JP2018151354A - Radiant temperature measurement apparatus and radiant temperature measurement method - Google Patents
Radiant temperature measurement apparatus and radiant temperature measurement method Download PDFInfo
- Publication number
- JP2018151354A JP2018151354A JP2017049643A JP2017049643A JP2018151354A JP 2018151354 A JP2018151354 A JP 2018151354A JP 2017049643 A JP2017049643 A JP 2017049643A JP 2017049643 A JP2017049643 A JP 2017049643A JP 2018151354 A JP2018151354 A JP 2018151354A
- Authority
- JP
- Japan
- Prior art keywords
- light
- incident
- reflectance
- light source
- measurement surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000009529 body temperature measurement Methods 0.000 title claims abstract description 14
- 238000000034 method Methods 0.000 title claims description 27
- 230000003287 optical effect Effects 0.000 claims abstract description 45
- 238000005259 measurement Methods 0.000 claims description 124
- 230000005855 radiation Effects 0.000 claims description 66
- 230000005469 synchrotron radiation Effects 0.000 claims description 8
- 238000001514 detection method Methods 0.000 claims description 3
- 238000005286 illumination Methods 0.000 claims 2
- 230000001678 irradiating effect Effects 0.000 claims 1
- 235000019557 luminance Nutrition 0.000 description 28
- 238000010586 diagram Methods 0.000 description 15
- 229910052782 aluminium Inorganic materials 0.000 description 14
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 14
- 238000002310 reflectometry Methods 0.000 description 12
- 229910000831 Steel Inorganic materials 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- 239000000919 ceramic Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005246 galvanizing Methods 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 239000006061 abrasive grain Substances 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Landscapes
- Radiation Pyrometers (AREA)
Abstract
Description
本発明は、測定対象物の表面温度を測定する放射温度測定装置及び放射温度測定方法に関する。 The present invention relates to a radiation temperature measuring device and a radiation temperature measuring method for measuring the surface temperature of a measurement object.
測定対象物の温度を測定するための技術には様々なものがある。そのうち放射温度測定技術は、測定対象物からの放射光を利用して測定対象物の表面温度を非接触で測定する技術であり、放射温度計として実用化されている。放射温度計は、光電変換素子と光学フィルタとを備え、所定の波長帯域における測定対象物の放射エネルギー値を測定し、測定した放射エネルギー値を温度に変換することによって、測定対象物の表面温度を測定する。 There are various techniques for measuring the temperature of an object to be measured. Among them, the radiation temperature measurement technique is a technique for measuring the surface temperature of the measurement object in a non-contact manner using the radiated light from the measurement object, and is practically used as a radiation thermometer. The radiation thermometer includes a photoelectric conversion element and an optical filter, measures the radiant energy value of the measurement object in a predetermined wavelength band, and converts the measured radiant energy value into a temperature, thereby measuring the surface temperature of the measurement object. Measure.
測定対象物の放射エネルギー値は、理想的な黒体からの放射エネルギー値に測定対象物の放射率を乗じた値になるため、放射温度計を利用して測定対象物の表面温度を測定する際には、測定対象物の放射率の値が必要になる。このため、所定の波長の放射エネルギー値を測定する単色放射温度計では、測定対象物の放射率の値を予め測定しておき、予め測定した放射率の値を用いて測定対象物の表面温度を測定している。 Because the radiant energy value of the measurement object is the value obtained by multiplying the radiant energy value from the ideal black body by the emissivity of the measurement object, measure the surface temperature of the measurement object using a radiation thermometer. In this case, the emissivity value of the measurement object is required. For this reason, in a monochromatic radiation thermometer that measures the radiant energy value of a predetermined wavelength, the emissivity value of the measurement object is measured in advance, and the surface temperature of the measurement object is measured using the pre-measured emissivity value. Is measuring.
一方、測定対象物が不透明物体である場合には、キルヒホッフの法則に基づいて反射率と放射率との和が1になる。このため、測定対象物の反射率を測定する技術を用いれば、測定対象物の反射率から測定対象物の放射率を求めて温度測定に用いることができる可能性が考えられる。具体的には、特許文献1には、鏡面性の高い測定対象物の反射率を測定する方法として、測定対象物の表面に対して垂直な方向から光を照射し、測定対象物の表面に対して垂直な方向に反射した光の輝度から測定対象物の垂直反射率を算出する技術が記載されている。 On the other hand, when the measurement object is an opaque object, the sum of the reflectance and the emissivity is 1 based on Kirchhoff's law. For this reason, if the technique which measures the reflectance of a measuring object is used, the emissivity of a measuring object can be calculated | required from the reflectance of a measuring object, and possibility that it can use for temperature measurement is considered. Specifically, in Patent Document 1, as a method for measuring the reflectance of a measurement object having high specularity, light is irradiated from a direction perpendicular to the surface of the measurement object, and the surface of the measurement object is irradiated. A technique for calculating the vertical reflectance of a measurement object from the luminance of light reflected in a direction perpendicular to the reference is described.
しかしながら、本発明の発明者らの検討によれば、特許文献1に記載の技術には以下に示すような問題点がある。以下、図12を参照して、特許文献1に記載の技術の問題点について説明する。図12は、鏡面性の高い圧延アルミニウム板(表面粗さRaの測定値が0.08μm未満)の傾き(ゴニオステージ角度)をθ度変化させた時の垂直反射率Rvの面内の平均値(平均反射率)(入射光波長:850nm)及び相対比率Rv(θ)/Rv(0度)の変化の一例を示す図である。なお、相対比率Rv(θ)/Rv(0度)とは、傾きθ度のときの平均反射率を傾き0度のときの平均反射率で除算した値である。 However, according to studies by the inventors of the present invention, the technique described in Patent Document 1 has the following problems. Hereinafter, with reference to FIG. 12, the problem of the technique described in Patent Document 1 will be described. FIG. 12 shows an in-plane average value of the vertical reflectivity Rv when the inclination (gonio stage angle) of a rolled aluminum plate with high specularity (measured surface roughness Ra is less than 0.08 μm) is changed by θ degrees. It is a figure which shows an example of the change of (average reflectance) (incident light wavelength: 850 nm) and relative ratio Rv ((theta)) / Rv (0 degree). The relative ratio Rv (θ) / Rv (0 degree) is a value obtained by dividing the average reflectance when the inclination is θ degrees by the average reflectance when the inclination is 0 degrees.
図12に示すように、垂直反射率の相対比率Rv(θ)/Rv(0度)は、傾きθが±0.5度変化しただけで83〜87%まで減衰し、また傾きθが±0.8度変化すると63〜74%まで減衰する。すなわち、特許文献1記載の技術によって測定される垂直反射率は、測定対象物の傾きθの影響を受けやすい。このため、特許文献1記載の技術を用いて測定対象物の反射率を精度よく測定するためには、測定対象物の傾きθを厳密に制御する必要がある。従って、例えば連続亜鉛めっきラインを移動する鋼板等の移動する不透明な測定対象物の反射率をオンラインで測定し、測定された反射率から測定対象物の表面温度を算出する処理に対して特許文献1記載の技術を適用することは困難である。 As shown in FIG. 12, the relative ratio Rv (θ) / Rv (0 degree) of the vertical reflectance is attenuated to 83 to 87% when the inclination θ is changed by ± 0.5 degrees, and the inclination θ is ±±. When it changes by 0.8 degrees, it attenuates to 63-74%. That is, the vertical reflectance measured by the technique described in Patent Document 1 is easily affected by the inclination θ of the measurement object. For this reason, in order to accurately measure the reflectance of the measurement object using the technique described in Patent Document 1, it is necessary to strictly control the inclination θ of the measurement object. Therefore, for example, a patent document for a process of measuring the reflectance of a moving opaque measuring object such as a steel plate moving on a continuous galvanizing line online and calculating the surface temperature of the measuring object from the measured reflectance It is difficult to apply the technique described in 1.
