates it into an input time signal. A time interval measuring unit for measuring a time interval between the internal time signal V1pps obtained by dividing the output frequency of the control oscillator by the frequency divider and an input time signal; and voltage control based on the measured value of the time interval measuring unit. A frequency control operation means for synchronizing the oscillation frequency of the oscillator;
In the reference frequency generator that controls the voltage control input terminal of the voltage controlled oscillator 10, the frequency is corrected in accordance with the relatively short-time frequency fluctuation due to the temperature fluctuation in the apparatus, thereby achieving higher accuracy. And realizes a stable reference frequency generator.

【0009】第1図と第3図は、本発明に係る解決手段
を示している。第2に、上記課題を解決するために、本
発明の構成では、装置内温度を検出して周波数制御用演
算手段13に供給する周囲温度検出手段60を設け、周
囲温度検出手段60からの温度信号を受けて、温度変動
に伴う周波数変動を短時間に補正する温度変動補正手段
を周波数制御用演算手段13に追加して設ける構成手段
とする。これにより、印加される直流電圧で発振周波数
が制御される電圧制御発振器10を有し、原子周波数標
準器を内蔵する人工衛星の電波を受けて、入力時刻信号
を復調する衛星電波受信器11を有し、電圧制御発振器
10の出力周波数を分周器15で分周した内部時刻信号
V1ppsと衛星時刻信号S1ppsとの時間間隔を測
定する時間間隔測定部12を有し、時間間隔測定部12
の測定値から電圧制御発振器10の発振周波数を人工衛
星の原子周波数標準器の周波数に同期させるデジタル制
御値を算出する周波数制御用演算手段13を有し、周波
数制御用演算手段13で算出されたデジタル制御値を受
けて、電圧制御発振器10の電圧制御入力端へ供給する
直流電圧に変換するD/A変換器14を有する基準周波
数発生装置において、装置内温度変動に伴う比較的短時
間の周波数変動に対しても、これに追従して周波数補正
して、一層高精度で安定な基準周波数発生装置を実現す
る。
FIG. 1 and FIG. 3 show a solution according to the present invention. Secondly, in order to solve the above problem, in the configuration of the present invention, an ambient temperature detecting means 60 for detecting the temperature inside the apparatus and supplying the detected temperature to the calculating means 13 for frequency control is provided. A temperature fluctuation correcting means for correcting a frequency fluctuation caused by a temperature fluctuation in a short time in response to a signal is added to the frequency control calculating means 13 as a constituent means. Thus, a satellite radio receiver 11 having a voltage-controlled oscillator 10 whose oscillation frequency is controlled by an applied DC voltage, receiving a radio wave of an artificial satellite having a built-in atomic frequency standard, and demodulating an input time signal is provided. A time interval measuring unit 12 for measuring a time interval between the internal time signal V1pps obtained by dividing the output frequency of the voltage controlled oscillator 10 by the frequency divider 15 and the satellite time signal S1pps;
From the measured value of the frequency control oscillator 10 for calculating a digital control value for synchronizing the oscillation frequency of the voltage controlled oscillator 10 with the frequency of the atomic frequency standard device of the artificial satellite. In a reference frequency generator having a D / A converter 14 for receiving a digital control value and converting it into a DC voltage to be supplied to a voltage control input terminal of a voltage controlled oscillator 10, a relatively short time The frequency is corrected in accordance with the fluctuation, thereby realizing a more accurate and stable reference frequency generator.

【0010】尚、第4図に示すように、電圧制御発振器
10の出力周波数を所定周波数に変換する周波数変換器
A17(例えばシンセサイザやDDS(Direct Digital
Synthesizer))を設ける装置構成があり、この場合は
任意の出力周波数foutが出力可能で、かつ高精度な基
準周波数発生装置を実現できる。
As shown in FIG. 4, a frequency converter A17 for converting the output frequency of the voltage controlled oscillator 10 into a predetermined frequency (for example, a synthesizer or a DDS (Direct Digital
Synthesizer) is provided, and in this case, a high-precision reference frequency generator capable of outputting an arbitrary output frequency fout can be realized.

【0011】また、第5図に示すように、上述の衛星電
波受信器11に代え、国家標準の標準電波を受信する標
準電波受信器11bと、この電波信号を受けて基準の時
刻信号を復調する基準周波数発生装置の構成手段があ
る。また、第6図に示すように、上述の衛星電波受信器
11に代え、通信網あるいは放送網で配信される基準周
波数信号を受けて、基準の時刻信号にする分周器とした
基準周波数発生装置の構成手段がある。
As shown in FIG. 5, instead of the above-mentioned satellite radio receiver 11, a standard radio receiver 11b for receiving a national standard radio wave, and a reference time signal demodulated upon receiving this radio signal. There is a configuration means of the reference frequency generating device to be described. As shown in FIG. 6, instead of the above-described satellite radio receiver 11, a reference frequency signal generator which receives a reference frequency signal distributed through a communication network or a broadcast network and converts it into a reference time signal is used. There is a configuration means of the device.

