JPH05240782A - Oil concentration measuring device - Google Patents
Oil concentration measuring deviceInfo
- Publication number
- JPH05240782A JPH05240782A JP4108592A JP4108592A JPH05240782A JP H05240782 A JPH05240782 A JP H05240782A JP 4108592 A JP4108592 A JP 4108592A JP 4108592 A JP4108592 A JP 4108592A JP H05240782 A JPH05240782 A JP H05240782A
- Authority
- JP
- Japan
- Prior art keywords
- light
- receiving element
- filter
- wavelength
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、工場排水中の油分の監
視用として用いるのに適した油分濃度測定装置に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oil concentration measuring apparatus suitable for use in monitoring oil content in factory wastewater.
【0002】[0002]
【従来の技術】工場排水中の油分監視用の油分濃度測定
装置としては、測定セル内に閉じ込めた試料水に超音波
を照射するか、あるいはミキサ等による分散によって、
試料水中の油粒子を0.3 〜0.5 μmに乳化し、この乳化
前後における試料水の濁度変化から油分濃度を求める、
いわゆる乳化濁度法を採用した装置がある。2. Description of the Related Art As an oil concentration measuring device for monitoring oil content in factory wastewater, sample water trapped in a measuring cell is irradiated with ultrasonic waves or dispersed by a mixer or the like.
Oil particles in sample water are emulsified to 0.3-0.5 μm, and the oil concentration is determined from the turbidity change of sample water before and after this emulsification.
There is a device that employs the so-called emulsion turbidity method.
【0003】[0003]
【発明が解決しようとする課題】ところで、乳化濁度法
を採用した従来の装置によると、高価な超音波振動子お
よび発振器あるいはミキサ等が必要で、しかも、それら
機器の調整・交換が必要となるなどのメンテナンスが面
倒である。また、良好な測定を行うためには試料水があ
る一定の温度範囲に入っている必要があるといった問題
もある。By the way, according to the conventional apparatus adopting the emulsion turbidity method, an expensive ultrasonic transducer and oscillator or mixer, etc. are required, and moreover, adjustment / replacement of these devices is required. It is troublesome to maintain. There is also a problem that the sample water needs to be within a certain temperature range in order to perform good measurement.
【0004】本発明はこのような点に鑑みてなされたも
ので、安価で、メンテナンスを殆ど必要としない油分濃
度測定装置の提供を目的としている。The present invention has been made in view of the above circumstances, and an object thereof is to provide an oil concentration measuring apparatus which is inexpensive and requires almost no maintenance.
【0005】[0005]
【課題を解決するための手段】上記の目的を達成するた
めの構成を、実施例に対応する図1を参照しつつ説明す
ると、本発明は、試料水を収容する測定セル1と、この
測定セル1に、第1の波長(220nm) と第2の波長(400n
m) の光を交互に照射する発光器(例えば光源2とフィ
ルタ装置3)と、この発光器からの光の測定セル1の透
過光強度を検出する受光素子4と、この受光素子4から
の出力を用いて、測定セル1に、上記第1の波長の光を
照射したときと、上記第2の波長の光を照射したときの
それぞれの透過光の強度の差を演算する演算手段11を
備え、その演算結果を試料水の油分濃度を求めるための
情報として用いるよう構成されていることによって特徴
づけられる。A structure for achieving the above object will be described with reference to FIG. 1 corresponding to an embodiment. The present invention provides a measuring cell 1 containing sample water and a measuring cell Cell 1 has a first wavelength (220nm) and a second wavelength (400n)
m) light that emits light alternately (for example, the light source 2 and the filter device 3), the light receiving element 4 that detects the transmitted light intensity of the measuring cell 1 of the light from this light emitting device, and the light receiving element 4 Using the output, a calculation means 11 for calculating the difference in the intensity of the transmitted light when the measurement cell 1 is irradiated with the light of the first wavelength and when it is irradiated with the light of the second wavelength. It is characterized by being configured and using the calculation result as information for obtaining the oil concentration of the sample water.