本発明は、上記課題に鑑みてなされたものであって、その目的は、移動する不透明な測定対象物の反射率をオンラインで精度よく測定して測定対象物の表面温度を測定可能な放射温度測定装置及び放射温度測定方法を提供することにある。 The present invention has been made in view of the above problems, and its purpose is to provide a radiation temperature that can accurately measure the reflectance of a moving opaque measuring object on-line and measure the surface temperature of the measuring object. It is to provide a measuring apparatus and a radiation temperature measuring method.
本発明に係る放射温度測定装置は、光源と、前記光源のオン/オフを制御するオン・オフ制御回路と、測定対象物の測定面の垂線に対して傾けて配置された、前記光源からの入射光を前記測定面に照射する同軸落射光学系と、前記測定面において反射された前記入射光に対して垂直な角度になるように入射面内における前記垂線を挟んで前記同軸落射光学系の位置とは反対側の位置に配置された、前記測定面において反射された前記入射光及び前記測定面から入射した放射光を前記同軸落射光学系に戻す再帰性反射板と、前記同軸落射光学系に入射した光の輝度を検出する放射光検出器と、前記放射光検出器によって検出された光の輝度値から前記測定面の表面温度を算出する信号処理装置と、を備え、前記信号処理装置は、前記オン・オフ制御回路によって前記光源をオン状態にした時に検出された光の輝度値から前記測定面の反射率を算出し、前記オン・オフ制御回路によって前記光源をオフ状態にした時に検出された光の輝度及び前記反射率から前記測定面の放射率を算出し、前記オン・オフ制御回路によって前記光源をオフ状態にした時に検出された光の輝度及び前記放射率を用いて前記測定面の表面温度を算出することを特徴とする。 A radiation temperature measuring device according to the present invention includes a light source, an on / off control circuit for controlling on / off of the light source, and a light source from the light source, which is inclined with respect to a normal to a measurement surface of a measurement object. A coaxial incident optical system that irradiates the measurement surface with incident light, and a coaxial incident optical system that sandwiches the perpendicular in the incident surface so as to be at an angle perpendicular to the incident light reflected on the measurement surface. A retroreflector disposed at a position opposite to the position and returning the incident light reflected from the measurement surface and the radiation incident from the measurement surface to the coaxial incident optical system; and the coaxial incident optical system A synchrotron radiation detector for detecting the luminance of the light incident on the signal detector, and a signal processing device for calculating the surface temperature of the measurement surface from the luminance value of the light detected by the synchrotron radiation detector, the signal processing device Is said on-off The reflectance of the measurement surface is calculated from the luminance value of the light detected when the light source is turned on by the control circuit, and the luminance of the light detected when the light source is turned off by the on / off control circuit Then, the emissivity of the measurement surface is calculated from the reflectance, and the surface temperature of the measurement surface is calculated using the brightness of the light detected when the light source is turned off by the on / off control circuit and the emissivity. It is characterized by calculating.
本発明に係る放射温度測定装置は、上記発明において、前記信号処理装置は、前記オン・オフ制御回路によって前記光源をオン状態にした時に検出された光の輝度値から求められる反射率が前記測定面の反射率の二乗値になっていることを考慮して予め測定しておいた基準反射率に相当する基準輝度値を用いて前記測定面の反射率を算出すると共に、放射率と反射率との和が1.0であるとして前記測定面の放射率を算出することを特徴とする。 The radiation temperature measuring device according to the present invention is the above-mentioned invention, wherein the signal processing device has a reflectance calculated from a luminance value of light detected when the light source is turned on by the on / off control circuit. The reflectance of the measurement surface is calculated using a reference luminance value corresponding to the reference reflectance measured in advance in consideration of the square value of the reflectance of the surface, and the emissivity and reflectance. The emissivity of the measurement surface is calculated on the assumption that the sum of the values is 1.0.
本発明に係る放射温度測定装置は、上記発明において、前記測定面の表面温度に対応した輝度値が、前記放射光検出器が備えるA/D変換器で有効な輝度レベルになるように前記放射光検出器の検出時間を調整する制御回路を備えることを特徴とする。 In the above-described invention, the radiation temperature measuring device according to the present invention is configured so that the luminance value corresponding to the surface temperature of the measurement surface is an effective luminance level in an A / D converter included in the radiation detector. A control circuit for adjusting the detection time of the photodetector is provided.
本発明に係る放射温度測定装置は、上記発明において、前記放射光検出器が単一の受光素子によって構成されていることを特徴とする。 The radiation temperature measuring apparatus according to the present invention is characterized in that, in the above invention, the radiation detector is constituted by a single light receiving element.
本発明に係る放射温度測定装置は、上記発明において、前記放射光検出器が二次元のCCDモノクロカメラによって構成され、前記光源が赤外LED光源であり、前記同軸落射光学系の先端に可視光カットフィルタが配置されていることを特徴とする。 The radiation temperature measuring device according to the present invention is the above-mentioned invention, wherein the radiation detector is constituted by a two-dimensional CCD monochrome camera, the light source is an infrared LED light source, and visible light is visible at the tip of the coaxial incident optical system. A cut filter is arranged.
本発明に係る放射温度測定装置は、上記発明において、前記放射光検出器が二次元のCCDカラーカメラによって構成されていることを特徴とする。 The radiation temperature measuring device according to the present invention is characterized in that, in the above invention, the radiation detector is constituted by a two-dimensional CCD color camera.
本発明に係る放射温度測定方法は、光源と、前記光源のオン/オフを制御するオン・オフ制御回路と、測定対象物の測定面の垂線に対して傾けて配置された、前記光源からの入射光を前記測定面に照射する同軸落射光学系と、前記測定面において反射された前記入射光に対して垂直な角度になるように入射面内における前記垂線を挟んで前記同軸落射光学系の位置とは反対側の位置に配置された、前記測定面において反射された前記入射光及び前記測定面から入射した放射光を前記同軸落射光学系に戻す再帰性反射板と、前記同軸落射光学系に入射した光の輝度を検出する放射光検出器と、前記放射光検出器によって検出された光の輝度値から前記測定面の表面温度を算出する信号処理装置と、を備える放射温度測定装置を利用した放射温度測定方法であって、前記オン・オフ制御回路によって前記光源をオン状態にした時に検出された光の輝度値から前記測定面の反射率を算出するステップと、前記オン・オフ制御回路によって前記光源をオフ状態にした時に検出された光の輝度及び前記反射率から前記測定面の放射率を算出するステップと、前記オン・オフ制御回路によって前記光源をオフ状態にした時に検出された光の輝度及び前記放射率を用いて前記測定面の表面温度を算出するステップと、を含むことを特徴とする。 The radiation temperature measurement method according to the present invention includes a light source, an on / off control circuit for controlling on / off of the light source, and an inclination from the light source, which is arranged to be inclined with respect to a normal to the measurement surface of the measurement object. A coaxial incident optical system that irradiates the measurement surface with incident light, and a coaxial incident optical system that sandwiches the perpendicular in the incident surface so as to be at an angle perpendicular to the incident light reflected on the measurement surface. A retroreflector disposed at a position opposite to the position and returning the incident light reflected from the measurement surface and the radiation incident from the measurement surface to the coaxial incident optical system; and the coaxial incident optical system A radiation temperature detector that detects the brightness of light incident on the light source, and a signal processing device that calculates the surface temperature of the measurement surface from the brightness value of the light detected by the radiation light detector. Radiant temperature used Calculating a reflectance of the measurement surface from a luminance value of light detected when the light source is turned on by the on / off control circuit, and the light source by the on / off control circuit. Calculating the emissivity of the measurement surface from the brightness of the light detected when the light source is turned off and the reflectance, and the brightness of the light detected when the light source is turned off by the on / off control circuit And calculating the surface temperature of the measurement surface using the emissivity.
