JPH10274521A - Contour measurement data correction method and contour measuring machine - Google Patents

Contour measurement data correction method and contour measuring machine

Info

Publication number
JPH10274521A
JPH10274521A JP9282697A JP9282697A JPH10274521A JP H10274521 A JPH10274521 A JP H10274521A JP 9282697 A JP9282697 A JP 9282697A JP 9282697 A JP9282697 A JP 9282697A JP H10274521 A JPH10274521 A JP H10274521A
Authority
JP
Japan
Prior art keywords
linear encoder
measurement data
correction value
narrow range
stylus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9282697A
Other languages
Japanese (ja)
Other versions
JP3265318B2 (en
Inventor
Masafumi Sedaka
雅文 瀬高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP09282697A priority Critical patent/JP3265318B2/en
Publication of JPH10274521A publication Critical patent/JPH10274521A/en
Application granted granted Critical
Publication of JP3265318B2 publication Critical patent/JP3265318B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method and a contour measuring machine therewith, by which the narrow range of a linear encoder can be corrected easily, which has difficulty in generating a difference depending upon a worker, and has minimum possibility to cause a secular change in the contour measuring machine which detects a displacement amount in the moving direction (X-direction) of a stylus and a perpendicular direction (Z-direction) to it, using the linear encoder. SOLUTION: A reference gauge having a high flatness surface is measured, a least square straight line is calculated for the measurement data of the one corresponding to the narrow range of a linear encoder to obtain the variation in the respective measurement data from the least square straight line, and the variation is taken as a narrow range correction value. The measurement data are outputted from the two linear encoders in Z-direction and X- direction, therefore, the reference gauge is first measured in a condition as inclined by a small angle to such a degree as the output of the X-direction is negligible, and the correction value of the Z-direction is calculated from the measurement data. Next, it is measured in a condition as inclined by a large angle within a range of such a degree as a stylus can trace the reference gauge accurately. After the measurement data are corrected by the correction value in the Z-direction, the correction value in the X-direction is calculated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ワークの輪郭形状
を求める輪郭形状測定機に係わり、特に、触針の移動方
向及びそれに直角な方向の変位量をリニアエンコーダで
検出する輪郭形状測定機の測定データの補正方法及びそ
れを備えた輪郭形状測定機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a contour shape measuring device for determining a contour shape of a workpiece, and more particularly to a contour shape measuring device for detecting a moving direction of a stylus and a displacement amount in a direction perpendicular thereto with a linear encoder. The present invention relates to a method for correcting measurement data and a contour shape measuring instrument provided with the method.

【従来の技術】[Prior art]

【0002】図7に一般的な輪郭形状測定機の測定部4
0を示す。図7に示すように、測定部40は、ベース4
1に立設されたコラム42に送り装置43が設けられ、
触針49を有し触針49のZ方向(鉛直方向)の変位量
を検出する検出器44が、送り装置43にX方向(水平
方向)移動自在に設けられている。送り装置43には検
出器44の移動量(Z方向との名称を統一するために、
本明細書ではX方向についても「変位量」という)を検
出するリニアエンコーダが内蔵されている。これによっ
て、ワークWの測定位置に触針49を当接した状態で検
出器44をX方向に移動させると、触針49のZ方向の
変位量が検出器44で検出され、検出器44のX方向の
変位量が送り装置43のスケールで検出されて、測定デ
ータ(触針49のX及びZ方向の変位データ)が得られ
る。そして、測定データからワークWの輪郭形状が演算
され、その結果がCRTやX−Yレコーダーに出力され
る。
FIG. 7 shows a measuring section 4 of a general contour shape measuring machine.
Indicates 0. As shown in FIG. 7, the measuring unit 40
A feed device 43 is provided on a column 42 erected at 1
A detector 44 having the stylus 49 and detecting the amount of displacement of the stylus 49 in the Z direction (vertical direction) is provided on the feed device 43 so as to be movable in the X direction (horizontal direction). The moving amount of the detector 44 (in order to unify the name with the Z direction,
In this specification, a linear encoder that detects the “displacement amount” in the X direction is also built in. Accordingly, when the detector 44 is moved in the X direction in a state where the stylus 49 is in contact with the measurement position of the workpiece W, the amount of displacement of the stylus 49 in the Z direction is detected by the detector 44. The amount of displacement in the X direction is detected by the scale of the feed device 43, and measurement data (displacement data of the stylus 49 in the X and Z directions) is obtained. Then, the contour shape of the work W is calculated from the measurement data, and the result is output to a CRT or an XY recorder.

