JP2001165850A - Oil film detector - Google Patents

Oil film detector

Info

Publication number
JP2001165850A
JP2001165850A JP35464099A JP35464099A JP2001165850A JP 2001165850 A JP2001165850 A JP 2001165850A JP 35464099 A JP35464099 A JP 35464099A JP 35464099 A JP35464099 A JP 35464099A JP 2001165850 A JP2001165850 A JP 2001165850A
Authority
JP
Japan
Prior art keywords
light
oil film
water surface
component
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35464099A
Other languages
Japanese (ja)
Inventor
Mutsuhisa Hiraoka
睦久 平岡
Yasutaka Sanuki
育孝 讃岐
Naohiro Noda
直広 野田
Hiroshi Tada
弘 多田
Yusuke Nakamura
裕介 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP35464099A priority Critical patent/JP2001165850A/en
Publication of JP2001165850A publication Critical patent/JP2001165850A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an oil film detector to detect an oil film thinner than that of a conventional one by solving problems that a very thin oil film in the initial stage flowing into an intake must be detected, and the sensitivity of the conventional oil film detector is insufficient when mixture of a small amount of oil causes a problem in monitoring the water intake though the conventional oil film detector by the polarization analytical method is less easily affected by the wave on the water surface and capable of detecting the oil film with the equivalent sensitivity as the visual detection. SOLUTION: The sensitivity is improved by providing a light beam flooding means to diagonally irradiate the beam onto the water surface with an oil film floating thereon, a reflective mirror to reflect the reflected light from the water surface again, a light receiving means to measure the light quantity of the P polarized wave component and the S polarized wave component by receiving the re-reflected light from the water surface, and a signal processing means to detect the oil film on the water surface based on the polarization ratio.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水面上の油膜を検
知する装置に関する。詳しくは、浄水場、養殖場などに
流入する油分、また、工場排水施設などから流出する油
分を、水面上の油膜として自動的に検知する油膜検知装
置に関する。
The present invention relates to an apparatus for detecting an oil film on a water surface. More specifically, the present invention relates to an oil film detecting device that automatically detects an oil component flowing into a water purification plant, a farm, or the like, or an oil component flowing out of a factory drainage facility or the like as an oil film on the water surface.

【0002】[0002]

【従来の技術】浄水場においては、原水の水質事故の大
半を油汚染が占め取水停止や浄水場の清掃が必要になる
重大事故であるために、また、養殖場では、油の流入に
よって生産物が汚染または死滅する危険があるために、
これらの取水施設への油の流入を常時監視する方法と装
置が求められている。一方、工場排水においては、油分
の混入した排水を公共水域に排出することは水質汚染と
して社会的な問題であり、排水基準を満たす必要がある
ために、処理後の排水中に油分が残っていないかどうか
を連続的に監視する方法と装置が求められている。
2. Description of the Related Art In a water purification plant, most of the water quality accidents in raw water are caused by oil pollution, which is a serious accident that requires the suspension of water intake and cleaning of the water purification plant. Because of the danger of contamination or death,
There is a need for a method and apparatus for constantly monitoring the flow of oil into these water intake facilities. On the other hand, in industrial wastewater, discharging wastewater mixed with oil into public waters is a social problem as water pollution, and it is necessary to meet wastewater standards, so oil remains in the treated wastewater. There is a need for a method and apparatus for continuously monitoring for presence.

【0003】浄水場において取水への油の流入を非接触
に自動検知する方法としては、従来から、反射率測定
法、TVカメラによる画像監視法が知られている。し
かし、これらの油分検知装置は、微量油分の検出が困難
な問題があり、それらを解決するために、偏光解析法
による油膜検知装置が、本発明者らにより開発され、そ
の技術内容は、特開平10−281980号公報として
出願されている。
As methods for automatically detecting the inflow of oil into water at a water purification plant in a non-contact manner, a reflectance measuring method and an image monitoring method using a TV camera have been conventionally known. However, these oil detection devices have a problem that it is difficult to detect a trace amount of oil, and in order to solve them, an oil film detection device based on ellipsometry has been developed by the present inventors. It is filed as Kaihei 10-281980.