【0006】[0006]
【作用】油分を含んだ試料水に光を照射すると、ある特
定波長域の光はその一部が水と油分の双方に吸収される
が、その光とは波長が異なる光では、油分には殆どが吸
収されない場合がある。例えば図4および図5に示すよ
うに、波長 200〜300nm程度の光を含油試料水に照射す
ると、この波長範囲の光照射では、吸光度つまり透過光
強度の減少度が、他の波長範囲に対して顕著で、しか
も、その度合が油分の含有量に応じて変化する。これに
対し、波長 350〜600nm 程度の光照射では油分による光
吸収の影響は殆ど見られない。When a sample water containing oil is irradiated with light, part of the light in a specific wavelength range is absorbed by both water and oil, but if the light has a wavelength different from that of light, Most may not be absorbed. For example, as shown in FIG. 4 and FIG. 5, when the oil-containing sample water is irradiated with light having a wavelength of about 200 to 300 nm, the light absorption in this wavelength range causes a decrease in absorbance, that is, a decrease in transmitted light intensity, with respect to other wavelength ranges. And the degree thereof changes depending on the oil content. On the other hand, there is almost no effect of light absorption due to oil in light irradiation with a wavelength of 350 to 600 nm.
【0007】以上のことから、例えば、波長 220nmと 4
00nmとの光を試料水に交互に照射して、それぞれの透過
光の強度を検出してその両者の差を求めれば、この演算
結果は水による吸収の影響が除去された正味の油分含有
量に相関した値となる。From the above, for example, wavelengths of 220 nm and 4
By irradiating the sample water with light of 00 nm alternately, detecting the intensity of each transmitted light and obtaining the difference between the two, this calculation result is the net oil content in which the influence of absorption by water is removed. It will be a value correlated with.
【0008】[0008]
【実施例】本発明の実施例を、以下、図面に基づいて説
明する。図1は本発明実施例の構成を示す図で、光学系
と信号処理系の回路構成を併記して示す図で、図2はそ
の実施例の試料水サンプリング用の配管系を示す図であ
る。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a configuration of an embodiment of the present invention, showing a circuit configuration of an optical system and a signal processing system together, and FIG. 2 is a diagram showing a sample water sampling pipe system of the embodiment. ..
【0009】測定セル1の内部には、ポンプPによって
汲み上げられた工場排水等の試料水が供給される。この
ポンプPは、例えば摩擦ポンプであって、汲み上げ過程
において羽根車によって生じる渦の攪拌効果によって油
分の固まりを微細化して分散させる。なお、図中のバル
ブVは調圧弁である。Inside the measuring cell 1, sample water such as factory wastewater pumped up by a pump P is supplied. The pump P is, for example, a friction pump, and finely disperses the oil mass by the stirring effect of the vortex generated by the impeller in the pumping process. The valve V in the figure is a pressure regulating valve.
【0010】測定セル1の側方の所定位置には光源2が
配置されている。この光源2の光軸上には、集光レンズ
L1 ,スリットS1 およびS2 が順次に配置され、さら
にフィルタ装置3およびハーフミラー6が順次に配置さ
れており、光源4から出た光はレンズL1 によって集光
されてスリットS1 上に像を結ぶ。そのスリットS1を
通過した光はコリメーティングレンズL2 によって平行
光束となり、そしてフィルタ装置3およびハーフミラー
6を通過して測定セル1内へと入射する。A light source 2 is arranged at a predetermined position on the side of the measuring cell 1. On the optical axis of the light source 2, a condenser lens L1, slits S1 and S2 are sequentially arranged, and further, a filter device 3 and a half mirror 6 are sequentially arranged, so that the light emitted from the light source 4 has a lens L1. Is focused by and forms an image on the slit S1. The light passing through the slit S1 is made into a parallel light flux by the collimating lens L2, passes through the filter device 3 and the half mirror 6, and enters the measuring cell 1.
【0011】一方、フィルタ装置3は、図3の正面図に
示すように、半円形の2枚の干渉フィルタ3Aおよび3
Bを合わせた形状の円盤31と、この円盤31をその中
心を軸として一定速度で回転させる同期モータ32等に
よって主に構成されており、その一方のフィルタ3Aの
抽出波長は220nm で、他方のフィルタ3Bの抽出波長は
400nm である。また、円盤31には、その回転中心を挟
んで互いに対向する位置にそれぞれ小孔3aおよび3b
が穿たれている。この各小孔3a,3bが通過する位置
には、それぞれ発光・受光素子7aおよび7bが配置さ
れており、その両者は円盤31の半径方向に沿う直線上
に並んでいる。On the other hand, as shown in the front view of FIG. 3, the filter device 3 includes two semicircular interference filters 3A and 3A.
It is mainly composed of a disk 31 having a shape of B combined with it, and a synchronous motor 32 which rotates the disk 31 around its center at a constant speed. The extraction wavelength of one filter 3A is 220 nm, and the other filter 3A has an extraction wavelength of 220 nm. The extraction wavelength of the filter 3B is
It is 400 nm. Further, the disk 31 has small holes 3a and 3b at positions facing each other with the center of rotation interposed therebetween.
