JP3603979B2 - Fuel injection control device for internal combustion engine - Google Patents

Fuel injection control device for internal combustion engine Download PDF

Info

Publication number
JP3603979B2
JP3603979B2 JP09183297A JP9183297A JP3603979B2 JP 3603979 B2 JP3603979 B2 JP 3603979B2 JP 09183297 A JP09183297 A JP 09183297A JP 9183297 A JP9183297 A JP 9183297A JP 3603979 B2 JP3603979 B2 JP 3603979B2
Authority
JP
Japan
Prior art keywords
cylinder
fuel injection
injection amount
intake
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09183297A
Other languages
Japanese (ja)
Other versions
JPH10280995A (en
Inventor
辰則 加藤
豊 新田
明久 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Suzuki Motor Co Ltd
Original Assignee
Denso Corp
Suzuki Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Suzuki Motor Co Ltd filed Critical Denso Corp
Priority to JP09183297A priority Critical patent/JP3603979B2/en
Publication of JPH10280995A publication Critical patent/JPH10280995A/en
Application granted granted Critical
Publication of JP3603979B2 publication Critical patent/JP3603979B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、2気筒内燃機関の各気筒の燃料噴射量を制御する燃料噴射制御装置に関するものである。
【0002】
【従来の技術】
従来より、2気筒内燃機関を搭載した二輪車等の車両の燃料噴射制御装置では、スロットル開度とエンジン回転数を検出し、予めスロットル開度とエンジン回転数をパラメータとして設定された燃料噴射量(燃料噴射時間)の二次元マップから、その時のスロットル開度とエンジン回転数に応じた燃料噴射量を算出するようにしている。
【0003】
【発明が解決しようとする課題】
一般の内燃機関では、燃料噴射量は、1回の吸気行程で気筒内に吸入される空気量と目標空燃比とに応じて算出されるが、二輪車に搭載された2気筒内燃機関の吸気系は、空気を取り入れるエアボックスから各気筒の吸気マニホールドを通して各気筒に空気を導入する構成であり、吸気マニホールドの上流側に吸気集合管が無いため、吸入空気量を測定することが困難であり、そのために、吸入空気量に代わるパラメータとして、スロットル開度とエンジン回転数を用い、スロットル開度とエンジン回転数とから燃料噴射量を算出するようにしている。
【0004】
しかし、エンジン負荷によっては、スロットル開度とエンジン回転数とから決まる運転状態と吸入空気量との対応関係にずれが生じ、これが燃料噴射量の算出精度を低下させて、空燃比のずれを生じさせ、排気エミッション増加やドライバビリティ低下を招く要因となる。
【0005】
この欠点を解消するため、各気筒の吸気マニホールドに、それぞれ吸気圧センサを設け、各気筒の吸気圧とエンジン回転数とから燃料噴射量を算出することが考えられる。しかし、この構成では、部品点数が増加し、コストアップにつながる欠点がある。
【0006】
そこで、2気筒内燃機関の両気筒の吸気マニホールドに連通する連通管を設けると共に、この連通管に吸気圧センサを設け、この吸気圧センサにより両気筒の平均吸気圧を検出して、その平均吸気圧と大気圧との差圧とエンジン回転数とから燃料噴射量を算出することが考えられる。
【0007】
しかし、両気筒の吸気マニホールドを連通管で連通させると、両気筒の吸気マニホールドの吸気圧が連通管を通して互いに影響し合い、特に、低負荷領域においては、連通管を通して一方側の吸気マニホールドから他方側の吸気マニホールドに流れ込む空気流による影響が相対的に大きくなる。このため、単純に、吸気圧センサの出力値(平均吸気圧)と大気圧との差圧とエンジン回転数とから燃料噴射量を算出したのでは、必ずしも燃料噴射量を精度良く算出できず、空燃比がずれて、排気エミッション増加やドライバビリティ低下を招くおそれがある。
【0008】
本発明はこのような事情を考慮してなされたものであり、従ってその目的は、1つの吸気圧検出手段の出力信号を用いて2気筒内燃機関の各気筒の燃料噴射量を精度良く算出することができ、排気エミッション低減やドライバビリティ向上を実現することができる内燃機関の燃料噴射制御装置を提供することにある。
【0009】
【課題を解決するための手段】
上記目的を達成するために、本発明の請求項1の内燃機関の燃料噴射制御装置によれば、2気筒内燃機関の両気筒の吸気マニホールドに連通する連通管を通して両気筒の平均吸気圧を吸気圧検出手段により検出し、第1気筒噴射量算出手段は、第2気筒側の吸気行程により低下する平均吸気圧と大気圧との差圧と内燃機関回転数とに基づいて第1気筒の燃料噴射量を算出し、第2気筒噴射量算出手段は、第1気筒側の吸気行程により低下する平均吸気圧と大気圧との差圧と内燃機関回転数とに基づいて第2気筒の燃料噴射量を算出する。これにより、2つの気筒の燃料噴射量を算出する際に、反対側の吸気マニホールドの吸気圧による影響を考慮して、燃料噴射量を精度良く算出することができ、排気エミッション低減やドライバビリティ向上を実現することができる。しかも、吸気圧検出手段が1つで済み、部品点数削減、低コスト化の要求を満たすことができる。
【0010】
ところで、本発明者らの試験結果によれば、反対側の吸気マニホールドの吸気圧による影響は、低負荷領域において大きくなり、中負荷領域や高負荷領域では反対側の吸気マニホールドの吸気圧による影響が比較的少ないことが判明した。
【0011】
従って、請求項2のように、前記第1及び第2気筒噴射量算出手段は、前記請求項1の算出方法による燃料噴射量の算出を低負荷領域でのみ実施し、その他の負荷領域(中負荷・高負荷領域)では、第1気筒側の吸気行程により低下する平均吸気圧を用いて第1気筒の燃料噴射量を算出し、第2気筒側の吸気行程により低下する平均吸気圧を用いて第2気筒の燃料噴射量を算出するようにしても良い。このようにしても、請求項1とほぼ同じ効果を得ることができる。
【0012】
また、請求項3のように、前記第1及び第2気筒噴射量算出手段は、請求項1の算出方法による燃料噴射量の算出を低負荷領域でのみ実施し、その他の負荷領域(中負荷・高負荷領域)では、スロットル開度と内燃機関回転数とに基づいて第1及び第2の各気筒の燃料噴射量を算出するようにしても良い。つまり、中負荷・高負荷領域では、スロットル開度とエンジン回転数とから決まる運転状態と吸入空気量との対応関係が良くとれているため、中負荷・高負荷領域では、スロットル開度とエンジン回転数とに基づいて燃料噴射量を算出すれば、各気筒の実際の吸入空気量に合った適切な燃料噴射量を算出することができ、中負荷・高負荷領域における空燃比のずれを少なくすることができる。
【0013】
【発明の実施の形態】
[実施形態(1)]
以下、本発明を二輪車に適用した実施形態(1)を図1乃至図6に基づいて説明する。2気筒内燃機関である2気筒エンジン11の各気筒の吸気ポート10には、それぞれ吸気マニホールド12が接続され、各気筒の吸気マニホールド12の上流側にはエアボックス13が接続され、このエアボックス13内に吸入された空気が各気筒の吸気マニホールド12に吸い込まれる。このエアボックス13内にはエアクリーナ33が装着され、また、このエアボックス13には、吸気温を検出する吸気温センサ14が取り付けられている。各気筒の吸気マニホールド12の途中には、スロットルバルブ15が取り付けられ、このスロットルバルブ15の開度(スロットル開度)がスロットル開度センサ16(スロットル開度検出手段)によって検出される。更に、吸気マニホールド12のうちのスロットルバルブ15の下流側には、燃料噴射弁18が取り付けられている。
【0014】
一方、燃料タンク19内から燃料ポンプ20で汲み上げられた燃料は、燃料配管21→燃料フィルタ22→燃料配管23→デリバリパイプ24に送られ、各気筒の燃料噴射弁18に分配される。デリバリパイプ24内の余剰燃料は、プレッシャレギュレータ25→リターン配管26の経路で燃料タンク19内に戻される。プレッシャレギュレータ25は、デリバリパイプ24内の燃料圧力と吸気圧との差圧が一定になるようにデリバリパイプ24内の燃料圧力を調整する。
【0015】
エンジン11のシリンダヘッドには、気筒毎に点火プラグ27が取り付けられ、点火タイミング毎に点火コイル28の二次側に発生する高電圧が各気筒の点火プラグ27に印加され、点火される。このエンジン11には、エンジン回転数を検出するために所定クランク角毎にパルス信号(クランク角信号)を出力するエンジン回転数センサ29(回転数検出手段)と、特定気筒を判別する気筒判別センサ30と、冷却水温を検出する水温センサ31とが取り付けられている。また、車体の所定位置には、大気圧を検出する大気圧センサ32(大気圧検出手段)が取り付けられている。
【0016】
図2に示すように、両気筒の吸気マニホールド12のうちのスロットルバルブ15の下流側には細い連通管34が接続され、この連通管34によって両気筒の吸気マニホールド12のスロットルバルブ15の下流側が連通されている。そして、この連通管34の途中には、例えば半導体圧力センサ等の吸気圧センサ17(吸気圧検出手段)が設けられ、この吸気圧センサ17によって両気筒の吸気マニホールド12の吸気圧の平均値(平均吸気圧)が検出される。
【0017】
この吸気圧センサ17の出力信号や前述したスロットル開度センサ14等の各種センサの出力信号は、エンジン制御回路35(図1参照)に入力される。このエンジン制御回路35は、マイクロコンピュータを主体として構成され、内蔵したROM45(記憶媒体)には、点火制御用のルーチンや、図4の燃料噴射制御ルーチンや、図5及び図6のマップデータ等が記憶されている。
【0018】
このエンジン制御回路35は、図4の燃料噴射制御ルーチンを実行することで、第1気筒の燃料噴射量を算出する際に第2気筒側の吸気行程により低下する平均吸気圧のボトム圧P2 を用いて第1気筒の燃料噴射量を算出し、第2気筒の燃料噴射量を算出する際に第1気筒側の吸気行程により低下する平均吸気圧のボトム圧P1 を用いて第2気筒の燃料噴射量を算出する。
【0019】
ここで、図3に基づいて2気筒エンジン11の各気筒の作動行程と吸気圧の挙動との関係を説明する。各気筒の実吸気圧は、各気筒の吸気行程により低下し、圧縮から排気行程にかけて上昇するという変化を繰り返す。これに対し、吸気圧センサ17で検出する連通管34内の圧力、つまり両気筒の吸気圧の平均値(平均吸気圧)は、第1気筒の吸気行程により低下し、第1気筒の圧縮行程で上昇するが、第2気筒の吸気行程により再び低下し、第2気筒の圧縮行程で上昇するという変化を繰り返す。このため、吸気圧センサ17で検出する平均吸気圧は、第1気筒の吸気行程と第2気筒の吸気行程との双方で低下し、その最下点がボトム圧P1 ,P2 となる。
【0020】
本発明者らの試験結果によれば、低負荷領域において、第1気筒の実吸気圧が低下すると、第1気筒の吸気行程による平均吸気圧のボトム圧P1 の低下幅よりも第2気筒の吸気行程による平均吸気圧のボトム圧P2 の低下幅の方が大きくなり、逆に、第2気筒の実吸気圧が低下すると、第2気筒の吸気行程による平均吸気圧のボトム圧P2 の低下幅よりも第1気筒の吸気行程による平均吸気圧のボトム圧P1 の低下幅の方が大きくなるという試験結果が得られた。これは、両気筒の吸気マニホールド12の吸気圧が連通管34を通して互いに影響し合い、特に、低負荷領域においては、連通管34を通して一方側の吸気マニホールド12から他方側の吸気マニホールド12に流れ込む空気流による影響が相対的に大きくなるためと考えられる。
【0021】
このような特性を考慮し、本実施形態(1)では、第1気筒の燃料噴射量を算出する際に第2気筒側の吸気行程により低下する平均吸気圧のボトム圧P2 と大気圧Pa との差圧とエンジン回転数NEとに基づいて第1気筒の燃料噴射量(基本噴射時間TP1)を算出し、第2気筒の燃料噴射量を算出する際に第1気筒側の吸気行程により低下する平均吸気圧のボトム圧P1 と大気圧Pa との差圧とエンジン回転数NEとに基づいて第2気筒の燃料噴射量(基本噴射時間TP2)を算出する。以下、この燃料噴射量の算出処理を行う図4の燃料噴射制御ルーチンの処理内容を説明する。
【0022】
図4の燃料噴射制御ルーチンは、第1気筒と第2気筒の燃料噴射タイミングの直前に実行される。本ルーチンが起動されると、まずステップ100で、エンジン回転数センサ29の出力信号により得られるエンジン回転数NEを読み込み、次のステップ101で、大気圧センサ32の出力信号により得られる大気圧Pa を読み込む。この後、ステップ102で、第1気筒と第2気筒のいずれの燃料噴射時間を算出するか判別する。この判別方法は、例えばエンジン回転数センサ29の出力信号(クランク角信号)をカウンタでカウントし、このカウント値と気筒判別センサ30の出力信号とによって、燃料噴射時間を算出する気筒を判別する。
【0023】
このステップ102で、第1気筒の燃料噴射時間を算出すると判定された場合には、ステップ103に進み、第2気筒側の吸気行程により低下する平均吸気圧のボトム圧P2 を読み込む。この後、ステップ104で、第2気筒側の吸気行程により低下する平均吸気圧のボトム圧P2 と大気圧Pa との差圧(Pa −P2 )とエンジン回転数NEとに基づいて第1気筒基本噴射時間TP1を算出する。この算出方法は、予め実験又はシミュレーション等によって差圧(Pa −P2 )とエンジン回転数NEと第1気筒基本噴射時間TP1との関係を求めて、図5に示す第1気筒基本噴射時間TP1の二次元マップを作成し、このマップをエンジン制御回路35のROM45に記憶しておき、ステップ104で、このマップを検索して、その時の差圧(Pa −P2 )とエンジン回転数NEとに応じた第1気筒基本噴射時間TP1を算出する。
【0024】
一方、前記ステップ102で、第2気筒の燃料噴射時間を算出すると判定された場合には、ステップ105に進んで、第1気筒側の吸気行程により低下する平均吸気圧のボトム圧P1 を読み込む。この後、ステップ106に進んで、第1気筒側の吸気行程により低下する平均吸気圧のボトム圧P1 と大気圧Pa との差圧(Pa −P1 )とエンジン回転数NEとに基づいて第2気筒基本噴射時間TP2を図6の第2気筒基本噴射時間TP2の二次元マップより算出する。この図6のマップも図5のマップと同じ方法で設定されている。
【0025】
以上のようにして第1気筒又は第2気筒の基本噴射時間TP1又はTP2を算出した後、ステップ107に進み、水温センサ31の出力信号(冷却水温)に応じた暖機増量補正係数、始動後増量補正係数、吸気温センサ14の出力信号(吸気温)に応じた吸気温補正係数等、各種の補正係数Kを算出する。
【0026】
この後、ステップ108で、電源電圧に基づいて燃料噴射弁18の応答遅れ時間、つまり無効噴射時間TVを算出し、次のステップ109で、各気筒の燃料噴射弁18に出力する噴射パルスのパルス幅である最終噴射時間TAU1又はTAU2を算出する。このステップ109では、上記ステップ104で、第1気筒基本噴射時間TP1が算出されている場合には、第1気筒基本噴射時間TP1と各種補正係数Kと無効噴射時間TVを用いて第1気筒最終噴射時間TAU1を次式により算出する。
TAU1=TP1×K+TV
【0027】
一方、上記ステップ106で、第2気筒基本噴射時間TP2が算出されている場合は、ステップ109で、第2気筒基本噴射時間TP2と各種補正係数Kと無効噴射時間TVを用いて第2気筒最終噴射時間TAU2を次式により算出する。
TAU2=TP2×K+TV
【0028】
この場合、ステップ103→104→107→108→109の処理が特許請求の範囲でいう第1気筒噴射量算出手段として機能し、ステップ105→106→107→108→109の処理が特許請求の範囲でいう第2気筒噴射量算出手段として機能する。
【0029】
以上説明した燃料噴射量の算出方法では、第1及び第2の各気筒の燃料噴射量(燃料噴射時間)を算出する際に、反対側の吸気マニホールド12の吸気圧による影響を考慮して、燃料噴射量を精度良く算出することができ、空燃比のずれを少なくできて、排気エミッション低減やドライバビリティ向上を実現することができる。しかも、吸気圧センサ17が1つで済み、部品点数削減、組立工数削減、低コスト化の要求を満たすことができる。
【0030】
[実施形態(2)]
上記実施形態(1)では、全負荷領域において同じ方法で第1及び第2の各気筒の燃料噴射量を算出するようにしたが、本発明者らの試験結果によれば、反対側の吸気マニホールド12の吸気圧による影響は、低負荷領域において大きくなり、中負荷領域や高負荷領域では反対側の吸気マニホールド12の吸気圧による影響が比較的少ないことが判明している。
【0031】
そこで、図7乃至図9に示す本発明の実施形態(2)では、前記実施形態(1)の方法による第1及び第2の各気筒の燃料噴射量(最終噴射時間TAU1,TAU2)の算出を低負荷領域でのみ実施し、中負荷・高負荷領域では、第1気筒側の吸気行程により低下する平均吸気圧のボトム圧P1 を用いて第1気筒の最終噴射時間TAU1を算出し、第2気筒側の吸気行程により低下する平均吸気圧のボトム圧P2 を用いて第2気筒の最終噴射時間TAU2を算出する。
【0032】
以下、本実施形態(2)で実行される図7乃至図9の各ルーチンの処理内容を説明する。図7の燃料噴射制御ルーチンは、第1気筒と第2気筒の燃料噴射タイミングの直前に実行される。本ルーチンが起動されると、まずステップ201〜203で、エンジン回転数NE、大気圧Pa 及びスロットル開度VTAを読み込む。この後、ステップ204で、エンジン11の運転状態が低負荷領域であるか否かを判定する。この判定は、例えば、エンジン回転数NEが所定回転数以下で且つスロットル開度VTAが所定開度以下であれば、低負荷領域と判定し、そうでなければ、中負荷・高負荷領域と判定する。尚、負荷判定用のパラメータとして、スロットル開度VTAに代えて、吸気圧センサ17で検出される平均吸気圧を用いても良く、勿論、スロットル開度VTAと平均吸気圧の双方を用いても良い。
【0033】
上記ステップ203で、低負荷領域と判定された場合には、ステップ205に進み、図8に示す低負荷時基本噴射時間算出ルーチンを実行する。この低負荷時基本噴射時間算出ルーチンでは、前記実施形態(1)で実施した図4のステップ102〜106と同じ処理によって、第1気筒基本噴射時間TP1を算出する際に第2気筒側の吸気行程により低下する平均吸気圧のボトム圧P2 と大気圧Pa との差圧とエンジン回転数NEとに基づいて第1気筒基本噴射時間TP1を算出し(ステップ301→302→303)、第2気筒基本噴射時間TP2を算出する際に第1気筒側の吸気行程により低下する平均吸気圧のボトム圧P1 と大気圧Pa との差圧とエンジン回転数NEとに基づいて第2気筒基本噴射時間TP2を算出する(ステップ301→304→305)。
【0034】
これに対し、図7のステップ206で、中負荷・高負荷領域と判定された場合には、ステップ206に進み、図9に示す中負荷・高負荷時基本噴射時間算出ルーチンを実行する。この中負荷・高負荷時基本噴射時間算出ルーチンでは、基本噴射時間の算出に用いる平均吸気圧のボトム圧が低負荷時とは反対となり、第1気筒基本噴射時間TP1を算出する際に第1気筒側の吸気行程により低下する平均吸気圧のボトム圧P1 と大気圧Pa との差圧とエンジン回転数NEとに基づいて第1気筒基本噴射時間TP1を算出し(ステップ311→312→313)、第2気筒基本噴射時間TP2を算出する際に第2気筒側の吸気行程により低下する平均吸気圧のボトム圧P2 と大気圧Pa との差圧とエンジン回転数NEとに基づいて第2気筒基本噴射時間TP2を算出する(ステップ311→314→315)。
【0035】
以上のようにして第1気筒又は第2気筒の基本噴射時間TP1又はTP2を算出した後、図7のステップ207に戻り、前記実施形態(1)と同じく、各種補正係数Kを算出した後、無効噴射時間TVを算出し(ステップ208)、各気筒の燃料噴射弁18に出力する噴射パルスのパルス幅である最終噴射時間TAU1又はTAU2を算出する(ステップ209)。
以上説明した実施形態(2)でも、前記実施形態(1)と同じ効果を得ることができる。
【0036】
[実施形態(3)]
上記実施形態(2)では、中負荷・高負荷領域でも、平均吸気圧とエンジン回転数とから各気筒の基本噴射時間を算出したが、中負荷・高負荷領域では、スロットル開度とエンジン回転数とに基づいて各気筒の基本噴射時間を算出するようにしても良い。つまり、中負荷・高負荷領域では、スロットル開度とエンジン回転数とから決まる運転状態と吸入空気量との対応関係が良くとれているため、中負荷・高負荷時にスロットル開度とエンジン回転数とに基づいて各気筒の基本噴射時間を算出すれば、各気筒の実際の吸入空気量に合った適切な燃料噴射量を算出することができ、中負荷・高負荷領域における空燃比のずれを少なくすることができる。
【0037】
これを具体化した実施形態(3)で実行する中負荷・高負荷時基本噴射時間算出ルーチンは図10に示されている。この中負荷・高負荷時基本噴射時間算出ルーチン以外は、前記実施形態(2)と同じであり、従って、本実施形態(3)でも、図7及び図8の各ルーチンが用いられる。本実施形態(3)では、図7のステップ206で、中負荷・高負荷領域と判定された場合は、図10の中負荷・高負荷時基本噴射時間算出ルーチンを実行し、スロットル開度VTAとエンジン回転数NEとに基づいて各気筒の基本噴射時間TP1,TP2を算出する(ステップ321)。この算出方法は、予め実験又はシミュレーション等によってスロットル開度VTAとエンジン回転数NEと基本噴射時間TP1との関係を求めて、基本噴射時間の二次元マップを作成し、このマップをエンジン制御回路35のROM45に記憶しておき、このマップを検索して、その時のスロットル開度VTAとエンジン回転数NEとに応じた基本噴射時間TP1を算出する(この場合にはTP2=TP1とする)。
【0038】
尚、前記実施形態(1)では、大気圧を大気圧センサ32により検出したが、エンジン始動直後の吸気圧センサ17の出力値又はエンジン停止から所定時間経過後の吸気圧センサ17の出力値を大気圧Pa としてエンジン制御回路35内に取り込んでバックアップRAM(図示せず)に記憶しておき、この記憶値を大気圧Pa として用いるようにしても良い。この場合には、大気圧センサ32が不要となる。
【0039】
その他、本発明は、二輪車に限定されず、四輪車にも適用して実施できる。
【図面の簡単な説明】
【図1】本発明の実施形態(1)を示すエンジン制御システム全体の概略構成図
【図2】吸気系の概略構成を示す図
【図3】各気筒の作動工程と各気筒の実吸気圧と平均吸気圧との関係を示すタイムチャート
【図4】実施形態(1)で実行する燃料噴射制御ルーチンの処理の流れを示すフローチャート
【図5】第1気筒基本噴射時間マップを概念的に示す図
【図6】第2気筒基本噴射時間マップを概念的に示す図
【図7】実施形態(2)で実行する燃料噴射制御ルーチンの処理の流れを示すフローチャート
【図8】実施形態(2)で実行する低負荷時基本噴射時間算出ルーチンの処理の流れを示すフローチャート
【図9】実施形態(2)で実行する中負荷・高負荷時基本噴射時間算出ルーチンの処理の流れを示すフローチャート
【図10】実施形態(3)で実行する中負荷・高負荷時基本噴射時間算出ルーチンの処理の流れを示すフローチャート
【符号の説明】
11…エンジン(内燃機関)、12…吸気マニホールド、15…スロットルバルブ、16…スロットル開度センサ(スロットル開度検出手段)、17…吸気圧センサ(吸気圧検出手段)、18…燃料噴射弁、29…エンジン回転数センサ(回転数検出手段)、32…大気圧センサ(大気圧検出手段)、34…連通管、35…エンジン制御回路(第1気筒噴射量算出手段,第1気筒噴射量算出手段)、45…ROM。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fuel injection control device for controlling a fuel injection amount of each cylinder of a two-cylinder internal combustion engine.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a fuel injection control device for a vehicle such as a motorcycle equipped with a two-cylinder internal combustion engine detects a throttle opening and an engine speed, and sets a fuel injection amount (a fuel injection amount (a fuel injection amount) set in advance using the throttle opening and the engine speed as parameters. From the two-dimensional map of the fuel injection time), the fuel injection amount according to the throttle opening and the engine speed at that time is calculated.
[0003]
[Problems to be solved by the invention]
In a general internal combustion engine, the fuel injection amount is calculated in accordance with the amount of air drawn into the cylinder and the target air-fuel ratio in one intake stroke, but the intake system of a two-cylinder internal combustion engine mounted on a motorcycle is Is a configuration in which air is introduced into each cylinder from the air box that takes in air through the intake manifold of each cylinder.Since there is no intake manifold upstream of the intake manifold, it is difficult to measure the amount of intake air. For this purpose, the throttle opening and the engine speed are used as parameters in place of the intake air amount, and the fuel injection amount is calculated from the throttle opening and the engine speed.
[0004]
However, depending on the engine load, the correspondence between the operating state determined by the throttle opening and the engine speed and the amount of intake air may deviate, and this may lower the calculation accuracy of the fuel injection amount and cause a deviation in the air-fuel ratio. This causes an increase in exhaust emissions and a decrease in drivability.
[0005]
In order to solve this drawback, it is conceivable to provide an intake pressure sensor in each intake manifold of each cylinder and calculate the fuel injection amount from the intake pressure of each cylinder and the engine speed. However, this configuration has a drawback in that the number of parts increases and the cost increases.
[0006]
Therefore, a communication pipe communicating with the intake manifolds of both cylinders of the two-cylinder internal combustion engine is provided, and an intake pressure sensor is provided in the communication pipe. The intake pressure sensor detects the average intake pressure of both cylinders, and detects the average intake pressure. It is conceivable to calculate the fuel injection amount from the pressure difference between the atmospheric pressure and the atmospheric pressure and the engine speed.
[0007]
However, when the intake manifolds of the two cylinders are communicated with the communication pipe, the intake pressures of the intake manifolds of the two cylinders affect each other through the communication pipe, and, particularly, in a low load region, the intake manifold on one side is connected to the other through the communication pipe. The influence of the airflow flowing into the intake manifold on the side becomes relatively large. For this reason, simply calculating the fuel injection amount from the output value of the intake pressure sensor (average intake pressure), the pressure difference between the atmospheric pressure, and the engine speed cannot necessarily calculate the fuel injection amount accurately. The air-fuel ratio may deviate, leading to an increase in exhaust emissions and a decrease in drivability.
[0008]
The present invention has been made in view of such circumstances, and therefore has as its object to accurately calculate the fuel injection amount of each cylinder of a two-cylinder internal combustion engine using the output signal of one intake pressure detecting means. It is an object of the present invention to provide a fuel injection control device for an internal combustion engine, which can reduce exhaust emissions and improve drivability.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, according to the fuel injection control device for an internal combustion engine of the first aspect of the present invention, the average intake pressure of both cylinders is absorbed through a communication pipe communicating with the intake manifolds of both cylinders of the two-cylinder internal combustion engine. The first cylinder injection amount calculating means, which is detected by the atmospheric pressure detecting means, calculates the fuel of the first cylinder based on the differential pressure between the average intake pressure and the atmospheric pressure, which decrease due to the intake stroke of the second cylinder, and the internal combustion engine speed. An injection amount is calculated, and the second cylinder injection amount calculation means calculates the fuel injection amount of the second cylinder based on the differential pressure between the average intake pressure and the atmospheric pressure, which decreases due to the intake stroke of the first cylinder, and the internal combustion engine speed. Calculate the amount. As a result, when calculating the fuel injection amount of the two cylinders, the fuel injection amount can be accurately calculated in consideration of the influence of the intake pressure of the intake manifold on the opposite side, thereby reducing exhaust emissions and improving drivability. Can be realized. In addition, only one intake pressure detecting means is required, and it is possible to satisfy the demands of reducing the number of parts and reducing the cost.
[0010]
By the way, according to the test results of the present inventors, the influence of the intake pressure of the intake manifold on the opposite side becomes large in the low load region, and the influence of the intake pressure of the intake manifold on the opposite side in the medium load region and the high load region. Turned out to be relatively small.
[0011]
Therefore, as in claim 2, the first and second cylinder injection amount calculating means performs the calculation of the fuel injection amount by the calculation method of claim 1 only in a low load region, and in other load regions (medium). In the load / high load region), the fuel injection amount of the first cylinder is calculated using the average intake pressure that decreases due to the intake stroke of the first cylinder, and the average intake pressure that decreases due to the intake stroke of the second cylinder is used. Alternatively, the fuel injection amount of the second cylinder may be calculated. Even in this case, substantially the same effect as the first aspect can be obtained.
[0012]
Further, as in claim 3, the first and second cylinder injection amount calculating means performs the calculation of the fuel injection amount by the calculation method of claim 1 only in a low load region, and in other load regions (medium load). In a (high load region), the fuel injection amounts of the first and second cylinders may be calculated based on the throttle opening and the internal combustion engine speed. In other words, in the medium load / high load range, the relationship between the operating state determined by the throttle opening and the engine speed and the intake air amount is well established. By calculating the fuel injection amount based on the rotation speed, it is possible to calculate an appropriate fuel injection amount that matches the actual intake air amount of each cylinder, and reduce the deviation of the air-fuel ratio in the medium load and high load regions. can do.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
[Embodiment (1)]
Hereinafter, an embodiment (1) in which the present invention is applied to a motorcycle will be described with reference to FIGS. An intake manifold 12 is connected to an intake port 10 of each cylinder of a two-cylinder engine 11 which is a two-cylinder internal combustion engine, and an air box 13 is connected to an upstream side of the intake manifold 12 of each cylinder. The air sucked into the cylinder is sucked into the intake manifold 12 of each cylinder. An air cleaner 33 is mounted in the air box 13, and an intake air temperature sensor 14 for detecting an intake air temperature is attached to the air box 13. A throttle valve 15 is attached in the middle of the intake manifold 12 of each cylinder, and the opening of the throttle valve 15 (throttle opening) is detected by a throttle opening sensor 16 (throttle opening detecting means). Further, a fuel injection valve 18 is attached to the intake manifold 12 on the downstream side of the throttle valve 15.
[0014]
On the other hand, the fuel pumped from the fuel tank 19 by the fuel pump 20 is sent to the fuel pipe 21 → the fuel filter 22 → the fuel pipe 23 → the delivery pipe 24 and distributed to the fuel injection valve 18 of each cylinder. Excess fuel in the delivery pipe 24 is returned to the fuel tank 19 through a path from the pressure regulator 25 to the return pipe 26. The pressure regulator 25 adjusts the fuel pressure in the delivery pipe 24 so that the differential pressure between the fuel pressure in the delivery pipe 24 and the intake pressure becomes constant.
[0015]
An ignition plug 27 is attached to the cylinder head of the engine 11 for each cylinder, and a high voltage generated on the secondary side of the ignition coil 28 is applied to the ignition plug 27 of each cylinder at each ignition timing to ignite. The engine 11 includes an engine speed sensor 29 (rotation speed detection means) for outputting a pulse signal (crank angle signal) at every predetermined crank angle in order to detect the engine speed, and a cylinder discrimination sensor for discriminating a specific cylinder. 30 and a water temperature sensor 31 for detecting a cooling water temperature are attached. At a predetermined position of the vehicle body, an atmospheric pressure sensor 32 (atmospheric pressure detecting means) for detecting the atmospheric pressure is attached.
[0016]
As shown in FIG. 2, a thin communication pipe 34 is connected to the downstream side of the throttle valve 15 in the intake manifold 12 of both cylinders, and the communication pipe 34 connects the downstream side of the throttle valve 15 of the intake manifold 12 of both cylinders. Are in communication. An intake pressure sensor 17 (intake pressure detection means) such as a semiconductor pressure sensor is provided in the middle of the communication pipe 34, and the average value of the intake pressures of the intake manifolds 12 of the two cylinders (the intake pressure sensor 17) is provided by the intake pressure sensor 17. Average intake pressure) is detected.
[0017]
The output signal of the intake pressure sensor 17 and the output signals of various sensors such as the aforementioned throttle opening sensor 14 are input to an engine control circuit 35 (see FIG. 1). The engine control circuit 35 is mainly composed of a microcomputer, and a built-in ROM 45 (storage medium) stores an ignition control routine, a fuel injection control routine of FIG. 4, map data of FIGS. 5 and 6, and the like. Is stored.
[0018]
The engine control circuit 35 executes the fuel injection control routine of FIG. 4 to calculate the bottom pressure P2 of the average intake pressure that decreases due to the intake stroke of the second cylinder when calculating the fuel injection amount of the first cylinder. The fuel injection amount of the first cylinder is calculated using the bottom pressure P1 of the average intake pressure that is reduced by the intake stroke of the first cylinder when calculating the fuel injection amount of the second cylinder. Calculate the injection amount.
[0019]
Here, the relationship between the operation stroke of each cylinder of the two-cylinder engine 11 and the behavior of the intake pressure will be described with reference to FIG. The actual intake pressure of each cylinder repeats such a change that it decreases during the intake stroke of each cylinder and increases from the compression to the exhaust stroke. On the other hand, the pressure in the communication pipe 34 detected by the intake pressure sensor 17, that is, the average value (average intake pressure) of the intake pressures of the two cylinders is reduced by the intake stroke of the first cylinder, and the compression stroke of the first cylinder is reduced. , But again decreases during the intake stroke of the second cylinder and increases during the compression stroke of the second cylinder. Therefore, the average intake pressure detected by the intake pressure sensor 17 decreases in both the intake stroke of the first cylinder and the intake stroke of the second cylinder, and the lowest points thereof are the bottom pressures P1 and P2.
[0020]
According to the test results of the present inventors, in the low load region, when the actual intake pressure of the first cylinder decreases, the average cylinder intake pressure of the second cylinder becomes smaller than the decrease width of the bottom pressure P1 of the average intake pressure due to the intake stroke of the first cylinder. The decrease in the bottom pressure P2 of the average intake pressure due to the intake stroke becomes larger, and conversely, when the actual intake pressure of the second cylinder decreases, the decrease in the bottom pressure P2 of the average intake pressure due to the intake stroke of the second cylinder decreases. A test result was obtained that the decrease width of the bottom pressure P1 of the average intake pressure due to the intake stroke of the first cylinder was larger than that of the first cylinder. This is because the intake pressures of the intake manifolds 12 of both cylinders affect each other through the communication pipe 34, and in particular, in a low load region, air flowing from the one intake manifold 12 to the other intake manifold 12 through the communication pipe 34. It is considered that the influence of the flow is relatively large.
[0021]
In consideration of such characteristics, in the present embodiment (1), when calculating the fuel injection amount of the first cylinder, the bottom pressure P2 of the average intake pressure and the atmospheric pressure Pa that decrease due to the intake stroke of the second cylinder are calculated. The fuel injection amount of the first cylinder (basic injection time TP1) is calculated based on the pressure difference of the engine and the engine speed NE, and the fuel injection amount of the second cylinder is reduced by the intake stroke of the first cylinder when calculating the fuel injection amount of the second cylinder. The fuel injection amount (basic injection time TP2) of the second cylinder is calculated based on the differential pressure between the bottom pressure P1 of the average intake pressure and the atmospheric pressure Pa and the engine speed NE. Hereinafter, the processing content of the fuel injection control routine of FIG. 4 for performing the fuel injection amount calculation processing will be described.
[0022]
The fuel injection control routine of FIG. 4 is executed immediately before the fuel injection timing of the first cylinder and the second cylinder. When this routine is started, first, in step 100, the engine speed NE obtained from the output signal of the engine speed sensor 29 is read. In the next step 101, the atmospheric pressure Pa obtained from the output signal of the atmospheric pressure sensor 32 is read. Read. Thereafter, in step 102, it is determined which fuel injection time of the first cylinder or the second cylinder is to be calculated. In this determination method, for example, the output signal (crank angle signal) of the engine speed sensor 29 is counted by a counter, and the cylinder for which the fuel injection time is calculated is determined based on the count value and the output signal of the cylinder determination sensor 30.
[0023]
If it is determined in step 102 that the fuel injection time of the first cylinder is to be calculated, the process proceeds to step 103, in which the bottom pressure P2 of the average intake pressure that decreases due to the intake stroke of the second cylinder is read. Thereafter, in step 104, the first cylinder basic pressure is determined based on the differential pressure (Pa-P2) between the bottom pressure P2 of the average intake pressure and the atmospheric pressure Pa, which is reduced by the intake stroke on the second cylinder side, and the engine speed NE. The injection time TP1 is calculated. In this calculation method, the relationship between the differential pressure (Pa−P2), the engine speed NE, and the first cylinder basic injection time TP1 is determined in advance by an experiment or simulation, and the first cylinder basic injection time TP1 shown in FIG. A two-dimensional map is created, and this map is stored in the ROM 45 of the engine control circuit 35. At step 104, this map is searched, and the map is retrieved according to the differential pressure (Pa-P2) at that time and the engine speed NE. The calculated first cylinder basic injection time TP1 is calculated.
[0024]
On the other hand, if it is determined in step 102 that the fuel injection time of the second cylinder is to be calculated, the routine proceeds to step 105, where the bottom pressure P1 of the average intake pressure that decreases due to the intake stroke of the first cylinder is read. Thereafter, the routine proceeds to step 106, where the second pressure is determined based on the differential pressure (Pa-P1) between the bottom pressure P1 of the average intake pressure and the atmospheric pressure Pa, which is reduced by the intake stroke on the first cylinder side, and the engine speed NE. The cylinder basic injection time TP2 is calculated from the two-dimensional map of the second cylinder basic injection time TP2 in FIG. The map of FIG. 6 is set in the same manner as the map of FIG.
[0025]
After calculating the basic injection time TP1 or TP2 of the first cylinder or the second cylinder as described above, the routine proceeds to step 107, where the warm-up increase correction coefficient corresponding to the output signal (cooling water temperature) of the water temperature sensor 31 Various correction coefficients K, such as an increase correction coefficient and an intake temperature correction coefficient corresponding to an output signal (intake temperature) of the intake temperature sensor 14, are calculated.
[0026]
Thereafter, in step 108, a response delay time of the fuel injection valve 18, that is, an invalid injection time TV is calculated based on the power supply voltage. In the next step 109, the pulse of the injection pulse output to the fuel injection valve 18 of each cylinder is calculated. The width of the final injection time TAU1 or TAU2 is calculated. In step 109, if the first cylinder basic injection time TP1 has been calculated in step 104, the first cylinder final injection time is calculated using the first cylinder basic injection time TP1, various correction coefficients K, and the invalid injection time TV. The injection time TAU1 is calculated by the following equation.
TAU1 = TP1 × K + TV
[0027]
On the other hand, if the second cylinder basic injection time TP2 has been calculated in step 106, then in step 109, the second cylinder basic injection time TP2, various correction coefficients K, and the invalid injection time TV are used to determine the second cylinder final injection time TP2. The injection time TAU2 is calculated by the following equation.
TAU2 = TP2 × K + TV
[0028]
In this case, the processing of steps 103 → 104 → 107 → 108 → 109 functions as the first cylinder injection amount calculating means described in the claims, and the processing of steps 105 → 106 → 107 → 108 → 109 is described in the claims. It functions as the second cylinder injection amount calculation means.
[0029]
In the fuel injection amount calculation method described above, when calculating the fuel injection amount (fuel injection time) of each of the first and second cylinders, the influence of the intake pressure of the intake manifold 12 on the opposite side is taken into account, The fuel injection amount can be calculated with high accuracy, the deviation of the air-fuel ratio can be reduced, and the reduction of exhaust emission and improvement of drivability can be realized. In addition, only one intake pressure sensor 17 is required, and it is possible to satisfy the demands of reducing the number of parts, reducing the number of assembling steps, and reducing the cost.
[0030]
[Embodiment (2)]
In the above embodiment (1), the fuel injection amount of each of the first and second cylinders is calculated by the same method in the full load range. However, according to the test results of the present inventors, the intake air on the opposite side is calculated. It has been found that the influence of the intake pressure of the manifold 12 is large in a low load region, and that the influence of the intake pressure of the intake manifold 12 on the opposite side is relatively small in a medium load region and a high load region.
[0031]
Therefore, in the embodiment (2) of the present invention shown in FIGS. 7 to 9, the calculation of the fuel injection amount (final injection time TAU1, TAU2) of each of the first and second cylinders by the method of the embodiment (1). Is performed only in the low load range, and in the medium load / high load range, the final injection time TAU1 of the first cylinder is calculated using the bottom pressure P1 of the average intake pressure reduced by the intake stroke on the first cylinder side. The final injection time TAU2 of the second cylinder is calculated using the bottom pressure P2 of the average intake pressure reduced by the intake stroke of the two cylinders.
[0032]
Hereinafter, processing contents of each routine of FIGS. 7 to 9 executed in the present embodiment (2) will be described. The fuel injection control routine of FIG. 7 is executed immediately before the fuel injection timing of the first cylinder and the second cylinder. When this routine is started, first, in steps 201 to 203, the engine speed NE, the atmospheric pressure Pa, and the throttle opening VTA are read. Thereafter, in step 204, it is determined whether the operating state of the engine 11 is in the low load region. This determination is made, for example, if the engine speed NE is equal to or lower than a predetermined engine speed and the throttle opening VTA is equal to or lower than the predetermined opening, it is determined that the engine is in a low load area. I do. In addition, instead of the throttle opening VTA, an average intake pressure detected by the intake pressure sensor 17 may be used as a parameter for load determination, and, of course, both the throttle opening VTA and the average intake pressure may be used. good.
[0033]
If it is determined in step 203 that the region is in the low load region, the process proceeds to step 205, where a low load basic injection time calculation routine shown in FIG. 8 is executed. In the low-load basic injection time calculation routine, the intake of the second cylinder is performed when the first cylinder basic injection time TP1 is calculated by the same processing as in steps 102 to 106 in FIG. The first cylinder basic injection time TP1 is calculated based on the engine pressure NE and the pressure difference between the bottom pressure P2 of the average intake pressure and the atmospheric pressure Pa reduced by the stroke (step 301 → 302 → 303), and the second cylinder When calculating the basic injection time TP2, the second cylinder basic injection time TP2 is based on the differential pressure between the bottom pressure P1 of the average intake pressure and the atmospheric pressure Pa, which is reduced by the intake stroke on the first cylinder side, and the engine speed NE. Is calculated (step 301 → 304 → 305).
[0034]
On the other hand, if it is determined in step 206 in FIG. 7 that the region is a medium-load / high-load region, the process proceeds to step 206 to execute a medium-load / high-load basic injection time calculation routine shown in FIG. In the medium load / high load basic injection time calculation routine, the bottom pressure of the average intake pressure used for calculating the basic injection time is opposite to that at low load, and the first cylinder basic injection time TP1 is calculated when calculating the first cylinder basic injection time TP1. The first cylinder basic injection time TP1 is calculated based on the engine pressure NE and the pressure difference between the bottom pressure P1 of the average intake pressure and the atmospheric pressure Pa, which decrease due to the intake stroke on the cylinder side, and the engine speed NE (steps 311 → 312 → 313). When calculating the basic injection time TP2 for the second cylinder, the second cylinder based on the differential pressure between the bottom pressure P2 of the average intake pressure and the atmospheric pressure Pa, which is reduced by the intake stroke on the second cylinder side, and the engine speed NE. The basic injection time TP2 is calculated (steps 311 → 314 → 315).
[0035]
After calculating the basic injection time TP1 or TP2 of the first cylinder or the second cylinder as described above, the process returns to step 207 of FIG. 7, and after calculating the various correction coefficients K as in the embodiment (1), The invalid injection time TV is calculated (step 208), and the final injection time TAU1 or TAU2, which is the pulse width of the injection pulse output to the fuel injection valve 18 of each cylinder, is calculated (step 209).
In the embodiment (2) described above, the same effect as in the embodiment (1) can be obtained.
[0036]
[Embodiment (3)]
In the above embodiment (2), the basic injection time of each cylinder is calculated from the average intake pressure and the engine speed even in the medium load / high load region. However, in the medium load / high load region, the throttle opening and the engine speed are calculated. The basic injection time of each cylinder may be calculated based on the number. In other words, in the medium-load / high-load region, the operating state determined by the throttle opening and the engine speed and the intake air amount are well-correlated, so that the throttle opening and the engine speed at medium-load / high load are good. By calculating the basic injection time of each cylinder based on the above, it is possible to calculate an appropriate fuel injection amount corresponding to the actual intake air amount of each cylinder, and to calculate the deviation of the air-fuel ratio in the medium load / high load region. Can be reduced.
[0037]
FIG. 10 shows a routine for calculating the basic injection time at medium load / high load executed in the embodiment (3) that embodies this. Except for the routine for calculating the basic injection time at medium load / high load, the routine is the same as that of the above-described embodiment (2). Therefore, also in this embodiment (3), each routine of FIGS. In this embodiment (3), if it is determined in step 206 in FIG. 7 that the vehicle is in the medium load / high load region, the routine executes the medium injection / high load basic injection time calculation routine in FIG. The basic injection times TP1 and TP2 for each cylinder are calculated based on the engine speed NE and the engine speed NE (step 321). In this calculation method, a relationship between the throttle opening degree VTA, the engine speed NE, and the basic injection time TP1 is obtained in advance by an experiment or simulation, and a two-dimensional map of the basic injection time is created. The basic injection time TP1 corresponding to the throttle opening VTA and the engine speed NE at that time is calculated (in this case, TP2 = TP1).
[0038]
In the embodiment (1), the atmospheric pressure is detected by the atmospheric pressure sensor 32. However, the output value of the intake pressure sensor 17 immediately after the start of the engine or the output value of the intake pressure sensor 17 after a predetermined time has elapsed since the engine was stopped. The atmospheric pressure Pa may be taken into the engine control circuit 35 and stored in a backup RAM (not shown), and the stored value may be used as the atmospheric pressure Pa 2. In this case, the atmospheric pressure sensor 32 becomes unnecessary.
[0039]
In addition, the present invention is not limited to two-wheeled vehicles, but can be applied to four-wheeled vehicles.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an entire engine control system showing an embodiment (1) of the present invention; FIG. 2 is a schematic diagram of an intake system; FIG. 3 is an operation process of each cylinder and an actual intake pressure of each cylinder; FIG. 4 is a flowchart showing a flow of a fuel injection control routine executed in the embodiment (1). FIG. 5 is a conceptual diagram showing a first cylinder basic injection time map. FIG. 6 is a diagram conceptually showing a second cylinder basic injection time map. FIG. 7 is a flowchart showing a flow of a fuel injection control routine executed in an embodiment (2). FIG. 8 is an embodiment (2). FIG. 9 is a flowchart showing the flow of a low-load basic injection time calculation routine executed in the embodiment. FIG. 9 is a flowchart showing the processing flow of a medium-load / high load basic injection time calculation routine executed in the embodiment (2). 10) Real Embodiment (3) Flowchart [EXPLANATION OF SYMBOLS] showing the flow of processing load and high load basic injection time calculation routine in running on
11: engine (internal combustion engine), 12: intake manifold, 15: throttle valve, 16: throttle opening sensor (throttle opening detection means), 17: intake pressure sensor (intake pressure detection means), 18: fuel injection valve, 29: engine speed sensor (rotation speed detecting means), 32: atmospheric pressure sensor (atmospheric pressure detecting means), 34: communication pipe, 35 ... engine control circuit (first cylinder injection amount calculating means, first cylinder injection amount calculation) Means), 45 ... ROM.

Claims (3)

2気筒内燃機関の各気筒の燃料噴射量を制御する燃料噴射制御装置において、
内燃機関回転数を検出する回転数検出手段と、
大気圧を検出する大気圧検出手段と、
両気筒の吸気マニホールドに連通する連通管を通して両気筒の平均吸気圧を検出する吸気圧検出手段と、
第1気筒の燃料噴射量を算出する際に第2気筒側の吸気行程により低下する平均吸気圧と大気圧との差圧と内燃機関回転数とに基づいて第1気筒の燃料噴射量を算出する第1気筒噴射量算出手段と、
第2気筒の燃料噴射量を算出する際に第1気筒側の吸気行程により低下する平均吸気圧と大気圧との差圧と内燃機関回転数とに基づいて第2気筒の燃料噴射量を算出する第2気筒噴射量算出手段と
を備えていることを特徴とする内燃機関の燃料噴射制御装置。
In a fuel injection control device for controlling a fuel injection amount of each cylinder of a two-cylinder internal combustion engine,
Rotation speed detection means for detecting the rotation speed of the internal combustion engine,
Atmospheric pressure detecting means for detecting atmospheric pressure;
Intake pressure detecting means for detecting the average intake pressure of both cylinders through a communication pipe communicating with the intake manifolds of both cylinders;
When calculating the fuel injection amount of the first cylinder, the fuel injection amount of the first cylinder is calculated based on the pressure difference between the average intake pressure and the atmospheric pressure, which decrease due to the intake stroke of the second cylinder, and the internal combustion engine speed. A first cylinder injection amount calculating means,
When calculating the fuel injection amount of the second cylinder, the fuel injection amount of the second cylinder is calculated based on the differential pressure between the average intake pressure and the atmospheric pressure, which decrease due to the intake stroke of the first cylinder, and the internal combustion engine speed. A fuel injection control device for an internal combustion engine, comprising:
前記第1気筒噴射量算出手段は、前記第2気筒側の吸気行程により低下する平均吸気圧を用いた第1気筒の燃料噴射量の算出を低負荷領域でのみ実施し、その他の負荷領域では第1気筒側の吸気行程により低下する平均吸気圧を用いて第1気筒の燃料噴射量を算出し、
前記第2気筒噴射量算出手段は、前記第1気筒側の吸気行程により低下する平均吸気圧を用いた第2気筒の燃料噴射量の算出を低負荷領域でのみ実施し、その他の負荷領域では第2気筒側の吸気行程により低下する平均吸気圧を用いて第2気筒の燃料噴射量を算出することを特徴とする請求項1に記載の内燃機関の燃料噴射制御装置。
The first cylinder injection amount calculation means calculates the fuel injection amount of the first cylinder using the average intake pressure reduced by the intake stroke of the second cylinder only in a low load region, and in other load regions. A fuel injection amount of the first cylinder is calculated using an average intake pressure that is reduced by an intake stroke of the first cylinder,
The second cylinder injection amount calculation means calculates the fuel injection amount of the second cylinder using the average intake pressure reduced by the intake stroke of the first cylinder only in a low load region, and in other load regions. 2. The fuel injection control device for an internal combustion engine according to claim 1, wherein the fuel injection amount of the second cylinder is calculated using an average intake pressure reduced by an intake stroke of the second cylinder.
スロットル開度を検出するスロットル開度検出手段を備え、
前記第1気筒噴射量算出手段は、前記第2気筒側の吸気行程により低下する平均吸気圧を用いた第1気筒の燃料噴射量の算出を低負荷領域でのみ実施し、その他の負荷領域ではスロットル開度と内燃機関回転数とに基づいて第1気筒の燃料噴射量を算出し、
前記第2気筒噴射量算出手段は、前記第1気筒側の吸気行程により低下する平均吸気圧を用いた第2気筒の燃料噴射量の算出を低負荷領域でのみ実施し、その他の負荷領域ではスロットル開度と内燃機関回転数とに基づいて第2気筒の燃料噴射量を算出することを特徴とする請求項1に記載の内燃機関の燃料噴射制御装置。
A throttle opening detecting means for detecting a throttle opening;
The first cylinder injection amount calculation means calculates the fuel injection amount of the first cylinder using the average intake pressure reduced by the intake stroke of the second cylinder only in a low load region, and in other load regions. Calculating the fuel injection amount of the first cylinder based on the throttle opening and the internal combustion engine speed;
The second cylinder injection amount calculation means calculates the fuel injection amount of the second cylinder using the average intake pressure reduced by the intake stroke of the first cylinder only in a low load region, and in other load regions. 2. The fuel injection control device for an internal combustion engine according to claim 1, wherein a fuel injection amount of the second cylinder is calculated based on a throttle opening and an internal combustion engine speed.
JP09183297A 1997-04-10 1997-04-10 Fuel injection control device for internal combustion engine Expired - Lifetime JP3603979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09183297A JP3603979B2 (en) 1997-04-10 1997-04-10 Fuel injection control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09183297A JP3603979B2 (en) 1997-04-10 1997-04-10 Fuel injection control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH10280995A JPH10280995A (en) 1998-10-20
JP3603979B2 true JP3603979B2 (en) 2004-12-22

Family

ID=14037583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09183297A Expired - Lifetime JP3603979B2 (en) 1997-04-10 1997-04-10 Fuel injection control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3603979B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4236556B2 (en) * 2002-12-25 2009-03-11 株式会社デンソー Fuel injection control device for internal combustion engine
JP4492790B2 (en) * 2004-05-07 2010-06-30 国産電機株式会社 Fuel injection control device for internal combustion engine
JP4399473B2 (en) * 2006-12-01 2010-01-13 三菱電機株式会社 Control device for internal combustion engine
JP6869663B2 (en) * 2016-08-09 2021-05-12 新電元工業株式会社 Drive system and control method of drive system
JP6743654B2 (en) * 2016-10-31 2020-08-19 スズキ株式会社 Fuel injection amount determination method and fuel injection amount determination device

Also Published As

Publication number Publication date
JPH10280995A (en) 1998-10-20

Similar Documents

Publication Publication Date Title
CN101087939B (en) Method for operating an internal combustion engine
JP3365197B2 (en) EGR control device for internal combustion engine
EP1445455A2 (en) Fuel property determination system
JPH0518287A (en) Fuel injection type internal combustion engine
JPH05195840A (en) Electronically controlled fuel supply device for internal combustion engine
JP4024629B2 (en) Fuel injection device for internal combustion engine
JP3603979B2 (en) Fuel injection control device for internal combustion engine
JP2003161200A (en) Electronic control system of internal-combustion engine
US20120298080A1 (en) Method for operating an internal combustion engine, control element, internal combustion engine
JP3838526B2 (en) Fuel injection control device and fuel injection control method for internal combustion engine
JP5574859B2 (en) Method for detecting intake air amount of internal combustion engine
JP3959655B2 (en) Fuel injection control device for internal combustion engine
US7231909B2 (en) Air intake apparatus and control apparatus for an internal combustion engine
JP3846195B2 (en) Fuel injection control device for internal combustion engine
JP4000539B2 (en) Fuel injection control device for internal combustion engine
JP2004308532A (en) Fuel injection control device for multicylinder engine
JPH09317568A (en) Abnormality detecting device for diesel engine
JP3767063B2 (en) Air-fuel ratio control device for internal combustion engine
JPH08200119A (en) Fuel injection amount controller of internal combustion engine
JP2019090330A (en) Intake pressure estimation device for engine
JP2911054B2 (en) Supercharge pressure control method for FFV engine
JP7206625B2 (en) Control device for internal combustion engine
JP3966463B2 (en) Fuel injection device for internal combustion engine
JP2002115584A (en) Fuel injection control device for internal combustion engine
JP2004245062A (en) Variable intake device for internal combustion engine

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040922

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040922

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term