【0004】この従来の偏光解析法による油膜検知装
置の構成例を図5に示し、以下にその測定法の概要を説
明する。この図において、投光手段にはレーザー光源1
を用い、レーザー光源1からの光ビーム2を、油膜3の
浮遊する波立った水面4に斜めから照射する。水面4か
ら反射した反射光5の偏光状態を受光手段6で測定する
が、その詳細は以下の通りである。即ち、水面4の波立
ちによって様々な方向へ散乱する反射光5のうち、一定
の角度で反射した反射光を、ピンホール7を通して受光
する。この受光した光を、偏光ビームスプリッタ8でP
偏光成分9とS偏光成分10に分離し、分離したP偏光
成分9とS偏光成分10を、フォトダイオード11とフ
ォトダイオード12で各々光電変換し、各々の光量を電
気信号に変換する。光電変換された各々の電気信号を、
信号処理手段13に入力し、信号処理手段13ではP偏
光成分とS偏光成分の光量比(以下、偏光比と記す)を
計算し、この計算された偏光比を、水面に油膜のない正
常時の基準値と比較することによって、油膜の有無を判
定する。以上の説明の中のP偏光成分とS偏光成分と
は、光ビーム2の入射光軸が波のない平坦な水面と交わ
る点に立てた水面の法線および入射光軸を含む平面に、
平行な偏光成分をP偏光成分、垂直な偏光成分をS偏光
成分と定義している。
FIG. 5 shows an example of the configuration of this conventional oil film detecting device based on ellipsometry, and an outline of the measuring method will be described below. In this figure, a laser light source 1
The light beam 2 from the laser light source 1 is applied obliquely to the wavy water surface 4 on which the oil film 3 floats. The polarization state of the reflected light 5 reflected from the water surface 4 is measured by the light receiving means 6, the details of which are as follows. That is, of the reflected light 5 scattered in various directions due to the waving of the water surface 4, the reflected light reflected at a certain angle is received through the pinhole 7. This received light is converted by the polarizing beam splitter 8 into P
The light is separated into a polarized light component 9 and an S-polarized light component 10, and the separated P-polarized light component 9 and S-polarized light component 10 are photoelectrically converted by a photodiode 11 and a photodiode 12, respectively, and each light amount is converted into an electric signal. Each of the photoelectrically converted electric signals is
The signal is input to the signal processing means 13, and the signal processing means 13 calculates the light quantity ratio of the P-polarized component and the S-polarized component (hereinafter referred to as polarization ratio). The presence / absence of an oil film is determined by comparing with the reference value. The P-polarized light component and the S-polarized light component in the above description are defined as a plane including the normal line of the water surface and the incident optical axis set at the point where the incident optical axis of the light beam 2 intersects the flat water surface without waves.
A parallel polarization component is defined as a P polarization component, and a vertical polarization component is defined as an S polarization component.

【0005】水面に油膜が存在する場合には、油と水の
屈折率の違いによって反射光強度が変化するが、この変
化をP偏光成分とS偏光成分の反射光に分けて調べると
変化の仕方が各々異なる。そこで、これらの偏光成分光
量の測定から偏光比を計算すると、油膜の存在によって
その偏光比の値が変化するために油膜を検知することが
できる。
When an oil film is present on the water surface, the reflected light intensity changes due to the difference in the refractive index between oil and water. When this change is divided into reflected light of the P-polarized component and the S-polarized component, the change is reflected. Each is different. Therefore, when the polarization ratio is calculated from the measurement of the amount of the polarized light component, the oil film can be detected because the value of the polarization ratio changes due to the presence of the oil film.

【0006】P偏光成分とS偏光成分の比をとる利点
は、水面の波立ちや浮遊する異物の影響を受けにくい点
にある。例えば、水面が波立っていると乱反射光が生じ
るため、単に反射光の強度をモニタするだけではその強
度が変化して安定な測定が行えず感度が低下してしまう
が、偏光比をモニタすると、一定の反射角で受光してい
る限り、偏光成分の比は変化しにくいため、安定で高感
度な測定を行うことができることである。
The advantage of setting the ratio between the P-polarized light component and the S-polarized light component is that the ratio is hardly affected by ripples on the water surface or floating foreign matter. For example, if the water surface is wavy, irregularly reflected light will be generated, so simply monitoring the intensity of the reflected light will change the intensity, making stable measurement impossible and lowering the sensitivity. As long as light is received at a fixed reflection angle, the ratio of the polarization components is hard to change, so that stable and highly sensitive measurement can be performed.

