JP2012032275A - Receiver circuit for radio time piece - Google Patents

Receiver circuit for radio time piece Download PDF

Info

Publication number
JP2012032275A
JP2012032275A JP2010172027A JP2010172027A JP2012032275A JP 2012032275 A JP2012032275 A JP 2012032275A JP 2010172027 A JP2010172027 A JP 2010172027A JP 2010172027 A JP2010172027 A JP 2010172027A JP 2012032275 A JP2012032275 A JP 2012032275A
Authority
JP
Japan
Prior art keywords
circuit
frequency
signal
radio
local
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010172027A
Other languages
Japanese (ja)
Other versions
JP5719541B2 (en
Inventor
Kaoru Kanehachi
薫 兼八
Hayatsuki Kamo
早月 鴨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko NPC Corp
Original Assignee
Seiko NPC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko NPC Corp filed Critical Seiko NPC Corp
Priority to JP2010172027A priority Critical patent/JP5719541B2/en
Publication of JP2012032275A publication Critical patent/JP2012032275A/en
Application granted granted Critical
Publication of JP5719541B2 publication Critical patent/JP5719541B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a receiver circuit for a radio time piece capable of remarkably reducing influences of noise upon a received signal by making a passband of a frequency selection filter narrow by compensating for initial deviation or temperature characteristics of a crystal oscillator or the filter and obtaining an intermediate frequency signal of a fine adjusted stable frequency by performing a fine adjustment of a frequency of a local signal.SOLUTION: In a receiver circuit for a radio time piece which produces a demodulation signal from a long standard radio wave selected from among a plurality of frequencies and including time information received by an external antenna 1, a local oscillation circuit 8 for producing a local signal from a reference frequency signal of a horizontal oscillation circuit 5 comprises a PLL circuit 6 and a DDS circuit 7, and a fine adjustment of a frequency of the local signal is performed by the DDS circuit 7.

Description

本発明は、複数の周波数の標準電波を受信して時刻修正を行なう、スーパーヘテロダイン方式による多周波数対応の電波時計用受信回路に関する。   The present invention relates to a superheterodyne type multi-frequency radio wave receiver for receiving a plurality of standard radio waves and correcting the time.

従来から、スーパーへテロダイン方式の電波時計用受信回路は知られている。時刻情報を含む標準電波は、送信地域毎に異なっており、例えば、我が国においては40kHzまたは60kHzに設定され、ドイツ(DCF−77)においては77.5kHzに設定されている。そして、電波時計用受信回路は、これら送信波のうちの受信した所定周波数の信号と、水晶発振器で生成した周波数32.768kHzの発振信号を基準信号源としてPLL(Phase Locked Loop:位相同期)回路からなる局部発振回路が出力する局部発振周波数の信号とを、ミキシング回路でミキシングした後、水晶フィルタを備えた中間周波数回路で中間周波数の信号を出力し、この中間周波数の信号を検波回路で復調するものである(特許文献1)。   2. Description of the Related Art Conventionally, a superheterodyne radio timepiece receiver circuit is known. The standard radio wave including time information is different for each transmission region. For example, it is set to 40 kHz or 60 kHz in Japan, and is set to 77.5 kHz in Germany (DCF-77). The radio clock receiver circuit is a PLL (Phase Locked Loop) circuit using a signal of a predetermined frequency received from these transmission waves and an oscillation signal having a frequency of 32.768 kHz generated by a crystal oscillator as a reference signal source. The local oscillation frequency signal output from the local oscillation circuit is mixed with a mixing circuit, then an intermediate frequency signal is output with an intermediate frequency circuit equipped with a crystal filter, and this intermediate frequency signal is demodulated with a detection circuit. (Patent Document 1).

特開平6−214054号公報Japanese Patent Laid-Open No. 6-214054

しかし、この従来のスーパーへテロダイン方式の電波時計用受信回路は、次のような問題を有している。第1に、水晶発振器の水晶振動子に起因して32.768kHzの基準信号周波数の初期偏差及び温度特性が存在するが、これに対する対策がとられていない。第2に、中間周波数回路の水晶フィルタにも水晶振動子に起因する初期偏差及び温度特性が存在するが、これに対する対策がとられていない。第3に、前記第2の点に関連し、前記水晶フィルタにおいては、付加回路により数百ppm程度の周波数補正は可能であるが、この付加回路による補正では、Q値(周波数半値幅と等価)や通過損が大きく変化するという結果を招くので、有効な対策とはならない。第4に、スーパーへテロダイン方式においては、受信可能な全周波数に対して同じ中間周波数を作ることができる局部発振回路が理想であり、PLL回路の出力周波数は、32.768kHz×N÷R(但し、Nは発振部側に設けたメインカウンタの分周数,Rは基準信号側に設けた基準カウンタの分周数)で表され、N及びRの値を大きくすることで、全受信周波数に対してほぼ同じ中間周波数を得る局部発振回路とすることができるが、この場合にはPLL回路のロック時間が長くなるとともに、出力周波数の安定度が悪化するという結果を招くという問題が生じる。本発明は、このような問題を解決したスーパーヘテロダイン方式による多周波数対応の電波時計用受信回路を提供することを目的とする。   However, this conventional superheterodyne radio clock receiver circuit has the following problems. First, there is an initial deviation and temperature characteristic of the reference signal frequency of 32.768 kHz due to the crystal resonator of the crystal oscillator, but no countermeasure is taken for this. Second, the crystal filter of the intermediate frequency circuit also has an initial deviation and temperature characteristics due to the crystal resonator, but no countermeasure is taken for this. Thirdly, in connection with the second point, in the crystal filter, the frequency correction of about several hundred ppm can be performed by the additional circuit. However, in the correction by the additional circuit, the Q value (equivalent to the half bandwidth of the frequency) can be obtained. ) And the passage loss greatly changes, so it is not an effective measure. Fourth, in the superheterodyne system, a local oscillation circuit that can produce the same intermediate frequency for all receivable frequencies is ideal, and the output frequency of the PLL circuit is 32.768 kHz × N ÷ R ( Where N is the frequency division number of the main counter provided on the oscillation unit side, and R is the frequency division number of the reference counter provided on the reference signal side). By increasing the values of N and R, the total reception frequency However, in this case, there is a problem that the lock time of the PLL circuit becomes longer and the stability of the output frequency is deteriorated. SUMMARY OF THE INVENTION An object of the present invention is to provide a multi-frequency radio timepiece receiver circuit using a superheterodyne system that solves such problems.

この目的を達成するため本発明に係る電波時計用受信回路は、複数の周波数から選択して外付けしたアンテナにより受信する時刻情報を含む長波標準電波から復調信号を生成する電波時計用受信回路であって、受信する長波標準電波の周波数に応じて前記アンテナの同調容量値を切り替える同調周波数調整用の容量素子を備えた同調周波数調整回路と、この同調周波数調整回路で調整された同調容量値にしたがって受信した電波信号を増幅する増幅器と、外部の水晶発振回路から入力する基準周波数信号を逓倍し、DDS(Direct Digital Synthesizer:デジタル直接合成発振器)回路によって前記逓倍した基準周波数信号からローカル信号を生成する局部発振回路と、前記増幅器で増幅された電波信号と前記局部発振回路で生成されたローカル信号とを合成して中間周波数信号を生成する周波数変換回路と、前記中間周波数信号を入力信号とし所定周波数以外のノイズを除去する一つの周波数選択フィルタ、例えば水晶フィルタやスイッチト・キャパシタ・フィルタを備えた中間周波数回路と、この中間周波数回路の出力信号を検波して時刻情報を含んだ復調信号を生成する検波回路とを有するものである。   In order to achieve this object, a radio clock receiver circuit according to the present invention is a radio clock receiver circuit that generates a demodulated signal from a long wave standard radio wave including time information received from an external antenna selected from a plurality of frequencies. A tuning frequency adjusting circuit having a tuning frequency adjusting capacitive element for switching the tuning capacity value of the antenna according to the frequency of the received long wave standard radio wave, and a tuning capacity value adjusted by the tuning frequency adjusting circuit. Therefore, an amplifier that amplifies the received radio signal and a reference frequency signal input from an external crystal oscillation circuit are multiplied, and a local signal is generated from the multiplied reference frequency signal by a DDS (Direct Digital Synthesizer) circuit. A local oscillation circuit, a radio signal amplified by the amplifier, and a local signal generated by the local oscillation circuit And a frequency conversion circuit that generates an intermediate frequency signal and a single frequency selection filter that removes noise other than a predetermined frequency using the intermediate frequency signal as an input signal, such as a crystal filter or a switched capacitor filter. It has an intermediate frequency circuit and a detection circuit that generates a demodulated signal including time information by detecting an output signal of the intermediate frequency circuit.

局部発振回路における基準周波数信号を逓倍する動作は、VCO(Voltage Controlled
Oscillator:電圧制御発振器)を備えたPLL回路で行ない、VCOは、入出力端子間に接続された帰還抵抗と、入力端子側から順に直列接続された偶数段の第1のインバータ回路列及び電流制御可能な第2のインバータ回路と、前記第1のインバータ回路列の入出力端間に接続された容量素子とを有すると好適である。
The operation of multiplying the reference frequency signal in the local oscillator circuit is VCO (Voltage Controlled).
The VCO includes a feedback resistor connected between input and output terminals, an even number of first inverter circuit strings connected in series in order from the input terminal side, and current control. It is preferable to have a possible second inverter circuit and a capacitive element connected between the input and output terminals of the first inverter circuit row.

本発明に係る電波時計用受信回路によれば、局部発振回路にDDS回路を備えることにより、ローカル信号の周波数の微調整が可能になって、従来問題であった水晶発振器及び水晶フィルタの初期偏差や温度特性を補償することができ、また、微調整された安定した周波数の中間周波数信号を得ることができるので、周波数選択フィルタの通過帯域を狭くして、受信信号に対するノイズの影響を大幅に低減できるという効果を奏する。   According to the radio clock receiver circuit according to the present invention, the local oscillation circuit is provided with the DDS circuit, so that the frequency of the local signal can be finely adjusted. And temperature characteristics can be compensated, and an intermediate frequency signal with a finely-tuned stable frequency can be obtained, so that the passband of the frequency selection filter is narrowed to greatly influence the noise on the received signal. There is an effect that it can be reduced.

本発明の好適な実施形態を示すブロック図。1 is a block diagram showing a preferred embodiment of the present invention. PLL回路のブロック図。The block diagram of a PLL circuit. PLL回路におけるVCOのより具体的な構成を示すブロック図。The block diagram which shows the more concrete structure of VCO in a PLL circuit. DDS回路のブロック図。The block diagram of a DDS circuit.

以下、本発明の好適な実施形態を図1〜図4に基づいて説明する。図1に示すように、電波時計用受信回路は、外付けしたアンテナ1と、制御手段2により制御されて前記アンテナ1を受信する電波信号の周波数に同調させる同調周波数調整回路3と、この同調周波数調整回路3の出力を増幅する増幅器4と、水晶発振回路5により生成されて外部から入力する基準周波数信号をPLL回路6で逓倍し、DDS回路7によって前記逓倍した基準周波数信号から前記制御手段2で設定された周波数のローカル信号を生成する局部発振回路8と、前記増幅器4で増幅された電波信号と前記局部発振回路8で生成されたローカル信号とを合成して中間周波数信号を生成する周波数変換回路9と、前記中間周波数信号を入力信号とし所定周波数以外のノイズを除去する一つの周波数選択フィルタである外付けした一つの水晶フィルタ10を備えた中間周波数回路11と、この中間周波数回路11の出力信号を検波して時刻情報を含んだ復調信号を生成する検波回路12とから構成される。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, a preferred embodiment of the invention will be described with reference to FIGS. As shown in FIG. 1, the radio clock receiving circuit includes an external antenna 1, a tuning frequency adjustment circuit 3 that is controlled by the control means 2 and tunes to the frequency of the radio signal received by the antenna 1, and this tuning circuit. An amplifier 4 for amplifying the output of the frequency adjusting circuit 3 and a reference frequency signal generated by the crystal oscillation circuit 5 and inputted from the outside are multiplied by a PLL circuit 6 and the control means is derived from the multiplied reference frequency signal by a DDS circuit 7. 2 generates a local frequency signal by synthesizing the local oscillation circuit 8 that generates the local signal having the frequency set in 2 and the radio signal amplified by the amplifier 4 and the local signal generated by the local oscillation circuit 8. The frequency conversion circuit 9 and an external one that is a frequency selection filter that removes noise other than a predetermined frequency using the intermediate frequency signal as an input signal An intermediate frequency circuit 11 having a crystal filter 10 and a detection circuit 12 for generating a demodulated signal containing time information by detecting an output signal of the intermediate frequency circuit 11.

図1に示すように、同調周波数調整回路3は、並列接続された複数の容量素子31のそれぞれにスイッチ素子32を接続してなり、各スイッチ素子32を制御手段2によりオンオフ制御して、受信すべき長波標準電波の周波数に同調するようアンテナ1の同調容量値を切り替え、調整するものである。受信した電波信号は増幅器4によって増幅されて、周波数変換回路9に入力する。この周波数変換回路9には、局部発振回路8の出力も入力する。   As shown in FIG. 1, the tuning frequency adjustment circuit 3 includes a switch element 32 connected to each of a plurality of capacitor elements 31 connected in parallel, and each switch element 32 is controlled to be turned on and off by the control means 2 to receive signals. The tuning capacity value of the antenna 1 is switched and adjusted so as to be tuned to the frequency of the long wave standard radio wave to be tuned. The received radio wave signal is amplified by the amplifier 4 and input to the frequency conversion circuit 9. The output of the local oscillation circuit 8 is also input to the frequency conversion circuit 9.

局部発振回路8は、外部の水晶発振回路5で生成された32.768kHzの基準周波数信号が入力されて、前記基準周波数信号を16逓倍するPLL回路6と、このPLL回路6から出力された524.288kHzの出力信号からローカル信号を生成するDDS回路7からなる。   The local oscillation circuit 8 receives the reference frequency signal of 32.768 kHz generated by the external crystal oscillation circuit 5 and multiplies the reference frequency signal by 16 and the 524 output from the PLL circuit 6. The DDS circuit 7 generates a local signal from an output signal of 288 kHz.

図2に示すように、PLL回路6は、基準周波数信号と、詳細は後述するVCO64の発振信号を1/16分周する分周器65の出力信号との位相を比較する位相比較回路61と、この位相比較回路61の出力に応じた電流を出力するチャージポンプ回路62と、このチャージポンプ回路62の出力信号の高周波成分を減衰させて低周波成分だけを出力するローパスフィルタ63と、このローパスフィルタ63の出力信号の電圧レベルに応じた周波数の発振信号を出力するVCO64からなる。このような構成によって、前記PLL回路6は、周波数32.768kHzの基準周波数信号を16逓倍して周波数524.288kHzの出力信号を得るものである。   As shown in FIG. 2, the PLL circuit 6 includes a phase comparison circuit 61 that compares phases of a reference frequency signal and an output signal of a frequency divider 65 that divides an oscillation signal of a VCO 64, which will be described in detail later, by 1/16. A charge pump circuit 62 that outputs a current corresponding to the output of the phase comparison circuit 61; a low-pass filter 63 that attenuates the high-frequency component of the output signal of the charge pump circuit 62 and outputs only the low-frequency component; The VCO 64 outputs an oscillation signal having a frequency corresponding to the voltage level of the output signal of the filter 63. With this configuration, the PLL circuit 6 multiplies the reference frequency signal having a frequency of 32.768 kHz by 16 to obtain an output signal having a frequency of 524.288 kHz.

ここで、VCO64の構成をより詳細に説明する。VCO64は、ローパスフィルタ63の出力信号が入力する制御回路641を備えるとともに、直列に3段接続したインバータ642,643,644を備えている。前記入力端子側の2段のインバータ642,643が第1のインバータ回路列を構成し、前記最終段のインバータ644が第2のインバータ回路を構成する。前記最終段のインバータ644の出力端は、帰還抵抗645を介して前記1段目のインバータ642の入力端に接続し、前記1段目のインバータ642の入力端は、容量素子646を介して接地するとともに、容量素子647を介して前記最終段のインバータ644の入力端に接続している。前記帰還抵抗645と前記容量素子647によって時定数回路を構成する。前記制御回路641から出力される制御信号は、最終段のインバータ644に入力してこのインバータ644に流れる電流を制御し、主に容量素子647への充放電時間を調整して、出力周波数を変更する。このように構成することで、発振振幅が大きくなり(CMOSレベル)、位相雑音を低くすることができるという効果がある。   Here, the configuration of the VCO 64 will be described in more detail. The VCO 64 includes a control circuit 641 to which the output signal of the low pass filter 63 is input, and includes inverters 642, 643, and 644 connected in series in three stages. The two-stage inverters 642 and 643 on the input terminal side constitute a first inverter circuit row, and the last-stage inverter 644 constitutes a second inverter circuit. The output terminal of the final stage inverter 644 is connected to the input terminal of the first stage inverter 642 via a feedback resistor 645, and the input terminal of the first stage inverter 642 is grounded via a capacitive element 646. In addition, it is connected to the input terminal of the inverter 644 in the final stage through a capacitive element 647. The feedback resistor 645 and the capacitive element 647 constitute a time constant circuit. The control signal output from the control circuit 641 is input to the inverter 644 at the final stage to control the current flowing through the inverter 644, and mainly adjust the charge / discharge time to the capacitor 647 to change the output frequency. To do. With this configuration, the oscillation amplitude is increased (CMOS level), and phase noise can be reduced.

図3に示すように、各インバータ642,643,644は、それぞれPチャネルMOSトランジスタP1,P2,P3とNチャネルMOSトランジスタN1,N2,N3からなり、同一構成である。なお、インバータ644には、制御回路641から出力される制御信号である制御電圧をPチャネルMOSトランジスタP3とNチャネルMOSトランジスタN3に印加するために、前記PチャネルMOSトランジスタP3にはPチャネルMOSトランジスタP4を接続し、前記NチャネルMOSトランジスタN3にはNチャネルMOSトランジスタN4を接続している。   As shown in FIG. 3, each of inverters 642, 643, 644 is composed of P channel MOS transistors P1, P2, P3 and N channel MOS transistors N1, N2, N3, respectively, and has the same configuration. The inverter 644 has a P-channel MOS transistor P3 which is connected to a P-channel MOS transistor P3 in order to apply a control voltage, which is a control signal output from the control circuit 641, to the P-channel MOS transistor P3 and the N-channel MOS transistor N3. P4 is connected, and an N-channel MOS transistor N4 is connected to the N-channel MOS transistor N3.

図4に示すように、DDS回路7は、加算器71とラッチ72で構成する位相アキュムレータ(アドレス演算器)73と、1/4周期分の波形データが書き込まれたSIN波形メモリ74と、DAコンバータ75と、ローパスフィルタ76からなる。位相アキュムレータ73は基準クロックに同期して周波数設定値Mを累積することで、周波数設定値Mに比例した速度のノコギリ波を生成する。このノコギリ波のデータが出力波形の位相に相当するため、前記SIN波形メモリ74のアドレスとして使用し、書き込まれている波形データを呼び出してSIN波形を得る。このSIN波形をDAコンバータ75でアナログ変換し、この階段状の出力波形をローパスフィルタ76でクロック成分を除去することにより、きれいなアナログ出力を得る。なお、前記周波数設定値Mは、制御手段2にデータ入力して設定する。   As shown in FIG. 4, the DDS circuit 7 includes a phase accumulator (address calculator) 73 composed of an adder 71 and a latch 72, a SIN waveform memory 74 in which waveform data for a quarter period is written, a DA It consists of a converter 75 and a low-pass filter 76. The phase accumulator 73 accumulates the frequency set value M in synchronization with the reference clock, thereby generating a sawtooth wave having a speed proportional to the frequency set value M. Since the sawtooth wave data corresponds to the phase of the output waveform, it is used as the address of the SIN waveform memory 74 and the written waveform data is called to obtain the SIN waveform. The SIN waveform is converted into an analog signal by a DA converter 75, and a clock component is removed from the stepped output waveform by a low-pass filter 76, thereby obtaining a clean analog output. The frequency setting value M is set by inputting data to the control means 2.

ここで、発振周波数は、加算器71のビット数をnとすると、
発振周波数=周波数設定値M×クロック周波数÷2
と表されるので、例えば、クロック周波数を524.288kHz、加算器71のビット数を21とすると、クロック周波数÷2=0.25(Hz)となり、周波数設定値Mを適宜設定することにより、周波数変更ステップが0.25Hzの所望の発振周波数をDDS回路7から出力することができる。
Here, if the number of bits of the adder 71 is n, the oscillation frequency is
Oscillation frequency = frequency set value M x clock frequency ÷ 2 n
For example, if the clock frequency is 524.288 kHz and the number of bits of the adder 71 is 21, the clock frequency is divided by 2 n = 0.25 (Hz), and the frequency setting value M is set appropriately. The desired oscillation frequency with a frequency change step of 0.25 Hz can be output from the DDS circuit 7.

このようにして、上述の実施形態によれば、0.25HzのステップでDDS回路7の出力周波数を変更できるので、水晶発振器5の水晶振動子に起因する32.768kHzの基準周波数の初期偏差及び温度特性を補償することができる。また、同様に、水晶フィルタ10の水晶振動子に起因する初期偏差及び温度特性も補償することができる。   Thus, according to the above-described embodiment, since the output frequency of the DDS circuit 7 can be changed in steps of 0.25 Hz, the initial deviation of the reference frequency of 32.768 kHz caused by the crystal resonator of the crystal oscillator 5 and Temperature characteristics can be compensated. Similarly, the initial deviation and temperature characteristics caused by the crystal resonator of the crystal filter 10 can also be compensated.

続いて、上述した実施形態の動作を説明する。まず、受信する標準電波の周波数、例えば40kHzを制御手段2において指定し、この制御手段2の制御信号によって同調周波数調整回路3はアンテナ1の同調周波数を指定された周波数である40kHzに設定する。これと並行して、制御手段2によって周波数設定値M、例えば284000を設定し、制御手段2から局部発振回路8のDDS回路7に周波数設定値284000を送る。   Subsequently, the operation of the above-described embodiment will be described. First, the frequency of the standard radio wave to be received, for example, 40 kHz is designated by the control means 2, and the tuning frequency adjustment circuit 3 sets the tuning frequency of the antenna 1 to the designated frequency of 40 kHz by the control signal of the control means 2. In parallel with this, the control unit 2 sets a frequency setting value M, for example, 284000, and sends the frequency setting value 284000 from the control unit 2 to the DDS circuit 7 of the local oscillation circuit 8.

アンテナ1で受信された40kHzの標準電波信号は、同調周波数調整回路3から増幅器4に送られて増幅され、周波数変換回路9に送られる。一方、水晶発振回路5からの周波数32.768kHzの基準信号は、局部発振回路8のPLL回路6で16逓倍した周波数524.288kHzのクロック信号としてDDS回路7に送られる。   The standard radio wave signal of 40 kHz received by the antenna 1 is sent from the tuning frequency adjustment circuit 3 to the amplifier 4 to be amplified and sent to the frequency conversion circuit 9. On the other hand, a reference signal having a frequency of 32.768 kHz from the crystal oscillation circuit 5 is sent to the DDS circuit 7 as a clock signal having a frequency of 524.288 kHz multiplied by 16 by the PLL circuit 6 of the local oscillation circuit 8.

DDS回路7では、位相アキュムレータ73で前記クロック信号と同期して、制御手段2で設定された周波数設定値284000を累積することで、この周波数設定値284000に比例した速度のノコギリ波状データを生成し、この生成したデータをアドレスとしてSIN波形メモリ74の対応するSIN波形データを出力する。このSIN波形データは、ADコンバータ75でアナログ変換された後、ローパスフィルタ76でクロック成分が除去されて、周波数71kHzのきれいなアナログのローカル信号となって周波数変換回路9へ送られる。   In the DDS circuit 7, the frequency accumulator 73 synchronizes with the clock signal and accumulates the frequency setting value 284000 set by the control means 2 to generate sawtooth data having a speed proportional to the frequency setting value 284000. SIN waveform data corresponding to the SIN waveform memory 74 is output using the generated data as an address. The SIN waveform data is analog-converted by the AD converter 75, the clock component is removed by the low-pass filter 76, and is sent to the frequency conversion circuit 9 as a clean analog local signal having a frequency of 71 kHz.

周波数変換回路9では、増幅された標準電波信号と、局部発振回路8から出力されたローカル信号を周波数変換(ミキシング)して周波数31kHzの中間周波数信号を生成し、中間周波数回路11で中間周波数信号を抽出して検波回路12へ送る。検波回路12は抽出された中間周波数信号を検波して時刻情報を含んだ復調信号を生成して出力する。この復調信号は図示していない制御部に送られて時刻情報に変換され、この時刻情報が電波時計の時刻の修正に利用される。   The frequency conversion circuit 9 frequency-converts (mixes) the amplified standard radio signal and the local signal output from the local oscillation circuit 8 to generate an intermediate frequency signal having a frequency of 31 kHz, and the intermediate frequency circuit 11 generates the intermediate frequency signal. Is extracted and sent to the detection circuit 12. The detection circuit 12 detects the extracted intermediate frequency signal and generates and outputs a demodulated signal including time information. This demodulated signal is sent to a control unit (not shown) and converted into time information, and this time information is used to correct the time of the radio timepiece.

なお、本発明は上述の実施形態に限定されるものではなく、例えばPLL回路6におけるVCO64の構成は上述のものに限らないほか、PLL回路6を備えなくてもよいものである。すなわち、外部の水晶発振回路5が、32.768kHzの基本周波数ではなく、DDS回路7に所望の動作をさせるに足りる周波数信号を供給する場合には、それを直接DDS回路に入力すればよくPLL回路6は不要となる。また、中間周波数回路11に外付けされる水晶フィルタ10は、SCF(スイッチト・キャパシタ・フィルタ)など所定周波数以外のノイズを除去する周波数選択機能を持つものをICに内蔵することでも代替できる。さらに、DDS回路7の出力周波数における周波数変更ステップは0.25Hzに限らず、クロック周波数と加算器71のビット数によって、適宜設定可能である。   The present invention is not limited to the above-described embodiment. For example, the configuration of the VCO 64 in the PLL circuit 6 is not limited to the above-described one, and the PLL circuit 6 may not be provided. That is, when the external crystal oscillation circuit 5 supplies a frequency signal sufficient for causing the DDS circuit 7 to perform a desired operation instead of the fundamental frequency of 32.768 kHz, the PLL circuit may be directly input to the DDS circuit. The circuit 6 becomes unnecessary. Further, the crystal filter 10 externally attached to the intermediate frequency circuit 11 can be replaced by incorporating an IC having a frequency selection function for removing noise other than a predetermined frequency, such as an SCF (switched capacitor filter). Furthermore, the frequency changing step at the output frequency of the DDS circuit 7 is not limited to 0.25 Hz, and can be set as appropriate depending on the clock frequency and the number of bits of the adder 71.

1 アンテナ
2 制御手段
3 同調周波数調整回路
4 増幅器
5 水晶発振回路
6 PLL回路
7 DDS回路
8 局部発振回路
9 周波数変換回路
10 水晶フィルタ
11 中間周波数回路
12 検波回路
DESCRIPTION OF SYMBOLS 1 Antenna 2 Control means 3 Tuning frequency adjustment circuit 4 Amplifier 5 Crystal oscillation circuit 6 PLL circuit 7 DDS circuit 8 Local oscillation circuit 9 Frequency conversion circuit 10 Crystal filter 11 Intermediate frequency circuit 12 Detection circuit

Claims (2)

複数の周波数から選択して外付けしたアンテナにより受信する時刻情報を含む長波標準電波から復調信号を生成する電波時計用受信回路であって、受信する長波標準電波の周波数に応じて前記アンテナの同調容量値を切り替える同調周波数調整用の容量素子を備えた同調周波数調整回路と、この同調周波数調整回路で調整された同調容量値にしたがって受信した電波信号を増幅する増幅器と、DDS回路によって外部の水晶発振回路から入力する基準周波数信号に基づいたローカル信号を生成する局部発振回路と、前記増幅器で増幅された電波信号と前記局部発振回路で生成されたローカル信号とを合成して中間周波数信号を生成する周波数変換回路と、前記中間周波数信号を入力信号とし所定周波数以外のノイズを除去する一つの周波数選択フィルタを備えた中間周波数回路と、この中間周波数回路の出力信号を検波して時刻情報を含んだ復調信号を生成する検波回路とを有することを特徴とする電波時計用受信回路。 A radio clock receiving circuit that generates a demodulated signal from a long-wave standard radio wave including time information received by an external antenna selected from a plurality of frequencies, and tuning the antenna according to the frequency of the long-wave standard radio wave to be received A tuning frequency adjusting circuit having a tuning frequency adjusting capacitive element for switching a capacitance value, an amplifier for amplifying a radio signal received according to the tuning capacitance value adjusted by the tuning frequency adjusting circuit, and an external crystal by a DDS circuit An intermediate frequency signal is generated by combining a local oscillation circuit that generates a local signal based on a reference frequency signal input from an oscillation circuit, and a radio signal amplified by the amplifier and a local signal generated by the local oscillation circuit. And a frequency selection circuit for removing noise other than a predetermined frequency using the intermediate frequency signal as an input signal. An intermediate frequency circuit having a filter, radio clock receiver circuit, characterized in that it comprises a detection circuit for generating a demodulated signal containing time information by detecting an output signal of the intermediate frequency circuit. 前記局部発振回路は、前記基準周波数信号を逓倍するための電圧制御発振器を含むPLL回路を備え、前記電圧制御発振器は、入出力端子間に接続された帰還抵抗と、入力端子側から順に直列接続された偶数段の第1のインバータ回路列及び電流制御可能な第2のインバータ回路と、前記第1のインバータ回路列の入出力端間に接続された容量素子とを有することを特徴とする請求項1記載の電波時計用受信回路。
The local oscillation circuit includes a PLL circuit including a voltage controlled oscillator for multiplying the reference frequency signal, and the voltage controlled oscillator is connected in series in order from the input terminal side with a feedback resistor connected between the input and output terminals. An even-numbered first inverter circuit array and a second inverter circuit capable of current control, and a capacitive element connected between input and output terminals of the first inverter circuit array. Item 1. A radio timepiece receiver circuit according to Item 1.
JP2010172027A 2010-07-30 2010-07-30 Receiver circuit for radio clock Active JP5719541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010172027A JP5719541B2 (en) 2010-07-30 2010-07-30 Receiver circuit for radio clock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010172027A JP5719541B2 (en) 2010-07-30 2010-07-30 Receiver circuit for radio clock

Publications (2)

Publication Number Publication Date
JP2012032275A true JP2012032275A (en) 2012-02-16
JP5719541B2 JP5719541B2 (en) 2015-05-20

Family

ID=45845854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010172027A Active JP5719541B2 (en) 2010-07-30 2010-07-30 Receiver circuit for radio clock

Country Status (1)

Country Link
JP (1) JP5719541B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104965200A (en) * 2015-07-09 2015-10-07 国家海洋技术中心 Towed underwater acoustic signal transmitting system-based dynamic signal generation device
CN105137401A (en) * 2015-08-24 2015-12-09 哈尔滨工程大学 Fast small-stepping agile frequency conversion radar signal generation device
WO2021191970A1 (en) * 2020-03-23 2021-09-30 三菱電機株式会社 Transceiver

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5360149A (en) * 1976-11-10 1978-05-30 Toshiba Corp Voltage control oscillator circuit
JPH06214054A (en) * 1993-01-14 1994-08-05 Citizen Watch Co Ltd Electronic clock with radio wave receiving function
JPH10282273A (en) * 1997-04-03 1998-10-23 Advantest Corp Reference frequency generation device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5360149A (en) * 1976-11-10 1978-05-30 Toshiba Corp Voltage control oscillator circuit
JPH06214054A (en) * 1993-01-14 1994-08-05 Citizen Watch Co Ltd Electronic clock with radio wave receiving function
JPH10282273A (en) * 1997-04-03 1998-10-23 Advantest Corp Reference frequency generation device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104965200A (en) * 2015-07-09 2015-10-07 国家海洋技术中心 Towed underwater acoustic signal transmitting system-based dynamic signal generation device
CN105137401A (en) * 2015-08-24 2015-12-09 哈尔滨工程大学 Fast small-stepping agile frequency conversion radar signal generation device
WO2021191970A1 (en) * 2020-03-23 2021-09-30 三菱電機株式会社 Transceiver

Also Published As

Publication number Publication date
JP5719541B2 (en) 2015-05-20

Similar Documents

Publication Publication Date Title
RU2479121C2 (en) Quadrature frequency divider with division by three
JP4636106B2 (en) PLL circuit and its IC
CN107294530B (en) Calibration method and apparatus for high time To Digital Converter (TDC) resolution
JP2004304762A (en) Voltage control-type oscillator, clock transformer, and electronic apparatus
JP2007288647A (en) Oscillator controller
JP4958948B2 (en) PLL frequency synthesizer
US8698568B2 (en) Automatic self-calibrated oscillation method and apparatus using the same
US8259889B2 (en) Apparatus and method for frequency synthesis using delay locked loop
US20110096864A1 (en) Programmable digital clock control scheme to minimize spur effect on a receiver
US6674332B1 (en) Robust clock circuit architecture
JP5719541B2 (en) Receiver circuit for radio clock
US20010028276A1 (en) Self-calibration device and method for calibrating phase offset between output waveforms of ring osciliator
US7551906B2 (en) AM/FM radio receiver and local oscillator circuit used therein
US8325870B2 (en) Digital phase-locked loops and frequency adjusting methods thereof
US8531218B1 (en) Frequency generating system
KR100282193B1 (en) Stereo signal demodulation circuit and stereo signal demodulation device using the same
JP2018026620A (en) Pll circuit and frequency correction method thereof
JP3567779B2 (en) Synthesizer and reference signal generation circuit
CN107113002B (en) Oscillator calibration
JP2013058904A (en) Phase synchronization circuit and television signal reception circuit
JP2006242708A (en) Electronic timepiece
JP4252602B2 (en) VCO drive circuit and frequency synthesizer
JP2000022533A (en) Frequency synthesizer
JP2003324365A (en) Integrated circuit for high-frequency reception and high- frequency receiving apparatus equipped with the same
JP2004166079A (en) Device for generating local signal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140325

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140408

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150323

R150 Certificate of patent or registration of utility model

Ref document number: 5719541

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250