本発明に係る放射温度測定装置及び放射温度測定方法によれば、移動する不透明な測定対象物の反射率をオンラインで精度よく測定して測定対象物の表面温度を測定することができる。 According to the radiation temperature measuring apparatus and the radiation temperature measuring method according to the present invention, the reflectance of a moving opaque measuring object can be accurately measured online to measure the surface temperature of the measuring object.
以下、図面を参照して、本発明の一実施形態である放射温度測定装置の構成及びこの放射温度測定装置を利用した放射温度測定方法について説明する。 Hereinafter, a configuration of a radiation temperature measuring apparatus according to an embodiment of the present invention and a radiation temperature measuring method using the radiation temperature measuring apparatus will be described with reference to the drawings.
〔放射温度測定装置の構成〕
図1は、本発明の一実施形態である放射温度測定装置の構成を示す模式図である。図1に示すように、本発明の一実施形態である放射温度測定装置1は、鋼板等の移動する不透明な測定対象物Sの反射率を測定することによって得られる測定対象物の放射率を用いて表面温度を測定する装置であり、光源2、同軸落射光学系3、再帰性反射板4、放射光検出器5、オン・オフ制御回路11、及び信号処理装置12を主な構成要素として備えている。
[Configuration of radiation temperature measuring device]
FIG. 1 is a schematic diagram showing a configuration of a radiation temperature measuring apparatus according to an embodiment of the present invention. As shown in FIG. 1, the radiation temperature measuring apparatus 1 according to an embodiment of the present invention calculates the emissivity of a measurement object obtained by measuring the reflectance of a moving opaque measurement object S such as a steel plate. This is a device for measuring the surface temperature by using the light source 2, the coaxial incident optical system 3, the retroreflector 4, the radiation detector 5, the on / off control circuit 11, and the signal processing device 12 as main components. I have.
光源2は、オン・オフ制御回路11からの制御信号に従って測定対象物Sに照射する入射光を生成する装置であり、例えばLED(Light Emitting Diode)光源によって構成されている。なお、350〜550℃の比較的低温度域の測定対象物Sの反射率を測定する場合には、700〜1100nmの波長域のCCDモノクロカメラと赤外LED光源(主波長850nm)を用いることが望ましい。 The light source 2 is a device that generates incident light that irradiates the measurement object S according to a control signal from the on / off control circuit 11, and is configured by, for example, an LED (Light Emitting Diode) light source. When measuring the reflectance of the measuring object S in a relatively low temperature range of 350 to 550 ° C., use a CCD monochrome camera having a wavelength range of 700 to 1100 nm and an infrared LED light source (main wavelength 850 nm). Is desirable.
同軸落射光学系3は、測定対象物Sに照射する入射光の光軸と受光光学系の光軸とが一致している光学系であり、例えば同軸落射テレセントリックレンズによって構成されている。同軸落射光学系3は、測定対象物Sの測定面の垂線L1に対して傾けて配置されている。同軸落射光学系3は、光源2が生成した入射光を測定対象物Sの測定面に入射すると共に、外部からの入射光を放射光検出器5に透過する。なお、同軸落射光学系3の先端に可視光カットフィルタを配設してもよい。 The coaxial incident optical system 3 is an optical system in which the optical axis of the incident light irradiated onto the measurement object S and the optical axis of the light receiving optical system coincide with each other, and is configured by, for example, a coaxial incident telecentric lens. The coaxial incident optical system 3 is disposed so as to be inclined with respect to the normal L1 of the measurement surface of the measurement object S. The coaxial incident optical system 3 causes the incident light generated by the light source 2 to enter the measurement surface of the measurement object S and transmits the incident light from the outside to the radiation light detector 5. A visible light cut filter may be disposed at the tip of the coaxial incident optical system 3.
再帰性反射板4は、測定対象物Sの測定面からの光を光の入射方向に戻す再帰性反射特性を有する板状の部材であり、測定対象物Sの測定面において反射された入射光に対して垂直な角度になるように入射面内における測定面の垂線L1を挟んで同軸落射光学系3の位置とは反対側の位置に配置されている。再帰性反射板4は、測定対象物Sの測定面において反射された入射光及び測定面から入射した放射光を同軸落射光学系3に戻す。なお、一般に、再帰性反射板4に対する光の入射角が±30度以内であれば、再帰性反射板4はほぼ100%発光位置に入射光を戻すと言われている。 The retroreflecting plate 4 is a plate-like member having a retroreflective characteristic that returns light from the measurement surface of the measurement object S in the light incident direction, and incident light reflected on the measurement surface of the measurement object S. Is arranged at a position opposite to the position of the coaxial incident optical system 3 across the perpendicular L1 of the measurement surface in the incident surface so as to be at an angle perpendicular to the incident surface. The retroreflector 4 returns the incident light reflected on the measurement surface of the measuring object S and the radiated light incident from the measurement surface to the coaxial incident optical system 3. In general, it is said that when the incident angle of light with respect to the retroreflecting plate 4 is within ± 30 degrees, the retroreflecting plate 4 returns incident light to almost 100% light emission position.
ここで、再帰性反射板4は、測定対象物Sの測定面からの反射光に対して垂直な角度になるように配置されていることとしたが、厳密に垂直な角度に配置する必要はなく、測定対象物Sの測定面からの反射光を同軸落射光学系3に戻すことができる範囲内であればよい。また、本実施形態では、再帰性反射板4は、同軸落射光学系3の先端の高さ位置とほぼ同じ高さ位置に配置されていることとするが、再帰性反射板4の高さ位置は装置のレイアウトに応じて適宜変更することができる。 Here, the retroreflecting plate 4 is arranged so as to be at an angle perpendicular to the reflected light from the measurement surface of the measuring object S, but it is necessary to arrange it at a strictly perpendicular angle. The reflection light from the measurement surface of the measuring object S may be within a range in which it can be returned to the coaxial incident optical system 3. In the present embodiment, the retroreflecting plate 4 is arranged at a height position substantially the same as the height position of the tip of the coaxial incident optical system 3. Can be appropriately changed according to the layout of the apparatus.
放射光検出器5は、同軸落射光学系3から伝達された光の輝度を検出する装置であり、単一の光受光素子、CCDモノクロカメラ、CCDカラーカメラ等によって構成されている。なお、CCDモノクロカメラは、高温域の測定も可能であるが、高温域になると測定対象物Sの温度に応じて色変化が生じるので、測定温度域(例えば550℃程度以上)によってはCCDカラーカメラを用いることが望ましい。また、測定対象物Sの測定温度に対応した輝度値がA/D変換器で有効な輝度レベルになるように放射光検出器5の検出時間を調整することが望ましい。CCDモノクロカメラを用いる場合には、光源2として赤外LED光源を用い、同軸落射光学系3の先端に可視光カットフィルタを配設することが望ましい。 The radiated light detector 5 is a device that detects the luminance of the light transmitted from the coaxial incident optical system 3, and includes a single light receiving element, a CCD monochrome camera, a CCD color camera, and the like. Note that the CCD monochrome camera can also measure in a high temperature range. However, since the color changes depending on the temperature of the measuring object S in the high temperature range, the CCD color depends on the measurement temperature range (for example, about 550 ° C. or more). It is desirable to use a camera. Further, it is desirable to adjust the detection time of the synchrotron radiation detector 5 so that the luminance value corresponding to the measurement temperature of the measuring object S becomes an effective luminance level by the A / D converter. When a CCD monochrome camera is used, it is desirable to use an infrared LED light source as the light source 2 and to arrange a visible light cut filter at the tip of the coaxial incident optical system 3.
