JPH10280988A - Fuel injection controlling device and its method for internal combustion engine - Google Patents

Fuel injection controlling device and its method for internal combustion engine

Info

Publication number
JPH10280988A
JPH10280988A JP9091833A JP9183397A JPH10280988A JP H10280988 A JPH10280988 A JP H10280988A JP 9091833 A JP9091833 A JP 9091833A JP 9183397 A JP9183397 A JP 9183397A JP H10280988 A JPH10280988 A JP H10280988A
Authority
JP
Japan
Prior art keywords
pressure
atmospheric pressure
injection amount
fuel injection
correction coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9091833A
Other languages
Japanese (ja)
Other versions
JP3838526B2 (en
Inventor
Tatsunori Kato
辰則 加藤
Yutaka Nitta
豊 新田
Akihisa Tamura
明久 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Suzuki Motor Corp
Original Assignee
Denso Corp
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Suzuki Motor Corp filed Critical Denso Corp
Priority to JP09183397A priority Critical patent/JP3838526B2/en
Publication of JPH10280988A publication Critical patent/JPH10280988A/en
Application granted granted Critical
Publication of JP3838526B2 publication Critical patent/JP3838526B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To calculate amount of injected fuel accurately even when atmospheric pressure changes. SOLUTION: Differential pressure between bottom pressure Pb of intake pressure and atmospheric pressure Pa, that is, relative pressure (Pa-Pb) is calculated, and a relative pressure correction factor KPa corresponding to the atmospheric pressure is calculated (steps 104, 105). Then, in order to correct the relative pressure (Pa-Pb) to the condition of standard atmospheric pressure, the relative pressure is multiplied by relative pressure correction factor KPa to calculate relative pressure correction value Pd1, and standard injection time TP is calculated based on this correction value Pd1 and engine speed NE (steps 106, 107). Next, fuel injection amount correction factor KPad depending on the atmospheric pressure Pa is calculated, and various correction factors K are calculated (steps 108, 109). Finally, invalid injection time TV is calculated based on supply voltage, and final injection time TAU is calculated using the standard injection time TP, the fuel injection amount correction factor KPad, various correction factors K, and the invalid injection time TV (steps 110, 111).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、吸気圧と大気圧と
の差圧と内燃機関回転数とに基づいて燃料噴射量を算出
する内燃機関の燃料噴射制御装置及び燃料噴射制御方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel injection control device and a fuel injection control method for an internal combustion engine which calculate a fuel injection amount based on a pressure difference between an intake pressure and an atmospheric pressure and a rotation speed of the internal combustion engine. is there.

【0002】[0002]

【従来の技術】一般に、車両に搭載された内燃機関で
は、吸気圧が同じでも、走行する道路の標高が高くなっ
て大気圧が低下すると、吸入空気量が変化するため、燃
料噴射量を補正することが好ましい。そのために、例え
ば、特開平5−149187号公報では、内燃機関の吸
気圧を吸気圧センサで検出し、この検出吸気圧を基準大
気圧(760mmHg)下で同等の吸入空気量となる吸
気圧に補正するための大気圧補正係数によって補正し
て、補正吸気圧を求め、この補正吸気圧に基づいて燃料
噴射量を算出するようにしている。
2. Description of the Related Art In general, in an internal combustion engine mounted on a vehicle, even if the intake pressure is the same, if the altitude of the road on which the vehicle runs is high and the atmospheric pressure is reduced, the amount of intake air changes. Is preferred. For this purpose, for example, in Japanese Patent Application Laid-Open No. 5-149187, the intake pressure of an internal combustion engine is detected by an intake pressure sensor, and the detected intake pressure is reduced to an intake pressure that gives an equivalent intake air amount under a reference atmospheric pressure (760 mmHg). Correction is performed using an atmospheric pressure correction coefficient for correction to obtain a corrected intake pressure, and a fuel injection amount is calculated based on the corrected intake pressure.

【0003】ところで、大気圧の変化による燃料噴射量
のずれ(空燃比のずれ)を少なくするには、吸気圧と大
気圧との差圧(以下「相対圧」という)を用いて燃料噴
射量を算出することが効果的であるが、上記公報の技術
では、吸気圧(絶対圧)を用いて燃料噴射量を算出する
ため、大気圧の変化による影響を受けやすく、たとえ吸
気圧を大気圧補正係数で補正しても、その補正誤差によ
り燃料噴射量の算出精度が低下するという欠点がある。
[0003] Incidentally, in order to reduce the deviation of the fuel injection amount (the deviation of the air-fuel ratio) due to the change in the atmospheric pressure, the difference between the intake pressure and the atmospheric pressure (hereinafter referred to as "relative pressure") is used. Although it is effective to calculate the fuel injection amount using the intake pressure (absolute pressure) in the technique disclosed in the above publication, the fuel injection amount is easily affected by changes in the atmospheric pressure. Even if the correction is performed using the correction coefficient, there is a disadvantage that the accuracy of calculating the fuel injection amount is reduced due to the correction error.

【0004】そこで、特開昭60−247021号公報
に示すように、相対圧を検出し、この相対圧に基づいて
燃料噴射量を算出した後、この燃料噴射量を大気圧補正
係数により補正するようにしたものがある。
Therefore, as disclosed in Japanese Patent Application Laid-Open No. 60-247012, a relative pressure is detected, a fuel injection amount is calculated based on the relative pressure, and the fuel injection amount is corrected by an atmospheric pressure correction coefficient. There is something like that.

