JPH10281980A - Oil film detecting device - Google Patents

Oil film detecting device

Info

Publication number
JPH10281980A
JPH10281980A JP9045397A JP9045397A JPH10281980A JP H10281980 A JPH10281980 A JP H10281980A JP 9045397 A JP9045397 A JP 9045397A JP 9045397 A JP9045397 A JP 9045397A JP H10281980 A JPH10281980 A JP H10281980A
Authority
JP
Japan
Prior art keywords
light
component
polarized
oil film
water surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9045397A
Other languages
Japanese (ja)
Other versions
JP3713879B2 (en
Inventor
Mutsuhisa Hiraoka
睦久 平岡
Naohiro Noda
直広 野田
Tokio Oodo
時喜雄 大戸
Yoshiharu Tanaka
良春 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP09045397A priority Critical patent/JP3713879B2/en
Publication of JPH10281980A publication Critical patent/JPH10281980A/en
Application granted granted Critical
Publication of JP3713879B2 publication Critical patent/JP3713879B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To attain continuous automatic monitoring of a very small amount of oil content with high sensitivity and accuracy by irradiating light beams including both polarization elements of P, S to a water surface, and obtaining the light quantity ratio of the both polarization elements from its reflected light for comparison with a reference value. SOLUTION: From a laser light source 1 having circularly-polarized light characteristics, light beams 4 including a P polarization element (polarization element in the vibrating direction 2 of P polarization element) and S polarization element (polarization element in the vibrating direction 3 of S polarization element) equally are irradiated to a wavy water surface at an incident angle 7, which is floated with an oil film 5. A reflected light 10 is passed through a polarized beam splitter 12, and after separation into the P polarization element 13 and the S polarization element 14, respective light quantities are converted into electric signals by photodiodes 15, 16. After the electric signals are amplified respectively, the light quantity ratio of the both elements 13, 14 are computed and outputted by an arithmetic circuit 19. The signal is moving-averaged and is compared with a reference value at the time of normal condition which has no oil film 5 on the water surface, by a comparing circuit 24. If it exceeds a preset range, it is discriminated that the oil film is present, thereby outputting an alarm 26.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水面上の油膜を検
知する装置に関する。詳しくは、浄水場、養殖場などに
流入する油分、また、工場排水施設などから流出する油
分を、水面上の油膜として自動的に検知する油膜検知装
置に関する。
The present invention relates to an apparatus for detecting an oil film on a water surface. More specifically, the present invention relates to an oil film detecting device that automatically detects an oil component flowing into a water purification plant, a farm, or the like, or an oil component flowing out of a factory drainage facility or the like as an oil film on the water surface.

【0002】[0002]

【従来の技術】浄水場においては、原水の油汚染が水質
事故の約半数を占め取水停止や浄水場の清掃が必要にな
る重大事故であるために、また、養殖場では、油の流入
によって生産物が汚染または死滅する危険があるため
に、これらの取水施設への油の流入を常時監視する方法
と装置が求められている。一方、工場においては、油分
の混入した排水を公共水域に排出することは水質汚染と
して社会的な問題であるために、排水基準を満たす必要
があり、処理後の排水中に油分が残っているかどうかを
連続的に監視する方法と装置が求められている。
2. Description of the Related Art In a water purification plant, oil contamination of raw water accounts for about half of water quality accidents, which is a serious accident that requires the suspension of water intake and cleaning of the water purification plant. Due to the risk of product contamination or death, there is a need for a method and apparatus for constantly monitoring the flow of oil into these water intakes. On the other hand, in factories, discharging wastewater mixed with oil into public waters is a social problem as water pollution, so it is necessary to meet wastewater standards, and whether oil remains in the treated wastewater. There is a need for a method and apparatus for continuously monitoring whether or not.

【0003】浄水場において取水への油の流入を自動検
知する方法としては、例えば、(1)反射率測定法、
(2)TVカメラによる画像監視法などがある。また、
工場において排水中の油分の検知方法としては、例え
ば、(3)ヘキサン抽出・重量法、(4)抽出・赤外線
吸収測定法、(5)乳化・濁度測定法、(6)蛍光測定
法などが従来から知られている。
[0003] As a method of automatically detecting the inflow of oil into water at a water purification plant, for example, (1) a reflectance measurement method,
(2) There is an image monitoring method using a TV camera, and the like. Also,
Methods for detecting oil content in wastewater in factories include, for example, (3) hexane extraction / gravimetry, (4) extraction / infrared absorption measurement, (5) emulsification / turbidity measurement, (6) fluorescence measurement, etc. Is conventionally known.

【0004】これらの測定方法のそれぞれの概要につい
て、次に簡単に記述する。 (1)反射率測定法は、光源にレーザやLEDを用いて
光線を水面上にあて、反射した光の反射率が油膜の存在
によって増大することを利用して油膜を検知するもので
ある。 (2)TVカメラによる画像監視法は、照明装置によっ
て水面を照らし、TVカメラでこの水面を撮影し、得ら
れた画像を2値化するが、ここで油膜の反射率が水より
も大きいことを利用して、2値化のしきい値を水面と油
膜の反射率の間におき、油膜を検知する方法である。
[0004] The outline of each of these measurement methods will be briefly described below. (1) The reflectance measurement method uses a laser or an LED as a light source to irradiate a light beam on the water surface, and detects an oil film by utilizing the fact that the reflectance of reflected light increases due to the presence of an oil film. (2) In the image monitoring method using a TV camera, the water surface is illuminated by an illumination device, the water surface is photographed by a TV camera, and the obtained image is binarized. Here, the reflectance of the oil film is higher than that of water. In this method, a threshold value for binarization is set between the water surface and the reflectance of the oil film to detect the oil film.

【0005】(3)ヘキサン抽出・重量法は試料中の油
分をn−ヘキサンで抽出した後80°Cでn−ヘキサン
のみを揮散させて残留した物質の質量を測定して油分の
量を知る方法である。 (4)抽出・赤外線吸収測定法は、四塩化炭素などの抽
出溶媒に油分を抽出し、赤外線分析計で油分に特有な波
長3.4μm付近の吸収スペクトルを測定して油分濃度
を測定する方法である。
(3) In the hexane extraction / gravimetric method, the oil content in a sample is extracted with n-hexane, then only n-hexane is volatilized at 80 ° C., and the mass of the remaining substance is measured to determine the amount of oil content. Is the way. (4) Extraction / infrared absorption measurement method is a method of extracting oil in an extraction solvent such as carbon tetrachloride and measuring the absorption spectrum near a wavelength of 3.4 μm peculiar to the oil with an infrared analyzer to determine the oil concentration. It is.

【0006】(5)乳化・濁度測定法は試料中の油分を
超音波などで乳化し、この乳化前後における濁度の変化
から油分濃度を測定する方法である。 (6)蛍光測定法は試料水に紫外光を照射し、油分から
発生する照射光より長い特定の波長の蛍光を測定して油
分濃度を測定する方法である。
(5) The emulsification / turbidity measurement method is a method of emulsifying an oil component in a sample by ultrasonic waves or the like, and measuring the oil component concentration from a change in turbidity before and after the emulsification. (6) The fluorescence measurement method is a method of irradiating a sample water with ultraviolet light, measuring fluorescence having a specific wavelength longer than irradiation light generated from oil, and measuring the oil concentration.