オン・オフ制御回路11は、光源2に制御信号を出力することによって光源2のオン/オフ動作を制御する回路である。 The on / off control circuit 11 is a circuit that controls the on / off operation of the light source 2 by outputting a control signal to the light source 2.
信号処理装置12は、放射光検出器5によって検出された光の輝度に基づいて測定対象物Sの反射率を算出し、算出された反射率に基づいて測定対象物Sの表面温度を算出する装置であり、パーソナルコンピュータ等の情報処理装置によって構成されている。 The signal processing device 12 calculates the reflectance of the measurement object S based on the luminance of the light detected by the synchrotron radiation detector 5, and calculates the surface temperature of the measurement object S based on the calculated reflectance. It is a device and is constituted by an information processing device such as a personal computer.
このような構成を有する放射温度測定装置1は、以下に示す放射温度測定方法により移動する不透明な測定対象物の反射率をオンラインで測定する。以下、図2を参照して、本発明の一実施形態である放射温度測定方法を実行する際の放射温度測定装置1の動作について説明する。 The radiation temperature measuring apparatus 1 having such a configuration measures on-line the reflectance of an opaque measurement object that moves by the following radiation temperature measurement method. Hereinafter, with reference to FIG. 2, operation | movement of the radiation temperature measuring apparatus 1 at the time of performing the radiation temperature measuring method which is one Embodiment of this invention is demonstrated.
〔放射温度測定方法〕
図2は、本発明の一実施形態である放射温度測定方法を説明するための模式図である。本発明の一実施形態である放射温度測定方法では、まず、オン・オフ制御回路11が光源2に制御信号を出力することによって光源2をオンする。これにより、図2(a)に示すように、同軸落射光学系3を介して測定対象物Sの測定面(X,Y)に対して角度+θで入射光L2が入射し、測定面(X,Y)における入射光L2が正反射されて反射光L3が再帰性反射板4に入射する。
[Radiation temperature measurement method]
FIG. 2 is a schematic diagram for explaining a radiation temperature measuring method according to an embodiment of the present invention. In the radiation temperature measurement method according to the embodiment of the present invention, first, the light source 2 is turned on by the on / off control circuit 11 outputting a control signal to the light source 2. As a result, as shown in FIG. 2A, the incident light L2 is incident on the measurement surface (X, Y) of the measurement object S at an angle + θ via the coaxial incident optical system 3, and the measurement surface (X , Y), the incident light L2 is specularly reflected, and the reflected light L3 enters the retroreflecting plate 4.
そして、再帰性反射板4の表面において反射光L3が反射されて反射光L4が測定対象物Sの測定面(X,Y)に対して角度−θで入射し、測定面(X,Y)において反射光L4が反射されて反射光L5が同軸落射光学系3を介して放射光検出器5に入射する。なお、再帰性反射板4として大きさ55×35mmのものを距離110mmで用いた場合、幾何学的配置から角度θは、12〜15度の範囲内とすることが可能であり、再帰性反射板4は正反射光の垂直軸に対して頂角約12.5度の範囲でカバーすることができる。 Then, the reflected light L3 is reflected on the surface of the retroreflection plate 4, and the reflected light L4 is incident on the measurement surface (X, Y) of the measurement object S at an angle −θ, and the measurement surface (X, Y). Then, the reflected light L4 is reflected, and the reflected light L5 enters the radiated light detector 5 through the coaxial incident optical system 3. When a retroreflector 4 having a size of 55 × 35 mm is used at a distance of 110 mm, the angle θ can be within a range of 12 to 15 degrees from the geometrical arrangement, and the retroreflection The plate 4 can cover the apex angle in the range of about 12.5 degrees with respect to the vertical axis of the regular reflection light.
ここで、測定面(X,Y)における入射光L2の強度をL0(θ,X,Y)、角度+θで測定対象物Sの測定面(X,Y)に入射した入射光L2が正反射方向に反射する反射率をR(θ,X,Y)(%)とすると、反射光L3の強度はL0(θ,X,Y)×R(θ,X,Y)/100と表することができる。このとき、L0(θ,X,Y)×R(θ,X,Y)/100の値が、測定面(X,Y)からの放射光(自発光放射光)よりも十分大きくなるようなL0(θ,X,Y)の値をもつ光源を用いるようにしている。同様にして、再帰性反射板4の反射率が100%であると仮定すると、反射光L5の強度はL0(θ,X,Y)×R(θ,X,Y)×R(−θ,X,Y)/10000と表することができる。また、正反射率は角度θが同じであれば方向性の影響を受けないと仮定できるので、以下に示す数式(1)が成立する。なお、数式(1)において、Rφ(X,Y)は、測定面(X,Y)の反射率(%)を示す。 Here, the intensity of the incident light L2 on the measurement surface (X, Y) is L0 (θ, X, Y), and the incident light L2 incident on the measurement surface (X, Y) of the measuring object S at an angle + θ is specularly reflected. When the reflectance reflected in the direction is R (θ, X, Y) (%), the intensity of the reflected light L3 is expressed as L0 (θ, X, Y) × R (θ, X, Y) / 100. Can do. At this time, the value of L0 (θ, X, Y) × R (θ, X, Y) / 100 is sufficiently larger than the emitted light (self-emitting emitted light) from the measurement surface (X, Y). A light source having a value of L0 (θ, X, Y) is used. Similarly, assuming that the reflectivity of the retroreflecting plate 4 is 100%, the intensity of the reflected light L5 is L0 (θ, X, Y) × R (θ, X, Y) × R (−θ, X, Y) / 10000. Since it can be assumed that the regular reflectance is not affected by the directivity if the angle θ is the same, the following formula (1) is established. In Equation (1), Rφ (X, Y) indicates the reflectance (%) of the measurement surface (X, Y).
また、以下の数式(2)に示すように、放射光検出器5によって検出された再帰性反射板4からの反射光L5の輝度に基づいて求められる反射率Rは、測定面(X,Y)の反射率Rφ(X,Y)の二乗値となる。このため、測定面(X,Y)の反射率Rφ(X,Y)は、反射率Rを以下の数式(3)に代入することによって求めることができる。具体的には、予め測定しておいた基準反射率に相当する基準輝度値と放射光検出器5によって検出された輝度値とから反射率Rを算出し、算出された反射率Rを以下の数式(3)に代入することによって測定面(X,Y)の反射率Rφ(X,Y)を算出する。このようにして、光源2をオンしたときに放射光検出器5によって検出された再帰性反射板4からの反射光L5の輝度から測定面(X,Y)の反射率Rφ(X,Y)を算出することができる。 Further, as shown in the following mathematical formula (2), the reflectance R obtained based on the luminance of the reflected light L5 from the retroreflecting plate 4 detected by the radiation light detector 5 is the measurement surface (X, Y ) Is the square value of the reflectance Rφ (X, Y). Therefore, the reflectance Rφ (X, Y) of the measurement surface (X, Y) can be obtained by substituting the reflectance R into the following formula (3). Specifically, the reflectance R is calculated from the reference luminance value corresponding to the reference reflectance measured in advance and the luminance value detected by the radiated light detector 5, and the calculated reflectance R is calculated as follows. By substituting into Equation (3), the reflectance Rφ (X, Y) of the measurement surface (X, Y) is calculated. In this way, the reflectance Rφ (X, Y) of the measurement surface (X, Y) from the luminance of the reflected light L5 from the retroreflection plate 4 detected by the radiation detector 5 when the light source 2 is turned on. Can be calculated.