【0007】[0007]

【発明が解決しようとする課題】上記の偏光解析法によ
る油膜検知装置は、水面の波立ちの影響を受けにくく、
目視と同等の感度で油膜を検知できる。しかし、特に浄
水場の取水監視に用いる場合、少量の油の混入が問題に
なるため、より高感度なことが望ましい。また、油膜の
早期発見のためには、河川に拡散した油が取水口へ流入
する初期段階の微量の薄い油膜を検知する必要があり、
この場合には、従来の油膜検知装置では感度が不足して
いる。
The oil film detecting device based on the above-mentioned ellipsometry is hardly affected by the ripples on the water surface.
Oil film can be detected with the same sensitivity as visual inspection. However, especially when used for monitoring water intake at a water purification plant, contamination of a small amount of oil becomes a problem, and therefore higher sensitivity is desirable. In addition, in order to detect oil slicks early, it is necessary to detect a small amount of oil slicks in the initial stage where oil diffused in rivers flows into the intake.
In this case, the sensitivity of the conventional oil film detection device is insufficient.

【0008】本発明は、上述の課題を解決するためにな
されたものであり、その目的は、従来よりも薄い油膜を
検知できる、より高感度な油膜検知装置を提供すること
にある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problem, and an object of the present invention is to provide a more sensitive oil film detecting device capable of detecting an oil film thinner than the conventional one.

【0009】[0009]

【課題を解決するための手段】上記の問題を解決するた
め、本発明の第1の装置では、油膜の浮遊する水面に、
P偏光成分とS偏光成分の両方の成分を含む光ビームを
照射する投光手段と、前記水面からの反射光を再び水面
に反射する反射ミラーと、水面から再反射された光を受
光してそのP偏光成分の光量とS偏光成分の光量を測定
する受光手段と、これらP偏光成分とS偏光成分の光量
比に基づき水面上の油膜を検知する信号処理手段とを技
術的手段として採用する。
Means for Solving the Problems To solve the above problems, the first apparatus of the present invention employs a method in which an oil film floats on the water surface.
A light projecting means for irradiating a light beam containing both a P-polarized component and an S-polarized component, a reflecting mirror for reflecting the reflected light from the water surface to the water surface again, and receiving the light re-reflected from the water surface The light receiving means for measuring the light quantity of the P-polarized component and the light quantity of the S-polarized component and the signal processing means for detecting the oil film on the water surface based on the light quantity ratio of the P-polarized component and the S-polarized component are employed as technical means. .

【0010】この第1の装置は、光ビームの照射により
水面から反射した光を、反射ミラーにより再び水面に反
射し、水面から2回反射された光を受光しているので、
水面に油膜が存在する場合には、その影響を2度受け、
油膜検知の感度が向上する。例えば、照射光の入射角と
反射ミラーからの再照射光の入射角度が同じ場合には、
水面を2回反射し受光手段に到達するP偏光成分とS偏
光成分の光量は、それぞれ1回反射の時の反射率を2乗
した光量になる。そのため、水面を2回反射した光の偏
光比は1回反射の場合の偏光比の2乗になり、油膜の有
無による差がより増幅され、油膜検知の膜厚感度が向上
する。このように、発明した油膜検知装置は、従来の装
置に比べより高感度に油膜を検知することができる。
[0010] In the first device, the light reflected from the water surface due to the light beam irradiation is reflected again on the water surface by the reflection mirror, and the light reflected twice from the water surface is received.
If there is an oil slick on the water surface, it will be affected twice,
The sensitivity of oil film detection is improved. For example, when the incident angle of the irradiation light and the incident angle of the re-irradiation light from the reflection mirror are the same,
The light amount of the P-polarized light component and the light amount of the S-polarized light component that are reflected twice on the water surface and reach the light receiving means are respectively the light amounts obtained by squaring the reflectance at the time of the single reflection. Therefore, the polarization ratio of light reflected twice on the water surface is the square of the polarization ratio in the case of single reflection, the difference due to the presence or absence of an oil film is further amplified, and the film thickness sensitivity of oil film detection is improved. Thus, the oil film detecting device invented can detect the oil film with higher sensitivity than the conventional device.

