JPH10272453A - Heat exchanger for fresh water making - Google Patents

Heat exchanger for fresh water making

Info

Publication number
JPH10272453A
JPH10272453A JP8151197A JP8151197A JPH10272453A JP H10272453 A JPH10272453 A JP H10272453A JP 8151197 A JP8151197 A JP 8151197A JP 8151197 A JP8151197 A JP 8151197A JP H10272453 A JPH10272453 A JP H10272453A
Authority
JP
Japan
Prior art keywords
heat exchanger
shell
water
cooling
fresh water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8151197A
Other languages
Japanese (ja)
Inventor
Masashi Okumura
昌司 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hisaka Works Ltd
Original Assignee
Hisaka Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hisaka Works Ltd filed Critical Hisaka Works Ltd
Priority to JP8151197A priority Critical patent/JPH10272453A/en
Publication of JPH10272453A publication Critical patent/JPH10272453A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0461Combination of different types of heat exchanger, e.g. radiator combined with tube-and-shell heat exchanger; Arrangement of conduits for heat exchange between at least two media and for heat exchange between at least one medium and the large body of fluid

Abstract

PROBLEM TO BE SOLVED: To prevent produced pure water from re-evaporating to improve fresh water making efficiency in a heat exchanger for fresh water making by which sea water is drawn in a vacuum and evaporated at low temperature and generated steam is condensed to produce pure water by exchanging heat with cooling water. SOLUTION: In a heat exchanger for fresh water making a laminated plate group 40 consisting of plural heat transfer plates 4 in which between the heat transfer plates 41 adjacent and opposite to each other opened steam paths S and closed cooling water paths W are alternately formed is housed within a shell 20 having a steam inlet and outlet 21, 22 and a cooling water inlet and outlet 23, 24. A jacket 2 is attached to outside the shell 20 to make it have double structure. By feeding cooling fluid into the jacket 2, heat energy from outdoor air is prevented from entering.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は海水を淡水化する
ための造水プラントにおいて用いられる熱交換器に関
し、より詳しくは、海水を真空で引いて低温度で蒸発さ
せ、発生した水蒸気を冷却水との熱交換により凝縮させ
て純水を製造する場合の造水効率を向上させる技術に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger used in a desalination plant for desalinating seawater, and more particularly, to drawing seawater in a vacuum and evaporating it at a low temperature to generate steam. TECHNICAL FIELD The present invention relates to a technology for improving fresh water production efficiency when producing pure water by condensing by heat exchange with water.

【0002】[0002]

【従来の技術】造水工程は、海水を真空で引くことによ
り沸点を下げて低温度で蒸発させ、発生した水蒸気を熱
交換器で冷却することにより凝縮させて純水を製造させ
るようにしている。
2. Description of the Related Art In a fresh water producing process, the boiling point is lowered by evacuation of seawater to evaporate it at a low temperature, and the generated steam is condensed by cooling in a heat exchanger to produce pure water. I have.

【0003】[0003]

【発明が解決しようとする課題】従来、シェルアンドプ
レート式熱交換器を用いた造水プラントでは、シェルが
外気からの熱エネルギーを吸収するため、製造した純水
が再蒸発してしまい、それがプレート伝熱面に再凝縮す
るといった繰り返し現象が発生して造水効率が低下する
という問題があった。
Conventionally, in a desalination plant using a shell-and-plate type heat exchanger, the pure water produced re-evaporates because the shell absorbs heat energy from the outside air. However, there is a problem that renewed phenomena such as re-condensation on the plate heat transfer surface occur and water freshening efficiency is reduced.

【0004】この発明の目的は、製造した純水の再蒸発
を防止して造水効率を向上させることにある。
An object of the present invention is to prevent the re-evaporation of the produced pure water and improve the fresh water producing efficiency.

【0005】[0005]

【課題を解決するための手段】この発明は、海水を真空
で引いて低温度で蒸発させ、発生した水蒸気を冷却水と
の熱交換により凝縮させて純水を製造するようにした造
水用熱交換器において、外部からの熱の進入を防止する
ための冷却手段を設けることによって課題を解決したも
のである。冷却作用によって熱交換器が外気から遮断さ
れ、外気からの熱エネルギーの進入が防止される。した
がって、製造した純水の再蒸発が防止され、造水効率が
向上する。
SUMMARY OF THE INVENTION The present invention is directed to a desalination for producing pure water by drawing seawater in a vacuum and evaporating it at a low temperature, and condensing generated steam by heat exchange with cooling water. In a heat exchanger, the problem is solved by providing cooling means for preventing heat from entering from the outside. The cooling action blocks the heat exchanger from the outside air, thereby preventing heat energy from entering from the outside air. Therefore, re-evaporation of the produced pure water is prevented, and the fresh water producing efficiency is improved.

【0006】前記熱交換器は、隣接・対向して相互間
に、開放した水蒸気通路と閉じた冷却水通路とを交互に
形成した複数の伝熱プレートからなる成層プレート群
を、水蒸気の出入り口および冷却水の出入り口を有する
シェルの内部に収容させて構成され、冷却手段をシェル
に設ける。
[0006] The heat exchanger includes a stratified plate group comprising a plurality of heat transfer plates having alternately formed open steam passages and closed cooling water passages adjacent to each other and facing each other. The cooling water is configured to be accommodated in a shell having an inlet / outlet for cooling water, and cooling means is provided in the shell.

【0007】冷却手段は、シェルの外側にジャケットを
付設して二重構造となし、ジャケット内に冷却用の流体
を供給することによって構成することができる。
The cooling means can be constituted by providing a jacket outside the shell to form a double structure and supplying a cooling fluid into the jacket.

【0008】純水はシェルの内部空間の下部に溜まるた
め、必ずしもシェルの全体を二重構造とする必要はな
く、シェルの下部のみ部分的に二重構造としてもよく、
その場合、熱交換器のイニシャルコストが低下するばか
りでなく冷却用流体の節約によるランニングコストの低
下も期待できる。
Since pure water accumulates in the lower part of the inner space of the shell, the entire shell does not necessarily have to have a double structure. Only the lower part of the shell may have a double structure.
In this case, not only the initial cost of the heat exchanger can be reduced, but also the running cost can be reduced due to the saving of the cooling fluid.

【0009】ジャケット内に供給する冷却用流体として
は、空気その他のクーラントを採用することも可能であ
るが、ここで要求される冷却能力は外部の熱がシェルを
通じて内部の純水に伝わるのを防止できる程度で足るこ
とから、特別の外部流体に頼ることなく熱交換器に供給
する冷却水の一部を冷却用流体として利用することによ
り、特別の配管や動力を必要とせず経済的に実施をする
ことができる。
As the cooling fluid to be supplied into the jacket, air or other coolant may be employed. However, the cooling capacity required here is such that external heat is transmitted to the pure water inside through the shell. It can be implemented economically without the need for special piping and power by using part of the cooling water supplied to the heat exchanger as a cooling fluid without relying on a special external fluid. Can be.

【0010】[0010]

【発明の実施の形態】以下、添付図面に従って発明の実
施の形態を説明する。なお、ここではアフタークーラー
機能を兼ね備えたシェルアンドプレート式熱交換器の場
合を例示したが、この発明は各種の熱交換器一般に適用
することができるものである。
Embodiments of the present invention will be described below with reference to the accompanying drawings. Here, the case of the shell and plate type heat exchanger having the aftercooler function is exemplified, but the present invention can be applied to various heat exchangers in general.

【0011】図1に示すように、水蒸気入口(21)お
よびドレンすなわち純水出口(22)ならびに冷却水入
口(23)および冷却水出口(24)を有するシェル
(20)と、このシェル(20)の内部に収容された成
層プレート群(40)とでシェルアンドプレート式熱交
換器が構成される。シェル(20)は一種の筐体の形態
であり、図示例の場合、中央部の厚板で形成されたフレ
ーム部分でボルト締結されている。
As shown in FIG. 1, a shell (20) having a steam inlet (21) and a drain or pure water outlet (22) and a cooling water inlet (23) and a cooling water outlet (24), and the shell (20). The shell-and-plate type heat exchanger is constituted by the stratified plate group (40) accommodated in the inside of (1). The shell (20) is in the form of a kind of housing, and in the case of the illustrated example, is bolted to a frame portion formed by a thick plate at the center.

【0012】成層プレート群(40)は開口(42,4
3)(図3)を有する多数の伝熱プレート(41)を含
み、伝熱プレート相互間に水蒸気通路(S)と冷却水通
路(W)を交互に形成している。水蒸気通路(S)は図
3(A)に示すようにガスケット(44a〜44c)に
より開口(42,43)とは隔絶し、一方、シェル(2
0)の内部空間に対しては開放している。冷却水通路
(W)は図3(B)に示すようにシェル(20)の内部
空間とは隔絶する一方、冷却水通路(W)同士は開口
(42,43)を通じてすべて連通する。開口(42,
43)はそれぞれ整列して、シェル(20)側の冷却水
入口(23)および冷却水出口(24)と連絡する。
The stratified plate group (40) has openings (42, 4).
3) It includes a number of heat transfer plates (41) having (FIG. 3), and steam passages (S) and cooling water passages (W) are alternately formed between the heat transfer plates. The steam passage (S) is separated from the openings (42, 43) by gaskets (44a to 44c) as shown in FIG.
0) is open to the internal space. The cooling water passage (W) is isolated from the inner space of the shell (20) as shown in FIG. 3 (B), while the cooling water passages (W) all communicate with each other through the openings (42, 43). Opening (42,
43) are aligned and communicate with the cooling water inlet (23) and the cooling water outlet (24) on the shell (20) side.

【0013】図示例の場合、冷却水通路(W)とシェル
(20)の内部空間との隔絶は、冷却水通路(W)を画
成している一対の隣接伝熱プレート(41)を周囲にて
水密に接合することにより行っているが、伝熱プレート
(41)間に冷却水通路(W)の周囲に延在するように
して通常のガスケットを介在させることによって行うこ
ともできる。同様に、水蒸気通路(S)に配設したガス
ケット(44a〜44c)に代えて、隣接する伝熱プレ
ート(41)同士をそれらのガスケットに対応する位置
で水密に接合するようにしてもよい。
In the case of the illustrated example, the cooling water passage (W) is separated from the inner space of the shell (20) by a pair of adjacent heat transfer plates (41) defining the cooling water passage (W). However, it can be performed by interposing a normal gasket between the heat transfer plates (41) so as to extend around the cooling water passage (W). Similarly, instead of the gaskets (44a to 44c) disposed in the steam passage (S), the adjacent heat transfer plates (41) may be joined to each other in a watertight manner at positions corresponding to the gaskets.

【0014】符号60は、成層プレート群(40)を横
切る方向に延在する第一の仕切り板(61)と、伝熱プ
レート(41)の方向に延在する第二の仕切り板(6
2)とからなるL字形の隔壁を指している。第一の仕切
り板(61)はシェル(20)の内部空間を上部室(2
5)と下部室(26)とに仕切るが、シェル(20)の
端板(27)までは達していない。第二の仕切り板(6
2)はその第一の仕切り板(61)の端部と下端にて会
合し、伝熱プレート(41)の周囲に延在してシェル
(20)の端板(27)との間に画室(28)を形成す
る。図示するように、画室(28)はシェル(20)の
下部室(26)と連通している。画室(28)が成層プ
レート群(40)の端部に位置する2枚の伝熱プレート
(41)を含んでいる場合を例示したが、仕切り板(6
2)を設けるべき位置は、扱う蒸気の種類や流量等の条
件を考慮して任意に定められるものである。なお、仕切
り板(61,62)の位置は、諸条件に応じて調整もし
くは変更しうるようにしてもよい。
Reference numeral 60 denotes a first partition plate (61) extending in a direction crossing the layered plate group (40) and a second partition plate (6) extending in the direction of the heat transfer plate (41).
2). The first partition plate (61) divides the internal space of the shell (20) into the upper chamber (2).
5) and the lower chamber (26), but do not reach the end plate (27) of the shell (20). Second partition plate (6
2) meet at the end and the lower end of the first partition plate (61), extend around the heat transfer plate (41) and extend between the end plate (27) of the shell (20) and the compartment. (28) is formed. As shown, the compartment (28) communicates with the lower compartment (26) of the shell (20). Although the case where the compartment (28) includes two heat transfer plates (41) located at the ends of the layered plate group (40) has been illustrated, the partition plate (6) is used.
The position where 2) is to be provided is arbitrarily determined in consideration of conditions such as the type and flow rate of steam to be handled. The positions of the partition plates (61, 62) may be adjusted or changed according to various conditions.

【0015】このようにして仕切り板(62)を境に図
2の右側は凝縮器機能を有する部分(C1 )となり、左
側はアフタークーラー機能を発揮する部分(C2 )とな
る。これらの機能について次に述べる。
In this way, the right side of FIG. 2 is a portion (C 1 ) having a condenser function, and the left side is a portion (C 2 ) having an after-cooler function, with the partition plate (62) as a boundary. These functions are described below.

【0016】水蒸気はまず水蒸気入口(21)からシェ
ル(20)の上部室(25)に入り、そこから各開放し
た水蒸気通路(S)に分岐流入する。冷却水は冷却水入
口(23)から伝熱プレート(41)の開口(42)を
通じて各冷却水通路(W)に流入し、開口(43)を経
て冷却水出口(24)から排出される。そして、水蒸気
は各水蒸気通路(S)を流下する間に、隣位の冷却水通
路(W)内の冷却水に熱を奪われる結果、凝縮する。生
成した凝縮ドレンすなわち純水はシェル(20)の下部
室(26)に集まり、純水出口(22)から外部に取り
出される。
The steam first enters the upper chamber (25) of the shell (20) from the steam inlet (21), and branches and flows into each open steam passage (S) therefrom. The cooling water flows into each cooling water passage (W) from the cooling water inlet (23) through the opening (42) of the heat transfer plate (41), and is discharged from the cooling water outlet (24) through the opening (43). Then, while flowing down the steam passages (S), the steam is condensed as a result of the heat taken by the cooling water in the adjacent cooling water passage (W). The generated condensed drain, that is, pure water, collects in the lower chamber (26) of the shell (20) and is taken out from the pure water outlet (22).

【0017】隔壁(60)の存在により、画室(28)
内の水蒸気通路(S)には水蒸気が供給されない。た
だ、画室(28)はシェル(20)の下部室(26)と
連通しているため、他の水蒸気通路(S)で凝縮しきれ
なかった水蒸気が不凝縮ガスと共に、画室(28)内の
水蒸気通路(S)に流入してくる。そして、それらが隣
位の冷却水通路(W)を流れる冷却水でさらに冷やされ
ることにより、水蒸気が完全に凝縮するとともに不凝縮
ガスが分離して画室(28)の上部に溜まる。不凝縮ガ
スは画室(28)の上部に取り付けたガス抜き管(図示
せず)で容易に外部へ排出することができる。
Due to the presence of the partition wall (60), the compartment (28)
No steam is supplied to the steam passage (S) in the inside. However, since the compartment (28) communicates with the lower compartment (26) of the shell (20), the water vapor that has not been completely condensed in the other water vapor passage (S) together with the non-condensable gas in the compartment (28). It flows into the steam passage (S). Then, when they are further cooled by the cooling water flowing through the adjacent cooling water passage (W), the water vapor is completely condensed, and the non-condensable gas is separated and accumulated in the upper portion of the compartment (28). The non-condensable gas can be easily discharged to the outside by a gas vent tube (not shown) attached to the upper part of the compartment (28).

【0018】下部室(26)に溜まった純水の再蒸発を
防止するため、シェル(20)の外側にジャケット
(2)を付設し、ジャケット(2)の内部に冷却流体を
供給することによりシェル(20)を冷却する。冷却流
体として冷却水を使用する場合、図4に例示するよう
に、冷却水入口(23)のノズルから細管(4)を分岐
させてジャケット(2)の下部に接続するとともに、ジ
ャケット(2)の上部に冷却水の導出口(6)を設け
る。細管(4)にバルブを取り付けて、仕様等に応じて
必要なときのみジャケット(2)に冷却水を通すように
したり、また、シェル(20)の冷却を、内部の純水の
再蒸発を防止するに必要十分な程度に調節するべく、ジ
ャケット(2)に供給する冷却水の流量を制御するよう
にしてもよい。冷却水の導出口(6)は冷却水出口(2
4)のノズルに接続してバイパスを構成することもでき
る。図示するようにジャケット(2)はシェル(20)
の下部に設ける、言い換えるならば、純水の液面付近よ
りも下の部分を二重構造とする。
In order to prevent re-evaporation of the pure water accumulated in the lower chamber (26), a jacket (2) is provided outside the shell (20), and a cooling fluid is supplied to the inside of the jacket (2). Cool the shell (20). When cooling water is used as a cooling fluid, as shown in FIG. 4, a thin tube (4) is branched from a nozzle of a cooling water inlet (23) and connected to a lower portion of a jacket (2), and a jacket (2) is formed. A cooling water outlet (6) is provided at the upper part of the cooling water. A valve is attached to the thin tube (4) to allow the cooling water to flow through the jacket (2) only when necessary according to the specifications, etc. Also, the cooling of the shell (20) is performed by re-evaporating the pure water inside. The flow rate of the cooling water supplied to the jacket (2) may be controlled so as to adjust to a degree necessary and sufficient for prevention. The cooling water outlet (6) is connected to the cooling water outlet (2
A bypass can also be configured by connecting to the nozzle of 4). As shown, jacket (2) is shell (20)
, In other words, a portion below the vicinity of the pure water level has a double structure.

【0019】なお、上述のアフタークーラー機能を兼ね
備えたシェルアンドプレート式熱交換器では、仕切り板
(61)がシェル(20)の一方の端板(27)の手前
で終わっているが(図2)、アフタークーラーを必要と
しない場合、あるいはアフタークーラーを別途設置する
場合には、仕切り板(61)を端板(27)まで延ばし
て仕切り板(62)を廃止することができる。
In the shell and plate type heat exchanger having the aftercooler function, the partition plate (61) ends before the one end plate (27) of the shell (20) (FIG. 2). If the aftercooler is not required or if the aftercooler is separately installed, the partition plate (61) can be extended to the end plate (27) and the partition plate (62) can be eliminated.

【0020】[0020]

【発明の効果】以上説明したようにこの発明によれば、
海水を真空で引いて低温度で蒸発させ、発生した水蒸気
を冷却水との熱交換により凝縮させて純水を製造するよ
うにした造水用プレート式熱交換器において、シェルを
冷却する手段の冷却作用によってシェルが外気から遮断
され、外気からの熱エネルギーの進入が防止される。し
たがって、製造した純水の再蒸発が防止され、造水効率
が向上する。
As described above, according to the present invention,
Means for cooling the shell in a plate-type heat exchanger for fresh water in which seawater is vacuumed and evaporated at a low temperature, and the generated steam is condensed by heat exchange with cooling water to produce pure water. The cooling action blocks the shell from the outside air, and prevents heat energy from entering from the outside air. Therefore, re-evaporation of the produced pure water is prevented, and the fresh water producing efficiency is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施の形態を示す造水用熱交換器の概念図であ
る。
FIG. 1 is a conceptual diagram of a desalination heat exchanger showing an embodiment.

【図2】シェルアンドプレート式熱交換器の一部破断側
面図である。
FIG. 2 is a partially cutaway side view of the shell and plate heat exchanger.

【図3】(A)は図2のA−A断面図、(B)は図2の
B−B断面図である。
3A is a sectional view taken along line AA of FIG. 2, and FIG. 3B is a sectional view taken along line BB of FIG.

【図4】シェルの二重構造部分の断面図である。FIG. 4 is a cross-sectional view of a double structure portion of a shell.

【符号の説明】[Explanation of symbols]

2 ジャケット 4 細管 6 冷却水導出口 20 シェル 23 冷却水供給口 2 jacket 4 thin tube 6 cooling water outlet 20 shell 23 cooling water supply port

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 海水を真空で引いて低温度で蒸発させ、
発生した水蒸気を冷却水との熱交換により凝縮させて純
水を製造するようにした造水用熱交換器において、外部
からの熱の進入を防止するための冷却手段を具備したこ
とを特徴とする造水用熱交換器。
1. A method of evaporating seawater at a low temperature by drawing a vacuum,
In a desalination heat exchanger in which generated steam is condensed by heat exchange with cooling water to produce pure water, a cooling means for preventing intrusion of heat from the outside is provided. Heat exchanger for fresh water.
【請求項2】 隣接・対向して相互間に、開放した水蒸
気通路と閉じた冷却水通路とを交互に形成した複数の伝
熱プレートからなる成層プレート群を、水蒸気の出入り
口および冷却水の出入り口を有するシェルの内部に収容
させて構成され、冷却手段でシェルを冷却するようにし
た請求項1の造水用熱交換器。
2. A stratified plate group consisting of a plurality of heat transfer plates in which open steam passages and closed cooling water passages are alternately formed adjacent to each other and opposed to each other. 2. The heat exchanger for fresh water according to claim 1, wherein the heat exchanger is configured to be housed in a shell having a cooling means, and the cooling means cools the shell.
【請求項3】 シェルの外側にジャケットを付設して二
重構造となし、ジャケット内に冷却用流体を供給するよ
うにしたことを特徴とする請求項2の造水用熱交換器。
3. The heat exchanger for fresh water generation according to claim 2, wherein a jacket is provided outside the shell to form a double structure, and a cooling fluid is supplied into the jacket.
【請求項4】 シェルの下部を部分的に二重構造とした
ことを特徴とする請求項3の造水用熱交換器。
4. The fresh water heat exchanger according to claim 3, wherein the lower part of the shell has a partially double structure.
【請求項5】 熱交換器に供給する冷却水の一部を前記
冷却用流体としたことを特徴とする請求項3の造水用熱
交換器。
5. The fresh water heat exchanger according to claim 3, wherein a part of the cooling water supplied to the heat exchanger is used as the cooling fluid.
JP8151197A 1997-03-31 1997-03-31 Heat exchanger for fresh water making Withdrawn JPH10272453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8151197A JPH10272453A (en) 1997-03-31 1997-03-31 Heat exchanger for fresh water making

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8151197A JPH10272453A (en) 1997-03-31 1997-03-31 Heat exchanger for fresh water making

Publications (1)

Publication Number Publication Date
JPH10272453A true JPH10272453A (en) 1998-10-13

Family

ID=13748389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8151197A Withdrawn JPH10272453A (en) 1997-03-31 1997-03-31 Heat exchanger for fresh water making

Country Status (1)

Country Link
JP (1) JPH10272453A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101993125A (en) * 2010-11-18 2011-03-30 杨辉雄 Solar vacuum seawater desalination device
US8226800B2 (en) 2008-12-15 2012-07-24 Water Desalination International, Inc. Water desalination system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8226800B2 (en) 2008-12-15 2012-07-24 Water Desalination International, Inc. Water desalination system
US8696872B2 (en) 2008-12-15 2014-04-15 Water Desalination International, Inc. Water desalination system
US9056261B2 (en) 2008-12-15 2015-06-16 Water Desalination International, Inc. Water desalination system
CN101993125A (en) * 2010-11-18 2011-03-30 杨辉雄 Solar vacuum seawater desalination device
WO2012065503A1 (en) * 2010-11-18 2012-05-24 Yang Huixiong Solar powered vacuum seawater desalinator

Similar Documents

Publication Publication Date Title
RU2072068C1 (en) Device for partial evaporation of liquid by means of heat-liberating steam
US6694772B2 (en) Absorption chiller-heater and generator for use in such absorption chiller-heater
JPH10176874A (en) Heat-exchanger
JPH05501378A (en) plate type evaporator
KR20090027676A (en) Plate type water making apparatus
EP1650166B1 (en) Plate type fresh water generator
JP5672450B2 (en) Fresh water generator and fresh water generation method
CN106830151A (en) A kind of novel seawater desalting device
KR100658126B1 (en) Condenser
JP3183986B2 (en) Vacuum evaporation type fresh water generator
JPH10272453A (en) Heat exchanger for fresh water making
KR102468798B1 (en) Fresh water generation device
JPH10272454A (en) Heat exchanger for fresh water making
WO2020034259A1 (en) Cooling tower
JP7026939B2 (en) Multi-effect water production equipment
RU2109112C1 (en) Device for producing basically sweet water
JP3766233B2 (en) Ammonia absorption refrigeration equipment
JP2595289B2 (en) Plate condenser with built-in aftercooler
AU712064B2 (en) Steam condenser
CN217585453U (en) Drainage cooling device
JP2691160B2 (en) Plate heat exchanger
JPH01244280A (en) Plate-type condenser incorporating after-cooler
SU1295140A1 (en) Regenerative heater
JP3852897B2 (en) Absorption refrigerator
JPS5974491A (en) Direct contact type condenser

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040601