次に、オン・オフ制御回路11が光源2への制御信号の出力を停止することによって光源2をオフする。これにより、図2(b)に示すように、測定面(X,Y)から角度+θ方向に放射された放射光(自発光放射光)L6が同軸落射光学系3を介して放射光検出器5に入射する。また、測定面(X,Y)から角度−θ方向に放射された放射光L7が再帰性反射板4に入射し、再帰性反射板4の表面において放射光L7が反射されて反射光L8が測定対象物Sの測定面(X,Y)に対して角度−θで入射する。そして、測定面(X,Y)において反射光L8が反射されて反射光L9が同軸落射光学系3を介して放射光検出器5に入射する。 Next, the on / off control circuit 11 turns off the light source 2 by stopping the output of the control signal to the light source 2. As a result, as shown in FIG. 2B, radiated light (self-emitting radiated light) L6 radiated from the measurement surface (X, Y) in the direction of the angle + θ is radiated light detector via the coaxial incident optical system 3. 5 is incident. Further, the radiated light L7 radiated from the measurement surface (X, Y) in the angle −θ direction is incident on the retroreflecting plate 4, and the radiated light L7 is reflected on the surface of the retroreflecting plate 4, and the reflected light L8 is reflected. Incident to the measurement surface (X, Y) of the measurement object S at an angle −θ. Then, the reflected light L8 is reflected on the measurement surface (X, Y), and the reflected light L9 enters the radiated light detector 5 via the coaxial incident optical system 3.
ここで、放射光L6の光量Ra* ε1(X,Y)は、放射率が1.0である場合の放射光L6の光量をRa* 0(X,Y:T℃、ε=1.0)とすると、以下に示す数式(4)のように表すことができる。また同様にして、放射光L7の光量Ra* ε2(X,Y)は、以下に示す数式(5)のように表すことができる。また、反射光L9の光量Ra* ε3(X,Y)は、再帰性反射板4の反射率をDとすると、以下に示す数式(6)のように表すことができる。 Here, the light quantity Ra * ε1 (X, Y) of the radiated light L6 is the Ra * 0 (X, Y: T ° C., ε = 1.0) when the emissivity is 1.0. ), It can be expressed as the following formula (4). Similarly, the light amount Ra * ε2 (X, Y) of the radiated light L7 can be expressed as the following formula (5). Further, the light amount Ra * ε3 (X, Y) of the reflected light L9 can be expressed as the following formula (6), where D is the reflectance of the retroreflecting plate 4.
また、正反射率は角度θが同じあれば方向性の影響を受けないこと(数式(1)の成立)、以下の数式(7)に示すように放射率εも角度が同じであれば方向性の影響を受けないこと、及び以下の数式(8)に示すように反射率Rφ(X,Y)/100と放射率εφ(X,Y)との和が1となることを仮定する。なお、εφ(X,Y)は測定面(X,Y)における放射率を示す。 In addition, the regular reflectance is not affected by the directionality when the angle θ is the same (Equation (1) established), and the direction of the emissivity ε is the same when the angle is the same as shown in the following Equation (7). It is assumed that the sum of the reflectance Rφ (X, Y) / 100 and the emissivity εφ (X, Y) is 1 as shown in the following formula (8). Note that εφ (X, Y) indicates the emissivity on the measurement surface (X, Y).
これにより、放射光L6と反射光L9との輝度の和Ra*sum(X,Y)は、以下に示す数式(9)〜(11)のように表される。なお、数式(11)中のε(X,Y)は2回反射の放射率であり、以下に示す数式(12)のように表される。 Thereby, the sum Ra * sum (X, Y) of the luminances of the radiated light L6 and the reflected light L9 is expressed as the following mathematical formulas (9) to (11). In addition, ε (X, Y) in the formula (11) is an emissivity of double reflection, and is expressed as the following formula (12).
数式(10)に示す輝度の和Ra*sum(X,Y)は放射光検出器5によって検出された輝度値である。従って、輝度の和Ra*sum(X,Y)と反射率Rφ(X,Y)とを数式(12)に代入することによって求められる放射率ε(X,Y)とを数式(11)に代入することにより、放射率補正した放射輝度値Ra* 0(X,Y:T℃、ε=1.0)を算出することができる。これにより、放射率補正した放射輝度値Ra* 0(X,Y:T℃、ε=1.0)の対数値V(X,Y)を以下の数式(13)に示す黒体炉校正式に代入することによって、測定面(X,Y)の表面温度TEMP(X,Y)を算出することができる。なお、数式(13)におけるパラメータA,B,Cは係数を示す。 The luminance sum Ra * sum (X, Y) shown in Equation (10) is a luminance value detected by the synchrotron radiation detector 5. Accordingly, the emissivity ε (X, Y) obtained by substituting the luminance sum Ra * sum (X, Y) and the reflectance Rφ (X, Y) into the equation (12) is expressed in the equation (11). By substituting, it is possible to calculate an emissivity-corrected radiance value Ra * 0 (X, Y: T ° C., ε = 1.0). Thus, the blackbody furnace calibration formula shown in the following formula (13) is the logarithmic value V (X, Y) of the emissivity-corrected radiance value Ra * 0 (X, Y: T ° C., ε = 1.0). By substituting into, the surface temperature TEMP (X, Y) of the measurement surface (X, Y) can be calculated. Note that parameters A, B, and C in Equation (13) indicate coefficients.
図3は、鏡面性の高い圧延アルミニウム板(表面粗さRaの測定値が0.08μm未満)の傾き(ゴニオステージ角度)をθ度変化させた時の本発明により測定された反射率Rφの平均値(平均反射率)(入射光波長:850nm)及び相対比率Rφ(θ)/Rφ(0度)の変化の一例を示す図である。なお、相対比率Rφ(θ)/Rφ(0度)とは、傾きθ度のときの平均反射率を傾き0度のときの平均反射率で除算した値である。 FIG. 3 shows the reflectivity Rφ measured according to the present invention when the inclination (gonio stage angle) of a rolled aluminum plate with high specularity (measured surface roughness Ra is less than 0.08 μm) is changed by θ degrees. It is a figure which shows an example of the change of an average value (average reflectance) (incident light wavelength: 850 nm) and relative ratio R (phi) ((theta)) / R (phi) (0 degree). The relative ratio Rφ (θ) / Rφ (0 degree) is a value obtained by dividing the average reflectance when the inclination is θ degrees by the average reflectance when the inclination is 0 degrees.
図3に示すように、傾きの角度θが0度に対して±3度以内であれば反射率Rφの値は86〜100%と安定しており、傾きの角度θが4度を超えてはじめて反射率Rφは低下し始める。既に述べたように、従来の反射率測定方法(図12参照)では、反射率Rvの相対比率Rv(θ)/Rv(0度)は、傾きθが±0.5度変化しただけで83〜87%まで減衰し、また傾きθが±0.8度変化すると63〜74%まで減衰する。従って、本発明によれば、反射率Rφを測定する際の測定対象物の傾きθの影響を大幅に低減できる。このため、本発明によれば、例えば連続亜鉛めっきラインを移動する鋼板等の移動する不透明な測定対象物の反射率をオンラインで測定して測定対象物の表面温度を測定することができる。 As shown in FIG. 3, if the inclination angle θ is within ± 3 degrees with respect to 0 degree, the reflectance Rφ is stable at 86 to 100%, and the inclination angle θ exceeds 4 degrees. For the first time, the reflectance Rφ begins to decrease. As described above, in the conventional reflectance measurement method (see FIG. 12), the relative ratio Rv (θ) / Rv (0 degree) of the reflectance Rv is 83 only by changing the slope θ by ± 0.5 degrees. Attenuates to -87%, and attenuates to 63-74% when the slope θ changes ± 0.8 degrees. Therefore, according to the present invention, the influence of the inclination θ of the measurement object when measuring the reflectance Rφ can be greatly reduced. For this reason, according to the present invention, for example, the reflectance of a moving opaque measuring object such as a steel plate moving on a continuous galvanizing line can be measured online to measure the surface temperature of the measuring object.