【0012】また、上述の温度変動に伴う周波数変動を
短時間に周波数補正する温度変動補正手段としては、周
波数制御用演算手段13の推定演算部22による長大な
時定数のデジタルフィルタのデータ数Nを少なくし、比
例定数Pと積分定数Iを大きくして短時間の温度変動を
周波数補正する手段がある。尚、このデジタルフィルタ
の各要素であるデータ数N、比例定数P、積分定数Iの
設定条件は、衛星時刻信号S1ppsの擾乱の影響を受
けても支障とならない範囲内において、所望の組合わせ
条件を使用しても良い。これにより、装置内温度変動に
伴う比較的短時間の周波数変動に対しても追従可能な温
度補正を実現する。
As the temperature fluctuation correcting means for correcting the frequency fluctuation caused by the temperature fluctuation in a short time, the number N of data of the digital filter having a long time constant by the estimating operation unit 22 of the frequency control operation means 13 is used. There is means for reducing the frequency and correcting the short-term temperature fluctuation by increasing the proportional constant P and the integral constant I. The setting conditions for the number of data N, the proportionality constant P, and the integration constant I, which are the respective elements of the digital filter, are within the range that does not hinder the influence of the disturbance of the satellite time signal S1pps. May be used. As a result, a temperature correction that can follow a relatively short-time frequency fluctuation due to a temperature fluctuation in the apparatus is realized.

【0013】[0013]

【発明の実施の形態】以下に本発明の実施の形態を実施
例と共に図面を参照して詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the drawings together with embodiments.

【0014】本発明実施例について図1の基準周波数発
生装置の構成図と、図2の7段階の制御モードと各モー
ドの設定条件図と、図3の目標位相点への収束時間特性
例を示して説明する。尚、従来構成に対応する要素は同
一符号を付す。
FIG. 1 is a block diagram of the reference frequency generator of FIG. 1, FIG. 2 is a diagram showing control conditions of seven stages and setting conditions of each mode, and FIG. 3 is an example of convergence time characteristics to a target phase point. Will be described. Elements corresponding to the conventional configuration are denoted by the same reference numerals.

【0015】本発明の構成は、図1に示すように、衛星
電波受信器11と、時間間隔測定部12と、周波数制御
用演算手段13と、D/A変換器14と、分周器15
と、電圧制御発振器10と、温度センサー29と、周囲
温度検出手段60とで成る。この構成で周囲温度検出手
段60と周波数制御用演算手段13内の推定演算部22
を除き、他は従来構成と同様である。
As shown in FIG. 1, the configuration of the present invention comprises a satellite radio receiver 11, a time interval measuring unit 12, a frequency control arithmetic unit 13, a D / A converter 14, and a frequency divider 15
, A voltage-controlled oscillator 10, a temperature sensor 29, and an ambient temperature detecting means 60. In this configuration, the ambient temperature detecting means 60 and the estimation calculating section 22 in the frequency controlling calculating means 13
Except for the above, the rest is the same as the conventional configuration.

【0016】ここで、従来の周波数制御アルゴリズムに
ついて簡単に説明する。電源投入直後や、長時間にわた
り人工衛星の電波を受信出来なかった場合は、図2の7
段階の制御モードのモード1に示すように、周波数引込
み動作を短時間で行う為に、推定演算に用いる平均する
データ数NをN=4と最も少なく設定してループ応答時
間を早くする。やがて図2の時間間隔測定データの変化
量DFfの範囲値に示すように、変化量DFfが小さく
なってきたら対応するモード1〜モード7の各条件設定
に順次切替えて、徐々に周波数引込みが長時間方向に移
行していき、擾乱に影響を受けない超高安定な出力周波
数foutが発生される。尚、人工衛星の電波を一瞬ある
いは一時的に受信出来なかった場合には、直前の出力周
波数foutを保持し、復帰後は時間間隔測定データの変
化量DFfに対応するモード1〜モード7で周波数制御
することにより、瞬時あるいは一時的に基準周波数信号
が無くても高安定な基準周波数を支障なく連続して発生
可能となっている。
Here, a conventional frequency control algorithm will be briefly described. Immediately after the power is turned on or when the radio wave of the artificial satellite cannot be received for a long time, 7 in FIG.
As shown in Mode 1 of the control mode of the stages, in order to perform the frequency pull-in operation in a short time, the number N of data to be averaged used in the estimation calculation is set to the minimum of N = 4 to shorten the loop response time. Eventually, as shown in the range value of the change amount DFf of the time interval measurement data in FIG. 2, when the change amount DFf becomes smaller, the conditions are sequentially switched to the corresponding condition settings of mode 1 to mode 7, and the frequency pull-in gradually becomes longer. Moving in the time direction, an ultra-stable output frequency fout which is not affected by disturbance is generated. If the radio wave of the artificial satellite cannot be received for a moment or temporarily, the output frequency fout immediately before is held, and after the return, the frequency is changed in the modes 1 to 7 corresponding to the change amount DFf of the time interval measurement data. By controlling, even if there is no reference frequency signal instantaneously or temporarily, a highly stable reference frequency can be continuously generated without any trouble.