【0011】本発明の第2の装置では、発明の第1の装
置において、反射ミラーに正反射ミラーを採用し、照射
光と同一光路を照射光の進行方向とは逆方向に戻ってく
る再反射光の一部を90°横方向に反射し受光手段に導
く無偏光ビームスプリッタを技術的手段として採用す
る。この第2の装置は、反射ミラーとして正反射ミラー
を用いているため、照射光と正反射ミラーからの再照射
光が水面の同一場所を照射でき、油膜に位置むらがある
場合でも、照射位置に油膜が存在する場合には油膜を必
ず2回照射でき、安定した感度向上効果が得られる。照
射光と再照射光の水面からの再反射光(戻り光)は同一
光路を通るため、照射光の進行方向とは逆方向に戻って
くる戻り光を受光部に導くためには、戻り光の一部を無
偏光ビームスプリッタにより90°横方向に反射し受光
手段に導くことが必要となる、それ以外の構成は第1の
手段と同じであり、従来の装置に比べ高感度に油膜を検
知することができる。
According to a second apparatus of the present invention, a specular reflection mirror is employed as the reflection mirror in the first apparatus of the invention, and the light returns along the same optical path as the irradiation light in the direction opposite to the traveling direction of the irradiation light. A non-polarizing beam splitter which reflects a part of the reflected light in the horizontal direction by 90 ° and guides the reflected light to the light receiving means is employed as a technical means. Since the second device uses a regular reflection mirror as the reflection mirror, the irradiation light and the re-irradiation light from the regular reflection mirror can irradiate the same place on the water surface, and even when the oil film has uneven position, the irradiation position When an oil film is present in the oil film, the oil film can always be irradiated twice, and a stable sensitivity improving effect can be obtained. The re-reflected light (return light) from the water surface of the irradiation light and the re-irradiation light passes through the same optical path. Therefore, in order to guide the return light returning in the direction opposite to the traveling direction of the irradiation light to the light receiving unit, the return light is required. It is necessary to reflect a part of the light beam in the 90 ° lateral direction by a non-polarizing beam splitter and guide it to the light receiving means. The other configuration is the same as the first means, and the oil film is formed with higher sensitivity than the conventional device. Can be detected.

【0012】本発明の第3の装置では、発明の第1また
は第2の装置において、投光手段に光ビームを直線的に
走査して水面上に照射する光ビーム走査手段を技術的手
段として採用する。この第3の装置は、投光手段に光ビ
ームを直線的に走査して水面上に照射する光ビーム走査
手段を用いているため、水面上の広い範囲の油膜を検出
できる。このとき、反射ミラーで折返した走査光は、照
射光の進行方向とは逆方向に走査光学系を再び通り1本
の光ビームに戻るため、投光手段以外の構成は第1の手
段と同じであり、広い計測領域の油膜を従来の装置に比
べ高感度に検知することが可能である。
According to a third aspect of the present invention, in the first or the second aspect of the invention, the light beam scanning means for linearly scanning the light projecting means with a light beam and irradiating the water surface is used as technical means. adopt. This third apparatus uses a light beam scanning unit that linearly scans a light beam with a light projecting unit and irradiates the water surface with the light beam, so that a wide range of oil film on the water surface can be detected. At this time, the scanning light turned back by the reflection mirror passes through the scanning optical system again in the direction opposite to the traveling direction of the irradiation light and returns to one light beam. Therefore, the configuration other than the light projecting means is the same as the first means. Therefore, it is possible to detect an oil film in a wide measurement area with higher sensitivity than a conventional apparatus.

【0013】[0013]

【発明の実施の形態】以下、本発明を2つの実施例にも
とづき説明する。 [実施例1]本発明の第1の実施例としての油膜検知装
置を図1に示す。この図において、図5に示した符号と
同一のものは同一物を示している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on two embodiments. Embodiment 1 FIG. 1 shows an oil film detecting device as a first embodiment of the present invention. In this figure, the same components as those shown in FIG. 5 indicate the same components.