【0005】[0005]

【発明が解決しようとする課題】上記公報の技術は、相
対圧から算出した燃料噴射量のずれを大気圧補正係数で
補正することを狙ったものであるが、相対圧と燃料噴射
量と大気圧(大気圧補正係数)との関係は一義的に決ま
らないため、相対圧から算出した燃料噴射量のずれを大
気圧補正係数で精度良く補正することは不可能であり、
空燃比のずれが生じて、排気エミッション増加やドライ
バビリティ低下を招くという欠点がある。
The technique disclosed in the above publication aims at correcting the deviation of the fuel injection amount calculated from the relative pressure with an atmospheric pressure correction coefficient. Since the relationship with the atmospheric pressure (atmospheric pressure correction coefficient) is not uniquely determined, it is impossible to accurately correct the deviation of the fuel injection amount calculated from the relative pressure with the atmospheric pressure correction coefficient.
There is a drawback that a deviation in the air-fuel ratio occurs, which leads to an increase in exhaust emission and a decrease in drivability.

【0006】本発明はこのような事情を考慮してなされ
たものであり、従ってその目的は、大気圧が変化して
も、燃料噴射量を精度良く算出することができ、排気エ
ミッション低減やドライバビリティ向上を実現すること
ができる内燃機関の燃料噴射制御装置及び燃料噴射制御
方法を提供することにある。
The present invention has been made in view of such circumstances, and therefore has as its object the ability to accurately calculate the fuel injection amount even if the atmospheric pressure changes, to reduce exhaust emissions and reduce driver emissions. It is an object of the present invention to provide a fuel injection control device and a fuel injection control method for an internal combustion engine, which can realize improvement in operability.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1,4によれば、相対圧補正手段に
より吸気圧と大気圧との差圧(相対圧)を大気圧に応じ
た相対圧補正係数で補正し、補正後の相対圧と内燃機関
回転数とに基づいて基本噴射量を基本噴射量算出手段に
より算出した後、この基本噴射量を最終噴射量算出手段
により大気圧に応じた噴射量補正係数で補正して燃料噴
射量を求める。
In order to achieve the above object, according to the first and fourth aspects of the present invention, the differential pressure between the intake pressure and the atmospheric pressure (relative pressure) is adjusted by the relative pressure correcting means. After the basic injection amount is calculated by the basic injection amount calculating means based on the corrected relative pressure and the internal combustion engine speed, the basic injection amount is calculated by the final injection amount calculating means. The fuel injection amount is obtained by correcting with the injection amount correction coefficient corresponding to the atmospheric pressure.

【0008】こようにすれば、相対圧から基本噴射量を
算出する過程、及び、基本噴射量から燃料噴射量を算出
する過程で、いずれも大気圧に応じた補正を行うことが
できる。これにより、大気圧が変化しても、燃料噴射量
を精度良く算出することができ、排気エミッション低減
やドライバビリティ向上を実現することができる。
In this way, in the process of calculating the basic injection amount from the relative pressure and the process of calculating the fuel injection amount from the basic injection amount, it is possible to make corrections in accordance with the atmospheric pressure. As a result, even if the atmospheric pressure changes, the fuel injection amount can be calculated with high accuracy, and reduction in exhaust emission and improvement in drivability can be realized.

【0009】この場合、請求項2のように、前記相対圧
補正係数として、基準大気圧を検出大気圧で割り算した
値を用いるようにしても良い。このようにすれば、相対
圧補正係数のマップデータを記憶手段に記憶しておく必
要がなく、その分、記憶手段のメモリ容量が少なくて済
む(又はメモリを節約できる)。
In this case, a value obtained by dividing a reference atmospheric pressure by a detected atmospheric pressure may be used as the relative pressure correction coefficient. With this configuration, it is not necessary to store the map data of the relative pressure correction coefficient in the storage means, and the memory capacity of the storage means can be reduced (or the memory can be saved).

【0010】但し、本発明は、相対圧補正係数のマップ
データを記憶手段に記憶し、このマップデータから検出
大気圧に応じて相対圧補正係数を設定するようにしても
良いことは言うまでもない。
However, in the present invention, it goes without saying that the map data of the relative pressure correction coefficient may be stored in the storage means, and the relative pressure correction coefficient may be set from the map data in accordance with the detected atmospheric pressure.

【0011】この場合、請求項3のように、相対圧補正
係数のマップデータと噴射量補正係数のマップデータ
は、常用域である基準大気圧付近で細かくデータを設定
すると良い。このようにすれば、常用域で大気圧の変化
に応じて相対圧補正係数と噴射量補正係数を精度良く求
めることができ、常用域での燃料噴射量の算出精度を向
上することができる。
In this case, it is preferable that the map data of the relative pressure correction coefficient and the map data of the injection amount correction coefficient are finely set in the vicinity of the standard atmospheric pressure which is a normal range. With this configuration, the relative pressure correction coefficient and the injection amount correction coefficient can be accurately obtained in accordance with the change in the atmospheric pressure in the service area, and the calculation accuracy of the fuel injection amount in the service area can be improved.

【0012】[0012]

【発明の実施の形態】以下、本発明を二輪車に適用した
一実施形態を図面に基づいて説明する。内燃機関である
エンジン11の各気筒の吸気ポート10には、それぞれ
吸気マニホールド12が接続され、各気筒の吸気マニホ
ールド12の上流側にはエアボックス13が接続され、
このエアボックス13内に吸入された空気が各気筒の吸
気マニホールド12に吸い込まれる。このエアボックス
13内にはエアクリーナ33が装着され、また、このエ
アボックス13には、吸気温を検出する吸気温センサ1
4が取り付けられている。各気筒の吸気マニホールド1
2の途中には、スロットルバルブ15が取り付けられ、
このスロットルバルブ15の開度(スロットル開度)が
スロットル開度センサ16によって検出される。更に、
吸気マニホールド12のうちのスロットルバルブ15の
下流側には、吸気圧を検出する吸気圧センサ17(吸気
圧検出手段)が設けられ、各気筒の吸気ポート10の近
傍には燃料噴射弁18が取り付けられている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to a motorcycle will be described below with reference to the drawings. An intake manifold 12 is connected to an intake port 10 of each cylinder of an engine 11 that is an internal combustion engine, and an air box 13 is connected to an upstream side of the intake manifold 12 of each cylinder.
The air drawn into the air box 13 is drawn into the intake manifold 12 of each cylinder. An air cleaner 33 is mounted in the air box 13, and the air box 13 has an intake air temperature sensor 1 for detecting an intake air temperature.
4 is attached. Intake manifold 1 for each cylinder
In the middle of 2, a throttle valve 15 is attached,
The opening of the throttle valve 15 (throttle opening) is detected by a throttle opening sensor 16. Furthermore,
An intake pressure sensor 17 (intake pressure detection means) for detecting intake pressure is provided downstream of the throttle valve 15 in the intake manifold 12, and a fuel injection valve 18 is mounted near the intake port 10 of each cylinder. Have been.

【0013】一方、燃料タンク19内から燃料ポンプ2
0で汲み上げられた燃料は、燃料配管21→燃料フィル
タ22→燃料配管23→デリバリパイプ24に送られ、
各気筒の燃料噴射弁18に分配される。デリバリパイプ
24内の余剰燃料は、プレッシャレギュレータ25→リ
ターン配管26の経路で燃料タンク19内に戻される。
プレッシャレギュレータ25は、デリバリパイプ24内
の燃料圧力と吸気圧との差圧が一定になるようにデリバ
リパイプ24内の燃料圧力を調整する。
On the other hand, the fuel pump 2
The fuel pumped at 0 is sent to the fuel pipe 21 → the fuel filter 22 → the fuel pipe 23 → the delivery pipe 24,
The fuel is distributed to the fuel injection valves 18 of each cylinder. Excess fuel in the delivery pipe 24 is returned to the fuel tank 19 through a path from the pressure regulator 25 to the return pipe 26.
The pressure regulator 25 adjusts the fuel pressure in the delivery pipe 24 so that the pressure difference between the fuel pressure in the delivery pipe 24 and the intake pressure becomes constant.

【0014】エンジン11のシリンダヘッドには、気筒
毎に点火プラグ27が取り付けられ、点火タイミング毎
に点火コイル28の二次側に発生する高電圧が各気筒の
点火プラグ27に印加され、点火される。このエンジン
11には、エンジン回転数を検出するために所定クラン
ク角毎にパルス信号(クランク角信号)を出力するエン
ジン回転数センサ29(回転数検出手段)と、特定気筒
を判別する気筒判別センサ30と、冷却水温を検出する
水温センサ31とが取り付けられている。また、車体の
所定位置には、大気圧を検出する大気圧センサ32(大
気圧検出手段)が取り付けられている。
An ignition plug 27 is attached to the cylinder head of the engine 11 for each cylinder, and a high voltage generated on the secondary side of the ignition coil 28 is applied to the ignition plug 27 of each cylinder at each ignition timing to ignite. You. The engine 11 includes an engine speed sensor 29 (rotation speed detection means) for outputting a pulse signal (crank angle signal) at every predetermined crank angle for detecting the engine speed, and a cylinder discrimination sensor for discriminating a specific cylinder. 30 and a water temperature sensor 31 for detecting a cooling water temperature are attached. At a predetermined position of the vehicle body, an atmospheric pressure sensor 32 (atmospheric pressure detecting means) for detecting the atmospheric pressure is attached.

【0015】これら大気圧センサ32の出力信号や前述
した吸気圧センサ17等の各種センサの出力信号は、エ
ンジン制御回路35に入力される。このエンジン制御回
路35は、マイクロコンピュータを主体として構成さ
れ、内蔵したROM45(記憶手段)には、点火制御用
のルーチンや、図2の燃料噴射制御ルーチンや、図3及
び図4のマップデータ等が記憶されている。
The output signals of the atmospheric pressure sensor 32 and the output signals of various sensors such as the aforementioned intake pressure sensor 17 are input to an engine control circuit 35. The engine control circuit 35 is mainly composed of a microcomputer, and a built-in ROM 45 (storage means) stores an ignition control routine, a fuel injection control routine of FIG. 2, a map data of FIGS. 3 and 4, and the like. Is stored.

【0016】このエンジン制御回路35は、図3の燃料
噴射制御ルーチンを実行することで、吸気圧のボトム圧
Pb と大気圧Pa との差圧(相対圧)を、大気圧Pa に
応じた相対圧補正係数KPaで補正し、補正後の相対圧P
dlとエンジン回転数NEとに基づいて基本噴射時間TP
(基本噴射量に相当)を算出した後、この基本噴射時間
TPを大気圧Pa に応じた噴射量補正係数KPad で補正
して最終燃料噴射時間TAU(燃料噴射量に相当)を求
める。
The engine control circuit 35 executes a fuel injection control routine shown in FIG. 3 so that the differential pressure (relative pressure) between the bottom pressure Pb of the intake pressure and the atmospheric pressure Pa is changed to a relative pressure corresponding to the atmospheric pressure Pa. Pressure coefficient KPa, and the corrected relative pressure P
Basic injection time TP based on dl and engine speed NE
After calculating the basic injection amount, the basic injection time TP is corrected by an injection amount correction coefficient KPad corresponding to the atmospheric pressure Pa to obtain the final fuel injection time TAU (corresponding to the fuel injection amount).

【0017】以下、この図2の燃料噴射制御ルーチンの
処理内容を説明する。本ルーチンは各気筒の燃料噴射タ
イミングの直前に実行される。本ルーチンが起動される
と、まずステップ101で、吸気圧センサ17で検出し
た吸気圧のボトム圧Pb を読み込む。ここで、ボトム圧
Pb は、図5に示すように、吸気行程により低下する吸
気圧の最下点であり、吸気行程から圧縮行程に移行する
時の吸気圧がボトム圧Pb として読み込まれる。このボ
トム圧Pb は、1サイクル毎に更新される。
Hereinafter, the processing content of the fuel injection control routine of FIG. 2 will be described. This routine is executed immediately before the fuel injection timing of each cylinder. When this routine is started, first, at step 101, the bottom pressure Pb of the intake pressure detected by the intake pressure sensor 17 is read. Here, as shown in FIG. 5, the bottom pressure Pb is the lowest point of the intake pressure that decreases during the intake stroke, and the intake pressure at the time of shifting from the intake stroke to the compression stroke is read as the bottom pressure Pb. This bottom pressure Pb is updated every cycle.

【0018】この後、ステップ102で、大気圧センサ
32で検出した大気圧Pa を読み込み、次のステップ1
03で、エンジン回転数センサ29の出力信号から検出
されたエンジン回転数NEを読み込む。この後、ステッ
プ104に進み、吸気圧のボトム圧Pb と大気圧Pa と
の差圧、つまり相対圧(Pa −Pb )を算出した後、ス
テップ105で、大気圧Pa に応じた相対圧補正係数K
Paを算出する。この相対圧補正係数KPaの算出方法は、
次の(1)又は(2)のいずれかの方法を用いる。
Thereafter, at step 102, the atmospheric pressure Pa detected by the atmospheric pressure sensor 32 is read, and at the next step 1
At 03, the engine speed NE detected from the output signal of the engine speed sensor 29 is read. Thereafter, the routine proceeds to step 104, where the differential pressure between the bottom pressure Pb of the intake pressure and the atmospheric pressure Pa, that is, the relative pressure (Pa-Pb) is calculated. At step 105, the relative pressure correction coefficient corresponding to the atmospheric pressure Pa is calculated. K
Calculate Pa. The calculation method of the relative pressure correction coefficient KPa is as follows.
One of the following methods (1) and (2) is used.

【0019】(1)基準大気圧(760mmHg)を検
出大気圧Pa で割り算した値を相対圧補正係数KPaとす
る(相対圧補正係数KPa=基準大気圧÷検出大気圧Pa
)。 (2)予め、試験又はシミュレーション等により大気圧
Pa と相対圧補正係数KPaとの関係を求め、その関係を
マップデータ(図3参照)としてエンジン制御回路35
のROM45に記憶しておき、検出大気圧Pa に応じた
相対圧補正係数KPaをマップデータを検索して求める。
この相対圧補正係数KPaのマップデータは、常用域であ
る基準大気圧付近で細かくデータが設定されている。
(1) A value obtained by dividing the reference atmospheric pressure (760 mmHg) by the detected atmospheric pressure Pa is defined as a relative pressure correction coefficient KPa (relative pressure correction coefficient KPa = reference atmospheric pressure / detected atmospheric pressure Pa).
). (2) The relationship between the atmospheric pressure Pa and the relative pressure correction coefficient KPa is determined in advance by a test or a simulation, and the relationship is set as map data (see FIG. 3).
And a relative pressure correction coefficient KPa corresponding to the detected atmospheric pressure Pa is obtained by searching map data.
The map data of the relative pressure correction coefficient KPa is finely set in the vicinity of the standard atmospheric pressure which is a normal area.

【0020】上記(1)又は(2)のいずれかの方法で
相対圧補正係数KPaを算出した後、ステップ106で、
相対圧(Pa −Pb )を基準大気圧(760mmHg)
の状態に補正するために、相対圧(Pa −Pb )に相対
圧補正係数KPaを乗算して、相対圧補正値Pdlを算出す
る[Pdl=(Pa −Pb )×KPa]。このステップ10
6の処理が特許請求の範囲でいう相対圧補正手段として
の役割を果たす。
After calculating the relative pressure correction coefficient KPa by any one of the above methods (1) and (2),
Relative pressure (Pa-Pb) is compared with reference atmospheric pressure (760 mmHg)
Is calculated by multiplying the relative pressure (Pa−Pb) by the relative pressure correction coefficient KPa to calculate the relative pressure correction value Pdl [Pdl = (Pa−Pb) × KPa]. This step 10
The processing of No. 6 plays a role as a relative pressure correcting means referred to in the claims.

【0021】この後、ステップ107で、相対圧補正値
Pdlとエンジン回転数NEとに基づいて基本噴射時間T
Pを算出する。この算出方法は、予め実験又はシミュレ
ーション等によって相対圧補正値Pdlとエンジン回転数
NEと基本噴射時間TPとの関係を求めて、基本噴射時
間TPの二次元マップを作成し、このマップをエンジン
制御回路35のROM45に記憶しておき、ステップ1
07で、このマップを検索して、その時の相対圧補正値
Pdlとエンジン回転数NEとに応じた基本噴射時間TP
を算出する。このステップ107の処理が特許請求の範
囲でいう基本噴射量算出手段としての役割を果たす。
Thereafter, at step 107, the basic injection time T is calculated based on the relative pressure correction value Pdl and the engine speed NE.
Calculate P. In this calculation method, a relationship between the relative pressure correction value Pdl, the engine speed NE, and the basic injection time TP is obtained in advance by experiments or simulations, and a two-dimensional map of the basic injection time TP is created. It is stored in the ROM 45 of the circuit 35, and step 1
07, this map is searched, and the basic injection time TP according to the relative pressure correction value Pdl and the engine speed NE at that time is retrieved.
Is calculated. The processing of step 107 serves as a basic injection amount calculating means referred to in the claims.

【0022】基本噴射時間TPの算出後、ステップ10
8で、大気圧Pa に応じた噴射量補正係数KPad を算出
する。この算出方法は、予め実験又はシミュレーション
等によって大気圧Pa と噴射量補正係数KPad との関係
を求め、その関係をマップデータ(図4参照)としてエ
ンジン制御回路35のROM45に記憶しておき、検出
大気圧Pa に応じた噴射量補正係数KPad をマップデー
タを検索して求める。この噴射量補正係数KPad のマッ
プデータは、常用域である基準大気圧付近で細かくデー
タが設定されている。
After calculating the basic injection time TP, step 10
In step 8, an injection amount correction coefficient KPad corresponding to the atmospheric pressure Pa is calculated. In this calculation method, the relationship between the atmospheric pressure Pa and the injection amount correction coefficient KPad is obtained in advance by experiment or simulation, and the relationship is stored in the ROM 45 of the engine control circuit 35 as map data (see FIG. 4). An injection amount correction coefficient KPad corresponding to the atmospheric pressure Pa is obtained by searching map data. The map data of the injection amount correction coefficient KPad is finely set in the vicinity of the standard atmospheric pressure, which is a normal range.

【0023】そして、次のステップ109で、噴射量補
正係数KPad 以外の各種の補正係数Kを算出する。例え
ば、水温センサ31の出力信号(冷却水温)に応じた暖
機増量補正係数、始動後増量補正係数、吸気温センサ1
4の出力信号(吸気温)に応じた吸気温補正係数等、各
種の補正係数Kを算出する。
Then, in the next step 109, various correction coefficients K other than the injection amount correction coefficient KPad are calculated. For example, the warm-up increase correction coefficient, the post-start increase correction coefficient, and the intake air temperature sensor 1 according to the output signal (cooling water temperature) of the water temperature sensor 31
Various correction coefficients K such as an intake air temperature correction coefficient corresponding to the output signal (intake air temperature) of No. 4 are calculated.

【0024】この後、ステップ110で、電源電圧に基
づいて燃料噴射弁18の応答遅れ時間、つまり無効噴射
時間TVを算出し、次のステップ111で、燃料噴射弁
18に出力する噴射パルスのパルス幅である最終噴射時
間TAUを、基本噴射時間TPと噴射量補正係数KPad
と各種補正係数Kと無効噴射時間TVを用いて次式によ
り算出する。 TAU=TP×KPad ×K+TV ここで、補正係数Kには、暖機増量補正係数、始動後増
量補正係数、吸気温補正係数等、各種の補正係数が含ま
れる。このステップ111の処理が特許請求の範囲でい
う最終噴射量算出手段としての役割を果たす。
Thereafter, at step 110, the response delay time of the fuel injector 18 is calculated based on the power supply voltage, that is, the invalid injection time TV. At the next step 111, the pulse of the injection pulse outputted to the fuel injector 18 is calculated. The final injection time TAU, which is the width, is calculated by dividing the basic injection time TP and the injection amount correction coefficient KPad.
And the various correction coefficients K and the invalid injection time TV by using the following equation. TAU = TP × KPad × K + TV Here, the correction coefficient K includes various correction coefficients such as a warm-up increase correction coefficient, a post-start increase correction coefficient, and an intake air temperature correction coefficient. The processing of step 111 serves as a final injection amount calculating means referred to in the claims.

【0025】以上説明した本実施形態によれば、相対圧
(Pa −Pb )から基本噴射時間TPを算出する過程、
及び、基本噴射時間TPから最終噴射時間TAUを算出
する過程で、いずれも大気圧Pa に応じた補正係数KP
a,KPad を用いて基本噴射時間TPと最終噴射時間T
AUの双方を補正するため、従来のように基本噴射時間
TPと最終噴射時間TAUのいずれか一方のみを大気圧
Pa に応じて補正する場合と比較して、最終噴射時間T
AUを精度良く算出することができ、排気エミッション
低減やドライバビリティ向上を実現することができる。
According to the above-described embodiment, the process of calculating the basic injection time TP from the relative pressure (Pa−Pb)
In the process of calculating the final injection time TAU from the basic injection time TP, the correction coefficient KP corresponding to the atmospheric pressure Pa
a, KPad, the basic injection time TP and the final injection time T
In order to correct both the AU and the AU, the final injection time T
AU can be calculated with high accuracy, and exhaust emission reduction and drivability can be improved.

【0026】更に、本実施形態によれば、相対圧補正係
数KPaのマップデータと噴射量補正係数KPad のマップ
データは、常用域である基準大気圧付近で細かくデータ
を設定しているので、常用域で大気圧Pa の変化に応じ
て相対圧補正係数KPaと噴射量補正係数KPad を精度良
く求めることができ、常用域での最終噴射時間TAUの
算出精度を向上することができる。
Further, according to the present embodiment, since the map data of the relative pressure correction coefficient KPa and the map data of the injection amount correction coefficient KPad are finely set in the vicinity of the standard atmospheric pressure, which is a common use area, In the range, the relative pressure correction coefficient KPa and the injection amount correction coefficient KPad can be accurately obtained in accordance with the change in the atmospheric pressure Pa, and the calculation accuracy of the final injection time TAU in the normal range can be improved.

【0027】しかしながら、本発明は、相対圧補正係数
KPaのマップデータと噴射量補正係数KPad のマップデ
ータは、必ずしも基準大気圧付近(常用域)で細かくデ
ータを設定する必要はなく、常用域のデータの設定間隔
をそれ以外の領域の設定間隔と同じにしても良く、この
場合でも、本発明の所期の目的を十分に達成できる。
However, according to the present invention, the map data of the relative pressure correction coefficient KPa and the map data of the injection amount correction coefficient KPad do not necessarily need to be set in detail near the reference atmospheric pressure (common use area). The data setting interval may be the same as the setting interval of the other areas. Even in this case, the intended object of the present invention can be sufficiently achieved.

【0028】尚、本実施形態では、相対圧補正係数KPa
と噴射量補正係数KPad は、いずれも大気圧Pa をパラ
メータとする一次元マップから求めるようにしたが、大
気圧Pa とエンジン回転数NEをパラメータとする二次
元マップから求めるようにしても良い。
In this embodiment, the relative pressure correction coefficient KPa
Although the injection amount correction coefficient KPad is obtained from a one-dimensional map using the atmospheric pressure Pa as a parameter, it may be obtained from a two-dimensional map using the atmospheric pressure Pa and the engine speed NE as parameters.

【0029】また、本実施形態では、相対圧を吸気圧の
ボトム圧Pb と大気圧Pa との差圧としたが、吸気圧の
平均値(平均吸気圧)と大気圧Pa との差圧としても良
い。 相対圧=大気圧Pa −平均吸気圧
In the present embodiment, the relative pressure is defined as the differential pressure between the bottom pressure Pb of the intake pressure and the atmospheric pressure Pa. However, the relative pressure is defined as the differential pressure between the average value of the intake pressure (average intake pressure) and the atmospheric pressure Pa. Is also good. Relative pressure = atmospheric pressure Pa-average intake pressure

【0030】また、本実施形態では、全運転領域で相対
圧補正値Pdlとエンジン回転数NEとに基づいて基本噴
射時間TPを算出するようにしたが、例えば低負荷領域
のみで、相対圧補正値Pdlとエンジン回転数NEとに基
づいて基本噴射時間TPを算出し、中負荷・高負荷領域
では、スロットル開度とエンジン回転数NEとに基づい
て基本噴射時間TPを算出するようにしても良い。
In the present embodiment, the basic injection time TP is calculated based on the relative pressure correction value Pdl and the engine speed NE in the entire operation range. However, the relative pressure correction is performed only in the low load range. The basic injection time TP is calculated based on the value Pdl and the engine speed NE, and in the medium load / high load range, the basic injection time TP is calculated based on the throttle opening and the engine speed NE. good.

【0031】また、本実施形態では、大気圧Pa を大気
圧センサ32により検出したが、エンジン始動直後の吸
気圧センサ17の出力値又はエンジン停止から所定時間
経過後の吸気圧センサ17の出力値を大気圧Pa として
エンジン制御回路35内に取り込んでバックアップRA
M(図示せず)に記憶しておき、この記憶値を大気圧P
a として用いるようにしても良い。この場合には、大気
圧センサ32が不要となる。その他、本発明は、二輪車
に限定されず、四輪車にも適用して実施できる。
In this embodiment, the atmospheric pressure Pa is detected by the atmospheric pressure sensor 32. However, the output value of the intake pressure sensor 17 immediately after the start of the engine or the output value of the intake pressure sensor 17 after a predetermined time has elapsed since the engine was stopped. Is taken into the engine control circuit 35 as the atmospheric pressure Pa and the backup RA
M (not shown), and stores the stored value in the atmospheric pressure P
It may be used as a. In this case, the atmospheric pressure sensor 32 becomes unnecessary. In addition, the present invention is not limited to two-wheeled vehicles, but can be applied to four-wheeled vehicles.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示すエンジン制御システ
ム全体の概略構成図
FIG. 1 is a schematic configuration diagram of an entire engine control system showing an embodiment of the present invention.

【図2】燃料噴射制御ルーチンの処理の流れを示すフロ
ーチャート
FIG. 2 is a flowchart showing the flow of processing of a fuel injection control routine;

【図3】相対圧補正係数KPaのマップを概念的に示す図FIG. 3 is a diagram conceptually showing a map of a relative pressure correction coefficient KPa.

【図4】噴射量補正係数KPad のマップを概念的に示す
FIG. 4 is a diagram conceptually showing a map of an injection amount correction coefficient KPad.

【図5】吸気圧の挙動を示すタイムチャートFIG. 5 is a time chart showing the behavior of intake pressure.

【符号の説明】[Explanation of symbols]

11…エンジン(内燃機関)、12…吸気マニホール
ド、13…エアボックス、15…スロットルバルブ、1
6…スロットル開度センサ、17…吸気圧センサ(吸気
圧検出手段)、18…燃料噴射弁、29…エンジン回転
数センサ(回転数検出手段)、32…大気圧センサ(大
気圧検出手段)、35…エンジン制御回路(基本噴射量
算出手段,最終噴射量算出手段)、45…ROM(記憶
手段)。
11: engine (internal combustion engine), 12: intake manifold, 13: air box, 15: throttle valve, 1
6: throttle opening sensor; 17: intake pressure sensor (intake pressure detecting means); 18: fuel injection valve; 29: engine speed sensor (speed detecting means); 32: atmospheric pressure sensor (atmospheric pressure detecting means); 35 ... engine control circuit (basic injection amount calculation means, final injection amount calculation means), 45 ... ROM (storage means).

フロントページの続き (72)発明者 田村 明久 静岡県浜松市高塚町300番地 スズキ株式 会社内Continued on the front page (72) Inventor Akihisa Tamura 300 Takatsukacho, Hamamatsu-shi, Shizuoka Suzuki Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関回転数を検出する回転数検出手
段と、大気圧を検出する大気圧検出手段と、吸気圧を検
出する吸気圧検出手段とを備え、これら各検出手段で検
出した吸気圧と大気圧との差圧(以下「相対圧」とい
う)と内燃機関回転数とに基づいて燃料噴射量を算出す
るようにした内燃機関の燃料噴射制御装置において、 前記相対圧を大気圧に応じた相対圧補正係数で補正する
相対圧補正手段と、 補正後の相対圧と内燃機関回転数とに基づいて基本噴射
量を算出する基本噴射量算出手段と、 前記基本噴射量を大気圧に応じた噴射量補正係数で補正
して燃料噴射量を求める最終噴射量算出手段とを備えて
いることを特徴とする内燃機関の燃料噴射制御装置。
1. An engine control apparatus comprising: a rotational speed detecting means for detecting an internal combustion engine rotational speed; an atmospheric pressure detecting means for detecting an atmospheric pressure; and an intake pressure detecting means for detecting an intake pressure. A fuel injection control device for an internal combustion engine which calculates a fuel injection amount based on a pressure difference between an atmospheric pressure and an atmospheric pressure (hereinafter referred to as “relative pressure”) and an internal combustion engine rotation speed, wherein the relative pressure is reduced to the atmospheric pressure. Relative pressure correction means for correcting with a corresponding relative pressure correction coefficient, basic injection amount calculation means for calculating a basic injection amount based on the corrected relative pressure and the internal combustion engine speed, and setting the basic injection amount to atmospheric pressure. A fuel injection control device for an internal combustion engine, comprising: final injection amount calculation means for obtaining a fuel injection amount by correcting the fuel injection amount with a corresponding injection amount correction coefficient.
【請求項2】 前記相対圧補正手段は、基準大気圧を検
出大気圧で割り算した値を前記相対圧補正係数として用
いることを特徴とする請求項1に記載の内燃機関の燃料
噴射制御装置。
2. The fuel injection control device for an internal combustion engine according to claim 1, wherein the relative pressure correction means uses a value obtained by dividing a reference atmospheric pressure by a detected atmospheric pressure as the relative pressure correction coefficient.
【請求項3】 前記相対圧補正係数のマップデータと前
記噴射量補正係数のマップデータを記憶する記憶手段を
備え、 前記相対圧補正係数のマップデータと前記噴射量補正係
数のマップデータは、基準大気圧付近で細かくデータを
設定していることを特徴とする請求項1に記載の内燃機
関の燃料噴射制御装置。
3. A storage means for storing map data of the relative pressure correction coefficient and map data of the injection amount correction coefficient, wherein the map data of the relative pressure correction coefficient and the map data of the injection amount correction coefficient are reference data. 2. The fuel injection control device for an internal combustion engine according to claim 1, wherein the data is finely set near the atmospheric pressure.
【請求項4】 吸気圧と大気圧との差圧(以下「相対
圧」という)と内燃機関回転数とに基づいて燃料噴射量
を算出する内燃機関の燃料噴射制御方法において、 前記相対圧を大気圧に応じた相対圧補正係数で補正し、
補正後の相対圧と内燃機関回転数とに基づいて基本噴射
量を算出した後、この基本噴射量を大気圧に応じた噴射
量補正係数で補正して燃料噴射量を求めることを特徴と
する内燃機関の燃料噴射制御方法。
4. A fuel injection control method for an internal combustion engine that calculates a fuel injection amount based on a pressure difference between an intake pressure and an atmospheric pressure (hereinafter referred to as “relative pressure”) and an internal combustion engine speed. Correct with the relative pressure correction coefficient according to the atmospheric pressure,
After calculating a basic injection amount based on the corrected relative pressure and the internal combustion engine speed, the basic injection amount is corrected by an injection amount correction coefficient corresponding to the atmospheric pressure to obtain a fuel injection amount. A fuel injection control method for an internal combustion engine.
JP09183397A 1997-04-10 1997-04-10 Fuel injection control device and fuel injection control method for internal combustion engine Expired - Lifetime JP3838526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09183397A JP3838526B2 (en) 1997-04-10 1997-04-10 Fuel injection control device and fuel injection control method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09183397A JP3838526B2 (en) 1997-04-10 1997-04-10 Fuel injection control device and fuel injection control method for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH10280988A true JPH10280988A (en) 1998-10-20
JP3838526B2 JP3838526B2 (en) 2006-10-25

Family

ID=14037608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09183397A Expired - Lifetime JP3838526B2 (en) 1997-04-10 1997-04-10 Fuel injection control device and fuel injection control method for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3838526B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005320900A (en) * 2004-05-07 2005-11-17 Kokusan Denki Co Ltd Fuel injection control device for internal combustion engine
CN1302202C (en) * 2002-12-25 2007-02-28 株式会社电装 Fueling injection control equipment with fueling injection volume switching function for internal-combustion engine
JP2008144655A (en) * 2006-12-08 2008-06-26 Keihin Corp Device and method for controlling internal combustion engine
CN103249935A (en) * 2010-12-17 2013-08-14 罗伯特·博世有限公司 Method for the coordinated performance of a number of injector calibration operations
JP2016065474A (en) * 2014-09-24 2016-04-28 株式会社ケーヒン Fuel injection control device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1302202C (en) * 2002-12-25 2007-02-28 株式会社电装 Fueling injection control equipment with fueling injection volume switching function for internal-combustion engine
JP2005320900A (en) * 2004-05-07 2005-11-17 Kokusan Denki Co Ltd Fuel injection control device for internal combustion engine
JP2008144655A (en) * 2006-12-08 2008-06-26 Keihin Corp Device and method for controlling internal combustion engine
CN103249935A (en) * 2010-12-17 2013-08-14 罗伯特·博世有限公司 Method for the coordinated performance of a number of injector calibration operations
JP2016065474A (en) * 2014-09-24 2016-04-28 株式会社ケーヒン Fuel injection control device

Also Published As

Publication number Publication date
JP3838526B2 (en) 2006-10-25

Similar Documents

Publication Publication Date Title
US6109244A (en) Fuel injection control apparatus for an internal combustion engine
EP0621405B1 (en) Fuel injection control apparatus
JP2715207B2 (en) Electronic control fuel supply device for internal combustion engine
JPH09256914A (en) Egr control device for internal combustion engine
US6366847B1 (en) Method of estimating barometric pressure in an engine control system
JPH09287507A (en) Throttle valve controller for internal combustion engine
JP2006029084A (en) Control device of internal combustion engine
JP3838526B2 (en) Fuel injection control device and fuel injection control method for internal combustion engine
JPWO2003038262A1 (en) Apparatus and method for detecting atmospheric pressure of 4-stroke engine
JP3603979B2 (en) Fuel injection control device for internal combustion engine
JP2001107776A (en) Fuel injection control system of internal combustion engine
JP3316995B2 (en) Fuel control device for internal combustion engine
JP3959655B2 (en) Fuel injection control device for internal combustion engine
JPH05187305A (en) Air amount calculating device of internal combustion engine
US6705288B2 (en) Starting control apparatus for internal combustion engine
JPH08291732A (en) Fuel injection control device for internal combustion engine
JP2004360535A (en) Air intake pressure detection device and exhaust gas recirculation controller of internal combustion engine
JP3912981B2 (en) Method for estimating the atmospheric pressure of an internal combustion engine
JP2002115584A (en) Fuel injection control device for internal combustion engine
JPH11229904A (en) Engine control device
JP4304411B2 (en) Fuel injection control device for internal combustion engine
JP3966177B2 (en) Air-fuel ratio control device for internal combustion engine
JP2882228B2 (en) Vaporizer pressure regulator
JP2917194B2 (en) Electronic control fuel supply device for internal combustion engine
JP2789970B2 (en) Vehicle air density determination device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051122

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060728

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term