【0017】次に本発明に係る温度補正に関する制御に
ついて説明する。本発明では、装置内温度変動に伴う比
較的短時間の周波数変動に対しても、この温度変動に追
従可能にして周波数補正する制御手段を追加して設けた
ものである。
Next, control relating to temperature correction according to the present invention will be described. In the present invention, control means for additionally correcting the frequency by making it possible to follow the temperature fluctuation even in a relatively short time due to the temperature fluctuation in the apparatus is provided.

【0018】図1に示す周囲温度検出手段60は、電圧
制御発振器10の近くに温度検出素子を配置して電圧制
御発振器周辺の温度を検出し、これをデジタルのコード
データに変換した後、周波数制御用演算手段13の推定
演算部22に供給する。
The ambient temperature detecting means 60 shown in FIG. 1 has a temperature detecting element disposed near the voltage controlled oscillator 10 to detect the temperature around the voltage controlled oscillator, converts the temperature into digital code data, It is supplied to the estimation operation section 22 of the control operation means 13.

【0019】周波数制御用演算手段13内の推定演算部
22は、前記周囲温度検出手段60からの温度データT
Dnewを受け、前回に温度補正実行した前回実行温度デ
ータTDoldを受けて、両者の温度差を求め、この温度
差が所定温度差TDdiffを超えた場合には、通常の制御
状態から温度補正制御状態へ移行する。ここで所定温度
差TDdiffの設定値は例えば0.1℃〜10.0℃迄
0.1℃ステップで任意に設定可能であるが例えば2.
0℃設定値にて運用する。先ず、現温度データTDnew
を前回実行温度データTDoldのテーブルへ更新格納し
て、次回の比較用として保存する。ここで、現在制御モ
ードが図2に示す最長時定数であるモード7で動作中と
仮定する。このモード7の時定数は例えば数時間という
長い時定数である。
The estimating operation section 22 in the frequency control operation means 13 receives the temperature data T from the ambient temperature detection means 60.
Receiving Dnew and receiving the previously executed temperature data TDold which was previously subjected to temperature correction, calculates the temperature difference between the two, and when this temperature difference exceeds a predetermined temperature difference TDdiff, changes the temperature from the normal control state to the temperature correction control state. Move to. Here, the set value of the predetermined temperature difference TDdiff can be arbitrarily set in 0.1 ° C. steps from 0.1 ° C. to 10.0 ° C., for example.
Operate at 0 ° C set value. First, the current temperature data TDnew
Is updated and stored in the table of the previous execution temperature data TDold, and stored for the next comparison. Here, it is assumed that the current control mode is operating in mode 7, which is the longest time constant shown in FIG. The time constant of this mode 7 is a long time constant of several hours, for example.

【0020】本発明で追加した周波数制御アルゴリズム
は、図2に示すモード1〜7の制御モードを所定温度差
TDdiffに対応させたモード位置に強制移行する手法で
ある。例えば現時点をモード7と仮定した場合、モード
5に強制移行させて、そのモード5の各種比例定数P、
積分定数I、データ数Nを使用して温度変化に追従可能
な程度に比較的早い周波数補正制御を行う。そして、温
度勾配ΔTの大小に対応して図3に示すように段階的に
制御モードをM5、M6、M7に切替え制御を行う。図
3ではモード5(M5)からモード6(M6)に切替わ
り、モード6で目標位相点0を上下しながら比較的短時
間T1endで収束状態に至っていることを示している。
やがて通常の制御状態への復帰によりモード7による長
大な時定数による制御状態に遷移する。図3の収束特性
図に示すように、本発明では、目標位相点0との偏差が
比較的短時間で収束する為、装置内温度変動に伴う比較
的短時間の周波数変動に追従して温度補正される結果、
更なる高精度な出力周波数foutの発生が実現される利
点が得られる。
The frequency control algorithm added in the present invention is a technique for forcibly shifting the control modes 1 to 7 shown in FIG. 2 to a mode position corresponding to a predetermined temperature difference TDdiff. For example, assuming that the current time is Mode 7, the mode is forcibly shifted to Mode 5, and various proportional constants P of Mode 5 are set.
Using the integration constant I and the number N of data, relatively fast frequency correction control is performed so as to follow a temperature change. Then, according to the magnitude of the temperature gradient ΔT, as shown in FIG. 3, the control mode is switched stepwise to M5, M6, M7. FIG. 3 shows that the mode is switched from the mode 5 (M5) to the mode 6 (M6), and the convergence state is reached in a relatively short time T1end while moving up and down the target phase point 0 in the mode 6.
Eventually, by returning to the normal control state, the control state is shifted to the control state with a long time constant in mode 7. As shown in the convergence characteristic diagram of FIG. 3, according to the present invention, since the deviation from the target phase point 0 converges in a relatively short time, the temperature follows the relatively short-time frequency fluctuation accompanying the temperature fluctuation in the apparatus. As a result,
The advantage that the generation of the output frequency fout with higher accuracy is realized is obtained.