【0007】[0007]

【発明が解決しようとする課題】上記のように、従来か
ら各種の油分検知装置が利用されているが、一般にこれ
らの装置は、連続自動測定が難しいこと、微量油分の検
出が困難なこと、誤動作が多いこと、などの問題があ
る。以下にこれらの問題をさらに詳しく説明する。例え
ば、浄水場の取水施設への油の流入監視を例にとってみ
る。原水の油汚染は、河川などへの油の不法投棄や事故
による油の流出が主な原因であり、いつ起こるかわから
ないために、24時間の連続自動監視が必要とされる。
また、飲料用水に用いられる点からも、油の汚染は微量
でも重大事故となり、ppb〜ppmオーダーの微量油
分を検知できる能力が要求される。しかし現状の装置に
はこれらの要求を満足するものがないため、多くの浄水
場では24時間体制で人が水のにおいをかいで検査した
り取水口を目視観察するといった多大な労力を要する方
法が未だにとられている。
As described above, various oil detecting devices have been conventionally used. However, these devices generally have difficulty in continuous automatic measurement, difficulty in detecting a trace amount of oil, There are problems such as many malfunctions. The following describes these problems in more detail. Take, for example, the monitoring of the inflow of oil into the water intake facility of a water purification plant. Oil pollution of raw water is mainly caused by illegal dumping of oil into rivers or oil spills caused by accidents, so that it is not known when it will occur, so 24-hour continuous automatic monitoring is required.
Also, from the viewpoint of being used for drinking water, even a minute amount of oil contamination becomes a serious accident, and the ability to detect a very small amount of oil on the order of ppb to ppm is required. However, current equipment does not satisfy these requirements, so many water purification plants require a lot of labor such as 24-hour inspection of humans by smelling water and visual observation of water intake. Is still taken.

【0008】上述の各測定法の問題点について、次に簡
単に述べる。 (1)反射率測定法と(2)TVカメラによる画像監視
法とは、連続自動監視が可能な方法で、静水面では有効
に油膜を検知できるが、水面が波立ち反射光が乱反射し
た場合や、油以外の浮遊物が通過した場合には、反射光
強度が変化してしまい、誤動作するという問題がある。
これを防ぐために、出力信号にピーク保持回路を用いて
波立ちの影響を低減する方法もあるが、油膜のない正常
時の信号出力(ベースライン)が大きくなるなどの理由
から感度が十分でなく、微量の油分を検知できないとい
う問題点が残る。
[0008] The problems of the above-described measuring methods will be briefly described below. (1) The reflectance measurement method and (2) the image monitoring method using a TV camera are methods capable of continuous automatic monitoring, and can effectively detect an oil film on a still water surface. When a floating substance other than oil passes, the intensity of reflected light changes, which causes a problem of malfunction.
In order to prevent this, there is a method to reduce the influence of the ripple by using a peak holding circuit for the output signal. However, the sensitivity is not sufficient because the signal output (base line) in a normal state without an oil film becomes large. The problem that a trace amount of oil cannot be detected remains.

【0009】(3)ヘキサン抽出・重量法と(4)抽出
・赤外線吸収測定法とは、連続自動監視が困難という問
題がある。これらの方法はJIS・K0101、JIS
・K0102に規定された方法であるが、抽出という前
処理が必要であり、例え複雑な操作を自動化したとして
も、機構が複雑でメンテナンスが大変であり、また、廃
液の処理を行わなければならないという欠点があるため
に、連続自動測定には向いていない。
The (3) hexane extraction / gravimetric method and the (4) extraction / infrared absorption measurement method have a problem that continuous automatic monitoring is difficult. These methods are based on JIS K0101, JIS
-Although it is a method specified in K0102, pre-processing of extraction is necessary, and even if complicated operations are automated, the mechanism is complicated and maintenance is difficult, and waste liquid must be treated. Therefore, it is not suitable for continuous automatic measurement.

【0010】(5)乳化・濁度測定法は、浮上油がある
と超音波照射でも瞬間的乳化が行われにくいことや、熱
履歴をうけて劣化した乳化油は粒度が安定でないこと、
また試料中に濁質が共存すると測定値に影響するなどの
理由で、測定誤差が大きくなり、微量油分の検出が行え
ないという問題がある。 (6)蛍光測定法は、油から発する微弱な蛍光を検出す
るために、ある程度まとまったの油量を必要とすること
から、微量油分の検出が困難である。また、劣化した油
など油の種類によっては蛍光で検知できないという問題
がある。
(5) The method of measuring emulsification and turbidity is that, if there is a floating oil, instant emulsification is difficult to be performed even by ultrasonic irradiation, and that the emulsified oil deteriorated due to heat history is not stable in particle size.
In addition, there is a problem that the measurement error increases due to the influence of the presence of a turbid substance in the sample on the measured value, and the detection of a trace amount of oil cannot be performed. (6) Since the fluorescence measurement method requires a certain amount of oil to detect weak fluorescence emitted from oil, it is difficult to detect a trace amount of oil. Further, there is a problem that it cannot be detected by fluorescence depending on the type of oil such as deteriorated oil.

【0011】本発明は、上述の課題を解決するためにな
されたものであり、その目的は、浄水場、養殖場に流入
する微量な油分、または工場排水施設から油出する微量
な油分を高感度で正確に連続自動監視する油膜検知装置
を提供することにある。
The present invention has been made in order to solve the above-mentioned problems, and an object of the present invention is to reduce a very small amount of oil flowing into a water purification plant, an aquaculture plant, or a very small amount of oil discharged from a factory drainage facility. It is an object of the present invention to provide an oil film detecting device which continuously and accurately monitors with sensitivity.

【0012】[0012]

【課題を解決するための手段】上記問題を解決するた
め、本発明では照射光のP偏光成分とS偏光成分とを利
用し、以下に説明する4通りの手段を利用した油膜検知
装置を提供する。本発明の第1の装置では、油膜の浮遊
する水面にP偏光成分とS偏光成分の両方を含む光ビー
ムを照射する投光手段と、前記水面からの反射光をP偏
光成分とS偏光成分とに分ける偏光分離手段と、分離し
たP偏光成分とS偏光成分の光量を各々電気信号に変換
する光電変換手段と、この光電変換手段からの信号出力
に基づきP偏光成分とS偏光成分の光量比を演算する演
算手段と、その演算出力を水面に油膜のない正常時の基
準値と比較する比較手段とを技術的手段として採用す
る。
In order to solve the above-mentioned problems, the present invention provides an oil film detecting device utilizing the following four means using the P-polarized light component and the S-polarized light component of irradiation light. I do. In the first apparatus of the present invention, a light projecting means for irradiating a light beam containing both a P-polarized component and an S-polarized component to a water surface on which an oil film floats, and a P-polarized component and an S-polarized component reflected from the water surface Polarization separating means, photoelectric conversion means for converting the separated amounts of the P-polarized component and S-polarized component into electric signals, and the light amounts of the P-polarized component and the S-polarized component based on the signal output from the photoelectric converting means. The arithmetic means for calculating the ratio and the comparing means for comparing the calculated output with a normal reference value with no oil film on the water surface are employed as technical means.

【0013】本発明の第2の装置では、油膜の浮遊する
水面にP偏光成分とS偏光成分の両方を含む光ビームを
照射する投光手段と、前記水面からの反射光をP偏光成
分とS偏光成分とに分ける偏光分離手段と、分離したP
偏光成分とS偏光成分の光量を各々電気信号に変換する
光電変換手段と、この光電変換手段からの信号出力に基
づきP偏光成分とS偏光成分の反射光量を各々正常時の
基準値と比較する比較手段と、S偏光成分の反射光量の
みが正常時と比較して増加したことを判定する判定手段
とを技術的手段として採用する。
In a second apparatus of the present invention, a light projecting means for irradiating a light beam containing both a P-polarized light component and an S-polarized light component to a water surface on which an oil film floats, and a light reflected from the water surface as a P-polarized light component A polarized light separating means for separating the light into an S polarized light component,
Photoelectric conversion means for converting the light amounts of the polarized light component and the s-polarized light component into electric signals; and comparing the reflected light amounts of the p-polarized light component and the s-polarized light component with a normal reference value based on the signal output from the photoelectric conversion means. The comparing means and the judging means for judging that only the reflected light amount of the S-polarized component has increased compared to the normal state are employed as technical means.