【0014】この図において、投光手段にレーザー光源
1を用い、P偏光成分とS偏光成分を含む光ビーム2
を、油膜3の浮遊する波立った水面4に斜めから照射す
る。水面4の波立ちによって様々な方向へ散乱する反射
光5のうち、一定の角度で反射した反射光を、反射ミラ
ー14で正反射し、水面の同じ位置を再び照射する。水
面を2回反射し照射光と同一光路を照射光の進行方向と
逆方向に戻ってくる再反射光を、無偏光ビームスプリッ
タ15で受け、再反射光の50%を90°横方向に反射
し受光手段6に導く。受光手段6では、受光した光を偏
光ビームスプリッタ8に通し、P偏光成分9とS偏光成
分10に分離する。分離したP偏光成分9とS偏光成分
10を、フォトダイオード11とフォトダイオード12
で各々光電変換し、各々の光量を電気信号に変換する。
光電変換された各々の電気信号を、信号処理手段13に
入力し、信号処理手段13ではP偏光成分とS偏光成分
の偏光比を計算し、この偏光比を水面に油膜のない正常
時の基準値と比較することによって油膜の有無を判定す
る。
In FIG. 1, a laser light source 1 is used as a light projecting means, and a light beam 2 containing a P-polarized component and an S-polarized component is used.
Is applied obliquely to the wavy water surface 4 on which the oil film 3 floats. Of the reflected light 5 scattered in various directions due to the waving of the water surface 4, the reflected light reflected at a fixed angle is specularly reflected by the reflection mirror 14 and irradiates the same position on the water surface again. The non-polarized beam splitter 15 receives the re-reflected light that reflects twice on the water surface and returns on the same optical path as the irradiated light in the direction opposite to the traveling direction of the irradiated light, and reflects 50% of the re-reflected light in the 90 ° lateral direction. Then, the light is guided to the light receiving means 6. The light receiving means 6 passes the received light through a polarization beam splitter 8 to separate it into a P-polarized component 9 and an S-polarized component 10. The separated P-polarized light component 9 and S-polarized light component 10 are separated into a photodiode 11 and a photodiode 12
, Respectively, and each light amount is converted into an electric signal.
Each of the photoelectrically converted electric signals is input to a signal processing unit 13, which calculates a polarization ratio between a P-polarized component and an S-polarized component, and uses the calculated polarization ratio as a standard when there is no oil film on the water surface. The presence or absence of the oil film is determined by comparing the value with the value.

【0015】この実施例1の装置は、水面から2回反射
された光を受光しているので、P偏光成分の光量とS偏
光成分の光量は、それぞれ1回反射の時の反射率の2乗
の光量になる。そのため、再反射光の偏光比は1回反射
の場合の偏光比の2乗になり、油膜の有無による差がよ
り増幅され、油膜検知感度が向上する。図1で示す本発
明の実施例1の装置、および図5で示す従来の装置で、
膜厚の関数として油膜が浮遊する水面の偏光比を測定し
たデータを、図2、および図3に示す。この測定は共
に、レーザ光の波長は633nm、入射角度は70°油
の種類はA重油で行っている。
Since the apparatus of the first embodiment receives light reflected twice from the water surface, the light quantity of the P-polarized light component and the light quantity of the S-polarized light component are each equal to the reflectivity at the time of single reflection. It becomes the light quantity of the power. Therefore, the polarization ratio of the re-reflected light is the square of the polarization ratio in the case of single reflection, the difference due to the presence or absence of the oil film is further amplified, and the oil film detection sensitivity is improved. The apparatus of the first embodiment of the present invention shown in FIG. 1 and the conventional apparatus shown in FIG.
FIGS. 2 and 3 show data obtained by measuring the polarization ratio of the water surface on which the oil film floats as a function of the film thickness. In both measurements, the wavelength of the laser beam is 633 nm, the incident angle is 70 °, and the type of oil is oil A heavy oil.

【0016】この測定データから、油膜の無い場合(膜
厚ゼロ)の偏光比と油膜の有る場合の偏光比の差は、実
施例1の装置が従来の装置と比べて断然大きいことが、
図2と図3とから明らかであり、このことは、本発明の
実施例1の装置が、従来の装置と比較して、高感度に油
膜を検知できることがわかる。 [実施例2]発明の第2の実施例としての油膜検知装置
を図4に示す。この図において、図5および図1に示し
た符号と同一のものは同一物を示している。
From the measurement data, the difference between the polarization ratio when there is no oil film (zero film thickness) and the polarization ratio when there is an oil film is that the apparatus of Example 1 is much larger than the conventional apparatus.
It is clear from FIGS. 2 and 3 that it can be seen that the device of Example 1 of the present invention can detect the oil film with higher sensitivity than the conventional device. [Embodiment 2] Fig. 4 shows an oil film detecting apparatus according to a second embodiment of the present invention. In this figure, the same components as those shown in FIGS. 5 and 1 indicate the same components.