【0021】他方、通常の制御状態への復帰の検出例と
しては、周囲温度検出手段60からの温度データTDne
wを一定時間毎に得て、直前の温度データTDnewとの温
度変動が所定の温度勾配ΔT未満かを調べる。やがて所
定の温度勾配ΔT未満を検出すると、所定の待ち時間T
wait経過後に温度補正制御状態から通常の制御状態に復
帰して終了する。尚、通常の制御状態への復帰するとき
の所定の待ち時間Twaitは、所望より無くても良い。
On the other hand, as an example of detecting the return to the normal control state, the temperature data TDne
w is obtained at regular time intervals, and it is checked whether the temperature fluctuation with the immediately preceding temperature data TDnew is less than a predetermined temperature gradient ΔT. Eventually, when a temperature gradient less than the predetermined temperature gradient ΔT is detected, the predetermined waiting time T
After the elapse of the wait, the control returns from the temperature correction control state to the normal control state and ends. Note that the predetermined waiting time Twait for returning to the normal control state may not be longer than desired.

【0022】尚、上述説明のように制御モードを短時定
数側に切替えて温度補正をする手法の他に次の手法もあ
る。即ち、平均するデータ数Nの個数Nを所定除数Dx
で除したN/Dxの整数値を使用する手法がある。例え
ば所定除数Dx=20とした場合モード7時のN値=2
56であるから、256/20=12値を平均するデー
タ数Nとして使用する。以後通常の制御状態への復帰は
上述と同様である。これによりループ応答時間が所定除
数Dxに対応して早くなり、装置内温度変動に伴う比較
的短時間の周波数変動に追従可能となる。また上述説明
の温度補正手法の他に、図2に示す比例定数Pの値と積
分定数Iの値を所定条件値に移行させる手法がある。こ
れによりループゲインが大きくなりループ応答時間が早
くなり、温度変動に伴う比較的短時間の周波数変動も補
正される。以後通常の制御状態への復帰は上述と同様で
ある。尚、上述長大な時定数のデジタルフィルタの各要
素であるデータ数N、比例定数P、積分定数Iの設定条
件は、衛星時刻信号S1ppsの数百秒程度有する場合
がある擾乱の影響を受けても、この擾乱により出力周波
数foutが許容範囲未満の出力周波数foutゆらぎとなる
所望のフィルタ条件の組合わせを使用する温度補正手法
としても良い。
In addition to the method of switching the control mode to the short time constant as described above and correcting the temperature, there is also the following method. That is, the number N of the number N of data to be averaged is determined by a predetermined divisor Dx.
There is a method using an integer value of N / Dx divided by the following. For example, when the predetermined divisor Dx = 20, the N value in mode 7 = 2
Since it is 56, 256/20 = 12 values are used as the number N of data to be averaged. Thereafter, the return to the normal control state is the same as described above. As a result, the loop response time is shortened corresponding to the predetermined divisor Dx, and it becomes possible to follow a relatively short-time frequency fluctuation caused by a temperature fluctuation in the apparatus. In addition to the above-described temperature correction method, there is a method of shifting the value of the proportional constant P and the value of the integration constant I shown in FIG. 2 to predetermined condition values. As a result, the loop gain is increased, the loop response time is shortened, and a relatively short-time frequency change due to a temperature change is also corrected. Thereafter, the return to the normal control state is the same as described above. The conditions for setting the number of data N, the proportionality constant P, and the integration constant I, which are the elements of the digital filter having the long time constant, are affected by disturbance that may have about several hundred seconds of the satellite time signal S1pps. Alternatively, a temperature correction method using a combination of desired filter conditions that causes the output frequency fout to fluctuate below the allowable range due to the disturbance may be used.

【0023】上述発明の構成によれば、周囲温度検出手
段60を設け、周波数制御用演算手段13内の推定演算
部22において、装置内温度変動に伴う比較的短時間の
周波数変動を補正する周波数制御アルゴリズムを設ける
ことにより、温度変動に伴う比較的短時間の周波数変動
も補正される結果、更なる高精度な出力周波数foutの
発生が実現される顕著な利点が得られる。
According to the configuration of the present invention, the ambient temperature detecting means 60 is provided, and the estimation calculating section 22 in the frequency controlling calculating means 13 corrects the frequency fluctuation for a relatively short time caused by the temperature fluctuation in the apparatus. By providing the control algorithm, a relatively short-time frequency variation due to a temperature variation is also corrected. As a result, a remarkable advantage that a more accurate generation of the output frequency fout is realized is obtained.

【0024】尚、上述実施例の説明では、図1に示す具
体構成例で説明していたが、所望により図4に示すよう
に、電圧制御発振器10の出力を所定周波数に変換する
周波数変換器A17(例えばシンセサイザやDDS)を
設ける構成としても良い。この場合は、周波数変換器A
17により任意の出力周波数foutを発生できる利点が
あり、任意の超高精度の基準周波数源としての利便性が
一層向上する。
In the description of the above embodiment, the specific configuration example shown in FIG. 1 has been described. If desired, as shown in FIG. 4, a frequency converter for converting the output of the voltage controlled oscillator 10 to a predetermined frequency A17 (for example, a synthesizer or DDS) may be provided. In this case, the frequency converter A
17 has the advantage that an arbitrary output frequency fout can be generated, and the convenience as an arbitrary ultra-high precision reference frequency source is further improved.

【0025】尚、上述実施例の説明では、図1に示す具
体構成例で説明していたが、所望により図5に示すよう
に、衛星電波受信器11に代え、国家標準の標準電波を
受信する標準電波受信器11bを設け、標準電波を受け
て基準の時刻信号とする構成手段がある。この場合は、
国家標準の標準電波に対応した精度で出力周波数fout
を発生できる利点が得られる。
In the description of the above embodiment, the specific configuration example shown in FIG. 1 has been described. However, as shown in FIG. There is a means for providing a standard radio wave receiver 11b for receiving a standard radio wave and using it as a reference time signal. in this case,
Output frequency fout with accuracy corresponding to national standard radio wave
Is obtained.

【0026】尚、上述実施例の説明では、図1に示す具
体構成例で説明していたが、所望により図6に示すよう
に、衛星電波受信器11に代え、通信網あるいは放送網
で配信される基準周波数信号を受ける通信網・放送網受
信復調装置11cを設け、クロック抽出回路でクロック
を再生し、これを分周器で分周して基準の時刻信号とす
る構成手段がある。この場合は、通信網あるいは放送網
で配信される基準周波数信号に対応した精度で出力周波
数foutを発生できる。更に通信網の伝送回線によるジ
ッタやワンダが十分抑圧された純度の高い周波数信号を
発生できる利点も得られる。
In the description of the above embodiment, the specific configuration example shown in FIG. 1 has been described. However, as shown in FIG. There is a means for providing a communication / broadcasting network receiving / demodulating device 11c for receiving a reference frequency signal to be reproduced, reproducing a clock by a clock extracting circuit, and dividing the clock by a frequency divider to obtain a reference time signal. In this case, the output frequency fout can be generated with an accuracy corresponding to the reference frequency signal distributed on the communication network or the broadcast network. Further, there is obtained an advantage that a high-purity frequency signal in which jitter and wander due to the transmission line of the communication network are sufficiently suppressed can be generated.

【0027】[0027]

【発明の効果】本発明は、上述の説明内容から、下記に
記載される効果を奏する。上述発明の構成により、本発
明では、環境温度の変動がある条件下での運用において
も安定で高精度な出力周波数foutの発生が可能とな
る。即ち、装置内温度変動に伴う比較的短時間の周波数
変動も補正される結果、更なる高精度な出力周波数fou
tの発生が実現される顕著な効果が得られる。また、大
型な恒温槽が不要の為、安価に構成でき、軽量小型化及
び可搬性が容易な利点が得られる。
According to the present invention, the following effects can be obtained from the above description. According to the configuration of the present invention, the present invention enables stable and accurate generation of the output frequency fout even in an operation under a condition where the environmental temperature fluctuates. That is, as a result of correcting the frequency fluctuation in a relatively short time due to the temperature fluctuation in the apparatus, the output frequency fou with higher accuracy is corrected.
A remarkable effect of realizing the occurrence of t is obtained. In addition, since a large-sized constant temperature bath is not required, it is possible to obtain an advantage that it can be configured at a low cost, and that it can be easily reduced in size and weight and can be easily transported.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の、基準周波数発生装置の構成例であ
る。
FIG. 1 is a configuration example of a reference frequency generation device according to the present invention.