【0014】本発明の第3の装置では、油膜の浮遊する
水面にP偏光成分を有する光ビームとS偏光成分を有す
る光ビームを交互に照射する投光手段と、前記水面から
反射したP偏光成分の反射光とS偏光成分の反射光の光
量を各々電気信号に変換する光電変換手段と、この光電
変換手段からの信号出力に基づきP偏光成分とS偏光成
分の光量比を演算する演算手段と、その演算出力を正常
時の基準値と比較する比較手段とを技術的手段として採
用する。
According to a third aspect of the present invention, there is provided a light projecting means for alternately irradiating a light beam having a P-polarized component and a light beam having an S-polarized component to a water surface on which an oil film floats, and a P-polarized light reflected from the water surface. Photoelectric conversion means for converting the amounts of the reflected light of the component and the reflected light of the s-polarized component into electric signals, and calculating means for calculating the light quantity ratio between the p-polarized component and the s-polarized component based on the signal output from the photoelectric conversion means And a comparing means for comparing the operation output with a normal reference value are employed as technical means.

【0015】本発明の第4の装置では、油膜の浮遊する
水面にP偏光成分を有する光ビームとS偏光成分を有す
る光ビームを交互に照射する投光手段と、前記水面から
反射したP偏光成分の反射光とS偏光成分の反射光の光
量を各々電気信号に変換する光電変換手段と、この光電
変換手段からの信号出力に基づきP偏光成分とS偏光成
分の反射光量を各々正常時の基準値と比較する比較手段
と、S偏光成分の反射光量のみが正常時と比較して増加
したことを判定する判定手段とを技術的手段として採用
する。
According to a fourth aspect of the present invention, there is provided a light emitting means for alternately irradiating a light beam having a P-polarized component and a light beam having an S-polarized component to a water surface on which an oil film floats, and a P-polarized light reflected from the water surface. Photoelectric conversion means for converting the amounts of the reflected light of the component and the reflected light of the s-polarized component into electric signals, and the reflected light amounts of the p-polarized component and the s-polarized component based on the signal output from the photoelectric conversion means, respectively. The comparison means for comparing with the reference value and the judgment means for judging that only the reflected light amount of the S-polarized light component has increased compared to the normal state are adopted as technical means.

【0016】本発明の第1の手段は、油膜の有る水面と
無い水面で、反射した光のP偏光成分とS偏光成分との
比が異なることを利用して油膜を検知する。電磁波であ
る光は、伝播方向に垂直な面内で振動する横波であるの
で、その面内で方向性のある振動をする。この振動の電
界ベクトルの方向が偏光の特性を示す。振動が特定の方
向に保たれているとき、その光ビームは直線偏光特性を
もつと言い、特定の方向に偏らず全ての方向に不規則に
変化するときには、無偏光特性をもつという。また、電
界ベクトルの軌跡が円形のものを円偏光、楕円形のもの
を楕円偏光と呼ぶ。
The first means of the present invention detects an oil film by utilizing the difference between the ratio of the P-polarized light component to the S-polarized light component of the reflected light on the water surface with and without the oil film. Light, which is an electromagnetic wave, is a transverse wave that oscillates in a plane perpendicular to the propagation direction, and thus directionally oscillates in that plane. The direction of the electric field vector of this vibration indicates the polarization characteristics. When the vibration is kept in a specific direction, the light beam is said to have a linear polarization characteristic, and when the light beam is not biased in a specific direction and changes irregularly in all directions, it is said to have a non-polarization characteristic. Further, a circular locus of the electric field vector is called circularly polarized light, and an elliptical one is called elliptically polarized light.

【0017】これらの任意の光線の偏光成分は、伝播方
向に垂直で互いに直行する2つの成分に分解できる。本
発明の第1の手段のように、入射光軸が水面と交わる点
に立てた水面の法線および入射光軸を含む平面に平行な
偏光成分(P偏光成分)と垂直な偏光成分(S偏光成
分)の2つの成分を同時に含む光ビームを照射するに
は、無偏光特性または円偏光特性の光ビームを照射する
か、直線偏光特性の光ビームをその偏光方向が入射光軸
と水面の法線を含む平面に対して傾けて(例えば45
°)にして照射すればよい。図5に水面、入射光、P偏
光面、S偏光面との相互の関係を示す。
The polarization component of these arbitrary rays can be decomposed into two components perpendicular to the direction of propagation and perpendicular to each other. As in the first means of the present invention, a polarization component (P polarization component) parallel to a plane normal to the water surface set at a point where the incident optical axis intersects with the water surface and a plane including the incident optical axis (P polarization component) and a polarization component perpendicular to the plane including the incident optical axis (S In order to irradiate a light beam containing both components (polarization component) simultaneously, irradiate a light beam of non-polarization characteristic or circular polarization characteristic, or irradiate a light beam of linear polarization characteristic with the polarization direction of the incident optical axis and the water surface. Inclined with respect to the plane containing the normal (for example, 45
°). FIG. 5 shows the mutual relationship between the water surface, the incident light, the P polarization plane, and the S polarization plane.

【0018】P偏光成分とS偏光成分は水面で各々独立
に反射されると考えることができる。そしてその反射光
強度は、フレネルの反射係数で規定され、光線の入射す
る入射角度と媒質の屈折率(または誘電率)によって各
々独立に変化する。そのために水面に油膜が存在する場
合には、油と水の屈折率の違いによってP偏光成分とS
偏光成分の反射光強度が各々独立に変化する。そこで、
反射光のP偏光成分とS偏光成分を分離し、各々の反射
光強度をそれぞれ測定し、その比をとると、油膜の存在
によってその値が変わるため、これにより油膜を検知す
ることができる。
It can be considered that the P-polarized light component and the S-polarized light component are independently reflected on the water surface. The intensity of the reflected light is defined by the reflection coefficient of Fresnel, and varies independently depending on the angle of incidence of the light beam and the refractive index (or dielectric constant) of the medium. Therefore, if an oil film exists on the water surface, the P-polarized light component and S
The reflected light intensity of the polarization component changes independently. Therefore,
When the P-polarized light component and the S-polarized light component of the reflected light are separated, the respective reflected light intensities are measured, and when the ratio is taken, the value changes depending on the presence of the oil film, whereby the oil film can be detected.

【0019】この手段の特徴は、光学的な測定であるた
め、複雑な操作を必要とせず簡便に連続的に油膜を検知
できることの他、水面の波立ちや浮遊する異物の影響を
受けにくく、正確で高感度に油膜を検知できることであ
る。水面が波立ったり異物が浮遊してくると乱反射光が
生じるため、単に反射光の強度をモニタするだけである
と、その強度が変化して安定な測定が行えず感度が低下
してしまう。
The feature of this means is that it is an optical measurement, so that an oil film can be easily and continuously detected without requiring complicated operations. To detect the oil film with high sensitivity. If the water surface is wavy or foreign matter floats, irregularly reflected light is generated. Therefore, if only the intensity of the reflected light is monitored, the intensity changes and stable measurement cannot be performed, resulting in a decrease in sensitivity.

【0020】これに対して、P偏光成分とS偏光成分の
比をモニタするようにすると、水面が波立って反射光の
強度が変化しても、一定の反射角で受光しているかぎり
偏光成分の比は変化しにくいために、安定で高感度な測
定が行うことができる。また、水面に浮遊する異物があ
る場合、ある範囲の入射角度でモニタすれば、S偏光成
分をP偏光成分で除した比は、油膜の存在により水に比
べて大きくなるのに対し、異物の場合は偏光が解消して
その比は小さくなるため、この違いによって油膜と異物
を判別することができる。このように、発明した油膜検
知装置は水面の波立ちや浮遊する異物の影響を受けにく
く、正確で高感度に油膜を検知できる。
On the other hand, if the ratio between the P-polarized component and the S-polarized component is monitored, even if the surface of the water ripples and the intensity of the reflected light changes, as long as the reflected light is received at a constant reflection angle, Since the ratio of the components is hard to change, stable and highly sensitive measurement can be performed. In addition, when there is a foreign substance floating on the water surface, the ratio of the S-polarized component divided by the P-polarized component becomes larger than that of water due to the presence of the oil film. In this case, since the polarized light is eliminated and the ratio becomes smaller, the difference between the oil film and the foreign matter can be determined. As described above, the oil film detecting device invented is hardly affected by the ripples on the water surface and the floating foreign matters, and can detect the oil film accurately and with high sensitivity.

【0021】本発明の第2の手段は、水面からの反射光
をある範囲の受光角度においてモニタした場合、油膜の
存在によって、反射光のS偏光成分は増加するが、P偏
光成分は一定または減少するという現象を利用して、油
膜を検知する。この手段の投光部、偏光分離部、光電変
換部は、本発明の第1の手段と同じで、反射光のP偏光
成分とS偏光成分の強度をそれぞれ測定する。水面に油
膜が存在した場合、油と水の屈折率の違いによってP偏
光成分とS偏光成分の反射光強度が各々独立に変化する
が、その変化の仕方をより詳細に調べると、次のように
なる。
According to the second means of the present invention, when the reflected light from the water surface is monitored at a certain range of light receiving angles, the S-polarized component of the reflected light increases due to the presence of the oil film, but the P-polarized component is constant or constant. The oil film is detected by utilizing the phenomenon of decrease. The light projecting unit, the polarization separating unit, and the photoelectric conversion unit of this unit measure the intensities of the P-polarized component and the S-polarized component of the reflected light, respectively, as in the first unit of the present invention. When an oil film is present on the water surface, the reflected light intensities of the P-polarized light component and the S-polarized light component change independently of each other due to the difference in the refractive indexes of the oil and water. become.

【0022】S偏光成分は、水面と平行な振動方向をも
ち、水分子の電荷を水面と平行な方向に振動させて反射
光をつくる。その効果は、屈折率の大きい媒質のときに
より大きく、油膜の場合には、反射光の強度が増加す
る。一方、P偏光成分は、水面に対して垂直な平面内で
振動し、反射光の振動方向と同じ方向の電荷の振動成分
のみが、反射光量に寄与する。そのために反射角度によ
ってその効果が変わる。水面と入射光軸のなす角度が小
さい場合(入射角が大きい場合)、屈折率のより大きい
油膜のときに反射光の強度は一定または減少する。従っ
て、この違いによって油膜を検知することができる。
The S-polarized light component has a vibration direction parallel to the water surface, and generates reflected light by vibrating the electric charge of the water molecule in a direction parallel to the water surface. The effect is greater when the medium has a large refractive index, and in the case of an oil film, the intensity of the reflected light increases. On the other hand, the P-polarized light component oscillates in a plane perpendicular to the water surface, and only the oscillating component of the electric charge in the same direction as the oscillating direction of the reflected light contributes to the amount of reflected light. Therefore, the effect changes depending on the reflection angle. When the angle between the water surface and the incident optical axis is small (when the incident angle is large), the intensity of the reflected light is constant or decreases when the oil film has a higher refractive index. Therefore, an oil film can be detected based on this difference.

【0023】この第2の手段は、本発明の第1の手段と
同じように油膜を検知できるが、「S偏光成分の増加」
と「P偏光成分の一定または減少」という2つの条件を
満足した場合にのみ油膜と判定するようになっているた
め、油膜でないものを油膜と誤って判定することがより
少なくなる。本発明の第3の手段は、第1の手段と同じ
ように、油膜の有る水面と無い水面で、反射した光のP
偏光成分とS偏光成分の比が異なることを利用して油膜
を検知する。第1の手段と違うのは、P偏光特性を有す
る光ビームとS偏光特性を有する光ビームを交互に照射
して、反射光のP偏光成分とS偏光成分の強度を1つの
光電変換器で測定するようにしたことであり、これによ
って偏光分離手段を省略したことを特徴とする。
This second means can detect the oil film in the same manner as the first means of the present invention, but "increases the S-polarized component".
And the "fixed or decreased P-polarized component" condition is determined only as an oil film. Therefore, it is less likely that a non-oil film is erroneously determined as an oil film. The third means of the present invention, like the first means, uses the P of reflected light on the water surface with and without the oil film.
The oil film is detected by utilizing the difference between the ratio of the polarized light component and the S polarized light component. The difference from the first means is that a light beam having a P-polarization characteristic and a light beam having an S-polarization characteristic are alternately irradiated, and the intensities of the P-polarization component and the S-polarization component of the reflected light are measured by one photoelectric converter. This is characterized in that the measurement is performed, and the polarization separation means is omitted.

【0024】本発明の第4の手段は、第2の手段と同じ
ように、水面からの反射光をある範囲の受光角度におい
てモニタした場合、油膜の存在によって、反射光のS偏
光成分は増加するがP偏光成分は一定または減少する現
象を利用して油膜を検知する。第2の手段と違うのは、
P偏光特性を有する光ビームとS偏光特性を有する光ビ
ームを交互に照射して、反射光のP偏光成分とS偏光成
分の強度を1つの光電変換器で測定するようにしたこと
であり、これによって偏光分離手段を省略したことを特
徴とする。
According to the fourth means of the present invention, similarly to the second means, when the reflected light from the water surface is monitored at a certain range of light receiving angles, the S-polarized light component of the reflected light increases due to the presence of the oil film. However, the oil film is detected using the phenomenon that the P-polarized component is constant or decreases. The difference from the second method is that
A light beam having a P-polarization characteristic and a light beam having an S-polarization characteristic are alternately irradiated, and the intensities of the P-polarization component and the S-polarization component of the reflected light are measured by one photoelectric converter. Thereby, the polarization separation means is omitted.

【0025】[0025]

【発明の実施の形態】以下に、本発明の各種実施例につ
いて、図を用いて述べる。 [実施例1]発明の第1の実施例としての油膜検知装置
を図1に示す。円偏光特性を有するレーザー光源1を用
いて、P偏光成分(図中では、P偏光成分の振動方向2
を上下の矢印で示す)とS偏光成分(図中では、S偏光
成分の振動方向3を中心に黒点のある円で示す)とを均
等に含む光ビーム4を、油膜5の浮遊する波立った水面
6に、ある入射角7で斜めから照射する(入射角7とは
入射光軸8が水面6と交わる点に立てた水面の法線9と
入射光軸8とのなす角度をいう)。水面6からの反射光
10をピンホール11で光路制限をした後、偏光ビーム
スプリッタ12に通し、P偏光成分13とS偏光成分1
4とに分離する。分離したP偏光成分13とS偏光成分
14をフォトダイオード15とフォトダイオード16で
各々光電変換して各々の光量を電気信号に変換する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Various embodiments of the present invention will be described below with reference to the drawings. Embodiment 1 FIG. 1 shows an oil film detecting device as a first embodiment of the present invention. Using a laser light source 1 having circular polarization characteristics, a P-polarized component (in the figure, the vibration direction 2 of the P-polarized component is used).
Are shown by upper and lower arrows) and an S-polarized component (in the figure, indicated by a circle with a black dot around the oscillation direction 3 of the S-polarized component), is a wave that floats on the oil film 5. The water surface 6 is irradiated obliquely at a certain incident angle 7 (the incident angle 7 is the angle between the normal 9 of the water surface and the incident optical axis 8 at the point where the incident optical axis 8 intersects the water surface 6). . After the optical path of the reflected light 10 from the water surface 6 is restricted by the pinhole 11, the reflected light 10 is passed through a polarizing beam splitter 12, and a P-polarized component 13 and an S-polarized
And 4. The separated P-polarized light component 13 and S-polarized light component 14 are photoelectrically converted by a photodiode 15 and a photodiode 16, respectively, and each light amount is converted into an electric signal.

【0026】各々の電気信号をアンプ17とアンプ18
でそれぞれ増幅した後、演算回路19に入力する。演算
回路19は入力信号に基づきP偏光成分とS偏光成分の
光量比を演算出力する。またコンパレータ20はアンプ
18から分岐した信号が基準電圧21より低いことを検
知し信号を出力する。ホールド回路22は演算回路19
からの信号をコンパレータ20の信号出力に従ってホー
ルドする。これは、ピンホール11の光路制限のために
反射光10がフォトダイオード16に届かずにアンプ1
8の信号レベルが低下しているとき、演算回路19の信
号をホールドしてこれを無効とするための処理である。
ホールド回路22からの信号出力を平均演算回路23で
移動平均した後、比較回路24に入力する。比較回路2
4は水面に油膜のない正常時に相当する基準値25と入
力信号を比較し、あらかじめ設定した範囲を超えたとき
に油膜があると判定し、外部に警報26を出力する。
Each electric signal is supplied to an amplifier 17 and an amplifier 18.
And then input to the arithmetic circuit 19. The arithmetic circuit 19 calculates and outputs the light amount ratio between the P-polarized component and the S-polarized component based on the input signal. The comparator 20 detects that the signal branched from the amplifier 18 is lower than the reference voltage 21 and outputs a signal. The hold circuit 22 is an arithmetic circuit 19
Is held in accordance with the signal output of the comparator 20. This is because the reflected light 10 does not reach the photodiode 16 due to the optical path limitation of the pinhole 11 and the amplifier 1
This is a process for holding the signal of the arithmetic circuit 19 and invalidating the signal when the signal level of the signal 8 has dropped.
After the signal output from the hold circuit 22 is moving averaged by the averaging circuit 23, it is input to the comparison circuit 24. Comparison circuit 2
Reference numeral 4 compares an input signal with a reference value 25 corresponding to a normal state where there is no oil film on the water surface, and when it exceeds a predetermined range, determines that there is an oil film and outputs an alarm 26 to the outside.

【0027】表1に、実施例1の装置で油膜の無い水面
と種々の油膜が浮遊する水面と異物の浮遊する水面を測
定したときのP偏光成分とS偏光成分との反射光量の比
のデータを示す。この表の測定は、レーザ光の波長は6
33nm、入射角は70°であり、また、油膜の膜厚は
0.5〜50μmである。
Table 1 shows the ratio of the amount of reflected light between the P-polarized light component and the S-polarized light component when the water surface having no oil film, the water surface on which various oil films float, and the water surface on which foreign matter floats were measured by the apparatus of Example 1. Show data. The measurement in this table shows that the wavelength of the laser light is 6
33 nm, the incident angle is 70 °, and the thickness of the oil film is 0.5 to 50 μm.

【0028】[0028]

【表1】 P偏光成分とS偏光成分の反射光量の比は油膜の有る場
合は無い場合に比べて1.2〜1.7倍と大きく、微量
な油膜の有無を十分検知できることがわかる。また、異
物はP偏光成分とS偏光成分の反射光量の比が0.3〜
0.4倍と小さく、油膜と異物の判別が可能なことがわ
かる。
[Table 1] The ratio of the amount of reflected light between the P-polarized component and the S-polarized component is 1.2 to 1.7 times as large as when there is no oil film, and it can be seen that the presence or absence of a small amount of oil film can be sufficiently detected. In addition, the ratio of the amount of reflected light between the P-polarized component and the S-polarized component is 0.3 to 0.3.
It is clear that it is as small as 0.4 times, and it is possible to discriminate between the oil film and the foreign matter.

【0029】表1のデータは、入射角が70°の場合の
データであるが、その他の入射角の場合について以下に
説明する。図6には、油膜の無い水面と屈折率1.5、
厚さ1μmの油膜の浮遊する水面における、入射角に対
するS偏光成分とP偏光成分の反射光量比の変化を示
す。入射角45°〜60°付近のデータがスケールオー
バしていて具体的数値を示していないのは、この付近で
はP偏光成分の反射強度が極めて小さく計測誤差が大き
いためである。図6から、油膜のある場合と無い場合の
計測差が大きいのは入射角60°〜90°であり、この
範囲の入射角で測定すると効率よく油膜を検知できこと
がわかる。
The data in Table 1 is for the case where the incident angle is 70 °, and will be described below for other incident angles. FIG. 6 shows a water surface without an oil film and a refractive index of 1.5,
The change of the reflected light amount ratio of the S-polarized light component and the P-polarized light component with respect to the incident angle on the water surface where the oil film having a thickness of 1 μm floats is shown. The reason why the data near the incident angle of 45 ° to 60 ° is over-scaled and does not show a specific numerical value is that the reflection intensity of the P-polarized component is extremely small and the measurement error is large in this vicinity. FIG. 6 shows that the measurement difference between the case with and without the oil film is large at the incident angle of 60 ° to 90 °, and it is understood that the oil film can be detected efficiently when measured at the incident angle in this range.

【0030】水面が揺れているときの信号処理過程を図
7に示す。この図には、(1)反射光のP偏光成分の強
度を示すアンプ16の出力と、(2)S偏光成分の強度
を示すアンプ17の出力と、(3)P偏光成分とS偏光
成分の光量比を示す演算回路19の出力と、(4)ホー
ルド回路21の出力と、(5)平均演算回路25の出力
が示されている。水面の揺れのために、(1)P偏光成
分の強度と(2)S偏光成分の強度は大きく乱れている
が、(3)P偏光成分とS偏光成分の光量比は乱れが少
ない。そして(4)ホールド回路の出力はさらに安定し
ていて、最終処理された(5)平均演算回路25の出力
信号はほとんど乱れていない。このことから水面が揺れ
ても油膜を正確に検知できることが分かる。
FIG. 7 shows a signal processing process when the water surface is shaking. This figure shows (1) the output of the amplifier 16 indicating the intensity of the P-polarized component of the reflected light, (2) the output of the amplifier 17 indicating the intensity of the S-polarized component, and (3) the P-polarized component and the S-polarized component. , The output of the arithmetic circuit 19, the output of the hold circuit 21, and the output of the average arithmetic circuit 25 are shown. Due to the fluctuation of the water surface, (1) the intensity of the P-polarized component and (2) the intensity of the S-polarized component are largely disturbed, but (3) the intensity ratio of the P-polarized component and the S-polarized component is small. (4) The output of the hold circuit is more stable, and the output signal of the final processing (5) average operation circuit 25 is hardly disturbed. This indicates that the oil film can be accurately detected even if the water surface shakes.

【0031】以上のように、発明の第1の実施例の装置
は、光学的な測定であるため、複雑な操作を必要とせず
簡便に連続的に油膜を検知できることの他、水面の波立
ちや浮遊する異物の影響を受けにくく、正確で高感度に
油膜を検知できる。図7の例では、光源に円偏光特性の
レーザ光源を用いたが、無偏光特性のレーザ光源を用い
てもよい、ただし、市販の無偏光特性レーザ光源はP偏
光成分とS偏光成分の強度が数秒の周期で変化するもの
が多いため、その場合は光量の補正を行う必要がある。
また、直線偏光のレーザ光源を、その偏光方向が入射光
軸と水面の法線を含む平面に対して傾けて(例えば45
°にして)照射してもよい。この場合は、傾ける角度が
変わるとP偏光成分とS偏光成分の強度が変わるので、
各々の初期光量の確認が必要である。
As described above, since the apparatus of the first embodiment of the present invention is an optical measurement, it can easily and continuously detect an oil film without requiring a complicated operation, and also has an advantage in that the water surface has a wavy shape. It is hardly affected by floating foreign substances, and can detect oil film accurately and with high sensitivity. In the example of FIG. 7, a laser light source having a circular polarization characteristic is used as the light source. However, a laser light source having a non-polarization characteristic may be used. However, a commercially available non-polarization laser light source has the intensities of the P polarization component and the S polarization component. Often changes with a period of several seconds, in which case it is necessary to correct the light amount.
Also, the linearly polarized laser light source is inclined with respect to a plane whose polarization direction includes the incident optical axis and the normal to the water surface (for example, 45 degrees).
°). In this case, if the tilt angle changes, the intensities of the P-polarized component and the S-polarized component change.
It is necessary to confirm each initial light amount.

【0032】水面の揺れが小さい場合には、反射光の光
路制限を行うためのピンホール11と反射光が遮光され
た期間の信号出力を無効にするためのコンパレータ20
とホールド回路22と平均演算回路23は必要が無く、
演算回路19の出力をそのまま、比較回路24に入力す
ればよい。 [実施例2]発明の第2の実施例としての油膜検知装置
を図2に示す。
When the fluctuation of the water surface is small, a pinhole 11 for limiting the optical path of the reflected light and a comparator 20 for invalidating the signal output during the period when the reflected light is blocked.
And the holding circuit 22 and the averaging circuit 23 are not necessary,
What is necessary is just to input the output of the arithmetic circuit 19 to the comparison circuit 24 as it is. [Embodiment 2] Fig. 2 shows an oil film detecting apparatus according to a second embodiment of the present invention.

【0033】この図において図1に示した符号と同一の
ものは同一物を示している。この実施例では、本発明の
第1の手段と同じように、反射光のP偏光成分の強度が
アンプ17から、S偏光成分の強度がアンプ18からそ
れぞれ出力され、アンプ17からの信号は比較回路27
に、アンプ18からの信号は比較回路28に、それぞれ
入力される。比較回路27は、水面に油膜のない正常時
のP偏光成分の強度に相当する基準値29と入力信号を
比較し、入力信号が基準値29と同じまたは小さくなっ
たときに、判定回路30へ信号を出力する。比較回路2
8は、水面に油膜のない正常時のS偏光成分の強度に相
当する基準値31と入力信号を比較し、入力信号が基準
値31より大きくなったときに、判定回路30へ信号を
出力する。判定回路30は、比較回路27と比較回路2
8の出力信号の論理積をとり、S偏光成分の強度のみが
増加したことを確認したときに、油膜があると判定し、
外部に警報26を出力する。
In this figure, the same components as those shown in FIG. 1 indicate the same components. In this embodiment, as in the first means of the present invention, the intensity of the P-polarized component of the reflected light is output from the amplifier 17 and the intensity of the S-polarized component is output from the amplifier 18, and the signal from the amplifier 17 is compared. Circuit 27
The signal from the amplifier 18 is input to the comparison circuit 28. The comparison circuit 27 compares the input signal with a reference value 29 corresponding to the intensity of the P-polarized light component in a normal state where there is no oil film on the water surface, and when the input signal is equal to or smaller than the reference value 29, the determination circuit 30 Output a signal. Comparison circuit 2
Reference numeral 8 compares the input signal with a reference value 31 corresponding to the intensity of the S-polarized light component in a normal state where there is no oil film on the water surface, and outputs a signal to the determination circuit 30 when the input signal becomes larger than the reference value 31. . The determination circuit 30 includes the comparison circuit 27 and the comparison circuit 2
ANDing the output signal of No. 8 and confirming that only the intensity of the S-polarized component has increased, it is determined that there is an oil film,
An alarm 26 is output to the outside.

【0034】図8に、油膜の無い水面と屈折率1.5、
厚さ1μmの膜膜の浮遊する水面のそれぞれについて、
入射角に対するS偏光成分とP偏光成分の反射光量の変
化が示されている。入射角60°〜90°の範囲におい
て、P偏光成分の光量は、油膜の有るときと無いときで
差がないのに対して、S偏光成分の光量は、油膜の有る
ときに大きくなっている。この実施例2の装置は、実施
例1の装置と同じように油膜を検知できるが、「S偏光
成分の増加」と「P偏光成分の一定または減少」という
2つの条件を満足した場合にのみ油膜と判定するように
なっているため、油膜でないものを油膜と誤って判定す
ることがより少なくなる。 [実施例3]発明の第3の実施例としての油膜検知装置
を図3に示す。
FIG. 8 shows a water surface without an oil film and a refractive index of 1.5,
For each of the floating surfaces of the 1 μm thick membrane film,
The change of the reflected light amount of the S-polarized light component and the P-polarized light component with respect to the incident angle is shown. In the range of the incident angle of 60 ° to 90 °, the light amount of the P-polarized light component is not different between the case with and without the oil film, whereas the light amount of the S-polarized light component is large with the oil film. . The device of the second embodiment can detect the oil film in the same manner as the device of the first embodiment, but only when the two conditions of “increase in the S-polarized component” and “constant or decreased P-polarized component” are satisfied. Since an oil film is determined, it is less likely that a non-oil film is erroneously determined to be an oil film. [Embodiment 3] FIG. 3 shows an oil film detecting apparatus according to a third embodiment of the present invention.

【0035】この図において図1、図2に示した符号と
同一のものは同一物を示している。この実施例では、直
線偏光特性のレーザ光源32の発するP偏光特性の光ビ
ームともう一つの直線偏光特性のレーザ光源33の発す
るS偏光特性の光ビームを、水面の波の周期に比べて十
分に速い周期でON/OFF変調して交互に点灯し、ミ
ラー34とハーフミラー35を用いて同軸にして、水面
6に照射する。水面6からの反射光10は直接フォトダ
イオード15で光電変換し、光ビームのON/OFF変
調に同期してP偏光成分13とS偏光成分14の光量を
各々電気信号に変換する。これから後の信号処理は実施
例1と同様である。この実施例の特徴は、偏光ビームス
プリッタ12を省略して1つのフォトダイオード15で
P偏光成分13とS偏光成分14の光量を測定するよう
にしたことであり、実施例1と同じ性能が得られる。 [実施例4]発明の第4の実施例としての油膜検知装置
を図4に示す。
In this figure, the same components as those shown in FIGS. 1 and 2 indicate the same components. In this embodiment, the P-polarized light beam emitted from the linearly polarized laser light source 32 and the S-polarized light beam emitted from another linearly polarized laser light source 33 are sufficiently compared with the period of the wave on the water surface. The light is alternately lit by ON / OFF modulation at a fast cycle, and is coaxially illuminated with the mirror 34 and the half mirror 35 to irradiate the water surface 6. The reflected light 10 from the water surface 6 is directly photoelectrically converted by the photodiode 15, and the amounts of the P-polarized component 13 and the S-polarized component 14 are converted into electric signals in synchronization with the ON / OFF modulation of the light beam. The subsequent signal processing is the same as in the first embodiment. The feature of this embodiment is that the polarization beam splitter 12 is omitted and one photodiode 15 measures the amounts of light of the P-polarized light component 13 and the S-polarized light component 14. Can be Fourth Embodiment FIG. 4 shows an oil film detecting device according to a fourth embodiment of the present invention.

【0036】この図において図1、図2、図3に示した
符号と同一のものは同一物を示している。この実施例で
は、実施例3と同じように、レーザ光源32とレーザ光
源33を用いてP偏光特性を有する光ビームとS偏光特
性を有する光ビームを交互に照射して、反射光のP偏光
成分とS偏光成分の強度を1つの光電変換器15で測定
するようにした。信号処理は実施例2と同様である。こ
の実施例の特徴は、実施例3と同じように、偏光ビーム
スプリッタ12を省略して1つのフォトダイオード15
でP偏光成分13とS偏光成分14の光量を測定するよ
うにしたことであり、実施例2と同じ性能が得られる。
In this figure, the same components as those shown in FIGS. 1, 2 and 3 represent the same components. In this embodiment, similarly to the third embodiment, the laser light source 32 and the laser light source 33 are used to alternately irradiate a light beam having a P-polarization characteristic and a light beam having an S-polarization characteristic so that the P-polarized light The intensity of the component and the S-polarized component was measured by one photoelectric converter 15. The signal processing is the same as in the second embodiment. The feature of this embodiment is that, similarly to the third embodiment, the polarization beam splitter 12 is omitted and one photodiode 15 is omitted.
Is used to measure the amounts of light of the P-polarized light component 13 and the S-polarized light component 14, and the same performance as in the second embodiment can be obtained.

【0037】実施例1〜4の図には油膜検知装置の設置
方法が示されていないが、水位の変化しない水槽ではそ
の周囲に固定して、水位の変化する河川、海洋等では浮
きフロートに乗せて水面に浮かして設置する方法を採用
することができる。また、太陽光などの外乱光の影響が
あるときには、受光部の光電変換器の前に、投光ビーム
の波長のみを通す干渉フィルタを設けたり、投光ビーム
を変調してその変調周波数のみを信号処理部で選別した
りして、外乱光の影響を除くことができる。
Although the method of installing the oil film detecting device is not shown in the drawings of the first to fourth embodiments, the oil film detecting device is fixed around the water tank where the water level does not change. It is possible to adopt a method of placing it on the water surface by placing it on the water. Also, when there is an influence of disturbance light such as sunlight, an interference filter that passes only the wavelength of the projected beam is provided in front of the photoelectric converter in the light receiving unit, or the modulated modulated beam is used to modulate only the modulation frequency. The influence of disturbance light can be eliminated by selecting the signal in the signal processing unit.

【0038】[0038]

【発明の効果】本発明の油膜検知装置は、浄水場、養殖
場などに流入する油分、または、工場排水施設などから
流出する油分を、水面上の油膜として自動的に検知する
油膜検知装置に関し、従来の装置の問題点である、連続
自動測定が難しいこと、微量油分の検出が困難なこと、
誤動作が多いことを解決するために考案されたものであ
り、油膜の有る水面と無い水面で反射した光のP偏光成
分とS偏光成分の比が異なること、また、油膜の存在に
よって、反射光のS偏光成分は増加するがP偏光成分は
一定または減少する現象を利用して油膜を検知するの
で、水面の波立ちや浮遊する異物の影響を受けることな
く、簡便で連続的に高感度で正確に油膜を検知できる。
The oil film detecting device according to the present invention relates to an oil film detecting device for automatically detecting an oil component flowing into a water purification plant, a farm, or an oil component flowing out of a factory drainage facility as an oil film on the water surface. , The problems of conventional equipment, the difficulty of continuous automatic measurement, the difficulty of detecting trace amounts of oil,
It is designed to solve the problem of many malfunctions. The ratio of the P-polarized component and the S-polarized component of the light reflected on the water surface with and without the oil film is different. The oil film is detected using the phenomenon that the S-polarized component increases but the P-polarized component increases or decreases, so it is simple, continuous, and highly sensitive and accurate without being affected by the ripples or floating foreign substances on the water surface. The oil slick can be detected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】油膜検知装置の第1の発明例の模式図FIG. 1 is a schematic view of a first invention example of an oil film detection device.

【図2】油膜検知装置の第2の発明例の模式図FIG. 2 is a schematic view of a second invention example of an oil film detection device.

【図3】油膜検知装置の第3の発明例の模式図FIG. 3 is a schematic view of a third invention example of an oil film detection device.

【図4】油膜検知装置の第4の発明例の模式図FIG. 4 is a schematic view of a fourth invention example of an oil film detection device.

【図5】水面、入射光、P偏光面、S偏光面との相互の
関係を示す図
FIG. 5 is a diagram showing a mutual relationship between a water surface, incident light, a P-polarized surface, and an S-polarized surface.

【図6】油膜の無い水面と膜膜の浮遊する水面におけ
る、入射角に対するS偏光成分とP偏光成分の反射光量
の比の変化を示す図
FIG. 6 is a diagram illustrating a change in the ratio of the amount of reflected light of the S-polarized light component and the reflected light amount of the P-polarized light component to the incident angle on the water surface without an oil film and the water surface on which the film film floats

【図7】水面が揺れているときの信号処理過程を示す
図。
FIG. 7 is a diagram showing a signal processing process when the water surface is shaking.

【図8】油膜の無い水面と膜膜の浮遊する水面におけ
る、入射角に対するS偏光成分とP偏光成分の反射光量
の変化を示す図
FIG. 8 is a diagram illustrating a change in the amount of reflected light of an S-polarized component and a P-polarized component with respect to an incident angle on a water surface having no oil film and a water surface on which the film film floats.

【符号の説明】[Explanation of symbols]

1: レーザ光源 2: S偏光成分の振動方向 3: P偏光成分の振動方向 4: 光ビーム 5: 油膜 6: 水面 7: 入射角 8: 入射光軸 9: 水面の法線 10: 反射光 11: ピンホール 12: 偏光ビームスプリッタ 13: P偏光成分 14: S偏光成分 15: フォトダイオード 16: フォトダイオード 17: アンプ 18: アンプ 19: 演算回路 20: コンパレータ 21: 基準電圧 22: ホールド回路 23: 平均演算回路 24: 比較回路 25: 基準値 26: 警報 27: 比較回路 28: 比較回路 29: 基準値 30: 判定回路 31: 基準値 32: レーザ光源 33: レーザ光源 34: ミラー 35: ハーフミラー 1: laser light source 2: oscillation direction of S-polarization component 3: oscillation direction of P-polarization component 4: light beam 5: oil film 6: water surface 7: incident angle 8: incident optical axis 9: normal to water surface 10: reflected light 11 : Pinhole 12: Polarization beam splitter 13: P polarization component 14: S polarization component 15: Photodiode 16: Photodiode 17: Amplifier 18: Amplifier 19: Operation circuit 20: Comparator 21: Reference voltage 22: Hold circuit 23: Average Arithmetic circuit 24: Comparison circuit 25: Reference value 26: Alarm 27: Comparison circuit 28: Comparison circuit 29: Reference value 30: Judgment circuit 31: Reference value 32: Laser light source 33: Laser light source 34: Mirror 35: Half mirror

フロントページの続き (72)発明者 田中 良春 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内Continuation of the front page (72) Inventor Yoshiharu Tanaka 1-1-1 Tanabe Shinda, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture Inside Fuji Electric Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】油膜の浮遊する水面に、入射光軸が水面と
交わる点に立てた水面の法線および入射光軸を含む平面
に平行な偏光成分(以下、P偏光成分と記す)と前記平
面に垂直な偏光成分(以下、S偏光成分と記す)の両方
の成分を含む光ビームを照射する投光手段と、前記水面
からの反射光をP偏光成分とS偏光成分とに分ける偏光
分離手段と、分離したP偏光成分とS偏光成分の光量を
各々電気信号に変換する光電変換手段と、この光電変換
手段からの信号出力に基づきP偏光成分とS偏光成分の
光量比を演算する演算手段と、その演算出力を水面に油
膜のない正常時の基準値と比較する比較手段とを備え、
その比較結果から水面上の油膜の有無を判定する油膜検
知装置。
1. A polarization component (hereinafter referred to as a P-polarization component) parallel to a plane including the normal line of the water surface and the incident optical axis, which is set at a point where the incident optical axis intersects the water surface, on the floating water surface of the oil film. A light projecting means for irradiating a light beam containing both components of a polarization component perpendicular to the plane (hereinafter, referred to as S-polarization component), and polarization separation for dividing the reflected light from the water surface into a P-polarization component and an S-polarization component Means, photoelectric conversion means for converting the light amounts of the separated P-polarized light component and S-polarized light component into electric signals, and calculation for calculating the light amount ratio between the P-polarized light component and the S-polarized light component based on the signal output from the photoelectric conversion means. Means, and comparing means for comparing the operation output thereof with a reference value in a normal state where there is no oil film on the water surface,
An oil slick detection device that determines the presence or absence of an oil slick on the water surface from the comparison result.
【請求項2】油膜の浮遊する水面に、P偏光成分とS偏
光成分の両方を含む光ビームを照射する投光手段と、前
記水面からの反射光をP偏光成分とS偏光成分とに分け
る偏光分離手段と、分離したP偏光成分とS偏光成分の
光量を各々電気信号に変換する光電変換手段と、この光
電変換手段からの信号出力に基づきP偏光成分とS偏光
成分の反射光量を各々正常時の基準値と比較する比較手
段と、S偏光成分の反射光量のみが正常時と比較して増
加したことを判定する判定手段とを備え、その判定結果
から水面上の油膜の有無を判定する油膜検知装置。
2. A light projecting means for irradiating a light beam containing both a P-polarized light component and an S-polarized light component to a water surface on which an oil film floats, and dividing light reflected from the water surface into a P-polarized light component and an S-polarized light component. Polarization separation means, photoelectric conversion means for converting the light amounts of the separated p-polarized light component and s-polarized light component into electric signals, and reflection light amounts of the p-polarized light component and the s-polarized light component based on the signal output from the photoelectric conversion means. Comparing means for comparing with a reference value in a normal state, and determining means for determining that only the reflected light amount of the S-polarized component has increased compared to the normal state, and determining the presence or absence of an oil film on the water surface from the determination result Oil film detector.
【請求項3】油膜の浮遊する水面に、P偏光特性を有す
る光ビームとS偏光特性を有する光ビームを交互に照射
する投光手段と、前記水面から反射したP偏光成分の反
射光とS偏光成分の反射光の光量を各々電気信号に変換
する光電変換手段と、この光電変換手段からの信号出力
に基づきP偏光成分とS偏光成分の光量比を演算する演
算手段と、その演算出力を水面に油膜のない正常時の基
準値と比較する比較手段とを備え、その比較結果から水
面上の油膜の有無を判定する油膜検知装置。
3. A light projecting means for alternately irradiating a light surface having a P-polarization characteristic and a light beam having an S-polarization characteristic to a water surface on which an oil film floats; Photoelectric conversion means for converting the quantity of reflected light of the polarized light component into an electric signal; calculating means for calculating a light quantity ratio between the P-polarized component and the S-polarized component based on the signal output from the photoelectric conversion means; An oil film detecting device, comprising: a comparing means for comparing with a normal reference value having no oil film on the water surface, and judging the presence or absence of an oil film on the water surface from the comparison result.
【請求項4】油膜の浮遊する水面に、P偏光特性を有す
る光ビームとS偏光特性を有する光ビームを交互に照射
する投光手段と、前記水面から反射したP偏光成分の反
射光とS偏光成分の反射光の光量を各々電気信号に変換
する光電変換手段と、この光電変換手段からの信号出力
に基づきP偏光成分とS偏光成分の反射光量を各々正常
時の基準値と比較する比較手段と、S偏光成分の反射光
量のみが正常時と比較して増加したことを判定する判定
手段とを備え、その判定結果から水面上の油膜の有無を
判定する油膜検知装置。
4. A light projecting means for alternately irradiating a light surface having a P-polarization characteristic and a light beam having an S-polarization characteristic to a water surface on which an oil film floats; A photoelectric conversion means for converting the quantity of reflected light of the polarized light component into an electric signal, and a comparison for comparing the reflected light quantity of each of the P-polarized component and the S-polarized component with a normal reference value based on the signal output from the photoelectric conversion means; An oil film detecting device comprising: means for determining that only the reflected light amount of the S-polarized component has increased as compared to a normal state, and from the result of the determination, the presence or absence of an oil film on the water surface.
【請求項5】請求項1〜4いずれかの装置において、入
射光軸に対して規定した範囲外の角度で反射した反射光
を遮光する光路制限手段と、反射光の全部または一部が
遮光されて光電変換手段からの信号出力があらかじめ規
定した値より小さくなったときにはその信号出力を無効
とする信号処理手段とを備えることを特徴とした油膜検
知装置。
5. An apparatus according to claim 1, wherein said light path restricting means blocks light reflected at an angle out of a prescribed range with respect to an incident optical axis, and all or part of the reflected light is blocked. An oil film detection device comprising: a signal processing unit that invalidates the signal output when the signal output from the photoelectric conversion unit becomes smaller than a predetermined value.
【請求項6】請求項1〜4いずれかの装置において、入
射光軸が水面と交わる点に立てた水面の法線と入射光軸
とのなす角度(以下、入射角と記す)を60°以上とし
た油膜検知装置。
6. An apparatus according to claim 1, wherein an angle between a normal line of the water surface, which is set at a point where the incident optical axis intersects the water surface, and the incident optical axis (hereinafter, referred to as an incident angle) is 60 °. The oil film detecting device described above.
【請求項7】請求項1または2の装置において、P偏光
成分とS偏光成分の両方を含む光ビームを照射する投光
手段として、円偏光特性のレーザ光源を用いたことを特
徴とする油膜検知装置。
7. An oil film according to claim 1, wherein a circularly polarized laser light source is used as a light projecting means for irradiating a light beam containing both a P-polarized component and an S-polarized component. Detection device.
【請求項8】請求項1または2の装置において、P偏光
成分とS偏光成分の両方を含む光ビームを照射する投光
手段として、直線偏光特性のレーザ光源を用い、その偏
光方向が入射光軸と水面の法線とを含む平面に対して4
5°となるようにしたことを特徴とする油膜検知装置。
8. An apparatus according to claim 1, wherein a laser light source having a linear polarization characteristic is used as a light projecting means for irradiating a light beam containing both a P-polarized light component and an S-polarized light component, and the polarization direction is incident light. 4 for the plane containing the axis and the normal to the water surface
An oil film detecting device, wherein the angle is set to 5 °.
JP09045397A 1997-04-09 1997-04-09 Oil film detector Expired - Lifetime JP3713879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09045397A JP3713879B2 (en) 1997-04-09 1997-04-09 Oil film detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09045397A JP3713879B2 (en) 1997-04-09 1997-04-09 Oil film detector

Publications (2)

Publication Number Publication Date
JPH10281980A true JPH10281980A (en) 1998-10-23
JP3713879B2 JP3713879B2 (en) 2005-11-09

Family

ID=13999046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09045397A Expired - Lifetime JP3713879B2 (en) 1997-04-09 1997-04-09 Oil film detector

Country Status (1)

Country Link
JP (1) JP3713879B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008014677A (en) * 2006-07-03 2008-01-24 Niigata Denki Kk Method and device for measuring snowfall rate
JP2014115157A (en) * 2012-12-07 2014-06-26 Dkk Toa Corp Oil film detector
CN111380473A (en) * 2020-05-06 2020-07-07 长春理工大学 Device and method for testing oil film thickness based on polarization characteristic
CN111380473B (en) * 2020-05-06 2024-05-24 长春理工大学 Device and method for testing thickness of oil film based on polarization characteristics

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008014677A (en) * 2006-07-03 2008-01-24 Niigata Denki Kk Method and device for measuring snowfall rate
JP2014115157A (en) * 2012-12-07 2014-06-26 Dkk Toa Corp Oil film detector
CN111380473A (en) * 2020-05-06 2020-07-07 长春理工大学 Device and method for testing oil film thickness based on polarization characteristic
CN111380473B (en) * 2020-05-06 2024-05-24 长春理工大学 Device and method for testing thickness of oil film based on polarization characteristics

Also Published As

Publication number Publication date
JP3713879B2 (en) 2005-11-09

Similar Documents

Publication Publication Date Title
US3713743A (en) Forward scatter optical turbidimeter apparatus
US5400137A (en) Photometric means for monitoring solids and fluorescent material in waste water using a stabilized pool water sampler
JPH09273987A (en) Method and apparatus for measuring particle size, count concentration or turbidity of fine particle in liquid
US3710111A (en) Dynamically calibrated oil content meter
JP3898580B2 (en) Fluorescence detection device
JP3713879B2 (en) Oil film detector
JP2002253905A (en) Coagulation monitoring system
JP4347536B2 (en) Alarm detection method for oil detector
JP3447478B2 (en) Trace oil detector
EP3465149A1 (en) Method and apparatus for determining a concentration of a substance in a liquid medium
JPH0518889A (en) Method and device for inspecting foreign matter
JP3707241B2 (en) Oil film detector
JPH11326188A (en) Oil film detecting device
US4591723A (en) Optical egg inspecting apparatus
JP2001165850A (en) Oil film detector
JP2002139423A (en) Oil film detector
JP2002195947A (en) Coagulation monitoring device
JP2005193204A (en) Water treatment system
JPH05215696A (en) Method and apparatus for inspecting defect
JP2000019103A (en) Oil film detecting device
JP2003149146A (en) Oil film detecting device
JP2009222566A (en) Microorganism measuring method and system
JP2001153800A (en) Oil film-detecting apparatus
JP2000199742A (en) Oil film detecting apparatus
JPH05240782A (en) Oil concentration measuring device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050530

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050815

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130902

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term