Is being worn. Light-emitting / light-receiving elements 7a and 7b are arranged at positions where the small holes 3a and 3b pass, respectively, and both are arranged on a straight line along the radial direction of the disk 31.
【0012】この二つの発光・受光素子7a,7bは、
光源2の光軸に円盤31のフィルタ合わせ位置が一致し
た状態で、そのいずれか一方7aまたは7bが出力を発
生する。すなわち、発光・受光素子7a,7bと光源2
との位置関係は、小孔3aが発光・受光素子7aに一致
した時点で、小孔3aに対して回転方向の前方側のフィ
ルタ合わせ位置(図3に示す状態では回転中心の下方側
に位置するフィルタ合わせ位置)が光源2の光軸に一致
する関係となっており、従って、干渉フィルタ3Bが光
源2の光軸上に存在していた状態から、フィルタ合わせ
位置が光軸に一致した時点で、発行・受光素子7aが出
力を発生し、また、その逆のときに発光・受光素子7b
が出力を発生する。それらの出力信号は、後述するスイ
ッチSW1,SW2 の開閉を制御するための信号として供され
る。なお、図1では、光源2および発光・受光素子7
a,7bの構成を模式的に示しているので、その両者に
位置関係は上記とは異なる。The two light emitting / receiving elements 7a and 7b are
With the filter alignment position of the disk 31 aligned with the optical axis of the light source 2, either one 7a or 7b produces an output. That is, the light emitting / receiving elements 7a and 7b and the light source 2
When the small hole 3a coincides with the light emitting / receiving element 7a, the filter alignment position on the front side in the rotation direction with respect to the small hole 3a (the position below the rotation center in the state shown in FIG. When the filter alignment position coincides with the optical axis from the state in which the interference filter 3B exists on the optical axis of the light source 2, the filter alignment position) is aligned with the optical axis of the light source 2. Then, the light emitting / receiving element 7a generates an output, and when the light emitting / receiving element 7b is vice versa.
Produces the output. These output signals are provided as signals for controlling opening / closing of switches SW1 and SW2 described later. In FIG. 1, the light source 2 and the light emitting / receiving element 7 are shown.
Since the configurations of a and 7b are schematically shown, the positional relationship between them is different from the above.
【0013】そして、測定セル1の後方で、光源2の光
軸上には透過光受光素子4が配置されている。この透過
光受光素子4の出力信号は二つのホールドH1 もしくは
H2に入力される。この各ホールド回路H1,H2 は、そ
れぞれスイッチSW1,SW2 とコンデンサC1,C2 によって
構成されており、その各出力信号は、ともに演算回路1
1に入力される。また、ハーフミラー6と対向する位置
に参照光受光素子5が配置されており、この出力信号も
演算回路11に入力される。A transmitted light receiving element 4 is arranged on the optical axis of the light source 2 behind the measuring cell 1. The output signal of the transmitted light receiving element 4 is input to the two holds H1 or H2. Each of the hold circuits H1 and H2 is composed of switches SW1 and SW2 and capacitors C1 and C2, and their output signals are both output from the arithmetic circuit 1.
Input to 1. Further, the reference light receiving element 5 is arranged at a position facing the half mirror 6, and this output signal is also input to the arithmetic circuit 11.
【0014】演算回路11は、二つのホールド回路H1
とH2 からの信号の差を算出し、さらに、その差算出値
と参照光の検出値との比を演算する。この差演算回路1
1の出力は増幅器12によって増幅された後、指示計1
3に表示される。The arithmetic circuit 11 includes two hold circuits H1.
And the signal from H2 are calculated, and the ratio between the calculated difference and the detected value of the reference light is calculated. This difference calculation circuit 1
The output of 1 is amplified by the amplifier 12 and then the indicator 1
It is displayed in 3.