【0017】この実施例では、光ビーム4を、ポリゴン
ミラー16とレンズ17からなる光ビーム走査機構18
で平行走査して油膜3の浮遊する波立った水面に照射す
る。光ビームの走査方向19は油膜の流れる方向20に
交差するようになっていて、走査範囲内に流れてくる油
膜を次々と照射する。走査光ビーム21は水面上の走査
範囲内のそれぞれの照射位置に生じた波によって様々な
方向に散乱する反射光5のうち一定の角度で反射した反
射光を、細長い反射ミラー14で正反射し水面の同じ走
査位置を再び照射する。水面を2回反射した走査光は、
照射光の進行方向とは逆方向に走査光学系を再び通り1
本の光ビームに戻る。それ以外の構成は第1の手段と同
じであり、広い計測領域の油膜を実施例1と同じように
従来の装置に比べ高感度に検知することが可能である。
In this embodiment, a light beam 4 is transmitted to a light beam scanning mechanism 18 comprising a polygon mirror 16 and a lens 17.
And irradiates the floating water surface of the oil film 3. The scanning direction 19 of the light beam intersects the direction 20 in which the oil film flows, and irradiates the oil film flowing within the scanning range one after another. The scanning light beam 21 specularly reflects the reflected light reflected at a certain angle among the reflected lights 5 scattered in various directions by the waves generated at the respective irradiation positions in the scanning range on the water surface by the elongated reflecting mirror 14. The same scanning position on the water surface is illuminated again. The scanning light that reflected the water surface twice,
The light again passes through the scanning optical system in the direction opposite to the traveling direction of the irradiation light, and
Return to the book light beam. The other configuration is the same as that of the first means, and it is possible to detect an oil film in a wide measurement area with higher sensitivity as compared with the conventional apparatus as in the first embodiment.

【0018】実施例1および2の図には油膜検知装置の
設置方法が示されていないが、油水位の変化しない水槽
ではその周囲に固定して、水位の変化する河川、海洋等
では浮きフロートに乗せて水面に浮かして設置する方法
を採用することができる。また、太陽光などの外乱光の
影響があるときには、受光部の光電変換器の前に投光ビ
ームの波長のみを通す干渉フィルタを設けたり、投光ビ
ームを変調してその変調周波数のみを信号処理部で選別
したりして、外乱光の影響を除くことができる。
Although the drawings of the first and second embodiments do not show a method of installing the oil film detecting device, the oil tank is fixed around a water tank in which the oil level does not change, and is floated in a river or ocean where the water level changes. And a method of floating on the water surface for installation. Also, when there is an influence of disturbance light such as sunlight, an interference filter that passes only the wavelength of the projected beam is provided in front of the photoelectric converter in the light receiving unit, or the projected beam is modulated and only the modulation frequency is signaled. The influence of disturbance light can be eliminated by sorting in the processing unit.

【0019】[0019]

【発明の効果】本発明の油膜検知装置は、浄水場、養殖
場などに流入する油分、また、工場排水施設などから流
出する油分を、水面上の油膜として自動的に検知する油
膜検知装置に関し、従来の装置の課題である膜厚測定感
度の向上を行うために考案されたものであり、光ビーム
の照射により水面から反射した光を再び水面に再照射す
る反射ミラーを用いて、水面を2回反射した光の偏光比
を解析し油膜を検知するので、水面を1回反射した光の
偏光比を解析し油膜を検知する従来装置と比較し、より
高感度に油膜を検知できる。
The oil film detecting device according to the present invention relates to an oil film detecting device for automatically detecting an oil component flowing into a water purification plant, an aquaculture plant or the like, or an oil component flowing out of a factory drainage facility as an oil film on the water surface. In order to improve the film thickness measurement sensitivity, which is a problem of the conventional apparatus, the water surface was re-irradiated with the light reflected from the water surface by irradiating the light beam, and the water surface was again illuminated. Since the oil film is detected by analyzing the polarization ratio of the light reflected twice, the oil film can be detected with higher sensitivity as compared with a conventional device that analyzes the polarization ratio of the light reflected once on the water surface and detects the oil film.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例としての油膜検知装置の
模式図
FIG. 1 is a schematic diagram of an oil film detection device as a first embodiment of the present invention.

【図2】本発明の第1の実施例の装置で、油膜が浮遊す
る水面を測定した時の、油膜厚に対する偏光比の変化を
示す図
FIG. 2 is a diagram showing a change in a polarization ratio with respect to an oil film thickness when a water surface on which an oil film floats is measured by the apparatus according to the first embodiment of the present invention.