ここで、再帰性反射板4の反射率が理想的な場合の90%に低下した際の温度測定に与える誤差について説明する。図4は、測定面の反射率Rφ(X,Y)が80%から10%まで10%おきの温度450℃のサンプルを測定した場合において、再帰性反射板4が理想的な反射率(100%)を有している場合(1.0)とその状態に対し反射率が90%になった場合(0.9)との温度誤差を計算した結果を示す図である。図4に示すように、最も温度誤差が乗りやすい反射率80%の場合であっても、高々10℃程度の温度誤差に収まっていることがわかる。 Here, the error given to the temperature measurement when the reflectance of the retroreflector 4 is reduced to 90% of the ideal case will be described. FIG. 4 shows the case where the retroreflector 4 has an ideal reflectivity (100) when a sample at a temperature of 450 ° C. with a reflectivity Rφ (X, Y) of the measurement surface of 80% to 10% every 10% is measured. %) Is a diagram illustrating a result of calculating a temperature error between (1.0) having a (%) and (0.9) having a reflectivity of 90% with respect to the state. As shown in FIG. 4, it can be seen that even if the reflectance is 80%, which is most likely to cause the temperature error, the temperature error is within about 10 ° C. at most.
また、図5は、本発明により測定したアルミニウムサンプルの鏡面部と粗さ♯30の粗面部を窒化アルミニウムヒータで450℃に温度設定した時の反射率分布と表面温度分布の1例を示す図である。アルミニウム板50mm×25mmの中央部で鏡面と粗面の境界部を作成し、その中央部分の8mm×2mm(1000×250画素)の中央の11画素の平均値を示したものである。図5に示すグラフから、反射率分布が境界部で大きく変化しているのに対し、表面温度はほぼ同じ温度を示していることがわかる。この表面温度分布を計算した結果では、粗さ♯30の砥粒で粗面化した平面はかなり粗いので、鏡面の温度分布がほぼ均一であるのに対し、温度分布が面内で大きくばらついていることもわかる。また、粗面からの放射伝熱ロスが大きいので、粗面側の平均温度が約5℃低いこともわかる。 FIG. 5 is a diagram showing an example of the reflectance distribution and the surface temperature distribution when the mirror surface portion of the aluminum sample measured according to the present invention and the rough surface portion of roughness # 30 are set to 450 ° C. with an aluminum nitride heater. It is. The boundary between the mirror surface and the rough surface is created at the center of an aluminum plate 50 mm × 25 mm, and the average value of the center 11 pixels of 8 mm × 2 mm (1000 × 250 pixels) at the center is shown. From the graph shown in FIG. 5, it can be seen that the surface temperature shows almost the same temperature while the reflectance distribution changes greatly at the boundary. As a result of calculating the surface temperature distribution, since the flat surface roughened with the abrasive grain of roughness # 30 is quite rough, the temperature distribution on the mirror surface is almost uniform, but the temperature distribution varies greatly in the plane. You can see that Moreover, since the radiation heat transfer loss from a rough surface is large, it turns out that the average temperature of the rough surface side is about 5 degreeC low.
また、粗さ#30及び粗さ#320のアルミニウムサンプルの温度を変えながら反射率を測定した結果を図6に示す。図6では、鏡面部分の反射率Rφ(S1)及び粗面部分の反射率Rφ(S5)及びそれらの差Rφ(S1−S5)を示している。図6に示すように、粗さ#30及び粗さ#320共に、反射率は温度が高くなるにつれて大きくなる傾向があることが確認された。また、図6に示す結果から算出されたアルミニウムサンプルの表面温度を図7に示す。図7に示すように、鏡面部分と粗面部分の表面温度はよく一致していることがわかる。また、ヒータの設定値と鏡面部分の温度の差は、粗さ#30と粗さ#320のアルミニウムサンプルでは異なっていた。これは、粗さ#30のアルミニウムサンプルの表面粗さが粗く、放射率が高いアルミニウムサンプルは、熱放射が大きいために表面温度が下がっているためと考えられる。また、セラミック及び酸化しない金属で鍍金した鋼板についての同様のデータを図8及び図9に示す。これらについても、同様の結果が得られた。 Moreover, the result of having measured the reflectance while changing the temperature of the aluminum sample of roughness # 30 and roughness # 320 is shown in FIG. In FIG. 6, the reflectance Rφ (S1) of the mirror surface portion, the reflectance Rφ (S5) of the rough surface portion, and the difference Rφ (S1−S5) are shown. As shown in FIG. 6, it was confirmed that both the roughness # 30 and the roughness # 320 have a tendency that the reflectance increases as the temperature increases. FIG. 7 shows the surface temperature of the aluminum sample calculated from the results shown in FIG. As shown in FIG. 7, it can be seen that the surface temperatures of the mirror surface portion and the rough surface portion are in good agreement. Further, the difference between the heater set value and the temperature of the mirror surface portion was different between the aluminum samples having roughness # 30 and roughness # 320. This is presumably because the surface temperature of the aluminum sample with roughness # 30 is rough and the surface temperature of the aluminum sample with high emissivity is low due to large thermal radiation. Similar data for steel plates plated with ceramics and non-oxidized metals are shown in FIGS. Similar results were obtained for these.
本実施例では、反射率校正のための前処理と測定対象物の表面温度を測定する際の事前処理とを行ない表面温度を測定した。また、本実施例では、CCDモノクロカメラの感度曲線をγ=1.0とし、入力の光強度に比例する画像輝度値が得られるようにした。 In this example, the surface temperature was measured by performing pre-processing for reflectance calibration and pre-processing for measuring the surface temperature of the measurement object. In this embodiment, the sensitivity curve of the CCD monochrome camera is set to γ = 1.0, and an image luminance value proportional to the input light intensity is obtained.
前処理では、まず反射光がゼロの準黒体を用意した。これは内部径が50mmの円筒で高さが90mm、円筒底部には頂角60度の円錐を持った部材をねじ合わせで合体したものであり、黒色校正円筒と呼ぶ。円筒及び円錐底部の材質はアルミニウムであり、その表面につや消し黒色アルマイト処理を施したものを使用した。反射率校正板としては、高反射率鏡面反射板が市販されている。高反射率鏡面反射板は高価であり傷つきやすいので、公式基準器として用い、その基準器で値付した低反射率準白体を準黒体と同様にして白色校正円筒の形で作製し、低反射率約0.3%程度(数値は校正により決定する)の常用標準反射体として使用した。白色校正円筒が黒色校正円筒と異なる点は、頂角が175度と大きいこととつや消し白色アルマイト処理を施していることである。 In the pretreatment, first, a quasi-black body with zero reflected light was prepared. This is a cylinder with an internal diameter of 50 mm, a height of 90 mm, and a member having a cone having a vertex angle of 60 degrees at the bottom of the cylinder, which are joined together by screwing, and is called a black calibration cylinder. The material of the cylindrical and conical bottom portions was aluminum, and the surface thereof was used with a matte black alumite treatment. As the reflectance calibration plate, a high reflectance mirror reflector is commercially available. The high-reflectance specular reflector is expensive and easily damaged, so it is used as an official standard, and a low-reflectance quasi-white body priced with that standard is made in the form of a white calibration cylinder in the same way as the quasi-black body. It was used as a regular standard reflector having a low reflectance of about 0.3% (the value is determined by calibration). The white calibration cylinder is different from the black calibration cylinder in that the apex angle is as large as 175 degrees and the matte white alumite treatment is applied.