【0015】次に、以上の本発明実施例の測定動作を説
明する。測定動作を開始すると、まず、一方の発光・受
光素子7aが出力を発生したとき、つまりフィルタ装置
3の円盤の小孔3aが発光・受光素子7aに位置した時
点からは、光源2の光軸上には干渉フィルタ3Aが位置
することになり、従って測定セル1内には干渉フィルタ
3Aによって抽出された波長220nm の光が入射する。さ
らに、発光・受光素子7aが出力を発生した時点で、ホ
ールド回路H1 のスイッチSW1 が閉じて、透過光受光素
子4の出力信号がコンデンサC1 に記憶される。Next, the measurement operation of the above embodiment of the present invention will be described. When the measurement operation is started, first, when one of the light emitting / receiving elements 7a generates an output, that is, from the time when the small hole 3a of the disk of the filter device 3 is located on the light emitting / receiving element 7a, the optical axis of the light source 2 is started. Since the interference filter 3A is located above, the light of 220 nm wavelength extracted by the interference filter 3A enters the measuring cell 1. Further, when the light emitting / light receiving element 7a produces an output, the switch SW1 of the hold circuit H1 is closed and the output signal of the transmitted light receiving element 4 is stored in the capacitor C1.
【0016】次いで、他方の発光・受光素子7bが出力
を発生した時点で、光源2の光軸上には干渉フィルタ3
Bが配置され、このフィルタによって抽出された波長40
0nmの光が入射する。また、この時点で、ホールド回路
H2 のスイッチSW2 が閉じて透過光受光素子4の出力信
号がコンデンサC2 に記憶される。そして、その二つの
検出信号I1 およびI2 は、後段の差演算回路11に採
り込まれて、その両者の差(I1 −I2 )が演算され、
さらにその演算値と参照光受光素子7の出力信号I0 と
の比(I1 −I2 )/I0 が演算されて、この演算結果
が油分濃度情報として指示計13に表示される。Next, when the other light emitting / receiving element 7b produces an output, the interference filter 3 is placed on the optical axis of the light source 2.
B is placed and the wavelength 40 extracted by this filter
Light of 0 nm enters. At this point, the switch SW2 of the hold circuit H2 is closed and the output signal of the transmitted light receiving element 4 is stored in the capacitor C2. Then, the two detection signals I 1 and I 2 are taken into the difference calculation circuit 11 in the subsequent stage, and the difference (I 1 −I 2 ) between them is calculated,
Further, a ratio (I 1 −I 2 ) / I 0 between the calculated value and the output signal I 0 of the reference light receiving element 7 is calculated, and the calculation result is displayed on the indicator 13 as oil content information.
【0017】ここで、油分を含んだ試料水に、波長 200
〜600nm の範囲の光を照射して、透過光強度を測定した
ところ、図4および図5に示すようなデータが得られ
た。ただし、図5(a) および(b) のデータの油分は、そ
れぞれ軽油 50ppmおよび 60ppmとし、また図6のデータ
の油分は軽油 70ppmとした。なお、これらの各グラフの
縦軸のパラメータは吸光度としている。Here, the sample water containing the oil content has a wavelength of 200
When the transmitted light intensity was measured by irradiating light in the range of up to 600 nm, the data shown in FIGS. 4 and 5 were obtained. However, the oil content in the data in Figures 5 (a) and (b) was 50 ppm and 60 ppm for light oil, respectively, and the oil content in the data in Figure 6 was 70 ppm in light oil. The parameter on the vertical axis of each of these graphs is the absorbance.
【0018】これらの図から明らかなように、波長が 2
00〜300nm の範囲の光を試料水に照射したときに、油分
による光吸収の影響が透過光に現れ、しかも、その影響
の度合は油分の含有量に相関することが確認でき、ま
た、波長220nm 付近の光を照射光として用いた場合に、
光吸収度合の影響が高く現れることも確認できた。一
方、照射光の波長が 350〜600nm の範囲である場合に
は、油分による光吸収の影響が現れず、この波長範囲で
は水による光吸収の影響のみが現れることが確認でき
た。As is clear from these figures, the wavelength is 2
It can be confirmed that when the sample water is irradiated with light in the range of 00 to 300 nm, the effect of light absorption by oil appears in the transmitted light, and the degree of the effect correlates with the oil content. When using light near 220 nm as irradiation light,
It was also confirmed that the influence of the degree of light absorption appears highly. On the other hand, when the wavelength of the irradiation light was in the range of 350 to 600 nm, the effect of light absorption by oil did not appear, and it was confirmed that only the effect of light absorption by water appeared in this wavelength range.
【0019】このようなことから、例えば波長220nm と
400nm とを試料水に交互に照射し、その各透過光を検出
して、その二つの検出値の差を求めれば、その演算値
は、水による光吸収分がキャンセルされた、含有油分に
よる光吸収分のみを示す値となり、この演算値から試料
水の油分濃度を求めることができる。なお、試料水に交
互に照射する照射光のうち、一方の波長を220nm ,他方
を400nm とすれば、高感度で油分濃度を測定することが
できる。また、一方の波長範囲が 200〜300nm で他方の
波長範囲が 350〜600nm であれば、油分の検出は可能で
あるが、ある程度の感度が要求される場合には、その各
波長範囲を、それぞれ 210〜240nm と 350〜 450nmとす
ることが好ましい。From the above, for example, a wavelength of 220 nm
By irradiating sample water alternately with 400 nm, detecting each transmitted light, and obtaining the difference between the two detected values, the calculated value is the light due to the oil content that the light absorption by water was canceled. It becomes a value indicating only the absorbed amount, and the oil concentration of the sample water can be obtained from this calculated value. In addition, if the wavelength of one of the irradiation lights to be alternately irradiated to the sample water is 220 nm and the other is 400 nm, the oil content can be measured with high sensitivity. Also, if one wavelength range is 200 to 300 nm and the other wavelength range is 350 to 600 nm, oil can be detected. It is preferably 210 to 240 nm and 350 to 450 nm.
【0020】[0020]
【発明の効果】以上説明したように、本発明によれば、
測定セルに収容した試料水に、水と油分の双方に一部が
吸収される波長の光と、油分には殆ど吸収されない波長
の光とを交互に照射し、それぞれの透過光強度を検出し
て、その両者の強度差から油分濃度を求めるよう構成し
たから、工場排水等の油分の監視、つまり連続的な油分
濃度測定を行うのに、超音波振動子やミキサなどを使用
する必要がなくなるので安価でメンテナンスが容易とな
る。As described above, according to the present invention,
The sample water contained in the measurement cell was alternately irradiated with light having a wavelength partially absorbed by both water and oil, and light having a wavelength almost not absorbed by oil, and the transmitted light intensity of each was detected. Since it is configured to calculate the oil concentration from the strength difference between the two, it is not necessary to use an ultrasonic transducer or mixer to monitor the oil content of factory effluent, that is, to continuously measure the oil concentration. Therefore, it is inexpensive and easy to maintain.
【図1】本発明実施例の構成を示すブロック図FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention.
【図2】本発明実施例の試料水サンプリング用配管系を
示す図FIG. 2 is a diagram showing a sample water sampling pipe system according to an embodiment of the present invention.
【図3】本発明実施例のフィルタ装置3の正面図FIG. 3 is a front view of a filter device 3 according to an embodiment of the present invention.
【図4】軽油を含んだ試料水に波長 200〜600nm の範囲
の光を照射した際の吸光度を示すグラフFIG. 4 is a graph showing the absorbance when the sample water containing light oil is irradiated with light in the wavelength range of 200 to 600 nm.
【図5】軽油を含んだ試料水に波長 200〜600nm の範囲
の光を照射した際の吸光度を示すグラフFIG. 5 is a graph showing the absorbance when sample water containing light oil is irradiated with light in the wavelength range of 200 to 600 nm.
1・・・・測定セル 2・・・・光源 3・・・・フィルタ装置 3A・・・・干渉フィルタ(220nnm) 3B・・・・干渉フィルタ(400nnm) 4・・・・透過光受光素子 5・・・・参照光受光素子 6・・・・ハーフミラー 11・・・・演算回路 12・・・・増幅器 13・・・・指示計 1 ... Measuring cell 2 ... Light source 3 ... Filter device 3A ... Interference filter (220nnm) 3B ... Interference filter (400nnm) 4 ... Transmitted light receiving element 5・ ・ ・ ・ Reference light receiving element 6 ・ ・ ・ ・ ・ ・ Half mirror 11 ・ ・ ・ ・ Arithmetic circuit 12 ・ ・ ・ ・ Amplifier 13 ・ ・ ・ ・ Indicator
Claims (1)
セルに、第1の波長と第2の波長の光を交互に照射する
発光器と、この発光器からの光の上記測定セルの透過光
強度を検出する受光素子と、この受光素子からの出力を
用いて、上記測定セルに、上記第1の波長の光を照射し
たときと、上記第2の波長の光を照射したときのそれぞ
れの透過光の強度の差を演算する演算手段を備え、その
演算結果を試料水の油分濃度を求めるための情報として
用いるよう構成された油分濃度測定装置。1. A measuring cell containing sample water, a light emitter for alternately irradiating the measuring cell with light of a first wavelength and a second wavelength, and a measuring cell for measuring the light from this light emitter. A light receiving element for detecting the intensity of transmitted light and an output from the light receiving element are used to irradiate the measurement cell with the light of the first wavelength and the light of the second wavelength. An oil concentration measuring device comprising a calculation means for calculating the difference in intensity of each transmitted light, and using the calculation result as information for obtaining the oil concentration of the sample water.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4108592A JPH05240782A (en) | 1992-02-27 | 1992-02-27 | Oil concentration measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4108592A JPH05240782A (en) | 1992-02-27 | 1992-02-27 | Oil concentration measuring device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05240782A true JPH05240782A (en) | 1993-09-17 |