【図3】従来の装置で、油膜が浮遊する水面を測定した
時の、油膜厚に対する偏光比の変化を示す図
FIG. 3 is a diagram showing a change in a polarization ratio with respect to an oil film thickness when a water surface on which an oil film floats is measured by a conventional apparatus.

【図4】本発明の第2の実施例としての油膜検知装置の
模式図
FIG. 4 is a schematic view of an oil film detection device according to a second embodiment of the present invention.

【図5】従来の油膜検知装置の模式図FIG. 5 is a schematic view of a conventional oil film detection device.

【符号の説明】[Explanation of symbols]

1: レーザー光源 2: P偏光成分とS偏光成分を含む光ビーム 3: 油膜 4: 水面 5: 反射光 6: 受光手段 7: ピンホール 8: 偏光ビームスプリッタ 9: P偏光成分 10: S偏光成分 11、12: フォトダイオード 13: 信号処理手段 14: 反射ミラー 15: 無偏光ビームスプリッタ 16: ポリゴンミラー 17: レンズ 18: 光ビーム走査機構 19: 光ビームの走査方向 20: 油膜の流れる方向 21: 走査光ビーム 1: Laser light source 2: Light beam containing P-polarized component and S-polarized component 3: Oil film 4: Water surface 5: Reflected light 6: Light receiving means 7: Pinhole 8: Polarized beam splitter 9: P-polarized component 10: S-polarized component 11, 12: Photodiode 13: Signal processing means 14: Reflecting mirror 15: Non-polarizing beam splitter 16: Polygon mirror 17: Lens 18: Light beam scanning mechanism 19: Scanning direction of light beam 20: Direction of oil film flow 21: Scanning Light beam

───────────────────────────────────────────────────── フロントページの続き (72)発明者 野田 直広 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 多田 弘 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 中村 裕介 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 Fターム(参考) 2G059 BB04 BB10 CC14 EE02 GG01 GG04 JJ13 JJ19 JJ22 KK01 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Naohiro Noda 1-1, Tanabe Nitta, Kawasaki-ku, Kawasaki, Kanagawa Prefecture Inside Fuji Electric Co., Ltd. (72) Inventor Hiroshi Tada No. 1, Tanabe Nitta, Kawasaki-ku, Kawasaki-ku, Kanagawa Prefecture No. 1 Fuji Electric Co., Ltd. (72) Inventor Yusuke Nakamura 1-1-1, Tanabe-Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture F-term in Fuji Electric Co., Ltd. (Reference)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】油膜の浮遊する水面に斜め方向から入射す
る光の入射光軸が水面と交わる点に立てた水面の法線お
よび入射光軸を含む平面に平行な偏光成分(以下、P偏
光成分と記す)と、前記平面に垂直な偏光成分(以下、
S偏光成分と記す)との両方の成分を含む光ビームを照
射する投光手段と、前記水面からの反射光を再び水面に
反射する反射ミラーと、水面から再反射された光を受光
してそのP偏光成分の光量とS偏光成分の光量を測定す
る受光手段と、これらP偏光成分とS偏光成分の光量比
(偏光比)に基づき水面上の油膜を検知する信号処理手
段とを備えることを特徴とする油膜検知装置。
1. A polarization component parallel to a plane including the normal line of the water surface and the incident optical axis set at a point where the incident optical axis of light obliquely incident on the water surface on which the oil film floats intersects the water surface (hereinafter referred to as P-polarized light). Component) and a polarization component perpendicular to the plane (hereinafter, referred to as a component).
Light emitting means for irradiating a light beam containing both components, an S-polarized component, a reflecting mirror for reflecting the reflected light from the water surface to the water surface again, and receiving the light re-reflected from the water surface. Light receiving means for measuring the light amount of the P-polarized component and the light amount of the S-polarized component, and signal processing means for detecting an oil film on the water surface based on the light amount ratio (polarization ratio) of the P-polarized component and the S-polarized component. An oil film detection device characterized by the following.
【請求項2】請求項1記載の油膜検知装置であって、前
記の反射ミラーが正反射ミラーであり、照射光と同一光
路を照射光の進行方向とは逆方向に戻ってくる再反射光
の一部を90°横方向に反射し受光手段に導く無偏光ビ
ームスプリッタを備えることを特徴とする油膜検知装
置。
2. The oil film detecting device according to claim 1, wherein the reflection mirror is a regular reflection mirror, and the re-reflected light returning in the same optical path as the irradiation light in the direction opposite to the traveling direction of the irradiation light. An oil film detecting device, comprising: a non-polarizing beam splitter that reflects a part of the light beam in a 90 ° lateral direction and guides the light beam to a light receiving unit.
【請求項3】請求項1または2記載の油膜検知装置であ
って、前記の投光手段が光ビームを直線的に走査して水
面上に照射する光ビーム走査手段を備えることを特徴と
する油膜検知装置。
3. The oil film detecting device according to claim 1, wherein said light projecting means comprises a light beam scanning means for linearly scanning a light beam and irradiating the water surface. Oil film detector.
JP35464099A 1999-12-14 1999-12-14 Oil film detector Pending JP2001165850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35464099A JP2001165850A (en) 1999-12-14 1999-12-14 Oil film detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35464099A JP2001165850A (en) 1999-12-14 1999-12-14 Oil film detector

Publications (1)

Publication Number Publication Date
JP2001165850A true JP2001165850A (en) 2001-06-22

Family

ID=18438924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35464099A Pending JP2001165850A (en) 1999-12-14 1999-12-14 Oil film detector

Country Status (1)

Country Link
JP (1) JP2001165850A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009244119A (en) * 2008-03-31 2009-10-22 Dkk Toa Corp Reflectivity detecting device
JP2013190442A (en) * 2013-06-20 2013-09-26 Dkk Toa Corp Rotary polygon mirror and oil film detection device using the same
CN105241818A (en) * 2015-10-30 2016-01-13 青岛市光电工程技术研究院 Photoelectric probe for oil monitoring on water surface
JP2016536609A (en) * 2013-09-16 2016-11-24 ケーエルエー−テンカー コーポレイション Multi-incidence angle semiconductor measurement system and method
JP2018151354A (en) * 2017-03-15 2018-09-27 Jfeスチール株式会社 Radiant temperature measurement apparatus and radiant temperature measurement method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009244119A (en) * 2008-03-31 2009-10-22 Dkk Toa Corp Reflectivity detecting device
JP2013190442A (en) * 2013-06-20 2013-09-26 Dkk Toa Corp Rotary polygon mirror and oil film detection device using the same
JP2016536609A (en) * 2013-09-16 2016-11-24 ケーエルエー−テンカー コーポレイション Multi-incidence angle semiconductor measurement system and method
CN105241818A (en) * 2015-10-30 2016-01-13 青岛市光电工程技术研究院 Photoelectric probe for oil monitoring on water surface
JP2018151354A (en) * 2017-03-15 2018-09-27 Jfeスチール株式会社 Radiant temperature measurement apparatus and radiant temperature measurement method

Similar Documents

Publication Publication Date Title
CN1756950B (en) Method and system for optical inspection of patterned and non-patterned objects
US4740079A (en) Method of and apparatus for detecting foreign substances
US8208144B2 (en) Spatial frequency optical measurement instrument and method
US3748047A (en) Method of detecting surface defects of material surfaces
JP2001165850A (en) Oil film detector
JP2010271133A (en) Optical scanning type plane inspection device
JP2000097873A (en) Surface defect inspecting device
JP3447478B2 (en) Trace oil detector
JP2004028814A (en) Fluorescence detecting apparatus
JP2002139423A (en) Oil film detector
JP2000199742A (en) Oil film detecting apparatus
JP3713879B2 (en) Oil film detector
JPH11326188A (en) Oil film detecting device
JP3707241B2 (en) Oil film detector
JP2001033383A (en) Oil film sensing device
US20190302027A1 (en) Method and apparatus for determining solids content in a liquid medium
JPH03115844A (en) Detection of surface defect
RU1820206C (en) Method for determination roughness of workpiece
Sanuki et al. Sensor system using polarization analysis method to monitor oil-on-water in water purification plants and rivers
JPH0643969B2 (en) Defect detection method for sheet
SU898298A1 (en) Device for technological checking of cellulose and paper pulp
SU462119A1 (en) Mutnomer
JPS6315143A (en) Method for detecting flaw of planar body
SU1224680A1 (en) Method of remote detection and evaluation of petroleum product film thickness on sea surface
SU1377687A1 (en) Device for selective determination of concentrations of suspended and emulsified dispersions in water