【図2】 7段階の制御モードとその設定条件例であ
る。
FIG. 2 shows a seven-stage control mode and an example of setting conditions thereof.

【図3】 目標位相点への収束時間特性例である。FIG. 3 is an example of a convergence time characteristic to a target phase point.

【図4】 本発明の、他の基準周波数発生装置の構成例
である。
FIG. 4 is a configuration example of another reference frequency generation device according to the present invention.

【図5】 本発明の、他の基準周波数発生装置の構成例
である。
FIG. 5 is a configuration example of another reference frequency generation device according to the present invention.

【図6】 本発明の、他の基準周波数発生装置の構成例
である。
FIG. 6 is a configuration example of another reference frequency generation device according to the present invention.

【図7】 従来の、基準周波数発生装置の構成例であ
る。
FIG. 7 is a configuration example of a conventional reference frequency generator.

【符号の説明】[Explanation of symbols]

10 電圧制御発振器 11 衛星電波受信器 11b 標準電波受信器 11c 通信網・放送網受信復調装置 12 時間間隔測定部 13 周波数制御用演算手段 14 D/A変換器 15 分周器 17 周波数変換器A(シンセサイザ) 22 推定演算部 29 温度センサー 60 周囲温度検出手段 Reference Signs List 10 voltage controlled oscillator 11 satellite radio receiver 11b standard radio receiver 11c communication network / broadcast network reception demodulator 12 time interval measurement unit 13 frequency control arithmetic unit 14 D / A converter 15 frequency divider 17 frequency converter A ( (Synthesizer) 22 estimation calculation unit 29 temperature sensor 60 ambient temperature detection means