Family
ID=12598636
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4108592A Pending JPH05240782A (en) | 1992-02-27 | 1992-02-27 | Oil concentration measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05240782A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006194874A (en) * | 2005-01-14 | 2006-07-27 | Samsung Electronics Co Ltd | Contamination analytical method for chemical solution, and contamination analytical system therefor |
WO2007004466A1 (en) * | 2005-07-01 | 2007-01-11 | Sysmex Corporation | Analyzer |
US7284815B2 (en) | 2004-01-21 | 2007-10-23 | Fujifilm Corporation | Inkjet recording apparatus and ink determination method |
JP2009517641A (en) * | 2005-11-29 | 2009-04-30 | ジーイー・ヘルスケア・バイオサイエンス・アクチボラグ | Method and apparatus for measuring the concentration of a substance in a solution |
-
1992
- 1992-02-27 JP JP4108592A patent/JPH05240782A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7284815B2 (en) | 2004-01-21 | 2007-10-23 | Fujifilm Corporation | Inkjet recording apparatus and ink determination method |
JP2006194874A (en) * | 2005-01-14 | 2006-07-27 | Samsung Electronics Co Ltd | Contamination analytical method for chemical solution, and contamination analytical system therefor |
WO2007004466A1 (en) * | 2005-07-01 | 2007-01-11 | Sysmex Corporation | Analyzer |
EP1901056A1 (en) * | 2005-07-01 | 2008-03-19 | Sysmex Corporation | Analyzer |
JPWO2007004466A1 (en) * | 2005-07-01 | 2009-01-29 | シスメックス株式会社 | Analysis equipment |
EP1901056A4 (en) * | 2005-07-01 | 2010-09-22 | Sysmex Corp | Analyzer |
US7876442B2 (en) | 2005-07-01 | 2011-01-25 | Sysmex Corporation | Analyzer |
JP2012252014A (en) * | 2005-07-01 | 2012-12-20 | Sysmex Corp | Analysis device |
JP2009517641A (en) * | 2005-11-29 | 2009-04-30 | ジーイー・ヘルスケア・バイオサイエンス・アクチボラグ | Method and apparatus for measuring the concentration of a substance in a solution |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6044332A (en) | Surface acoustic wave harmonic analysis | |
US5455423A (en) | Gas bubble detector | |
EP0057718A1 (en) | Method and apparatus for photometric detection in fluids | |
JPH07151684A (en) | Infrared ray type gas analyzer | |
US7835873B2 (en) | Method and system for monitoring changes in a sample for a process or an environment | |
SE8800686L (en) | PROCEDURE AND DEVICE FOR DETERMINING THE CONCENTRATION OF A SUBSTANCE CONNECTED TO PARTICLES IN A FLOWING MEDIUM | |
JP4577177B2 (en) | Differential refractive index detector and adjustment method thereof | |
WO2001063249A1 (en) | Interference filter transmission wavelength scanning photometer | |
JPH05240782A (en) | Oil concentration measuring device | |
JPS61194332A (en) | Method and device for measuring gas concentration | |
JPH0587733A (en) | Instrument for measuring characteristic of sheetlike object | |
JP4793413B2 (en) | Differential refractive index detector | |
US3706497A (en) | Method and apparatus for determining colorimetric concentrations | |
RU2161791C2 (en) | Device to monitor liquid biological medium | |
JP2001074649A (en) | Method for measuring angle of optical rotation, and method for inspecting urine | |
JPH0854264A (en) | Optical measuring apparatus | |
JPS628514Y2 (en) | ||
JPH0613482Y2 (en) | Oil concentration measuring device | |
JPH03226652A (en) | Apparatus for measuring acetylene gas | |
JPH06273330A (en) | Turbidimeter | |
JPH04140642A (en) | Apparatus for measuring oil content concentration | |
JP3117245U (en) | Differential refractive index detector | |
RU2238540C2 (en) | Optical gas analyzer | |
RU1808125C (en) | Method of and device for analyzing gases | |
JPH0648244B2 (en) | Infrared moisture meter that reduces the effect of basis weight |