【0003】検出器44の検出方式としては差動トラン
ス等が用いられるものもあるが、差動トランス等は測定
誤差が検出範囲に比例するので、輪郭形状測定のように
測定範囲が比較的広い場合は、X方向の変位量の検出と
同様にリニアエンコーダが用いられることが多くなって
きている。
As a detecting method of the detector 44, a differential transformer or the like may be used. However, since the measuring error of the differential transformer or the like is proportional to the detecting range, the measuring range is relatively wide like the contour shape measurement. In such a case, a linear encoder is often used as in the case of detecting the displacement amount in the X direction.

【0004】ところで、リニアエンコーダとしては一般
的に光電式が多く用いられる。光電式リニアエンコーダ
では精密に目盛りが刻まれたスケールを基準とし、その
目盛りを読取りヘッドで計数することによって変位量を
検出するが、目盛りと目盛りとの間(狭範囲)の変位量
についても微細に検出することができる。つまり、読取
りヘッドにも精密に刻まれた目盛りが設けられており、
狭範囲内で変位するとスケールの目盛りと読取りヘッド
の目盛りとの相対位置が変化して、光量が正弦波的に変
化するので、これを電気的に分割して微細な変位量を求
める。例えば、狭範囲としては10〜20μm、これを
50〜100に分割する。
In general, photoelectric encoders are generally used as linear encoders. In the photoelectric linear encoder, the displacement is detected by counting the scale with a read head based on the scale on which the scale is precisely engraved, but the displacement between the scales (narrow range) is also minute. Can be detected. In other words, the read head is also provided with precisely engraved scales,
If the displacement is made within a narrow range, the relative position between the scale of the scale and the scale of the read head changes, and the light quantity changes sinusoidally. This is electrically divided to obtain a fine displacement. For example, the narrow range is 10 to 20 μm, which is divided into 50 to 100.

【0005】[0005]

【発明が解決しようとする課題】この場合、広範囲はス
ケールの目盛り間の距離の精度がそのまま測定精度とし
て現れるのでスケールの製作精度に依存するが、狭範囲
は読取りヘッドとの位置関係(スケールと読取りヘッド
の目盛り同士の相対的な傾きやスケールと読取りヘッド
との隙間等)によって影響される。すなわち、スケール
と読取りヘッドとの位置関係が正しく調整されないと、
正しい正弦波形が得られないので検出された値に誤差が
発生する。通常、狭範囲の調整方法としては、出力が互
いに位相が90゜ずれるように読取りヘッド内に設けら
れた2つの光電センサーの出力を、X−Yのグラフにプ
ロットさせ、プロット図形(リサージュ波形)が真円に
なるように、スケールと読取りヘッドとの位置関係を調
整する。図8で示したのは、真円Jに対してリサージュ
波形Kが楕円になっている例であり、真円Jに対する差
δが誤差を表している。
In this case, the accuracy of the distance between the scales in the wide range depends on the manufacturing accuracy of the scale because the accuracy of the distance between the scales appears directly as the measurement accuracy. (Eg, the relative inclination between the scales of the read head and the gap between the scale and the read head). That is, if the positional relationship between the scale and the read head is not correctly adjusted,
Since a correct sine waveform cannot be obtained, an error occurs in the detected value. Usually, as a method for adjusting the narrow range, the outputs of two photoelectric sensors provided in the read head are plotted on an XY graph so that the outputs are 90 ° out of phase with each other, and plotted (Lissajous waveform) Is adjusted so that is a perfect circle. FIG. 8 shows an example in which the Lissajous waveform K is elliptical with respect to the perfect circle J, and the difference δ with respect to the perfect circle J represents an error.

【0006】しかしながら、このような調整を行うため
には多くの時間がかかり、調整精度には作業者による個
人差が生じやすい。また、スケールと読取りヘッドとの
位置関係は機械的に調整しいてるので一度正しく調整さ
れてたとしても、温度変化や振動などで経年変化するお
それは免れられない。
[0006] However, it takes a lot of time to perform such an adjustment, and the adjustment accuracy is likely to vary from individual to individual. Further, since the positional relationship between the scale and the read head is mechanically adjusted, even if it is correctly adjusted once, the possibility of aging due to temperature change, vibration, or the like is inevitable.

【0007】本発明はこのような事情に鑑みてなされた
もので、触針49の移動方向(X方向)及びそれに直角
な方向(Z方向)の変位量をリニアエンコーダで検出す
る輪郭形状測定機において、リニアエンコーダの狭範囲
を容易に補正することができて、作業者による差が生じ
にくく、経年変化するおそれが極めて小さい方法及びそ
れを備えた輪郭形状測定機を提供することを目的とす
る。
The present invention has been made in view of such circumstances, and a contour shape measuring device for detecting a displacement amount of a moving direction (X direction) of a stylus 49 and a direction perpendicular to the direction (Z direction) by a linear encoder. In the above, it is an object of the present invention to provide a method capable of easily correcting a narrow range of a linear encoder, hardly causing a difference between operators, and having a very small possibility of aging, and a contour shape measuring instrument provided with the method. .

【0008】[0008]

【課題を解決するための手段】本発明は前記目的を達成
するために、高平面度面を有する基準ゲージを斜めにし
て測定し、得られた測定データのうちリニアエンコーダ
の狭範囲に相当する分の測定データについて、最小二乗
直線を算出するとともにその最小二乗直線からの個々の
測定データの偏差を求め、得られた偏差をリニアエンコ
ーダの狭範囲補正値とするようにする。
According to the present invention, in order to achieve the above object, a reference gauge having a high flatness surface is measured obliquely, and the obtained measurement data corresponds to a narrow range of a linear encoder. For the measured data of the minute, a least-square straight line is calculated, a deviation of each measured data from the least-square straight line is obtained, and the obtained deviation is used as a narrow range correction value of the linear encoder.

【0009】この場合、測定データはZ方向とX方向の
2つのリニアエンコーダから出力されるので、補正値の
算出に当たってはZ方向とX方向とを分離して行う。つ
まり、まず、X方向の出力が無視できる程度小さくなる
ように、基準ゲージの高平面度面を水平面に対して小さ
な角度傾けた状態で測定し、その測定データからZ方向
の補正値を算出する。次に、触針が基準ゲージを正確に
トレースできる程度の範囲内で大きな角度傾けた状態で
測定し、その測定データをZ方向の補正値で補正した
後、X方向の補正値を算出する。
In this case, since the measurement data is output from the two linear encoders in the Z direction and the X direction, the calculation of the correction value is performed separately in the Z direction and the X direction. That is, first, measurement is performed with the high flatness surface of the reference gauge inclined at a small angle with respect to the horizontal plane so that the output in the X direction is negligibly small, and a correction value in the Z direction is calculated from the measurement data. . Next, measurement is performed in a state in which the stylus is inclined at a large angle within a range where the stylus can accurately trace the reference gauge, and the measurement data is corrected by a correction value in the Z direction, and then a correction value in the X direction is calculated.

【0010】[0010]

【発明の実施の形態】本発明に係る輪郭形状測定機の実
施の形態のブロック図を図3に示す。図3に示すよう
に、測定部40は従来の技術(図7)で説明したよう
に、ワークWの表面に触針49を当接させながら触針4
9をワークWに対して相対的に移動させ、触針49のZ
方向及びX方向の変位量をリニアエンコーダで検出する
ものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 3 is a block diagram showing an embodiment of a contour shape measuring machine according to the present invention. As shown in FIG. 3, the measuring unit 40 makes the stylus 4 contact the stylus 49 against the surface of the workpiece W as described in the related art (FIG. 7).
9 relative to the workpiece W, and
The displacement amount in the direction and the X direction is detected by a linear encoder.

【0011】Z補正値算出部31は、基準ゲージGの高
平面度面Gaを水平面に対して小さな角度傾けて測定し
得られた測定データのうち、検出器44に内蔵されたZ
リニアエンコーダの狭範囲に相当する測定データについ
て、最小二乗直線を算出するとともにその最小二乗直線
からの個々の測定データの偏差を求め、得られた偏差を
Zリニアエンコーダの狭範囲補正値δzとする。Z補正
値記憶部32は、狭範囲補正値δzを記憶する。
The Z-correction value calculating section 31 calculates a Z-correction value of the Z-level data contained in the detector 44 from the measurement data obtained by measuring the high flatness plane Ga of the reference gauge G at a small angle with respect to the horizontal plane.
For the measurement data corresponding to the narrow range of the linear encoder, a least-square straight line is calculated, and the deviation of each measurement data from the least-square straight line is obtained. The obtained deviation is used as the narrow-range correction value δz of the Z linear encoder. . The Z correction value storage unit 32 stores the narrow range correction value δz.

【0012】同様に、X補正値算出部33は、基準ゲー
ジGを大きな角度傾けて高平面度面Gaを測定し得られ
た測定データのうち、送り装置43に内蔵されたXリニ
アエンコーダの狭範囲に相当する測定データについて、
先に求めた狭範囲補正値δzで補正した後、最小二乗直
線を算出するとともにその最小二乗直線からの個々の測
定データの偏差を求め、得られた偏差をXリニアエンコ
ーダの狭範囲補正値δxとする。X補正値記憶部34
は、狭範囲補正値δxを記憶する。
Similarly, the X correction value calculating section 33 calculates the narrowness of the X linear encoder built in the feeder 43 from the measurement data obtained by measuring the high flatness surface Ga by inclining the reference gauge G by a large angle. For the measurement data corresponding to the range,
After correcting with the narrow range correction value δz previously obtained, the least square line is calculated, and the deviation of each measurement data from the least square line is obtained. The obtained deviation is used as the narrow range correction value δx of the X linear encoder. And X correction value storage unit 34
Stores the narrow range correction value δx.

【0013】以上が補正値の算出部分であり、前述した
狭範囲補正値δz及びδxが設定記憶された後にワーク
を測定すると、Z測定データ補正部35は、検出器44
から出力された触針49のZ方向の変位量を、Z補正値
記憶部32から出力された狭範囲補正値δzを用いて補
正する。また、X測定データ補正部36は、検出器44
のX方向の変位量を、X補正値記憶部34から出力され
た狭範囲補正値δxを用いて補正する。そして、輪郭形
状算出部37はZ測定データ補正部35及びX測定デー
タ補正部36で補正された測定データによってワークの
輪郭形状を算出する。
The above is the calculation of the correction value. When the workpiece is measured after the narrow-range correction values δz and δx are set and stored, the Z-measurement data correction unit 35
Is corrected using the narrow-range correction value δz output from the Z-correction-value storage unit 32. Further, the X measurement data correction unit 36 includes a detector 44.
Is corrected using the narrow range correction value δx output from the X correction value storage unit 34. Then, the contour shape calculation unit 37 calculates the contour shape of the workpiece based on the measurement data corrected by the Z measurement data correction unit 35 and the X measurement data correction unit 36.

【0014】図1に示したフローチャートは、狭範囲補
正値δz及び狭範囲補正値δxを算出する手順である。
また、図3は狭範囲補正値δz算出のための基準ゲージ
測定説明図、図4は狭範囲補正値δzの算出説明図、図
5は狭範囲補正値δx算出のための基準ゲージ測定説明
図、図6は狭範囲補正値δxの算出説明図である。
The flowchart shown in FIG. 1 is a procedure for calculating the narrow range correction value δz and the narrow range correction value δx.
3 is an explanatory diagram of a reference gauge measurement for calculating a narrow range correction value δz, FIG. 4 is an explanatory diagram of a calculation of a narrow range correction value δz, and FIG. 5 is an explanatory diagram of a reference gauge measurement for calculating a narrow range correction value δx. FIG. 6 is an explanatory diagram for calculating the narrow range correction value δx.

【0015】まず、平面度精度の高い面(高平面度面G
a)を有する基準ゲージGを、X方向の出力が無視でき
る程度の小さな角度(例えばθa=2.5゜)傾けて測
定部40にセットし(ステップ11)高平面度面Gaを
測定する(ステップ12)。そして、得られた全測定デ
ータ(図3でLa)の中からZリニアエンコーダの狭範
囲Za(例えばZa=10μm)分の測定データが得ら
れる補正区間Maを設定し(ステップ13)、補正区間
Ma内の測定データについて最小二乗直線Baを算出し
(ステップ14)、その最小二乗直線BaからのZ方向
偏差を個々の測定データごとに求め、得られた偏差をZ
リニアエンコーダの狭範囲補正値δzとする(ステップ
15)。そして狭範囲補正値δzを記憶する(ステップ
16)。なお、θa=2.5゜、Za=10μmの場
合、触針49の必要なX方向変位量(補正区間Maと同
じ)は250μm程度になる。
First, a surface having high flatness accuracy (high flatness surface G)
The reference gauge G having (a) is set in the measuring unit 40 at a small angle (for example, θa = 2.5 °) at which the output in the X direction can be ignored (step 11), and the high flatness surface Ga is measured (step 11). Step 12). Then, a correction section Ma in which measurement data for the narrow range Za (for example, Za = 10 μm) of the Z linear encoder is obtained from all the obtained measurement data (La in FIG. 3) (step 13), and the correction section A least-squares straight line Ba is calculated for the measurement data in Ma (step 14), a Z-direction deviation from the least-squares straight line Ba is determined for each individual measurement data, and the obtained deviation is calculated as Z
A narrow range correction value δz of the linear encoder is set (step 15). Then, the narrow range correction value δz is stored (step 16). When θa = 2.5 ° and Za = 10 μm, the necessary amount of displacement of the stylus 49 in the X direction (same as the correction section Ma) is about 250 μm.

【0016】次に、基準ゲージGを、触針49が基準ゲ
ージGを正確にトレースできる程度の範囲内で大きな角
度(例えばθb=45゜)傾けて測定部40にセットし
(ステップ17)高平面度面Gaを測定する(ステップ
18)。そして、得られた全測定データ(図5でLb)
の中からXリニアエンコーダの狭範囲Xa(例えばXa
=10μm)分の測定データが得られる補正区間Mbを
設定し(ステップ19)、補正区間Mb内の測定データ
について狭範囲補正値δzで補正した後(ステップ2
0)、最小二乗直線Bbを算出し(ステップ21)、そ
の最小二乗直線BbからのX方向偏差を個々の測定デー
タごとに求め、得られた偏差をXリニアエンコーダの狭
範囲補正値δxとする(ステップ22)。そして、狭範
囲補正値δxを記憶する(ステップ23)。
Next, the reference gauge G is set in the measuring section 40 at a large angle (eg, θb = 45 °) within a range where the stylus 49 can accurately trace the reference gauge G (step 17). The flatness plane Ga is measured (step 18). Then, all the obtained measurement data (Lb in FIG. 5)
, The narrow range Xa of the X linear encoder (for example, Xa
= 10 μm) is set (step 19), and the measurement data in the correction section Mb is corrected with the narrow range correction value δz (step 2).
0), a least-squares straight line Bb is calculated (step 21), an X-direction deviation from the least-squares straight line Bb is obtained for each measurement data, and the obtained deviation is used as a narrow range correction value δx of the X linear encoder. (Step 22). Then, the narrow range correction value δx is stored (step 23).

【0017】なお、基準ゲージGは専用に製作してもよ
いが、オプチカルフラットやブロックゲージ等を用いて
もよい。いずれも、高精度の平面度面が必要な長さは数
mm程度あればよい。
Although the reference gauge G may be manufactured exclusively, an optical flat or a block gauge may be used. In any case, the length that requires a high-precision flatness plane may be about several mm.

【0018】また、リニアエンコーダの狭範囲検出方式
としては、モアレ縞方式や光干渉方式等があるが、いず
れの場合についても本発明は適用できる。
The narrow range detection method of the linear encoder includes a moiré fringe method and an optical interference method, and the present invention can be applied to any case.

【0019】[0019]

【発明の効果】以上説明したように本発明によれば、触
針の移動方向及びそれに直角な方向の変位量をリニアエ
ンコーダで検出する輪郭形状測定機において、高平面度
面を有する基準ゲージを測定して得られた測定データか
ら、リニアエンコーダの狭範囲補正値を算出し、ワーク
測定時にはその補正値を用いて測定データを補正するよ
うにした。したがって、スケールと読取りヘッドとの正
確な位置関係を機械的に調整しなくてもよいので、リニ
アエンコーダの狭範囲を容易に補正することができ、調
整精度に作業者による個人差が生じたり、一度正しく調
整されてたものが経年変化するおそれもない輪郭形状測
定機を提供することができる。
As described above, according to the present invention, a reference gauge having a high flatness surface is provided in a contour shape measuring instrument for detecting the moving direction of a stylus and the amount of displacement in a direction perpendicular thereto with a linear encoder. A narrow range correction value of the linear encoder is calculated from the measurement data obtained by the measurement, and the measurement data is corrected using the correction value when measuring the workpiece. Therefore, the precise positional relationship between the scale and the read head does not need to be mechanically adjusted, so that the narrow range of the linear encoder can be easily corrected, and the adjustment accuracy may vary between workers, It is possible to provide a contour shape measuring instrument which is once correctly adjusted and is not likely to change over time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る輪郭形状測定データ補正方法の実
施の形態のフローチャート
FIG. 1 is a flowchart of an embodiment of a contour shape measurement data correction method according to the present invention.

【図2】本発明に係る輪郭形状測定機の実施の形態のブ
ロック図
FIG. 2 is a block diagram of an embodiment of a contour shape measuring apparatus according to the present invention.

【図3】本発明に係る輪郭形状測定データ補正方法の実
施の形態のZ方向狭範囲補正値算出のための基準ゲージ
測定説明図
FIG. 3 is an explanatory diagram of reference gauge measurement for calculating a correction value of a narrow range in the Z direction in the embodiment of the contour shape measurement data correction method according to the present invention.

【図4】本発明に係る輪郭形状測定データ補正方法の実
施の形態のZ方向狭範囲補正値算出説明図
FIG. 4 is an explanatory diagram of a Z-direction narrow range correction value calculation according to the embodiment of the contour shape measurement data correction method according to the present invention.

【図5】本発明に係る輪郭形状測定データ補正方法の実
施の形態のX方向狭範囲補正値算出のための基準ゲージ
測定説明図
FIG. 5 is an explanatory diagram of measurement of a reference gauge for calculating a correction value in a narrow range in the X direction in the embodiment of the contour shape measurement data correction method according to the present invention.

【図6】本発明に係る輪郭形状測定データ補正方法の実
施の形態のX方向狭範囲補正値算出説明図
FIG. 6 is an explanatory diagram for calculating an X-direction narrow range correction value in the embodiment of the contour shape measurement data correction method according to the present invention.

【図7】一般的な輪郭形状測定機の測定部外観図FIG. 7 is an external view of a measuring unit of a general contour shape measuring instrument.

【図8】リニアエンコーダのリサージュ波形例FIG. 8 shows an example of a Lissajous waveform of a linear encoder.

【符号の説明】[Explanation of symbols]

11……基準ゲージ設定ステップ 12……基準ゲージ測定ステップ 13……Z補正区間設定ステップ 14……Z基準直線算出ステップ 15……Z補正値算出ステップ 16……Z補正値記憶ステップ 17……基準ゲージ設定ステップ 18……基準ゲージ測定ステップ 19……X補正区間設定ステップ 20……Zデータ補正ステップ 21……X基準直線算出ステップ 22……X補正値算出ステップ 23……X補正値記憶ステップ 11: Reference gauge setting step 12: Reference gauge measurement step 13: Z correction section setting step 14: Z reference straight line calculation step 15: Z correction value calculation step 16: Z correction value storage step 17: Reference Gauge setting step 18 Reference gauge measuring step 19 X correction section setting step 20 Z data correction step 21 X reference straight line calculation step 22 X correction value calculation step 23 X correction value storage step

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】触針の移動方向の変位量を検出するXリニ
アエンコーダ及びその移動方向に直角な方向の前記触針
の変位量を検出するZリニアエンコーダを有し、ワーク
の表面に前記触針を当接させながら前記触針をワークに
対して相対的に移動させ、前記触針の移動方向及びそれ
に直角な方向の変位量を前記Xリニアエンコーダ及び前
記Zリニアエンコーダで検出して、ワークの輪郭形状を
測定する輪郭形状測定機において、 高平面度面を有する基準ゲージのその高平面度面を、前
記触針の移動方向に対して小さな角度傾けて測定し、 得られた測定データのうち、前記Zリニアエンコーダの
狭範囲に相当する測定データについて、最小二乗直線を
算出するとともに、その最小二乗直線からの個々の測定
データの偏差を求め、 得られた偏差を前記Zリニアエンコーダの狭範囲補正値
とし、 前記基準ゲージの高平面度面を、前記触針が基準ゲージ
を正確にトレースできる程度の範囲内で大きな角度傾け
て測定し、 得られた測定データのうち、前記Xリニアエンコーダの
狭範囲に相当する測定データについて、前記Zリニアエ
ンコーダの狭範囲補正値で補正した後、最小二乗直線を
算出するとともに、その最小二乗直線からの個々の測定
データの偏差を求め、 得られた偏差を前記Xリニアエンコーダの狭範囲補正値
とすることを特徴とする輪郭形状測定データ補正方法。
An X linear encoder for detecting an amount of displacement of a stylus in a moving direction and a Z linear encoder for detecting an amount of displacement of the stylus in a direction perpendicular to the moving direction; The stylus is relatively moved with respect to the work while the stylus is in contact with the work, and the X linear encoder and the Z linear encoder detect a moving direction of the stylus and a displacement amount in a direction perpendicular to the moving direction. In a contour shape measuring machine for measuring the contour shape of the reference gauge, the high flatness surface of the reference gauge having a high flatness surface is measured at a small angle with respect to the moving direction of the stylus, and the obtained measurement data A least-squares straight line is calculated for the measurement data corresponding to the narrow range of the Z linear encoder, and deviations of individual measurement data from the least-square line are determined. The narrow range correction value of the Z linear encoder is used. The high flatness surface of the reference gauge is measured at a large angle within a range where the stylus can accurately trace the reference gauge. After correcting the measurement data corresponding to the narrow range of the X linear encoder with the narrow range correction value of the Z linear encoder, a least square line is calculated, and the deviation of each measurement data from the least square line is calculated. Wherein the obtained deviation is used as a narrow range correction value of the X linear encoder.
【請求項2】前記Zリニアエンコーダ及びXリニアエン
コーダが光電式で狭範囲出力が正弦波形であることを特
徴とする請求項1に記載の輪郭形状測定データ補正方
法。
2. The contour shape measurement data correction method according to claim 1, wherein the Z linear encoder and the X linear encoder are photoelectric and have a narrow range output having a sine waveform.
【請求項3】前記小さな角度が2.5゜で、前記大きな
角度が45゜であることを特徴とする請求項1又は請求
項2に記載の輪郭形状測定データ補正方法。
3. The method according to claim 1, wherein the small angle is 2.5 ° and the large angle is 45 °.
【請求項4】触針の移動方向の変位量を検出するXリニ
アエンコーダ及びその移動方向に直角な方向の前記触針
の変位量を検出するZリニアエンコーダを有し、ワーク
の表面に前記触針を当接させながら前記触針をワークに
対して相対的に移動させ、前記触針の移動方向及びそれ
に直角な方向の変位量を前記Xリニアエンコーダ及び前
記Zリニアエンコーダで検出する測定部と、 高平面度面を有する基準ゲージと、 前記基準ゲージの高平面度面を、前記測定部で前記触針
の移動方向に対して小さな角度傾けて測定し得られた測
定データのうち、前記Zリニアエンコーダの狭範囲に相
当する測定データについて、最小二乗直線を算出すると
ともにその最小二乗直線からの個々の測定データの偏差
を求め、得られた偏差を前記Zリニアエンコーダの狭範
囲補正値とするZ補正値算出部と、 前記Zリニアエンコーダの狭範囲補正値を記憶するZ補
正値記憶部と、 前記基準ゲージの高平面度面を、前記測定部で前記触針
が前記基準ゲージを正確にトレースできる程度の範囲内
で大きな角度傾けて測定し得られた測定データのうち、
前記Xリニアエンコーダの狭範囲に相当する測定データ
について、前記Zリニアエンコーダの狭範囲補正値で補
正した後、最小二乗直線を算出するとともにその最小二
乗直線からの個々の測定データの偏差を求め、得られた
偏差を前記Xリニアエンコーダの狭範囲補正値とするX
補正値算出部と、 前記Xリニアエンコーダの狭範囲補正値を記憶するX補
正値記憶部と、を備えたことを特徴とする輪郭形状測定
機。
4. An X-linear encoder for detecting a displacement amount of a stylus in a moving direction and a Z-linear encoder for detecting a displacement amount of the stylus in a direction perpendicular to the moving direction. A measuring unit that moves the stylus relative to the workpiece while abutting the stylus, and detects a moving direction of the stylus and a displacement amount in a direction perpendicular thereto with the X linear encoder and the Z linear encoder; A reference gauge having a high flatness surface, and the measurement data obtained by measuring the high flatness surface of the reference gauge at a small angle with respect to the moving direction of the stylus by the measurement unit, and For the measurement data corresponding to the narrow range of the linear encoder, a least-square straight line is calculated, a deviation of each measurement data from the least-square line is obtained, and the obtained deviation is referred to as the Z linear encoder. A Z correction value calculating unit that sets a narrow range correction value of the Z linear encoder; a Z correction value storage unit that stores a narrow range correction value of the Z linear encoder; Of the measurement data obtained by measuring at a large angle tilt within a range that can accurately trace the reference gauge,
For the measurement data corresponding to the narrow range of the X linear encoder, after correcting with the narrow range correction value of the Z linear encoder, calculate the least square line and determine the deviation of individual measurement data from the least square line, The obtained deviation is used as a narrow range correction value of the X linear encoder.
A contour shape measuring device comprising: a correction value calculation unit; and an X correction value storage unit that stores a narrow range correction value of the X linear encoder.
【請求項5】前記Zリニアエンコーダ及びXリニアエン
コーダが光電式で狭範囲出力が正弦波形であることを特
徴とする請求項4に記載の輪郭形状測定機。
5. The contour shape measuring apparatus according to claim 4, wherein the Z linear encoder and the X linear encoder are photoelectric and have a narrow range output having a sinusoidal waveform.
【請求項6】前記小さな角度が2.5゜で、前記大きな
角度が45゜であることを特徴とする請求項4又は請求
項5に記載の輪郭形状測定機。
6. The contour shape measuring machine according to claim 4, wherein the small angle is 2.5 ° and the large angle is 45 °.
JP09282697A 1997-03-28 1997-03-28 Contour shape measurement data correction method and contour shape measurement machine Expired - Fee Related JP3265318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09282697A JP3265318B2 (en) 1997-03-28 1997-03-28 Contour shape measurement data correction method and contour shape measurement machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09282697A JP3265318B2 (en) 1997-03-28 1997-03-28 Contour shape measurement data correction method and contour shape measurement machine

Publications (2)

Publication Number Publication Date
JPH10274521A true JPH10274521A (en) 1998-10-13
JP3265318B2 JP3265318B2 (en) 2002-03-11

Family

ID=14065248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09282697A Expired - Fee Related JP3265318B2 (en) 1997-03-28 1997-03-28 Contour shape measurement data correction method and contour shape measurement machine

Country Status (1)

Country Link
JP (1) JP3265318B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240201A (en) * 2006-03-06 2007-09-20 Nsk Ltd Taper angle measuring method and apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240201A (en) * 2006-03-06 2007-09-20 Nsk Ltd Taper angle measuring method and apparatus

Also Published As

Publication number Publication date
JP3265318B2 (en) 2002-03-11

Similar Documents

Publication Publication Date Title
KR101912647B1 (en) Method for thickness measurement on measurement objects and device for applying the method
US7131207B2 (en) Workpiece inspection method
JP2764103B2 (en) Method of using analog measuring probe and positioning device
US7286949B2 (en) Method of error correction
JP5255012B2 (en) Calibration method of gear measuring device
US20050283989A1 (en) Method of inspecting workpieces on a measuring machine
US20070033819A1 (en) Measuring methods for use on machine tools
JP2008051696A (en) Optical axis deviation type laser interferometer, its calibration method, correction method, and measuring method
EP2013571A1 (en) Method of error correction
JP3081174B2 (en) Roundness measuring instrument and its detector sensitivity calibration method
CN110530296A (en) A kind of line laser fix error angle determines method
JP3265318B2 (en) Contour shape measurement data correction method and contour shape measurement machine
JP5290038B2 (en) Measuring apparatus and measuring method
JP2008524576A (en) Sequential multi-probe method for straightness measurement of straight rulers
JP5437693B2 (en) Automatic correction value measurement method for spindle or attachment spindle
JP2839341B2 (en) Calibration device for position signal
US20100182611A1 (en) Displacement measuring apparatus and displacement measuring method
JPH09318321A (en) Length-measuring apparatus
JPH05187868A (en) Calculation method of straightness error and correction method of measured value in detector feed direction of rotation-direct-acting function type circularity measurement machine
JP5858673B2 (en) Position measuring device, optical component manufacturing method, and mold manufacturing method
Volk et al. Full scale calibration of a combined tactile contour and roughness measurement device
JPH0476410A (en) Optical type configuration measuring device
JPH04319614A (en) Measuring apparatus for thickness of thin plate
SU1737255A1 (en) Method of measuring deviations from parallel ism of straight lines in plane
JPS58137545A (en) Automatic accurate positioner

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071228

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081228

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees