JP2839341B2 - Calibration device for position signal - Google Patents

Calibration device for position signal

Info

Publication number
JP2839341B2
JP2839341B2 JP20920990A JP20920990A JP2839341B2 JP 2839341 B2 JP2839341 B2 JP 2839341B2 JP 20920990 A JP20920990 A JP 20920990A JP 20920990 A JP20920990 A JP 20920990A JP 2839341 B2 JP2839341 B2 JP 2839341B2
Authority
JP
Japan
Prior art keywords
signal
max
value
peak value
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20920990A
Other languages
Japanese (ja)
Other versions
JPH0496131A (en
Inventor
雄三 瀬尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP20920990A priority Critical patent/JP2839341B2/en
Publication of JPH0496131A publication Critical patent/JPH0496131A/en
Application granted granted Critical
Publication of JP2839341B2 publication Critical patent/JP2839341B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、sinθ、cosθで近似される信号から歪み
成分を取り除き、θの値を精度良く求める装置に関し、
特にエンコーダ,レゾルバ等のアナログ出力を電気的に
処理する装置に応用することにより、微細な位置を精度
良く計測することを可能にした信号校正装置に関するも
のである。
The present invention relates to an apparatus that removes a distortion component from a signal approximated by sin θ and cos θ, and accurately obtains the value of θ.
In particular, the present invention relates to a signal calibration device which can measure a fine position with high accuracy by applying to an apparatus for electrically processing an analog output such as an encoder and a resolver.

〔従来の技術〕[Conventional technology]

自動制御などに用いられる位置計測手段として、エン
コーダ,レゾルバ等のコサイン,サイン信号を出力する
装置が広く用いられている。これらの信号を二値化して
得られるルス列をカウントする装置、または逆正接演算
を行う装置に入力し、位置を表す信号を得ることが行わ
れる。
Devices that output cosine and sine signals, such as encoders and resolvers, are widely used as position measurement means used for automatic control and the like. A signal representing a position is obtained by inputting the signal to a device for counting a Luth sequence obtained by binarizing these signals or a device for performing an arc tangent operation.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

前者の方法は、一回転当たり数百から数千周期の信号
が得られるエンコーダに広く用いられ、後者は一回転当
り一から数周期の信号が得られるレゾルバに一般的に用
いられているが、近年、位置計測装置の分解能向上が求
められるようになると、一回転当りの周期の多いエンコ
ーダ信号を逆正接演算処理して微細な角度を計測するこ
とも行われるようになった。
The former method is widely used for encoders that can obtain signals of hundreds to thousands of cycles per rotation, and the latter method is generally used for resolvers that can obtain signals of one to several cycles per rotation. In recent years, when the resolution of the position measuring device has been required to be improved, an arc tangent operation process is performed on an encoder signal having a large number of cycles per rotation to measure a fine angle.

ところで、逆正接演算による位置の計測はエンコーダ
から出力されるコサイン,サイン信号に歪みが含まれる
と誤差が生じるという問題点があった。
Incidentally, the measurement of the position by the arc tangent operation has a problem that an error occurs when the cosine and sine signals output from the encoder include distortion.

これらの装置には増幅器などのアナログ回路が含ま
れ、ゼロ点のドリフト,ゲインの変動、非直線性という
誤差の原因を含んでいる。
These devices include analog circuits such as amplifiers, and include sources of errors such as drift of zero point, fluctuation of gain, and non-linearity.

この発明は、上記の問題点を解決するためになされた
もので、歪を含む信号をディジタル的に処理して歪を除
去するようにした信号校正装置を提供することを目的と
する。
The present invention has been made to solve the above problems, and has as its object to provide a signal calibrator that digitally processes a signal containing distortion to remove the distortion.

〔課題を解決するための手段〕[Means for solving the problem]

この発明にかかる請求項(1)に記載の発明は、COS
θを含むコサイン信号x及びSinθを含むサイン信号y
からなる位置計測信号から、前記2つの信号に含まれる
歪み成分である第二高調波を除去する位置信号の校正装
置であって、前記コンサイン信号x及びサイン信号y及
びこれらの信号の和及び差のそれぞれの最大値と最小値
を下記d0乃至d7として検出するピーク値検出手段、 d0=max(x),d1=max(x+y),d2=max(y),d3
=min(x−y), d4=min(x),d5=min(x+y),d6=min(y),d7
=max(x−y), パラメータgx,gy,zx,zy,bx,byの値を下式で算出するパ
ラメータ算出手段、 gx=(d0+d4)/2 gy=(d2+d6)/2 zx=(d1−d3−d5+d7)/4 zy=(d1+d3−d5−d7)/4 bx=zx−(d0−d4)/2 by=zy−(d2−d6)/2 及び前記算出されたパラメータ値を用いて下式 x=gx{cosθ−bxcos(2θ)}+zx ……(1) y=gy{sinθ−bycos(2θ)}+zy ……(2) を解いて歪みの除去された位置信号cosθ及びsinθを求
める補正手段を備えたものである。
The invention according to claim (1) according to the present invention is a COS
cosine signal x including θ and sine signal y including Sin θ
A position signal calibration apparatus for removing a second harmonic, which is a distortion component included in the two signals, from the position measurement signal consisting of the consine signal x and the sine signal y, and the sum and sum of these signals. peak value detecting means for detecting the respective maximum and minimum values of the differences as follows d 0 to d 7, d 0 = max ( x), d 1 = max (x + y), d 2 = max (y), d 3
= Min (x-y), d 4 = min (x), d 5 = min (x + y), d 6 = min (y), d 7
= Max (x-y), a parameter g x, g y, z x , z y, b x, parameter calculating means for calculating by the following formula the values of b y, g x = (d 0 + d 4) / 2 g y = (d 2 + d 6 ) / 2 z x = (d 1 −d 3 −d 5 + d 7 ) / 4 z y = (d 1 + d 3 −d 5 −d 7 ) / 4 b x = z x − Using (d 0 −d 4 ) / 2 b y = z y − (d 2 −d 6 ) / 2 and the calculated parameter value, the following equation x = g x {cos θ−b x cos (2θ)} by + z x ...... (1) that a correction means for obtaining a y = g y {sinθ-b y cos (2θ)} + z y ...... (2) position signal cosθ and sin [theta is the removal of distortion solve is there.

さらに、請求項(2)に記載の発明は、前記d0=max
(x),d1=max(x+y),d2=max(y),d3=min(x
−y),d4=min(x),d5=min(x+y),d6=min
(y),d7=max(x−y)を検出するピーク値検出手段
が、θがiπ/4に近いとき、下記の値をdiとして取り込
むことを特徴とする請求項(1)記載の位置信号の校正
装置。
Further, in the invention described in claim (2), the d 0 = max
(X), d 1 = max (x + y), d 2 = max (y), d 3 = min (x
−y), d 4 = min (x), d 5 = min (x + y), d 6 = min
(Y), the peak value detecting means for detecting the d 7 = max (x-y ) is, theta is when close to the i [pi] / 4, claims, characterized in that taking the following values as d i (1), wherein Position signal calibration device.

ただし、iは0から7までの整数、pは1より小さい
正の定数とする。
Here, i is an integer from 0 to 7, and p is a positive constant smaller than 1.

d0=d0+p(x−d0) d1=d1+p(x+y−d1) d2=d2+p(y−d2) d3=d3+p(−x+y−d3) d4=d4+p(−x−d4) d5=d5+p(−x−y−d5) d6=d6+p(−y−d6) d7=d7+p(x−y−d7) としたものである。d 0 = d 0 + p (x−d 0 ) d 1 = d 1 + p (x + y−d 1 ) d 2 = d 2 + p (y−d 2 ) d 3 = d 3 + p (−x + y−d 3 ) d 4 = d 4 + p (-x -d 4) d 5 = d 5 + p (-x-y-d 5) d 6 = d 6 + p (-y-d 6) d 7 = d 7 + p (x-y −d 7 ).

〔作用〕[Action]

この発明にかかる請求項(1)に記載の発明は、ピー
ク値検出手段によりd0=max(x),d1=max(x+y),
d2=max(y),d3=min(x−y),d4=min(x),d5
min(x+y),d6=min(y),d7=max(x−y)を検
出し、この検出された値(ピーク値)を、用いて補正手
段により第(1)式,第(2)式の元信号の補正が行わ
れる。
In the invention according to claim 1 of the present invention, the peak value detecting means uses d 0 = max (x), d 1 = max (x + y),
d 2 = max (y), d 3 = min (xy), d 4 = min (x), d 5 =
min (x + y), d 6 = min (y), d 7 = max (x−y) are detected, and the detected value (peak value) is used by the correcting means using the formula (1), The correction of the original signal of the expression 2) is performed.

また、補正に用いるピーク値の検出を行うのにピーク
値検出手段が、θがiπ/4に近いとき、各ピーク値d0
d7を順次取り込み、これに基づいて元信号の補正が行わ
れる。
Further, when the peak value detecting means for detecting the peak value used for the correction, when θ is close to iπ / 4, each peak value d 0 to
sequentially captures d 7, the correction of the original signal is performed based on this.

〔実施例〕〔Example〕

はじめに、この発明の動作原理について説明する。 First, the operation principle of the present invention will be described.

元信号中のコサイン,サイン関数からのズレとして、
主として増幅回路に起因するゼロ点、振幅のズレと記
録、検出部に起因するクロストークと高調波によるもの
がある。
As deviation from the cosine and sine functions in the original signal,
There are mainly a zero point and an amplitude deviation and recording caused by an amplifier circuit, and a crosstalk and harmonics caused by a detection unit.

第3図(a)〜(c)は各種歪み成分が混入した際の
元信号を、一方をx軸、他方をy軸に取り、二次元的に
プロットしたものである。
FIGS. 3A to 3C are two-dimensional plots of the original signal when various distortion components are mixed, one of which is taken on the x-axis and the other is taken on the y-axis.

第3図(a)は信号xはゼロ点0が0′に移動した場
合を示している。これは、図より明らかなように、xは
最大値と最小値の平均によりゼロ点の移動量を検出する
ことができ、これを元信号から差し引くことで補正を行
うことができる。
FIG. 3 (a) shows the signal x when the zero point 0 moves to 0 '. As is clear from the figure, x can detect the movement amount of the zero point by the average of the maximum value and the minimum value, and can correct the amount by subtracting this from the original signal.

第3図(b)は信号xの振幅が大きくなった場合を示
している。振幅はxは最大値と最小値の差の1/2で求ま
り、元信号を振幅で除算することにより補正を行うこと
ができる。
FIG. 3 (b) shows a case where the amplitude of the signal x has increased. For the amplitude, x is obtained by 1/2 of the difference between the maximum value and the minimum value, and the correction can be performed by dividing the original signal by the amplitude.

増幅回路に非線形性がある場合、主として第二高調波
が問題となる。
When the amplifier circuit has nonlinearity, the second harmonic is mainly a problem.

第3図(c)は第二高調波が混入したときの信号をxy
プロットしたもので、正円に対し大きく歪んでいること
が分かる。
FIG. 3 (c) shows the signal when the second harmonic is mixed in xy
From the plot, it can be seen that there is a large distortion with respect to the perfect circle.

誤差成分がゼロ点および振幅の変動のみである場合、
信号の最大値と最小値を検出することでゼロ点はこれら
の平均値として、振幅はこれらの差の二分の一として求
めることができる。非線形に由来する第二高調波は最大
値を低下させる場合は最小値も低下させ、前記方法では
ゼロ点の変動と誤認することになる。ところで、このよ
うな第二高調波はπ/2ずつ離れた点ではゼロになるた
め、これらの点の値を用いることで第二高調波の影響を
受けることなくゼロ点を求めることができる。また、こ
うして得られたゼロ点と前記最大値と最小値から求めた
ゼロ点との差を求めることで、第二高調波の大きさを次
式から求めることができる。
If the error component is only zero point and amplitude fluctuation,
By detecting the maximum and minimum values of the signal, the zero point can be determined as their average value and the amplitude can be determined as one half of the difference. When the second harmonic derived from the non-linearity lowers the maximum value, it also lowers the minimum value. In the above method, the second harmonic is erroneously recognized as a change in the zero point. By the way, since such a second harmonic becomes zero at points separated by π / 2, a zero point can be obtained by using the values of these points without being affected by the second harmonic. Further, by calculating the difference between the zero point thus obtained and the zero point obtained from the maximum value and the minimum value, the magnitude of the second harmonic can be obtained from the following equation.

x1=(x−zx)/gx=cosθ−bxcos2θ y1=(y−zx)/gy=sinθ+bycos2θ 第二高調波の補正は、bxおよびbyの絶対値が1に比べ
て小さいことから、前記補正信号を用いて倍角公式によ
りcos2θを求め、次式のようにして除去することができ
る。
x 1 = (x-z x ) / g x = cosθ-b x cos2θ y 1 = (y-z x) / g y = sinθ + b y cos2θ correction of the second harmonic, the absolute value of b x and b y Is smaller than 1, cos2θ can be obtained by the double angle formula using the correction signal, and can be removed as in the following equation.

x2=x1+bx(x1 2−y1 2)cosθ y2=y1−by(x1 2−y1 2)sinθ 〔実施例1〕 第1図はこの発明による位置信号の校正装置の第1の
実施例のブロック図を示すもので、実際の処理はマイク
ロプロセッサによってディジタル的に行われる。
of x 2 = x 1 + b x (x 1 2 -y 1 2) cosθ y 2 = y 1 -b y (x 1 2 -y 1 2) sinθ Example 1 Figure 1 is the position signal according to the present invention FIG. 2 shows a block diagram of a first embodiment of the calibration device, in which actual processing is performed digitally by a microprocessor.

この図で、1−1,1−2は正規化手段、2−1,2−2は
第二高調波除去手段、3は逆正接演算手段、4−1はゼ
ロ点パラメータ算出手段、4−2は振幅補正パラメータ
算出手段、5は第二高調波誤差補正用パラメータ算出手
段、10はピーク値検出手段である。
In this figure, 1-1 and 1-2 are normalizing means, 2-1 and 2-2 are second harmonic removing means, 3 is an arctangent calculating means, 4-1 is a zero point parameter calculating means, and 4- 2 is an amplitude correction parameter calculating means, 5 is a second harmonic error correction parameter calculating means, and 10 is a peak value detecting means.

次に、動作について説明する。 Next, the operation will be described.

入力信号x,yは正規化手段1−1,1−2によりゼロ点お
よび振幅を正規化され、ついで第二高調波除去手段2−
1,2−2により第二高調波を除去される。
The input signals x and y are normalized at zero point and amplitude by normalizing means 1-1 and 1-2.
The second harmonic is removed by 1,2-2.

これらの信号は、逆正接演算手段3に入力されθの値
に変換される。ここで用いられる逆正接演算は一般的な
サインとコサインの比のみの関数ではなく、これらの符
号を考慮してθを0から2πにわたる範囲で求める。こ
のような関数はC言語では標準関数atan2として広く知
られている。マイクロプロセッサでこの処理を行う場合
は、メモリ中に逆三角関数表を持ち、これを索引するこ
とで高速処理が可能である。
These signals are input to the arc tangent calculation means 3 and converted into the value of θ. The arc tangent operation used here is not a general function of only the ratio of sine and cosine, but obtains θ in a range from 0 to 2π in consideration of these signs. Such a function is widely known in the C language as a standard function atan2. When this processing is performed by a microprocessor, high-speed processing is possible by having an inverse trigonometric function table in a memory and indexing the table.

一方、ピーク値検出手段10はピーク値d0〜d7を検出
し、このピーク値からゼロ点パラメータ算出手段4−1,
振幅補正パラメータ算出手段4−2によりゼロ点,振幅
補正用のパラメータが、さらに、第二高調波誤差補正用
パラメータ算出手段5により第二高調波誤差補正用パラ
メータがそれぞれ算出される。
On the other hand, the peak value detecting means 10 detects the peak values d 0 to d 7 and, based on the peak values, the zero point parameter calculating means 4-1 and 4-1.
The zero point and the parameter for amplitude correction are calculated by the amplitude correction parameter calculation means 4-2, and the second harmonic error correction parameter is calculated by the second harmonic error correction parameter calculation means 5, respectively.

〔実施例2〕 第2図はこの発明の第2の実施例のブロック図を示す
もので、6−1〜6−8は角度範囲判定手段、7−1〜
7−8はピーク値更新手段であり、その他は第1図と同
じである。
[Embodiment 2] Fig. 2 is a block diagram showing a second embodiment of the present invention, in which 6-1 to 6-8 denote angle range determining means, and 7-1 to 7-1.
Reference numeral 7-8 denotes a peak value updating means, and the rest is the same as FIG.

角度範囲判定手段6−1〜6−8はθがいずれのピー
ク値検出範囲にあるかどうかを判定するものであり、θ
がいずれかの範囲にある場合は、該当するピーク値更新
手段7−1〜7−8が作動してピーク値を更新する。こ
のピーク値からゼロ点パラメータ算出手段4−1,振幅補
正パラメータ算出手段4−2によりゼロ点Zx,Zy、振幅
補正用パラメータgx,gyが、また、第二高調波誤差補正
用パラメータ算出手段5により第二高調波誤差補正用の
パラメータbx,byがそれぞれ算出される。
The angle range determining means 6-1 to 6-8 determine whether or not θ is in any peak value detection range.
Is in any range, the corresponding peak value updating means 7-1 to 7-8 operates to update the peak value. From the peak values, the zero point Z x , Z y , the amplitude correction parameters g x , g y and the second harmonic error correction are calculated by the zero point parameter calculator 4-1 and the amplitude correction parameter calculator 4-2. parameter b x for the parameter calculation unit 5 second harmonic error correction, b y are calculated.

この発明では、作動中にピーク値が検出される毎に自
動的な補正が行われるため、温度変化などにより元信号
の歪みの状態が変化してもこれに追随して、常に最適な
校正が行われる。電源投入直後のピーク値の初期値は、
設計値(これに合うように信号発生部が調整される)を
用いても、あるいは装置毎に実測した値を書き込んでも
良い。
In the present invention, automatic correction is performed each time a peak value is detected during operation. Therefore, even if the state of distortion of the original signal changes due to a temperature change or the like, the state of the original signal is followed, and the optimum calibration is always performed. Done. The initial value of the peak value immediately after turning on the power is
A design value (the signal generation unit is adjusted to match this) may be used, or a value actually measured for each device may be written.

〔発明の効果〕〔The invention's effect〕

この発明は、以上詳細に説明したように、COSθを含
むコサイン信号x及びSinθを含むサイン信号yからな
る位置計測信号から、前記2つの信号に含まれる歪み成
分である第二高調波を除去する位置信号の校正装置であ
って、前記コサイン信号x及びサイン信号y及びこれら
の信号の和及び差のそれぞれの最大値と最小値を下記d0
乃至d7として検出するピーク値検出手段、 d0=max(x),d1=max(x+y),d2=max(y),d3
=min(x−y), d4=min(x),d5=min(x+y),d6=min(y),d7
=max(x−y), パラメータgx,gy,zx,zy,bx,byの値を下式で算出するパ
ラメータ算出手段、 gx=(d0+d4)/2 gy=(d2+d6)/2 zx=(d1−d3−d5+d7)/4 zy=(d1+d3−d5−d7)/4 bx=zx−(d0−d4)/2 by=zy−(d2−d6)/2 及び前記算出されたパラメータ値を用いて下式 x=gx{cosθ−bxcos(2θ)}+zx ……(1) y=gy{sinθ−bycos(2θ)}+zy ……(2) を解いて歪みの除去された位置信号cosθ及びsinθを求
めるようにしたので、信号処理回路の非線形により2次
の歪を含む信号であってもこれを補正して正しい信号と
することができ、求めるθの値を高精度に検出でき、一
回転当たりの周期の多いエンコーダ信号の微細な角度の
計測が可能である。
As described above in detail, the present invention removes the second harmonic which is a distortion component included in the two signals from the position measurement signal including the cosine signal x including COSθ and the sine signal y including Sinθ. An apparatus for calibrating a position signal, wherein a maximum value and a minimum value of the cosine signal x and the sine signal y and the sum and difference of these signals are respectively represented by the following d 0.
To the peak value detection means for detecting as d 7, d 0 = max ( x), d 1 = max (x + y), d 2 = max (y), d 3
= Min (x-y), d 4 = min (x), d 5 = min (x + y), d 6 = min (y), d 7
= Max (x-y), a parameter g x, g y, z x , z y, b x, parameter calculating means for calculating by the following formula the values of b y, g x = (d 0 + d 4) / 2 g y = (d 2 + d 6 ) / 2 z x = (d 1 −d 3 −d 5 + d 7 ) / 4 z y = (d 1 + d 3 −d 5 −d 7 ) / 4 b x = z x − Using (d 0 −d 4 ) / 2 b y = z y − (d 2 −d 6 ) / 2 and the calculated parameter value, the following equation x = g x {cos θ−b x cos (2θ)} + z x ...... (1) since to obtain the y = g y {sinθ-b y cos (2θ)} + z y ...... (2) position signal cosθ and sin [theta removed strain by solving, signal processing Even if the signal includes second-order distortion due to the non-linearity of the circuit, the signal can be corrected to be a correct signal, the value of θ to be obtained can be detected with high accuracy, and the fineness of the encoder signal having many cycles per rotation can be obtained. It is possible to measure various angles.

また、この発明は、ピーク値の検出に際しθがiπ/4
に近いとき、それぞれのピーク値をdiとして取り込むよ
うにしたので、常に最新のピーク値を使用でき、高精度
の補正が可能となる利点を有する。
Further, according to the present invention, when detecting the peak value, θ is iπ / 4
When near, since the respective peak value to capture as d i, can always use the latest peak value, it has the advantage that it is possible to highly accurate correction.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の一実施例を示すブロック図、第2図
はこの発明の他の実施例を示すブロック図、第3図
(a)〜(c)は各種歪成分が混入した際の元信号を、
一方をx軸,他方をy軸にとって二次元的にプロットし
た図である。 図中、x,yは元信号、θは求める角度、1−1、1−2
は正規化手段、2−1,2−2は第二高調波除去手段、3
は逆正接演算手段、4−1はゼロ点パラメータ算出手
段、4−2は振幅補正パラメータ算出手段、5は第二次
高調波誤差補正用パラメータ算出手段、6−1〜6−8
は角度範囲判定手段、7−1〜7−8はピーク値更新手
段、10はピーク値検出手段である。
FIG. 1 is a block diagram showing one embodiment of the present invention, FIG. 2 is a block diagram showing another embodiment of the present invention, and FIGS. 3 (a) to 3 (c) show the case where various distortion components are mixed. Original signal,
FIG. 2 is a diagram in which one is x-axis and the other is y-axis and two-dimensionally plotted. In the figure, x and y are original signals, θ is an angle to be obtained, 1-1, 1-2.
Is a normalizing means, 2-1 and 2-2 are second harmonic removing means, 3
Is an arc tangent calculation means, 4-1 is a zero point parameter calculation means, 4-2 is an amplitude correction parameter calculation means, 5 is a second harmonic error correction parameter calculation means, 6-1 to 6-8.
Denotes an angle range determining means, 7-1 to 7-8 denote peak value updating means, and 10 denotes a peak value detecting means.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】COSθを含むコサイン信号x及びSinθを含
むサイン信号yからなる位置計測信号から、前記2つの
信号に含まれる歪み成分である第二高調波を除去する位
置信号の校正装置であって、前記コサイン信号x及びサ
イン信号y及びこれらの信号の和及び差のそれぞれの最
大値と最小値を下記d0乃至d7として検出するピーク値検
出手段、 d0=max(x),d1=max(x+y),d2=max(y),d3
min(x−y), d4=min(x),d5=min(x+y),d6=min(y),d7
max(x−y), パラメータgx,gy,zx,zy,bx,byの値を下式で算出するパ
ラメータ算出手段、 gx=(d0+d4)/2 gy=(d2+d6)/2 zx=(d1−d3−d5+d7)/4 zy=(d1+d3−d5−d7)/4 bx=zx−(d0−d4)/2 by=zy−(d2−d6)/2 及び前記算出されたパラメータ値を用いて下式 x=gx{cosθ−bxcos(2θ)}+zx ……(1) y=gy{sinθ−bycos(2θ)}+zy ……(2) を解いて歪みの除去された位置信号cosθ及びsinθを求
める補正手段を備えたことを特徴とする位置信号の校正
装置。
An apparatus for calibrating a position signal for removing a second harmonic, which is a distortion component included in two signals, from a position measurement signal including a cosine signal x including COSθ and a sine signal y including Sinθ. Peak value detecting means for detecting the maximum value and the minimum value of the cosine signal x and the sine signal y and the sum and difference of these signals as d 0 to d 7 , d 0 = max (x), d 1 = max (x + y) , d 2 = max (y), d 3 =
min (x-y), d 4 = min (x), d 5 = min (x + y), d 6 = min (y), d 7 =
max (xy), parameter calculating means for calculating the values of the parameters g x , g y , z x , z y , b x , and b y by the following formula: g x = (d 0 + d 4 ) / 2 g y = (D 2 + d 6 ) / 2 z x = (d 1 −d 3 −d 5 + d 7 ) / 4 z y = (d 1 + d 3 −d 5 −d 7 ) / 4 b x = z x − ( Using d 0 −d 4 ) / 2 b y = z y − (d 2 −d 6 ) / 2 and the calculated parameter value, the following equation is used: x = g x {cos θ−b x cos (2θ)} + z further comprising a correction means for obtaining an x ...... (1) y = g y {sinθ-b y cos (2θ)} + z y ...... (2) position signal cosθ and sin [theta is the removal of distortion solve Calibration device for position signals.
【請求項2】前記d0=max(x),d1=max(x+y),d2
=max(y),d3=min(x−y),d4=min(x),d5=mi
n(x+y),d6=min(y),d7=max(x−y)を検出
するピーク値検出手段が、θがiπ/4に近いとき、下記
の値をdiとして取り込むことを特徴とする請求項(1)
記載の位置信号の校正装置。 ただし、iは0から7までの整数、pは1より小さい正
の定数とする。 d0=d0+p(x−d0) d1=d1+p(x+y−d1) d2=d2+p(y−d2) d3=d3+p(−x+y−d3) d4=d4+p(−x−d4) d5=d5+p(−x−y−d5) d6=d6+p(−y−d6) d7=d7+p(x−y−d7
2. The method according to claim 1, wherein d 0 = max (x), d 1 = max (x + y), d 2
= Max (y), d 3 = min (x-y), d 4 = min (x), d 5 = mi
n (x + y), when d 6 = min (y), the peak value detecting means for detecting the d 7 = max (x-y ), θ is close to i [pi] / 4, the incorporation of the following values as d i Claim (1)
Calibration device for the described position signal. Here, i is an integer from 0 to 7, and p is a positive constant smaller than 1. d 0 = d 0 + p (x−d 0 ) d 1 = d 1 + p (x + y−d 1 ) d 2 = d 2 + p (y−d 2 ) d 3 = d 3 + p (−x + y−d 3 ) d 4 = d 4 + p (-x -d 4) d 5 = d 5 + p (-x-y-d 5) d 6 = d 6 + p (-y-d 6) d 7 = d 7 + p (x-y −d 7 )
JP20920990A 1990-08-09 1990-08-09 Calibration device for position signal Expired - Fee Related JP2839341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20920990A JP2839341B2 (en) 1990-08-09 1990-08-09 Calibration device for position signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20920990A JP2839341B2 (en) 1990-08-09 1990-08-09 Calibration device for position signal

Publications (2)

Publication Number Publication Date
JPH0496131A JPH0496131A (en) 1992-03-27
JP2839341B2 true JP2839341B2 (en) 1998-12-16

Family

ID=16569165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20920990A Expired - Fee Related JP2839341B2 (en) 1990-08-09 1990-08-09 Calibration device for position signal

Country Status (1)

Country Link
JP (1) JP2839341B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2060876A2 (en) 2007-11-19 2009-05-20 Canon Kabushiki Kaisha Measurement apparatus

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4561024B2 (en) * 2001-09-21 2010-10-13 トヨタ自動車株式会社 Resolver signal processing device
JP4862485B2 (en) * 2006-05-17 2012-01-25 日本精工株式会社 Resolver digital converter, rotation angle position detection device, and rotation machine control device
JP4862496B2 (en) * 2006-05-30 2012-01-25 日本精工株式会社 Resolver digital converter, rotation angle position detection device, and rotation machine control device
JP5193930B2 (en) * 2009-04-17 2013-05-08 アルプス電気株式会社 Small angle detection sensor
JP4916556B2 (en) * 2010-01-19 2012-04-11 三菱電機株式会社 Rotation angle detection device, rotating electrical machine device, and electric power steering device
FR3142248A1 (en) * 2022-11-23 2024-05-24 Continental Automotive Technologies GmbH Method for determining the angular position of a motor vehicle shaft

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2060876A2 (en) 2007-11-19 2009-05-20 Canon Kabushiki Kaisha Measurement apparatus

Also Published As

Publication number Publication date
JPH0496131A (en) 1992-03-27

Similar Documents

Publication Publication Date Title
US4070762A (en) Measuring apparatus
US6943544B2 (en) Adjustment of a magneto-resistive angle sensor
US4318617A (en) DC Shift error correction for electro-optical measuring system
US11397098B2 (en) Method for detecting errors in a rotating position sensor system having sine and cosine signals
JP3029657B2 (en) Position detection device
US6693423B2 (en) Arrangement for angular measurement
WO2021114419A1 (en) Calibration method, apparatus and device for rotary magnetoelectric encoder
US5463393A (en) Method and apparatus for correcting errors in an amplitude encoded signal
US11609082B2 (en) Calibration and linearization of position sensor
CN109696187B (en) Eccentric correcting device of rotary encoder
JP2839340B2 (en) Calibration device for position signal
JP2839341B2 (en) Calibration device for position signal
WO2024113450A1 (en) Magnetic encoder correction method and apparatus, and magnetic encoder
JPS60170710A (en) Correcting device for error in measured angle
US5933106A (en) Encoder signal analysis system for high-resolution position measurement
JP3208933B2 (en) Position measuring device
CN111368584B (en) High-resolution position information splicing method of sine and cosine encoder capable of self-correcting
JP2767936B2 (en) Error correction method for linear encoder
JPS63256814A (en) Position detector
KR100193293B1 (en) Signal correction device
US11994411B2 (en) Vernier sensor with self calibration
JP2790862B2 (en) Signal calibration device
JP2000180170A (en) Earth magnetism detecting device
JP3208932B2 (en) Position measuring device
JP2002243501A (en) Automatic adjustment device for encoder output signal

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20071016

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081016

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081016

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20091016

LAPS Cancellation because of no payment of annual fees