次に、白色校正円筒の反射率を高反射率鏡面反射板で校正した。白色校正円筒の反射率を測定した時の輝度カウント値が飽和しない範囲でシャッター時間を決めた。CCDモノクロカメラのA/D変換は16ビットであり、65000カウント(階調)を超える。本実施例では、LED光源が安定している状態にゲインを決めて、シャッター時間を0.2msecとした。そこで、白色校正円筒の反射率を測定し、次に黒色校正円筒の反射率を測定した。この時の仮想の白色校正円筒の反射率を仮に0.300と入力した。白のカウント数は36366.8であり、黒のカウント数は35980.2であり、その差は386.6であった。 Next, the reflectance of the white calibration cylinder was calibrated with a high reflectance mirror reflector. The shutter time was determined in a range where the brightness count value when the reflectance of the white calibration cylinder was measured was not saturated. The A / D conversion of the CCD monochrome camera is 16 bits and exceeds 65000 counts (gradation). In this embodiment, the gain is determined so that the LED light source is stable, and the shutter time is set to 0.2 msec. Therefore, the reflectance of the white calibration cylinder was measured, and then the reflectance of the black calibration cylinder was measured. The reflectance of the virtual white calibration cylinder at this time was temporarily input as 0.300. The white count was 36366.8, the black count was 35980.2, and the difference was 386.6.
次に、高反射率鏡面反射板の反射率を測定した。図10は、分光光度計による高反射率鏡面反射板の反射率の測定結果を示す。波長850nmの入射光に対する高反射率鏡面反射板の反射率は86%であった。高反射率鏡面反射板の輝度値が飽和していないことを確認し、シャッター時間を0.01msecにセットした。次に、黒色校正円筒の輝度値を同じシャッター時間で測定し、高反射率鏡面反射板の輝度値から減算した。一方、白色校正円筒の輝度値は、シャッター時間0.2msecのときに386.6カウントだったので、このカウント値を0.01msecで測定した場合に換算し、386.6×0.01/0.2=19.33として求めた。この係数で計算したときに高反射率鏡面反射板の反射率が86%となるように、白色校正円筒の0.300%の校正値を決定し、白色校正円筒の基準反射率として登録した。 Next, the reflectivity of the high reflectivity specular reflector was measured. FIG. 10 shows the measurement results of the reflectance of the high-reflectance specular reflector with a spectrophotometer. The reflectivity of the highly reflective specular reflector with respect to incident light having a wavelength of 850 nm was 86%. After confirming that the luminance value of the high-reflectivity specular reflector was not saturated, the shutter time was set to 0.01 msec. Next, the luminance value of the black calibration cylinder was measured with the same shutter time, and subtracted from the luminance value of the high reflectance specular reflector. On the other hand, the brightness value of the white calibration cylinder was 386.6 counts when the shutter time was 0.2 msec. Therefore, this count value was converted when measured at 0.01 msec, and 386.6 × 0.01 / 0. .2 = 19.33. A calibration value of 0.300% of the white calibration cylinder was determined so that the reflectance of the high-reflectance specular reflector was 86% when calculated with this coefficient, and was registered as the reference reflectance of the white calibration cylinder.
測定対象物の表面温度を測定する際には、まず、基準反射率校正板の反射率を測定した。基準反射率校正板の反射率の測定が終了すると、次に、黒体炉校正式をセットした。次に、反射率測定と表面温度測定のための準備測定が2項目必要である。まず、1つめは測定対象物の反射輝度値が飽和しないシャッター時間を選択することである。そして、同軸落射光学系の前面に準黒体をセットし、まずLED光源を点灯し、決めたシャッター時間で光学系の内部雑音輝度値を二次元画像データとして保存する。次に、放射輝度測定のための黒体測定を行った。以上が準備である。 When measuring the surface temperature of the measurement object, first, the reflectance of the reference reflectance calibration plate was measured. When the measurement of the reflectance of the reference reflectance calibration plate was completed, the blackbody furnace calibration formula was set. Next, two items of preparation measurement for reflectance measurement and surface temperature measurement are required. First, the shutter time that does not saturate the reflection luminance value of the measurement object is selected. Then, a quasi-black body is set on the front surface of the coaxial incident optical system, the LED light source is first turned on, and the internal noise luminance value of the optical system is stored as two-dimensional image data with a determined shutter time. Next, black body measurement for radiance measurement was performed. The above is preparation.
次に、準黒体を取り除き、加熱されている測定対象物の反射率を測定した。次に、測定対象物の放射温度を測定した。以後、放射率補正した放射輝度値の対数値を黒体炉校正式に代入することによって、測定面(X,Y)の表面温度を算出した。黒体炉校正式の一例を図11に示す。 Next, the quasi-black body was removed, and the reflectance of the measurement object being heated was measured. Next, the radiation temperature of the measurement object was measured. Thereafter, the surface temperature of the measurement surface (X, Y) was calculated by substituting the logarithmic value of the radiance value corrected for emissivity into the blackbody furnace calibration formula. An example of the blackbody furnace calibration formula is shown in FIG.
以上、本発明者らによってなされた発明を適用した実施の形態について説明したが、本実施形態による本発明の開示の一部をなす記述及び図面により本発明は限定されることはない。すなわち、本実施形態に基づいて当業者等によりなされる他の実施の形態、実施例、及び運用技術等は全て本発明の範疇に含まれる。 The embodiment to which the invention made by the present inventors is applied has been described above, but the present invention is not limited by the description and the drawings that constitute a part of the disclosure of the present invention. That is, other embodiments, examples, operational techniques, and the like made by those skilled in the art based on this embodiment are all included in the scope of the present invention.
1 放射温度測定装置
2 光源
3 同軸落射光学系
4 再帰性反射板
5 放射光検出器
11 オン・オフ制御回路
12 信号処理装置
S 測定対象物
DESCRIPTION OF SYMBOLS 1 Radiation temperature measuring apparatus 2 Light source 3 Coaxial incident optical system 4 Retroreflecting plate 5 Synchrotron radiation detector 11 On-off control circuit 12 Signal processing apparatus S Measurement object
Claims (7)
前記光源のオン/オフを制御するオン・オフ制御回路と、
測定対象物の測定面の垂線に対して傾けて配置された、前記光源からの入射光を前記測定面に照射する同軸落射光学系と、
前記測定面において反射された前記入射光に対して垂直な角度になるように入射面内における前記垂線を挟んで前記同軸落射光学系の位置とは反対側の位置に配置された、前記測定面において反射された前記入射光及び前記測定面から入射した放射光を前記同軸落射光学系に戻す再帰性反射板と、
前記同軸落射光学系に入射した光の輝度を検出する放射光検出器と、
前記放射光検出器によって検出された光の輝度値から前記測定面の表面温度を算出する信号処理装置と、を備え、
前記信号処理装置は、前記オン・オフ制御回路によって前記光源をオン状態にした時に検出された光の輝度値から前記測定面の反射率を算出し、前記オン・オフ制御回路によって前記光源をオフ状態にした時に検出された光の輝度及び前記反射率から前記測定面の放射率を算出し、前記オン・オフ制御回路によって前記光源をオフ状態にした時に検出された光の輝度及び前記放射率を用いて前記測定面の表面温度を算出することを特徴とする放射温度測定装置。 A light source;
An on / off control circuit for controlling on / off of the light source;
A coaxial incident optical system for irradiating the measurement surface with incident light from the light source, which is disposed to be inclined with respect to a normal to the measurement surface of the measurement object;
The measurement surface disposed at a position opposite to the position of the coaxial incident optical system across the perpendicular in the incident surface so as to have an angle perpendicular to the incident light reflected on the measurement surface. A retroreflector that returns the incident light reflected at and the radiation incident from the measurement surface to the coaxial incident optical system;
A synchrotron radiation detector for detecting the brightness of light incident on the coaxial incident optical system;
A signal processing device that calculates the surface temperature of the measurement surface from the luminance value of the light detected by the synchrotron radiation detector,
The signal processing device calculates a reflectance of the measurement surface from a luminance value of light detected when the light source is turned on by the on / off control circuit, and turns off the light source by the on / off control circuit. The emissivity of the measurement surface is calculated from the brightness and reflectance of the light detected when the light source is turned on, and the brightness and the emissivity of the light detected when the light source is turned off by the on / off control circuit A surface temperature of the measurement surface is calculated using a radiation temperature measuring device.
前記オン・オフ制御回路によって前記光源をオン状態にした時に検出された光の輝度値から前記測定面の反射率を算出するステップと、
前記オン・オフ制御回路によって前記光源をオフ状態にした時に検出された光の輝度及び前記反射率から前記測定面の放射率を算出するステップと、
前記オン・オフ制御回路によって前記光源をオフ状態にした時に検出された光の輝度及び前記放射率を用いて前記測定面の表面温度を算出するステップと、
を含むことを特徴とする放射温度測定方法。 A light source, an on / off control circuit that controls on / off of the light source, and a coaxial that illuminates the measurement surface with incident light from the light source that is inclined with respect to the normal of the measurement surface of the measurement object The epi-illumination optical system is disposed at a position opposite to the position of the coaxial epi-illumination optical system across the perpendicular in the incidence plane so as to be perpendicular to the incident light reflected on the measurement surface. A retroreflector that returns the incident light reflected on the measurement surface and radiation incident from the measurement surface to the coaxial incident optical system, and radiation that detects the luminance of the light incident on the coaxial incident optical system. A radiation temperature measurement method using a radiation temperature measurement device comprising: a light detector; and a signal processing device that calculates a surface temperature of the measurement surface from a luminance value of light detected by the radiation light detector,
Calculating the reflectance of the measurement surface from the luminance value of the light detected when the light source is turned on by the on / off control circuit;
Calculating the emissivity of the measurement surface from the brightness and reflectance of the light detected when the light source is turned off by the on / off control circuit;
Calculating the surface temperature of the measurement surface using the brightness and emissivity of light detected when the light source is turned off by the on / off control circuit;
A radiation temperature measurement method comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017049643A JP6765327B2 (en) | 2017-03-15 | 2017-03-15 | Radiation temperature measuring device and radiation temperature measuring method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017049643A JP6765327B2 (en) | 2017-03-15 | 2017-03-15 | Radiation temperature measuring device and radiation temperature measuring method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018151354A true JP2018151354A (en) | 2018-09-27 |
JP6765327B2 JP6765327B2 (en) | 2020-10-07 |
Family
ID=63679440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017049643A Active JP6765327B2 (en) | 2017-03-15 | 2017-03-15 | Radiation temperature measuring device and radiation temperature measuring method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6765327B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2021166543A1 (en) * | 2020-02-21 | 2021-08-26 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1048053A (en) * | 1996-08-06 | 1998-02-20 | Nittetsu Hokkaido Seigyo Syst Kk | Scanning radiation thermometer |
JP2001165850A (en) * | 1999-12-14 | 2001-06-22 | Fuji Electric Co Ltd | Oil film detector |
JP2006258778A (en) * | 2005-03-15 | 2006-09-28 | Nippon Electro Sensari Device Kk | Method and device for inspecting surface defect |
JP2009236898A (en) * | 2008-03-04 | 2009-10-15 | Nippon Steel Corp | Radiation temperature measuring device and radiation temperature measuring method |
JP2012519866A (en) * | 2009-03-09 | 2012-08-30 | 3ビー システム インコーポレイテッド | Inspection device for defect inspection |
US20150124244A1 (en) * | 2013-11-05 | 2015-05-07 | Ut-Battelle, Llc | Emissivity independent optical pyrometer |
JP2016121914A (en) * | 2014-12-24 | 2016-07-07 | 東京エレクトロン株式会社 | Temperature measurement mechanism and thermal processor |
JP2016186960A (en) * | 2015-03-27 | 2016-10-27 | 株式会社ニューフレアテクノロジー | Deposition apparatus and temperature measurement method |
-
2017
- 2017-03-15 JP JP2017049643A patent/JP6765327B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1048053A (en) * | 1996-08-06 | 1998-02-20 | Nittetsu Hokkaido Seigyo Syst Kk | Scanning radiation thermometer |
JP2001165850A (en) * | 1999-12-14 | 2001-06-22 | Fuji Electric Co Ltd | Oil film detector |
JP2006258778A (en) * | 2005-03-15 | 2006-09-28 | Nippon Electro Sensari Device Kk | Method and device for inspecting surface defect |
JP2009236898A (en) * | 2008-03-04 | 2009-10-15 | Nippon Steel Corp | Radiation temperature measuring device and radiation temperature measuring method |
JP2012519866A (en) * | 2009-03-09 | 2012-08-30 | 3ビー システム インコーポレイテッド | Inspection device for defect inspection |
US20150124244A1 (en) * | 2013-11-05 | 2015-05-07 | Ut-Battelle, Llc | Emissivity independent optical pyrometer |
JP2016121914A (en) * | 2014-12-24 | 2016-07-07 | 東京エレクトロン株式会社 | Temperature measurement mechanism and thermal processor |
JP2016186960A (en) * | 2015-03-27 | 2016-10-27 | 株式会社ニューフレアテクノロジー | Deposition apparatus and temperature measurement method |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2021166543A1 (en) * | 2020-02-21 | 2021-08-26 | ||
WO2021166543A1 (en) * | 2020-02-21 | 2021-08-26 | 富士フイルム株式会社 | Imaging device |
JP7334325B2 (en) | 2020-02-21 | 2023-08-28 | 富士フイルム株式会社 | Imaging device |
Also Published As
Publication number | Publication date |
---|---|
JP6765327B2 (en) | 2020-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7995195B2 (en) | Method of optically monitoring the progression of a physical and/or chemical process taking place on a surface of a body | |
JP2912157B2 (en) | Object temperature measurement method | |
JP5595693B2 (en) | System and method for determining shape of plate glass | |
EP2365307B1 (en) | Method for calibrating a pyrometer, method for determining the temperature of a semiconducting wafer and system for determining the temperature of a semiconducting wafer | |
JP6119926B1 (en) | Metal body shape inspection apparatus and metal body shape inspection method | |
JP7062339B2 (en) | Temperature measuring method and temperature measuring device | |
JPH06229832A (en) | Pyrometer including emissivity meter | |
JP7504189B2 (en) | Film thickness measuring device and film thickness measuring method | |
JP2018151354A (en) | Radiant temperature measurement apparatus and radiant temperature measurement method | |
JP5009382B2 (en) | Apparatus and method for determining surface properties | |
JP6620827B2 (en) | Radiation temperature measuring device and radiation temperature measuring method | |
JPH02245624A (en) | Radiation temperature measuring apparatus | |
JP3570488B2 (en) | Measurement method of alloying degree of galvanized steel sheet using laser beam | |
JP3259815B2 (en) | Method and apparatus for measuring emissivity and temperature of an object, and rod-shaped radiation source | |
RU2381463C1 (en) | Pyrometric method for thermodynamic metal temperature test and device for implementation therefor | |
JPH05507356A (en) | Object temperature measurement method and device and heating method | |
JPH05209792A (en) | Method and device for simultaneous measurement of emissivity and surface temperature | |
JP7136136B2 (en) | Light-receiving characteristic evaluation device and light-receiving characteristic evaluation method for optical sensor | |
JP2009156789A (en) | Optical characteristic measuring device and method | |
JP6570061B2 (en) | Non-contact temperature measuring method and measuring apparatus | |
TW202130969A (en) | Optical measurement device and optical measurement method | |
US20180292313A1 (en) | Systems and methods of detecting coatings on metal substrates | |
KR20020073978A (en) | Method of measuring the thickness of thin film layer using infrared thermal image system | |
JP2021107787A (en) | Reference plate, member for calibration, glossmeter, and method for manufacturing reference plate | |
JP2017125735A (en) | Optical measurement device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7426 Effective date: 20170322 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20170323 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181001 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190717 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190730 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190913 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200204 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200309 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200908 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200915 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6765327 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |