JP2002115584A - Fuel injection control device for internal combustion engine - Google Patents

Fuel injection control device for internal combustion engine

Info

Publication number
JP2002115584A
JP2002115584A JP2000308002A JP2000308002A JP2002115584A JP 2002115584 A JP2002115584 A JP 2002115584A JP 2000308002 A JP2000308002 A JP 2000308002A JP 2000308002 A JP2000308002 A JP 2000308002A JP 2002115584 A JP2002115584 A JP 2002115584A
Authority
JP
Japan
Prior art keywords
pressure
fuel injection
intake
atmospheric pressure
intake pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000308002A
Other languages
Japanese (ja)
Inventor
Tatsunori Kato
辰則 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2000308002A priority Critical patent/JP2002115584A/en
Publication of JP2002115584A publication Critical patent/JP2002115584A/en
Pending legal-status Critical Current

Links

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To highly accurately calculate a fuel injection quantity by reducing the effect of a detection error of an atmospheric pressure sensor in calculating the fuel injection quantity. SOLUTION: After reading an intake pressure PM, the atmospheric pressure PA and an engine rotation speed NE (steps 101-103), this fuel injection control device calculates an intake air pressure correction factor KPM according to the atmospheric pressure PA, and corrects the intake pressure PM by the intake air pressure correction factor KPM into a reference intake air pressure PML under a reference air pressure PAbase (steps 104 and 105). Then, this control device finds a reference relative pressure DPML from a differential pressure between the reference intake air pressure PML and the reference air pressure PAbase and calculates a basic injection time TP from a map, etc., based on the reference relative pressure DPML and the engine rotation speed NE (steps 106 and 107). Secondly, this control device calculates an injection quantity correction factor KPA according to the atmospheric pressure PA, various types of correction factors K, and an invalid injection time TV and calculates a last fuel injection time TAUINJ (steps 108-110).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、吸気圧と大気圧と
内燃機関回転速度とに基づいて燃料噴射量を算出する内
燃機関の燃料噴射制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel injection control device for an internal combustion engine that calculates a fuel injection amount based on an intake pressure, an atmospheric pressure, and a rotation speed of the internal combustion engine.

【0002】[0002]

【従来の技術】従来より、二輪車においては、各気筒の
吸気マニホールドの上流側の吸気集合部にスロットルバ
ルブを設けた集合吸気エンジンを採用したものと、各気
筒の吸気マニホールド毎にスロットルバルブを設けた独
立吸気エンジンを採用したものがある。独立吸気エンジ
ンは、各気筒の充填空気量を各気筒毎にスロットルバル
ブで制御できるため、集合吸気エンジンよりも高性能化
できる利点があるが、各気筒の吸気マニホールドのスロ
ットルバルブ下流側で吸気圧を検出する必要があるた
め、各気筒の吸気マニホールドのスロットルバルブ下流
側に、これらを連通させる連通管を設け、この連通管に
吸気圧センサを設けるようにしている。このような構成
の独立吸気エンジンでは、連通管に設けた吸気圧センサ
で検出した吸気圧とエンジン回転速度とから燃料噴射量
を算出すると、大気圧が変化したときに燃料噴射量を精
度良く算出できないため、大気圧に応じた補正を行う必
要がある。
2. Description of the Related Art Conventionally, two-wheeled vehicles employ a collective intake engine in which a throttle valve is provided at an intake collecting portion upstream of an intake manifold of each cylinder, and a throttle valve is provided for each intake manifold of each cylinder. Some have adopted independent intake engines. The independent intake engine has the advantage of higher performance than the collective intake engine because the amount of air charged in each cylinder can be controlled by the throttle valve for each cylinder.However, the intake pressure is lower than the throttle valve downstream of the intake manifold for each cylinder. Therefore, a communication pipe is provided downstream of the throttle valve of the intake manifold of each cylinder so that they can communicate with each other, and an intake pressure sensor is provided in this communication pipe. In the independent intake engine having such a configuration, when the fuel injection amount is calculated from the intake pressure detected by the intake pressure sensor provided in the communication pipe and the engine rotation speed, the fuel injection amount is accurately calculated when the atmospheric pressure changes. Since it cannot be performed, it is necessary to perform correction according to the atmospheric pressure.

【0003】そこで、特開平10−280988号公報
では、吸気圧センサで検出した吸気圧と大気圧センサで
検出した大気圧との差圧(相対圧)を算出して、この相
対圧を大気圧に応じた相対圧補正係数で基準大気圧の状
態下での相対圧に補正し、補正後の相対圧とエンジン回
転速度とに基づいて基本噴射量を算出した後、この基本
噴射量を大気圧に応じた噴射量補正係数等の各種の補正
係数で補正して燃料噴射量を求めるようにしている。
In Japanese Patent Application Laid-Open No. 10-280988, a differential pressure (relative pressure) between the intake pressure detected by the intake pressure sensor and the atmospheric pressure detected by the atmospheric pressure sensor is calculated, and the relative pressure is calculated based on the atmospheric pressure. After correcting the basic injection amount based on the corrected relative pressure and the engine speed with the relative pressure correction coefficient according to the relative pressure correction coefficient according to The fuel injection amount is obtained by correcting with various correction coefficients such as an injection amount correction coefficient corresponding to the above.

【0004】[0004]

【発明が解決しようとする課題】ところで、大気圧セン
サや吸気圧センサは、各個体間で出力特性にばらつきが
あると共に、経時変化、温度変化によって出力特性が変
化する。更に、大気圧センサは、大気圧導入用開口部の
風当り具合によっても出力が変化するため、検出誤差が
比較的大きくなる傾向がある。
By the way, the output characteristics of the atmospheric pressure sensor and the intake pressure sensor vary with each individual, and the output characteristics change with time and temperature. Further, the output of the atmospheric pressure sensor also changes depending on the degree of contact of the atmospheric pressure introduction opening with the wind, so that the detection error tends to be relatively large.

【0005】しかしながら、上記公報の技術では、基本
噴射量を算出する過程で、吸気圧と大気圧との差圧(相
対圧)を、大気圧に応じた相対圧補正係数で補正するた
め、大気圧センサの検出誤差を含んだ相対圧を、大気圧
センサの検出誤差を含んだ相対圧補正係数で補正するこ
とになり、それによって、大気圧センサの検出誤差が掛
け合わされて誤差が増幅されることになる。その結果、
大気圧センサの検出誤差が燃料噴射量の算出精度に及ぼ
す影響が大きくなり、大気圧変化による燃料噴射量の誤
差が大きくなりやすい。
However, according to the technique disclosed in the above publication, in the process of calculating the basic injection amount, the differential pressure (relative pressure) between the intake pressure and the atmospheric pressure is corrected by a relative pressure correction coefficient corresponding to the atmospheric pressure. The relative pressure including the detection error of the atmospheric pressure sensor is corrected by the relative pressure correction coefficient including the detection error of the atmospheric pressure sensor, whereby the detection error of the atmospheric pressure sensor is multiplied and the error is amplified. Will be. as a result,
The influence of the detection error of the atmospheric pressure sensor on the calculation accuracy of the fuel injection amount increases, and the error of the fuel injection amount due to the change in the atmospheric pressure tends to increase.

【0006】近年、バルブオーバーラップ量の大きい二
輪車においては、排気エミッションを低減するために、
空燃比をリーン限界近くに制御するようにしているた
め、燃料噴射量の誤差が大きいと、空燃比がリーン限界
を越えて燃焼不良が発生しやすくなり、ドライバビリテ
ィや排気エミッションの悪化を招くおそれがある。
In recent years, in motorcycles having a large valve overlap, in order to reduce exhaust emissions,
Since the air-fuel ratio is controlled close to the lean limit, if there is a large error in the fuel injection amount, the air-fuel ratio exceeds the lean limit, which tends to cause poor combustion, which may lead to deterioration in drivability and exhaust emissions. There is.

【0007】本発明はこのような事情を考慮してなされ
たものであり、従ってその目的は、燃料噴射量を算出す
る際に、大気圧センサの検出誤差の影響を小さくするこ
とができて、燃料噴射量の算出精度を向上することがで
き、ドライバビリティや排気エミッションの悪化を防止
することができる内燃機関の燃料噴射制御装置を提供す
ることにある。
The present invention has been made in view of such circumstances, and therefore has an object to reduce the influence of the detection error of the atmospheric pressure sensor when calculating the fuel injection amount. It is an object of the present invention to provide a fuel injection control device for an internal combustion engine that can improve the calculation accuracy of a fuel injection amount and prevent deterioration of drivability and exhaust emission.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1の内燃機関の燃料噴射制御装置
は、基準吸気圧算出手段により吸気圧を大気圧に応じた
吸気圧補正係数で補正して基準吸気圧を求めてから、こ
の基準吸気圧と基準大気圧との差圧である基準相対圧を
基準相対圧算出手段により算出し、少なくともこの基準
相対圧と内燃機関回転速度とに基づいて燃料噴射量を燃
料噴射量算出手段により算出する。
In order to achieve the above object, a fuel injection control apparatus for an internal combustion engine according to a first aspect of the present invention comprises a reference intake pressure calculating means for correcting an intake pressure according to an atmospheric pressure. After calculating the reference intake pressure by correcting with a coefficient, a reference relative pressure, which is a differential pressure between the reference intake pressure and the reference atmospheric pressure, is calculated by reference relative pressure calculating means, and at least the reference relative pressure and the internal combustion engine rotational speed are calculated. And the fuel injection amount is calculated by the fuel injection amount calculation means.

【0009】この場合、燃料噴射量を算出する過程で、
大気圧に応じた吸気圧補正係数を求めるときのみに、大
気圧センサの検出値を用いるだけであるため、従来技術
(特開平10−280988号公報)のように、大気圧
センサの検出誤差が掛け合わされて誤差が増幅されるこ
とがなくなる。このため、大気圧センサの検出誤差が燃
料噴射量の算出精度に及ぼす影響を小さくすることがで
きて、大気圧センサの検出誤差に起因する燃料噴射量の
誤差を小さくすることができ、ドライバビリティや排気
エミッションの悪化を防止することができる。
In this case, in the process of calculating the fuel injection amount,
Since only the detected value of the atmospheric pressure sensor is used only when obtaining the intake pressure correction coefficient corresponding to the atmospheric pressure, the detection error of the atmospheric pressure sensor is reduced as in the related art (Japanese Patent Laid-Open No. 10-280988). Multiplication does not amplify the error. For this reason, the influence of the detection error of the atmospheric pressure sensor on the calculation accuracy of the fuel injection amount can be reduced, and the error of the fuel injection amount due to the detection error of the atmospheric pressure sensor can be reduced. And deterioration of exhaust emission can be prevented.

【0010】また、請求項2のように、吸気圧を大気圧
に応じた吸気圧補正係数で補正して基準吸気圧を求め、
少なくともこの基準吸気圧と内燃機関回転速度とに基づ
いて燃料噴射量を算出するようにしても良い。このよう
にしても、燃料噴射量を算出する際に、大気圧センサの
検出誤差が掛け合わされて誤差が増幅されることがなく
なるため、大気圧センサの検出誤差に起因する燃料噴射
量の誤差を小さくすることができる。
The reference intake pressure is obtained by correcting the intake pressure with an intake pressure correction coefficient corresponding to the atmospheric pressure.
The fuel injection amount may be calculated based on at least the reference intake pressure and the internal combustion engine rotation speed. Even in this case, when calculating the fuel injection amount, the error of the fuel injection amount caused by the detection error of the atmospheric pressure sensor is eliminated because the detection error of the atmospheric pressure sensor is multiplied and the error is not amplified. Can be smaller.

【0011】尚、請求項1と請求項2との相違は、請求
項1は、基準吸気圧を基準大気圧を基準圧力とする相対
圧(基準相対圧)に換算して、これを燃料噴射量の算出
パラメータとして用いるのに対して、請求項2は、基準
吸気圧をそのまま燃料噴射量の算出パラメータとして用
いることである。基準大気圧は一定値であるため、基準
相対圧と基準吸気圧との関係は、いわばゲージ圧と絶対
圧との関係に相当し、両者は実質的に同じ圧力データと
して用いることができる。
The difference between the first and second aspects is that the first aspect converts a reference intake pressure into a relative pressure (reference relative pressure) using a reference atmospheric pressure as a reference pressure, and converts this into a fuel pressure. A second aspect of the present invention is to use the reference intake pressure as it is as a parameter for calculating the fuel injection amount, while using it as a parameter for calculating the amount. Since the reference atmospheric pressure is a constant value, the relationship between the reference relative pressure and the reference intake pressure corresponds to the relationship between the gauge pressure and the absolute pressure, and both can be used as substantially the same pressure data.

【0012】[0012]

【発明の実施の形態】[実施形態(1)]以下、本発明
を二輪車に適用した実施形態(1)を図1乃至図5に基
づいて説明する。内燃機関であるエンジン11の各気筒
の吸気ポート10には、それぞれ吸気マニホールド12
が接続され、各気筒の吸気マニホールド12の上流側に
はエアボックス13が接続され、このエアボックス13
内に吸入された空気が各気筒の吸気マニホールド12に
吸い込まれる。このエアボックス13内にはエアクリー
ナ33が装着され、また、このエアボックス13には、
吸気温を検出する吸気温センサ14が取り付けられてい
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS [Embodiment (1)] An embodiment (1) in which the present invention is applied to a motorcycle will be described below with reference to FIGS. An intake manifold 12 is provided in each intake port 10 of each cylinder of an engine 11 which is an internal combustion engine.
The air box 13 is connected upstream of the intake manifold 12 of each cylinder.
The air sucked into the cylinder is drawn into the intake manifold 12 of each cylinder. An air cleaner 33 is mounted in the air box 13.
An intake air temperature sensor 14 for detecting the intake air temperature is attached.

【0013】エンジン11は、独立吸気エンジンであ
り、各気筒の吸気マニホールド12の途中に、それぞれ
スロットルバルブ15が取り付けられ、このスロットル
バルブ15の開度(スロットル開度)がスロットル開度
センサ16によって検出される。更に、吸気マニホール
ド12のうちのスロットルバルブ15の下流側には、そ
れぞれ燃料噴射弁18が取り付けられている。
The engine 11 is an independent intake engine, and a throttle valve 15 is attached in the middle of the intake manifold 12 of each cylinder. The opening of the throttle valve 15 (throttle opening) is measured by a throttle opening sensor 16. Is detected. Further, a fuel injection valve 18 is attached to the intake manifold 12 on the downstream side of the throttle valve 15.

【0014】一方、燃料タンク19内から燃料ポンプ2
0で汲み上げられた燃料は、燃料配管21→燃料フィル
タ22→燃料配管23→デリバリパイプ24に送られ、
各気筒の燃料噴射弁18に分配される。デリバリパイプ
24内の余剰燃料は、プレッシャレギュレータ25→リ
ターン配管26の経路で燃料タンク19内に戻される。
プレッシャレギュレータ25は、デリバリパイプ24内
の燃料圧力と吸気圧との差圧が一定になるようにデリバ
リパイプ24内の燃料圧力を調整する。
On the other hand, the fuel pump 2
The fuel pumped at 0 is sent to the fuel pipe 21 → the fuel filter 22 → the fuel pipe 23 → the delivery pipe 24,
The fuel is distributed to the fuel injection valves 18 of each cylinder. Excess fuel in the delivery pipe 24 is returned to the fuel tank 19 through a path from the pressure regulator 25 to the return pipe 26.
The pressure regulator 25 adjusts the fuel pressure in the delivery pipe 24 so that the pressure difference between the fuel pressure in the delivery pipe 24 and the intake pressure becomes constant.

【0015】エンジン11のシリンダヘッドには、気筒
毎に点火プラグ27が取り付けられ、点火タイミング毎
に点火コイル28の二次側に発生する高電圧が各気筒の
点火プラグ27に印加され、点火される。このエンジン
11には、エンジン回転速度を検出するために所定クラ
ンク角毎にパルス信号(クランク角信号)を出力するエ
ンジン回転速度センサ29(回転速度検出手段)と、特
定気筒を判別する気筒判別センサ30と、冷却水温を検
出する水温センサ31とが取り付けられている。また、
車体の所定位置には、大気圧を検出する大気圧センサ3
2(大気圧検出手段)が取り付けられている。
An ignition plug 27 is attached to the cylinder head of the engine 11 for each cylinder, and a high voltage generated on the secondary side of the ignition coil 28 is applied to the ignition plug 27 of each cylinder at each ignition timing to ignite. You. The engine 11 includes an engine speed sensor 29 (rotation speed detection means) for outputting a pulse signal (crank angle signal) at every predetermined crank angle to detect the engine speed, and a cylinder discrimination sensor for discriminating a specific cylinder. 30 and a water temperature sensor 31 for detecting a cooling water temperature are attached. Also,
An atmospheric pressure sensor 3 for detecting the atmospheric pressure is provided at a predetermined position on the vehicle body.
2 (atmospheric pressure detecting means) is attached.

【0016】図2に示すように、各気筒の吸気マニホー
ルド12のうちのスロットルバルブ15の下流側には細
い連通管34が接続され、この連通管34によって各気
筒の吸気マニホールド12のスロットルバルブ15の下
流側が連通されている。そして、この連通管34の途中
には、吸気圧センサ17(吸気圧検出手段)が設けら
れ、この吸気圧センサ17によって各気筒の吸気マニホ
ールド12の吸気圧の平均値が検出される。
As shown in FIG. 2, a thin communication pipe 34 is connected to the downstream side of the throttle valve 15 in the intake manifold 12 of each cylinder, and the communication pipe 34 connects the thin communication pipe 34 to the throttle valve 15 of the intake manifold 12 of each cylinder. Is connected to the downstream side. An intake pressure sensor 17 (intake pressure detection means) is provided in the middle of the communication pipe 34, and the intake pressure sensor 17 detects an average value of the intake pressure of the intake manifold 12 of each cylinder.

【0017】この吸気圧センサ17の出力信号や前述し
た大気圧センサ32等の各種センサの出力信号は、エン
ジン制御回路35(図1参照)に入力される。このエン
ジン制御回路35は、マイクロコンピュータを主体とし
て構成され、内蔵したROM45(記憶媒体)には、点
火制御用のルーチンや、図3の燃料噴射制御ルーチン
や、図4及び図5のマップデータ等が記憶されている。
The output signal of the intake pressure sensor 17 and the output signals of various sensors such as the above-described atmospheric pressure sensor 32 are input to an engine control circuit 35 (see FIG. 1). The engine control circuit 35 is mainly composed of a microcomputer, and a built-in ROM 45 (storage medium) stores an ignition control routine, a fuel injection control routine of FIG. 3, a map data of FIGS. 4 and 5, and the like. Is stored.

【0018】このエンジン制御回路35は、図3の燃料
噴射制御ルーチンを実行することで、吸気圧PMを大気
圧PAに応じた吸気圧補正係数KPMで基準吸気圧PML
に補正して、この基準吸気圧PMLと基準大気圧PAba
seとの差圧である基準相対圧DPMLを算出し、この基
準相対圧DPMLとエンジン回転速度NEとに基づいて
基本噴射時間TP(基本噴射量に相当)を算出する。こ
の後、基本噴射時間TPを大気圧PAに応じた噴射量補
正係数KPA等の各種補正係数で補正して最終燃料噴射時
間TAUINJ(燃料噴射量に相当)を求める。
The engine control circuit 35 executes the fuel injection control routine shown in FIG. 3 to reduce the intake pressure PM by a reference intake pressure PML with an intake pressure correction coefficient KPM corresponding to the atmospheric pressure PA.
To the reference intake pressure PML and the reference atmospheric pressure PAba.
A reference relative pressure DPML, which is a differential pressure from se, is calculated, and a basic injection time TP (corresponding to a basic injection amount) is calculated based on the reference relative pressure DPML and the engine speed NE. After that, the basic injection time TP is corrected by various correction coefficients such as the injection amount correction coefficient KPA corresponding to the atmospheric pressure PA to obtain the final fuel injection time TAUINJ (corresponding to the fuel injection amount).

【0019】以下、この図3の燃料噴射制御ルーチンの
処理内容を説明する。本ルーチンは所定の燃料噴射量算
出タイミング毎に実行される。本ルーチンが起動される
と、まず、ステップ101で、吸気圧センサ17で検出
した吸気圧PMを読み込み、次のステップ102で、大
気圧センサ32で検出した大気圧PAを読み込んだ後、
ステップ103で、エンジン回転速度センサ29の出力
信号から検出されたエンジン回転速度NEを読み込む。
The processing of the fuel injection control routine of FIG. 3 will be described below. This routine is executed at every predetermined fuel injection amount calculation timing. When this routine is started, first, in step 101, the intake pressure PM detected by the intake pressure sensor 17 is read, and in the next step 102, the atmospheric pressure PA detected by the atmospheric pressure sensor 32 is read.
In step 103, the engine speed NE detected from the output signal of the engine speed sensor 29 is read.

【0020】この後、ステップ104で、吸気圧PMを
基準大気圧PAbase(例えば100kPa)の状態下で
の基準吸気圧PMLに補正するための吸気圧補正係数K
PMを大気圧PAに応じて算出する。この吸気圧補正係数
KPMの算出方法は、予め、実験又はシミュレーション等
によって大気圧PAと吸気圧補正係数KPMとの関係を求
め、その関係をマップデータ(図4参照)としてエンジ
ン制御回路35のROM45に記憶しておき、検出大気
圧PAに応じた吸気圧補正係数KPMをマップデータを検
索して求める。
Thereafter, at step 104, an intake pressure correction coefficient K for correcting the intake pressure PM to the reference intake pressure PML under the condition of the reference atmospheric pressure PAbase (for example, 100 kPa).
PM is calculated according to the atmospheric pressure PA. In the method of calculating the intake pressure correction coefficient KPM, the relationship between the atmospheric pressure PA and the intake pressure correction coefficient KPM is determined in advance by experiment or simulation, and the relationship is determined as map data (see FIG. 4). The intake pressure correction coefficient KPM corresponding to the detected atmospheric pressure PA is obtained by searching the map data.

【0021】吸気圧補正係数KPMを算出した後、ステッ
プ105で、吸気圧PMに吸気圧補正係数KPMを乗算し
て、吸気圧PMを基準大気圧PAbaseの状態下での基準
吸気圧PMLに補正する。このステップ105の処理が
特許請求の範囲でいう基準吸気圧算出手段に相当する役
割を果たす。 PML=PM×KPM
After calculating the intake pressure correction coefficient KPM, in step 105, the intake pressure PM is multiplied by the intake pressure correction coefficient KPM to correct the intake pressure PM to the reference intake pressure PML under the reference atmospheric pressure PAbase. I do. The processing of step 105 plays a role corresponding to a reference intake pressure calculating means referred to in the claims. PML = PM × KPM

【0022】この後、ステップ106で、基準吸気圧P
MLと基準大気圧PAbaseとの差圧から基準相対圧DP
MLを求める。 DPML=PAbase−PML このステップ106の処理が特許請求の範囲でいう基準
相対圧算出手段に相当する役割を果たす。
Thereafter, at step 106, the reference intake pressure P
From the differential pressure between ML and the reference atmospheric pressure PAbase, the reference relative pressure DP
Find ML. DPML = PAbase-PML The processing in step 106 plays a role corresponding to a reference relative pressure calculating means described in the claims.

【0023】この後、ステップ107で、基準相対圧D
PMLとエンジン回転速度NEとに基づいて基本噴射時
間TPを算出する。この算出方法は、予め、実験又はシ
ミュレーション等によって基準相対圧DPMLとエンジ
ン回転速度NEと基本噴射時間TPとの関係を求めて、
基本噴射時間TPの二次元マップを作成し、このマップ
をエンジン制御回路35のROM45に記憶しておき、
ステップ107で、このマップを検索して、その時の基
準相対圧DPMLとエンジン回転速度NEとに応じた基
本噴射時間TPを算出する。
Thereafter, at step 107, the reference relative pressure D
The basic injection time TP is calculated based on the PML and the engine speed NE. In this calculation method, a relationship between the reference relative pressure DPML, the engine rotation speed NE, and the basic injection time TP is obtained in advance by an experiment or simulation, and the like.
A two-dimensional map of the basic injection time TP is created, and this map is stored in the ROM 45 of the engine control circuit 35,
In step 107, this map is searched to calculate a basic injection time TP according to the reference relative pressure DPML and the engine speed NE at that time.

【0024】基本噴射時間TPの算出後、ステップ10
8で、大気圧PAに応じた噴射量補正係数KPAを算出す
る。この算出方法は、予め、実験又はシミュレーション
等によって大気圧PAと噴射量補正係数KPAとの関係を
求め、その関係をマップデータ(図5参照)としてエン
ジン制御回路35のROM45に記憶しておき、検出大
気圧PAに応じた噴射量補正係数KPAをマップデータを
検索して求める。この噴射量補正係数KPAは、大気圧変
化による燃料密度変化や背圧変化を補正するための補正
係数である。尚、エンジン回転速度NEと吸気圧PMに
応じて噴射量補正係数KPAを算出したり、或は、基準吸
気圧PMLに応じて噴射量補正係数KPAを算出しても良
い。
After calculating the basic injection time TP, step 10
In step 8, an injection amount correction coefficient KPA corresponding to the atmospheric pressure PA is calculated. In this calculation method, the relationship between the atmospheric pressure PA and the injection amount correction coefficient KPA is obtained in advance by experiment or simulation, and the relationship is stored in the ROM 45 of the engine control circuit 35 as map data (see FIG. 5). An injection amount correction coefficient KPA corresponding to the detected atmospheric pressure PA is obtained by searching map data. The injection amount correction coefficient KPA is a correction coefficient for correcting a change in fuel density or a change in back pressure due to a change in atmospheric pressure. Note that the injection amount correction coefficient KPA may be calculated according to the engine rotation speed NE and the intake pressure PM, or the injection amount correction coefficient KPA may be calculated according to the reference intake pressure PML.

【0025】そして、次のステップ109で、噴射量補
正係数KPA以外の各種の補正係数Kを算出する。例え
ば、水温センサ31の出力信号(冷却水温)に応じた暖
機増量補正係数、始動後増量補正係数、吸気温センサ1
4の出力信号(吸気温)に応じた吸気温補正係数等、各
種の補正係数Kを算出する。
Then, in the next step 109, various correction coefficients K other than the injection quantity correction coefficient KPA are calculated. For example, the warm-up increase correction coefficient, the post-start increase correction coefficient, and the intake air temperature sensor 1 according to the output signal (cooling water temperature) of the water temperature sensor 31
Various correction coefficients K such as an intake air temperature correction coefficient corresponding to the output signal (intake air temperature) 4 are calculated.

【0026】この後、ステップ110で、電源電圧に基
づいて燃料噴射弁18の応答遅れ時間を考慮するための
無効噴射時間TVを算出し、次のステップ111で、燃
料噴射弁18に出力する噴射パルスのパルス幅である最
終燃料噴射時間TAUINJを、基本噴射時間TPと噴
射量補正係数KPAと各種補正係数Kと無効噴射時間TV
を用いて次式により算出する。 TAUINJ=TP×KPA×K+TV
Thereafter, in step 110, an invalid injection time TV for calculating the response delay time of the fuel injection valve 18 is calculated based on the power supply voltage, and in the next step 111, the injection output to the fuel injection valve 18 is calculated. The final fuel injection time TAUINJ, which is the pulse width of the pulse, is calculated based on a basic injection time TP, an injection amount correction coefficient KPA, various correction coefficients K, and an invalid injection time TV.
Is calculated by the following equation. TAUINJ = TP × KPA × K + TV

【0027】ここで、補正係数Kには、暖機増量補正係
数、始動後増量補正係数、吸気温補正係数等、各種の補
正係数が含まれる。上記ステップ107〜111の処理
が特許請求の範囲でいう燃料噴射量算出手段に相当する
役割を果たす。
Here, the correction coefficient K includes various correction coefficients such as a warm-up increase correction coefficient, a post-start increase correction coefficient, and an intake air temperature correction coefficient. The processing of steps 107 to 111 plays a role corresponding to the fuel injection amount calculation means described in the claims.

【0028】以上説明した実施形態(1)によれば、基
本噴射時間TPを算出する過程で、大気圧PAに応じた
吸気圧補正係数KPMを求める処理(ステップ104)の
みに、大気圧センサ32の検出値を用いるだけであるた
め、従来のように大気圧センサの検出誤差が掛け合わさ
れて誤差が増幅されることがなくなり、大気圧センサ3
2の検出誤差が燃料噴射時間TAUINJに及ぼす影響
を小さくすることができる。これにより、燃料噴射時間
TAUINJの算出精度を向上することができて、燃料
噴射量の誤差を小さくすることができ、ドライバビリテ
ィや排気エミッションを向上することができる。
According to the embodiment (1) described above, in the process of calculating the basic injection time TP, the atmospheric pressure sensor 32 is used only for the process of obtaining the intake pressure correction coefficient KPM corresponding to the atmospheric pressure PA (step 104). , The detection error of the atmospheric pressure sensor is not multiplied as in the prior art, and the error is not amplified.
The effect of the detection error of No. 2 on the fuel injection time TAUINJ can be reduced. As a result, the calculation accuracy of the fuel injection time TAUINJ can be improved, the error in the fuel injection amount can be reduced, and drivability and exhaust emission can be improved.

【0029】[実施形態(2)]上記実施形態(1)で
は、基準吸気圧PMLと基準大気圧PAbaseとの差圧で
ある基準相対圧DPMLを算出し、この基準相対圧DP
MLとエンジン回転速度NEとに基づいて基本噴射時間
TPを算出するようにしたが、図6に示す本発明の実施
形態(2)では、基準吸気圧PMLとエンジン回転速度
NEとに基づいて基本噴射時間TPを算出するようにし
ている。要するに、基準大気圧PAbaseは一定値である
ため、基準相対圧DPMLと基準吸気圧PMLとの関係
は、いわばゲージ圧と絶対圧との関係に相当し、両者は
実質的に同じ圧力データとして用いることができる。従
って、基本噴射時間TPの算出パラメータとして用いる
吸気圧の情報として、本実施形態(2)のように基準吸
気圧PMLを用いても、前記実施形態(1)のように基
準相対圧DPMLを用いた場合と同じ結果を得ることが
できる。
[Embodiment (2)] In the embodiment (1), a reference relative pressure DPML, which is a differential pressure between a reference intake pressure PML and a reference atmospheric pressure PAbase, is calculated.
Although the basic injection time TP is calculated based on the ML and the engine speed NE, in the embodiment (2) of the present invention shown in FIG. 6, the basic injection time TP is calculated based on the reference intake pressure PML and the engine speed NE. The injection time TP is calculated. In short, since the reference atmospheric pressure PAbase is a constant value, the relationship between the reference relative pressure DPML and the reference intake pressure PML corresponds to the relationship between the gauge pressure and the absolute pressure, and both are used as substantially the same pressure data. be able to. Therefore, even if the reference intake pressure PML is used as in the embodiment (2) as the intake pressure information used as the calculation parameter of the basic injection time TP, the reference relative pressure DPML is used as in the embodiment (1). You can get the same result as

【0030】本実施形態(2)で実行される図6の燃料
噴射制御ルーチンは、図3のステップ106の処理を省
略すると共に、ステップ107の処理をステップ107
aの処理に変更したものであり、これ以外の各ステップ
の処理は図3と同じである。尚、本実施形態(2)のシ
ステム構成は、前記実施形態(1)と同じである。
In the fuel injection control routine of FIG. 6 executed in the embodiment (2), the processing of step 106 in FIG.
The processing in each step other than this is the same as that in FIG. 3. The system configuration of the embodiment (2) is the same as that of the embodiment (1).

【0031】図6の燃料噴射制御ルーチンでは、ステッ
プ101〜103で、吸気圧PM、大気圧PA、エンジ
ン回転速度NEを読み込んだ後、ステップ104〜10
5で、大気圧PAに応じて算出した吸気圧補正係数KPM
を用いて吸気圧PMを基準吸気圧PMLに補正する。
In the fuel injection control routine of FIG. 6, after reading the intake pressure PM, the atmospheric pressure PA, and the engine rotational speed NE in steps 101 to 103, steps 104 to 10 are executed.
5, the intake pressure correction coefficient KPM calculated according to the atmospheric pressure PA
Is used to correct the intake pressure PM to the reference intake pressure PML.

【0032】この後、ステップ107aで、基準吸気圧
PMLとエンジン回転速度NEとに基づいて基本噴射時
間TPを算出する。この算出方法は、予め、実験又はシ
ミュレーション等によって基準吸気圧PMLとエンジン
回転速度NEと基本噴射時間TPとの関係を求めて、基
本噴射時間TPの二次元マップを作成し、このマップを
エンジン制御回路35のROM45に記憶しておき、ス
テップ107aで、このマップを検索して、その時の基
準吸気圧PMLとエンジン回転速度NEとに応じた基本
噴射時間TPを算出する。
Thereafter, at step 107a, a basic injection time TP is calculated based on the reference intake pressure PML and the engine speed NE. In this calculation method, a relationship between the reference intake pressure PML, the engine rotation speed NE, and the basic injection time TP is obtained in advance by experiment or simulation, and a two-dimensional map of the basic injection time TP is created. The map is stored in the ROM 45 of the circuit 35, and in step 107a, this map is searched to calculate a basic injection time TP according to the reference intake pressure PML and the engine speed NE at that time.

【0033】基本噴射時間TPの算出後、ステップ10
8〜110で、噴射量補正係数KPA、各種補正係数K、
無効噴射時間TVを算出した後、ステップ111で、最
終燃料噴射時間TAUINJを算出する。 TAUINJ=TP×KPA×K+TV
After calculating the basic injection time TP, step 10
8 to 110, the injection amount correction coefficient KPA, various correction coefficients K,
After calculating the invalid injection time TV, in step 111, the final fuel injection time TAUINJ is calculated. TAUINJ = TP × KPA × K + TV

【0034】以上説明した実施形態(2)でも、前記実
施形態(1)と同じ効果を得ることができる。尚、上記
各実施形態では、本発明を二輪車の独立吸気エンジンに
適用したが、二輪車以外(例えば四輪車)の独立吸気エ
ンジンに本発明を適用しても良く、或は、集合吸気エン
ジンに適用しても良い。
In the embodiment (2) described above, the same effect as in the embodiment (1) can be obtained. In each of the above embodiments, the present invention is applied to an independent intake engine of a motorcycle. However, the present invention may be applied to an independent intake engine other than a motorcycle (for example, a four-wheeled vehicle). May be applied.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態(1)を示すエンジン制御シ
ステム全体の概略構成図
FIG. 1 is a schematic configuration diagram of an entire engine control system showing an embodiment (1) of the present invention.

【図2】吸気系の概略構成を示す図FIG. 2 is a diagram showing a schematic configuration of an intake system.

【図3】実施形態(1)の燃料噴射制御ルーチンの処理
の流れを示すフローチャート
FIG. 3 is a flowchart showing the flow of processing of a fuel injection control routine according to the embodiment (1).

【図4】吸気圧補正係数KPMのマップを概念的に示す図FIG. 4 is a diagram conceptually showing a map of an intake pressure correction coefficient KPM.

【図5】噴射量補正係数KPAのマップを概念的に示す図FIG. 5 is a diagram conceptually showing a map of an injection amount correction coefficient KPA.

【図6】実施形態(2)の燃料噴射制御ルーチンの処理
の流れを示すフローチャート
FIG. 6 is a flowchart showing the flow of processing of a fuel injection control routine according to the embodiment (2).

【符号の説明】[Explanation of symbols]

11…エンジン(内燃機関)、12…吸気マニホール
ド、13…エアボックス、15…スロットルバルブ、1
6…スロットル開度センサ、17…吸気圧センサ(吸気
圧検出手段)、18…燃料噴射弁、29…エンジン回転
速度センサ(回転速度検出手段)、32…大気圧センサ
(大気圧検出手段)、35…エンジン制御回路(基準吸
気圧算出手段,基準相対圧算出手段,燃料噴射量算出手
段)。
11: engine (internal combustion engine), 12: intake manifold, 13: air box, 15: throttle valve, 1
6: throttle opening sensor; 17: intake pressure sensor (intake pressure detecting means); 18: fuel injection valve; 29: engine rotational speed sensor (rotating speed detecting means); 32: atmospheric pressure sensor (atmospheric pressure detecting means); 35 ... Engine control circuit (reference intake pressure calculation means, reference relative pressure calculation means, fuel injection amount calculation means).

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関回転速度を検出する回転速度検
出手段と、大気圧を検出する大気圧検出手段と、吸気圧
を検出する吸気圧検出手段とを備え、これら各検出手段
で検出した吸気圧と大気圧と内燃機関回転速度とに基づ
いて燃料噴射量を算出する内燃機関の燃料噴射制御装置
において、 前記吸気圧検出手段で検出した吸気圧を大気圧に応じた
吸気圧補正係数で補正して基準吸気圧を求める基準吸気
圧算出手段と、 前記基準吸気圧と基準大気圧との差圧である基準相対圧
を算出する基準相対圧算出手段と、 少なくとも前記基準相対圧と内燃機関回転速度とに基づ
いて燃料噴射量を算出する燃料噴射量算出手段と を備えていることを特徴とする内燃機関の燃料噴射制御
装置。
An internal combustion engine includes a rotational speed detecting means for detecting a rotational speed, an atmospheric pressure detecting means for detecting an atmospheric pressure, and an intake pressure detecting means for detecting an intake pressure. In a fuel injection control device for an internal combustion engine that calculates a fuel injection amount based on an atmospheric pressure, an atmospheric pressure, and an internal combustion engine rotation speed, the intake pressure detected by the intake pressure detecting means is corrected by an intake pressure correction coefficient corresponding to the atmospheric pressure. Reference intake pressure calculating means for calculating a reference intake pressure, and a reference relative pressure calculating means for calculating a reference relative pressure that is a differential pressure between the reference intake pressure and a reference atmospheric pressure; and at least the reference relative pressure and the internal combustion engine rotation. Fuel injection amount calculating means for calculating a fuel injection amount based on the speed and a fuel injection control device for an internal combustion engine.
【請求項2】 内燃機関回転速度を検出する回転速度検
出手段と、大気圧を検出する大気圧検出手段と、吸気圧
を検出する吸気圧検出手段とを備え、これら各検出手段
で検出した吸気圧と大気圧と内燃機関回転速度とに基づ
いて燃料噴射量を算出する内燃機関の燃料噴射制御装置
において、 前記吸気圧検出手段で検出した吸気圧を大気圧に応じた
吸気圧補正係数で補正して基準吸気圧を求める基準吸気
圧算出手段と、 少なくとも前記基準吸気圧と内燃機関回転速度とに基づ
いて燃料噴射量を算出する燃料噴射量算出手段とを備え
ていることを特徴とする内燃機関の燃料噴射制御装置。
2. An engine according to claim 1, further comprising: a rotational speed detecting means for detecting a rotational speed of the internal combustion engine; an atmospheric pressure detecting means for detecting an atmospheric pressure; and an intake pressure detecting means for detecting an intake pressure. In a fuel injection control device for an internal combustion engine that calculates a fuel injection amount based on an atmospheric pressure, an atmospheric pressure, and an internal combustion engine rotation speed, the intake pressure detected by the intake pressure detecting means is corrected by an intake pressure correction coefficient corresponding to the atmospheric pressure. And a fuel injection amount calculating means for calculating a fuel injection amount based on at least the reference suction pressure and a rotation speed of the internal combustion engine. Engine fuel injection control device.
JP2000308002A 2000-10-03 2000-10-03 Fuel injection control device for internal combustion engine Pending JP2002115584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000308002A JP2002115584A (en) 2000-10-03 2000-10-03 Fuel injection control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000308002A JP2002115584A (en) 2000-10-03 2000-10-03 Fuel injection control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2002115584A true JP2002115584A (en) 2002-04-19

Family

ID=18788402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000308002A Pending JP2002115584A (en) 2000-10-03 2000-10-03 Fuel injection control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2002115584A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100398801C (en) * 2004-11-29 2008-07-02 本田技研工业株式会社 Fuel jet controller
WO2011148813A1 (en) * 2010-05-25 2011-12-01 いすゞ自動車株式会社 System for purifying exhaust gas in upland area

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100398801C (en) * 2004-11-29 2008-07-02 本田技研工业株式会社 Fuel jet controller
WO2011148813A1 (en) * 2010-05-25 2011-12-01 いすゞ自動車株式会社 System for purifying exhaust gas in upland area
JP2011247139A (en) * 2010-05-25 2011-12-08 Isuzu Motors Ltd Exhaust emission control system in highlands
CN102906381A (en) * 2010-05-25 2013-01-30 五十铃自动车株式会社 System for purifying exhaust gas in upland area
US8925306B2 (en) 2010-05-25 2015-01-06 Isuzu Motors Limited Exhaust gas purification system for high altitude use

Similar Documents

Publication Publication Date Title
JP3365197B2 (en) EGR control device for internal combustion engine
JP4622719B2 (en) PM deposition amount estimation device
CA2048085A1 (en) Method and apparatus for inferring barometric pressure surrounding an internal combustion engine
JPH0518287A (en) Fuel injection type internal combustion engine
JP2006029084A (en) Control device of internal combustion engine
JP3544197B2 (en) Electronic control unit for internal combustion engine
JP3838526B2 (en) Fuel injection control device and fuel injection control method for internal combustion engine
JP2002115584A (en) Fuel injection control device for internal combustion engine
JP3603979B2 (en) Fuel injection control device for internal combustion engine
JP2004108183A (en) Air-fuel ratio control device for internal combustion engine
JP3959655B2 (en) Fuel injection control device for internal combustion engine
JP6630694B2 (en) Humidity sensor failure judgment device
JPH05187305A (en) Air amount calculating device of internal combustion engine
JP4000539B2 (en) Fuel injection control device for internal combustion engine
JP2006037924A (en) Control unit of vehicle
JPH0573910B2 (en)
JP3000512B2 (en) Altitude determination device for internal combustion engine
JP4655229B2 (en) Abnormality diagnosis apparatus for intake system of internal combustion engine
JPH08291732A (en) Fuel injection control device for internal combustion engine
JP2789005B2 (en) Control device for internal combustion engine
JP3105230B2 (en) Fuel supply control device for internal combustion engine
US6848428B2 (en) Fuel injection control system for internal combustion engine
JP2004340156A (en) Fuel injection device for internal combustion engine
JP2002195088A (en) Load-detecting method of internal combustion engine
JPH06146989A (en) High land judgement device for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090304