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 印加される直流電圧で発振周波数が制御
される電圧制御発振器を有し、外部からの高精度な基準
周波数信号を受けて、入力時刻信号に復調する受信器を
有し、該電圧制御発振器の出力周波数を分周器で分周し
た内部時刻信号と該入力時刻信号との時間間隔を測定す
る時間間隔測定部を有し、該時間間隔測定部の測定値か
ら該電圧制御発振器の発振周波数を同期させる周波数制
御用演算手段を有し、該周波数制御用演算手段で該電圧
制御発振器の電圧制御入力端を制御する基準周波数発生
装置において、 装置内温度を検出する周囲温度検出手段と、 該周囲温度検出手段からの温度信号を受けて、温度変動
に伴う周波数変動を短時間に補正する温度変動補正手段
を周波数制御用演算手段に追加して設け、 以上を具備していることを特徴とした基準周波数発生装
置。
A voltage-controlled oscillator whose oscillation frequency is controlled by an applied DC voltage; a receiver that receives a highly accurate reference frequency signal from the outside and demodulates the signal into an input time signal; A time interval measuring unit for measuring a time interval between the internal time signal obtained by dividing the output frequency of the voltage controlled oscillator by the frequency divider and the input time signal, and determining the voltage controlled oscillator from the measured value of the time interval measuring unit A reference frequency generator for controlling a voltage control input terminal of the voltage-controlled oscillator by the frequency control operation means, the ambient temperature detection means for detecting an internal temperature of the apparatus; Temperature fluctuation correction means for receiving a temperature signal from the ambient temperature detection means and correcting the frequency fluctuation accompanying the temperature fluctuation in a short time is additionally provided to the frequency control arithmetic means; To Characteristic reference frequency generator.
【請求項2】 印加される直流電圧で発振周波数が制御
される電圧制御発振器を有し、原子周波数標準器を内蔵
する人工衛星の電波を受けて、入力時刻信号を復調する
衛星電波受信器を有し、該電圧制御発振器の出力周波数
を分周器で分周した内部時刻信号と該衛星時刻信号との
時間間隔を測定する時間間隔測定部を有し、該時間間隔
測定部の測定値から該電圧制御発振器の発振周波数を同
期させるデジタル制御値を算出する周波数制御用演算手
段を有し、該周波数制御用演算手段で算出されたデジタ
ル制御値を受けて、該電圧制御発振器の電圧制御入力端
へ供給する直流電圧に変換するD/A変換器を有する基
準周波数発生装置において、 装置内温度を検出する周囲温度検出手段と、 該周囲温度検出手段からの温度信号を受けて、温度変動
に伴う周波数変動を短時間に補正する温度変動補正手段
を周波数制御用演算手段に追加して設け、 以上を具備していることを特徴とした基準周波数発生装
置。
2. A satellite radio receiver having a voltage-controlled oscillator whose oscillation frequency is controlled by an applied DC voltage, receiving a radio wave of an artificial satellite having a built-in atomic frequency standard, and demodulating an input time signal. A time interval measuring unit for measuring a time interval between the internal time signal obtained by dividing the output frequency of the voltage controlled oscillator by a frequency divider and the satellite time signal, from a measured value of the time interval measuring unit. A frequency control calculating means for calculating a digital control value for synchronizing the oscillation frequency of the voltage controlled oscillator; receiving the digital control value calculated by the frequency controlling calculating means, A reference frequency generator having a D / A converter for converting a DC voltage to be supplied to an end; an ambient temperature detecting means for detecting an internal temperature of the apparatus; Reference frequency generator provided the temperature variation correction means adds the frequency control computation section, and characterized in that it comprises more than to correct the short time frequency variation accompanying.
【請求項3】 印加される直流電圧で発振周波数が制御
される電圧制御発振器を有し、該電圧制御発振器の出力
周波数を所定周波数に変換する周波数変換器Aを有し、
原子周波数標準器を内蔵する人工衛星の電波を受けて、
衛星時刻信号を復調する衛星電波受信器を有し、該周波
数変換器Aの出力周波数を分周器で分周した内部時刻信
号と該衛星時刻信号との時間間隔を測定する時間間隔測
定部を有し、該時間間隔測定部の測定値から該電圧制御
発振器の発振周波数を同期させるデジタル制御値を算出
する周波数制御用演算手段を有し、該周波数制御用演算
手段で算出されたデジタル制御値を受けて、該電圧制御
発振器の電圧制御入力端へ供給する直流電圧に変換する
D/A変換器を有する基準周波数発生装置において、 装置内温度を検出する周囲温度検出手段と、 該周囲温度検出手段からの温度信号を受けて、温度変動
に伴う周波数変動を短時間に周波数補正する温度変動補
正手段を周波数制御用演算手段に追加して設け、 以上を具備していることを特徴とした基準周波数発生装
置。
3. A voltage-controlled oscillator having an oscillation frequency controlled by an applied DC voltage, and a frequency converter A for converting an output frequency of the voltage-controlled oscillator into a predetermined frequency,
Receiving the radio waves of artificial satellites with a built-in atomic frequency standard,
A time interval measuring unit for measuring a time interval between an internal time signal obtained by dividing an output frequency of the frequency converter A by a frequency divider and the satellite time signal, the receiver having a satellite radio receiver for demodulating a satellite time signal; A frequency control arithmetic means for calculating a digital control value for synchronizing the oscillation frequency of the voltage-controlled oscillator from a measured value of the time interval measuring unit, and a digital control value calculated by the frequency control arithmetic means A reference frequency generator having a D / A converter for converting the received voltage into a DC voltage supplied to a voltage control input terminal of the voltage controlled oscillator; Temperature fluctuation correction means for receiving the temperature signal from the means and correcting the frequency fluctuation accompanying the temperature fluctuation in a short time in addition to the frequency control arithmetic means, and comprising: The reference frequency generator.
【請求項4】 温度変動に伴う周波数変動を短時間に周
波数補正する温度変動補正手段は、周波数制御用演算手
段の推定演算部による長大な時定数のデジタルフィルタ
のデータ数Nを少なくし、比例定数Pを大きくし、積分
定数Iを小さくして短時間な温度変動を周波数補正する
ことを特徴とした請求項1〜3記載の基準周波数発生装
置。
4. A temperature fluctuation correcting means for correcting a frequency fluctuation caused by a temperature fluctuation in a short time by reducing the number N of data of a digital filter having a long time constant by an estimating operation part of an operation means for frequency control, and 4. The reference frequency generator according to claim 1, wherein the constant P is increased and the integral constant I is decreased to correct the frequency of short-time temperature fluctuation.
【請求項5】 温度変動に伴う周波数変動を短時間に周
波数補正する温度変動補正手段は、周波数制御用演算手
段の推定演算部による長大な時定数のデジタルフィルタ
のデータ数Nを少なくして短時間な温度変動に対応して
周波数補正することを特徴とした請求項1〜3記載の基
準周波数発生装置。
5. A temperature fluctuation correcting means for correcting a frequency fluctuation due to a temperature fluctuation in a short time by reducing the number N of data of a digital filter having a long time constant by an estimating operation section of an operation means for frequency control. 4. The reference frequency generator according to claim 1, wherein the frequency is corrected in response to a time-dependent temperature change.
【請求項6】 温度変動に伴う周波数変動を短時間に周
波数補正する温度変動補正手段は、周波数制御用演算手
段の推定演算部による長大な時定数のデジタルフィルタ
の比例定数Pを大きくして短時間な温度変動に対応して
周波数補正することを特徴とした請求項1〜3記載の基
準周波数発生装置。
6. A temperature fluctuation correcting means for correcting a frequency fluctuation caused by a temperature fluctuation in a short time by increasing a proportional constant P of a digital filter having a long time constant by an estimating operation unit of a frequency control operation means. 4. The reference frequency generator according to claim 1, wherein the frequency is corrected in response to a time-dependent temperature change.
【請求項7】 温度変動に伴う周波数変動を短時間に周
波数補正する温度変動補正手段は、周波数制御用演算手
段の推定演算部による長大な時定数のデジタルフィルタ
の積分定数Iを小さくして短時間な温度変動に対応して
周波数補正することを特徴とした請求項1〜3記載の基
準周波数発生装置。
7. A temperature fluctuation correcting means for correcting a frequency fluctuation due to a temperature fluctuation in a short time by reducing an integral constant I of a digital filter having a long time constant by an estimating operation unit of a frequency control operation means. 4. The reference frequency generator according to claim 1, wherein the frequency is corrected in response to a time-dependent temperature change.
【請求項8】 衛星電波受信器に代え、国家標準の標準
電波を受信する標準電波受信器で構成することを特徴と
した請求項2、3記載の基準周波数発生装置。
8. The reference frequency generator according to claim 2, wherein a standard radio wave receiver for receiving a national standard radio wave is used instead of the satellite radio wave receiver.
【請求項9】 衛星電波受信器に代え、通信網あるいは
放送網で配信される基準周波数信号を受けて、基準の時
刻信号にする分周器で構成することを特徴とした請求項
2、3記載の基準周波数発生装置。
9. A frequency divider which receives a reference frequency signal distributed through a communication network or a broadcast network and converts it into a reference time signal, instead of the satellite radio wave receiver. Reference frequency generator as described.
JP8477997A 1997-04-03 1997-04-03 Reference frequency generation device Pending JPH10282273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8477997A JPH10282273A (en) 1997-04-03 1997-04-03 Reference frequency generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8477997A JPH10282273A (en) 1997-04-03 1997-04-03 Reference frequency generation device

Publications (1)

Publication Number Publication Date
JPH10282273A true JPH10282273A (en) 1998-10-23

Family

ID=13840183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8477997A Pending JPH10282273A (en) 1997-04-03 1997-04-03 Reference frequency generation device

Country Status (1)

Country Link
JP (1) JPH10282273A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012032275A (en) * 2010-07-30 2012-02-16 Seiko Npc Corp Receiver circuit for radio time piece
JP2012083302A (en) * 2010-10-14 2012-04-26 Nec Computertechno Ltd Electronic apparatus and clock frequency correction method of internal timepiece
JP2016152468A (en) * 2015-02-17 2016-08-22 古野電気株式会社 Reference signal generating device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012032275A (en) * 2010-07-30 2012-02-16 Seiko Npc Corp Receiver circuit for radio time piece
JP2012083302A (en) * 2010-10-14 2012-04-26 Nec Computertechno Ltd Electronic apparatus and clock frequency correction method of internal timepiece
JP2016152468A (en) * 2015-02-17 2016-08-22 古野電気株式会社 Reference signal generating device

Similar Documents

Publication Publication Date Title
KR100689162B1 (en) Satellite positioning system receiver with reference oscillator circuit and methods therefor
JP3085511B2 (en) Reference frequency generator
JP2002530985A (en) Frequency generation method and system for wireless devices
JPH11271476A (en) Reference frequency generating device
US7013119B2 (en) Radio communication apparatus and its reception timing estimating method
US6078224A (en) Frequency standard generator
US5706315A (en) Automatic frequency control device for tuning an intermediate frequency signal to a target frequency
JP5398200B2 (en) Reference signal generator
JPH10341177A (en) Automatic frequency control method and circuit
KR100533876B1 (en) Digital Communication Device
JPH10260742A (en) Precision voltage generator
JPH10282273A (en) Reference frequency generation device
WO2014045929A1 (en) Standard signal generation device, gnss module, and standard signal generation method
US7711338B2 (en) Frequency offset correction based on the presence or absence of a received signal
JP2014060682A (en) Oscillator control method, reference signal generation device and oven-controlled oscillator
JP2674534B2 (en) Oscillator
JP2003069422A (en) Reference frequency generating apparatus
JPH0856151A (en) Voltage controlled ocsillation circuit
EP1422825B1 (en) Oscillator frequency control
EP1865599B1 (en) Portable radio terminal and AFC control method
JP5064358B2 (en) Reference signal generator
JP2000004152A (en) Time frequency reference signal generator and reference time frequency generating device, and reference time generating device using the same
JP7117119B2 (en) Oscillator
JP6681231B2 (en) Reference signal generator and reference signal generation method
JP2000241524A (en) Digital processing pll

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060131