JP5672450B2 - Fresh water generator and fresh water generation method - Google Patents

Fresh water generator and fresh water generation method Download PDF

Info

Publication number
JP5672450B2
JP5672450B2 JP2011040914A JP2011040914A JP5672450B2 JP 5672450 B2 JP5672450 B2 JP 5672450B2 JP 2011040914 A JP2011040914 A JP 2011040914A JP 2011040914 A JP2011040914 A JP 2011040914A JP 5672450 B2 JP5672450 B2 JP 5672450B2
Authority
JP
Japan
Prior art keywords
water
heat exchanger
steam
turbine
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011040914A
Other languages
Japanese (ja)
Other versions
JP2012176364A (en
Inventor
一則 森永
一則 森永
統行 島田
統行 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasakura Engineering Co Ltd
Original Assignee
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co Ltd filed Critical Sasakura Engineering Co Ltd
Priority to JP2011040914A priority Critical patent/JP5672450B2/en
Priority to TW100129224A priority patent/TWI568680B/en
Priority to CN201110309700.5A priority patent/CN102649591B/en
Priority to KR1020110103616A priority patent/KR101305085B1/en
Publication of JP2012176364A publication Critical patent/JP2012176364A/en
Application granted granted Critical
Publication of JP5672450B2 publication Critical patent/JP5672450B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、造水装置および造水方法に関する。   The present invention relates to a fresh water generator and a fresh water generation method.

蒸気から動力を得る蒸気タービンプラントにおいて、タービン群から排出され復水器で凝縮された蒸気復水を利用して造水することが従来から行われている。例えば、特許文献1に開示された蒸気タービンプラントは、図5に示すように、タービン91から復水器92に導入された蒸気が、冷海水93と熱交換することにより復水94となって凝縮器95に導入される。凝縮器95に集積された蒸気復水は、再度ボイラ給水として使用する過程で造水装置の冷却水として使用することで熱回収を図り、タービンシステムとして省エネルギー化を行ってきた。図5の構成においては、冷海水93は復水器92で温海水96となって一部が蒸発器97に導入され、生成された蒸気が凝縮器95に導かれて復水94と熱交換することにより、淡水98が生成される。   2. Description of the Related Art In a steam turbine plant that obtains power from steam, it has been conventionally practiced to use steam condensate discharged from a turbine group and condensed in a condenser. For example, in the steam turbine plant disclosed in Patent Document 1, the steam introduced into the condenser 92 from the turbine 91 is heat-exchanged with the cold seawater 93 as shown in FIG. It is introduced into the condenser 95. The steam condensate accumulated in the condenser 95 is used as cooling water for a fresh water generator in the process of being used again as boiler feed water, thereby achieving heat recovery and energy saving as a turbine system. In the configuration of FIG. 5, the cold seawater 93 is converted into warm seawater 96 by the condenser 92, and a part thereof is introduced into the evaporator 97, and the generated steam is guided to the condenser 95 to exchange heat with the condensed water 94. As a result, fresh water 98 is generated.

特開昭61−161189号公報JP 61-161189 A

ところで、昨今の蒸気タービンプラントに対しては、更なる省エネルギー化の流れから蒸気条件の高圧化による高効率化が図られており、凝縮器95に導入して蒸気の凝縮に利用される復水94の温度が高温化すると共に蒸気復水の減量化傾向にある。このため、上記従来の構成では必要な造水量に適した復水温度と流量が受給不能となり、従来の造水装置では、蒸発温度等の制限から必要な造水量を確保し難いおそれがあった。   By the way, for recent steam turbine plants, high efficiency is achieved by increasing the pressure of steam conditions from the trend of further energy saving, and condensate introduced into the condenser 95 and used for steam condensation. As the temperature of 94 rises, steam condensate tends to decrease. For this reason, the condensate temperature and flow rate suitable for the required amount of fresh water cannot be received in the conventional configuration described above, and in the conventional fresh water generator, it may be difficult to ensure the required amount of fresh water due to restrictions on the evaporation temperature and the like. .

そこで、本発明は、省エネルギー化を図りつつ造水効率を向上させることができる造水装置および造水方法の提供を目的とする。   Then, an object of this invention is to provide the fresh water generator and fresh water generation method which can improve fresh water generation efficiency, aiming at energy saving.

本発明の前記目的は、原料水を加熱して水蒸気を生成する加熱器と、生成された水蒸気を冷却して蒸留水を生成する復水器とを備える造水装置であって、前記復水器は、水蒸気を冷却水と熱交換する第1の熱交換器と、水蒸気を原料水と熱交換する第2の熱交換器とを備え、前記第2の熱交換器を通過した原料水を前記加熱器に導入するように構成され、ボイラで発生した蒸気がタービンの駆動後にタービン復水器で凝縮されて前記ボイラに還流されるように循環路が構成された蒸気タービンプラントを更に備え、前記タービン復水器で生成されたタービン復水が冷却水となるように、前記第1の熱交換器を前記循環路に介在させた造水装置により達成される。
The object of the present invention is a fresh water generator comprising a heater that heats raw water to generate steam, and a condenser that cools the generated steam to generate distilled water. The vessel includes a first heat exchanger that exchanges heat of steam with cooling water, and a second heat exchanger that exchanges heat of steam with raw water, and the raw water that has passed through the second heat exchanger is A steam turbine plant configured to be introduced into the heater, and configured so that steam generated in the boiler is condensed in a turbine condenser after being driven by the turbine and returned to the boiler; This is achieved by a fresh water generator in which the first heat exchanger is interposed in the circulation path so that the turbine condensate generated by the turbine condenser becomes cooling water .

この造水装置において、前記第1の熱交換器および第2の熱交換器は、冷却水および原料水が混合しないように一体化された構造にすることができる。   In the fresh water generator, the first heat exchanger and the second heat exchanger can be integrated so that the cooling water and the raw water are not mixed.

前記復水器は、2つの端板の間に積層配置された複数の伝熱プレートを備え、複数の前記伝熱プレートは、介在された仕切部材によって2つのプレート群に分離された構成にすることができる。この構成において、前記第1の熱交換器は、一方の前記端板から冷却水を導入し、一方の前記プレート群を介して水蒸気との熱交換を行い、熱交換後の冷却水を一方の前記端板から排出するように構成され、前記第2の熱交換器は、他方の前記端板から原料水を導入し、他方の前記プレート群を介して水蒸気との熱交換を行い、熱交換後の原料水を他方の前記端板から排出するように構成される。この構成によれば、コンパクト化を図りつつ、復水器の能力を向上させることができる。   The condenser includes a plurality of heat transfer plates stacked between two end plates, and the plurality of heat transfer plates may be separated into two plate groups by an interposed partition member. it can. In this configuration, the first heat exchanger introduces cooling water from one of the end plates, performs heat exchange with water vapor through the one plate group, and supplies the cooling water after heat exchange to one of the end plates. The second heat exchanger is configured to discharge from the end plate, and the second heat exchanger introduces raw water from the other end plate, performs heat exchange with water vapor through the other plate group, and performs heat exchange. It is comprised so that latter raw material water may be discharged | emitted from the said other end plate. According to this configuration, the capacity of the condenser can be improved while achieving compactness.

また、本発明の前記目的は、原料水を加熱器で加熱して水蒸気を生成する加熱ステップと、生成された水蒸気を第1の熱交換器および第2の熱交換器においてそれぞれ冷却水および原料水により冷却して蒸留水を生成する復水ステップとを備え、前記加熱ステップは、前記復水ステップで水蒸気と熱交換した原料水を前記加熱器に導入し、前記復水ステップは、ボイラで発生した蒸気がタービンの駆動後にタービン復水器で凝縮されて前記ボイラに還流されるように循環路が構成された蒸気タービンプラントの前記循環路に前記第1の熱交換器を介在させて、前記タービン復水器で生成されたタービン復水を冷却水とする造水方法により達成される。 In addition, the object of the present invention is to provide a heating step in which raw water is heated with a heater to generate water vapor, and the generated water vapor is used as cooling water and raw material in the first heat exchanger and the second heat exchanger, respectively. And a condensate step for producing distilled water by cooling with water, wherein the heating step introduces raw water heat-exchanged with water vapor in the condensate step into the heater, and the condensate step is performed by a boiler. By interposing the first heat exchanger in the circulation path of the steam turbine plant in which the circulation path is configured so that the generated steam is condensed in a turbine condenser after being driven by the turbine and returned to the boiler, This is achieved by a fresh water generation method using the turbine condensate generated by the turbine condenser as cooling water .

本発明によれば、省エネルギー化を図りつつ造水効率を向上させることができる造水装置および造水方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the fresh water generator and the fresh water generation method which can improve fresh water generation efficiency, aiming at energy saving can be provided.

本発明の一実施形態に係る造水装置の系統図である。It is a systematic diagram of the fresh water generator concerning one embodiment of the present invention. 図1に示す造水装置の要部系統図である。It is a principal part system diagram of the fresh water generator shown in FIG. 図1に示す造水装置の要部斜視図である。It is a principal part perspective view of the fresh water generator shown in FIG. 本発明の他の実施形態に係る造水装置の要部斜視図である。It is a principal part perspective view of the desalinator which concerns on other embodiment of this invention. 従来の造水装置の系統図である。It is a systematic diagram of the conventional fresh water generator.

以下、本発明の一実施形態について添付図面を参照して説明する。図1は、本発明の一実施形態に係る造水装置の系統図である。図1に示すように、造水装置1は、蒸気タービンプラント50の系統に造水装置本体100が組み込まれて構成されている。蒸気タービンプラント50は一例として、ボイラ51、タービン群52、タービン復水器53、グランドコンデンサ54、給水加熱器55および脱気器56を備えており、これらの構成要素が循環路60によって接続されている。   Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a system diagram of a fresh water generator according to an embodiment of the present invention. As shown in FIG. 1, the fresh water generator 1 is configured by incorporating a fresh water generator main body 100 into a system of a steam turbine plant 50. As an example, the steam turbine plant 50 includes a boiler 51, a turbine group 52, a turbine condenser 53, a ground condenser 54, a feed water heater 55, and a deaerator 56, and these components are connected by a circulation path 60. ing.

ボイラ51は、重油、液化天然ガス等の燃料を燃焼させて給水から蒸気を生成し、タービン群52に供給する。タービン群52は、例えば高圧タービンおよび低圧タービンから構成される蒸気タービン群であり、船舶のプロペラ等を回転させるための動力を発生させる。タービン復水器53は、タービン群52から排出された蒸気を海水等により冷却してタービン復水を生成する。生成されたタービン復水は、ポンプ61の作動によりグランドコンデンサ54および給水加熱器55を通過し、タービン群52に導入された蒸気の一部を利用して加熱された後、脱気器56に導入されて酸素等が除去される。脱気器56に貯留されたタービン復水は、ポンプ62の作動によりボイラ51に給水されて再び蒸気となり、循環路60を循環する。蒸気タービンプラント50は、蒸気タービン船に搭載されるものを好ましく例示することができるが、用途は特に限定されるものではなく、例えば、発電用であってもよい。   The boiler 51 burns fuel such as heavy oil and liquefied natural gas to generate steam from the feed water, and supplies the steam to the turbine group 52. The turbine group 52 is a steam turbine group including, for example, a high-pressure turbine and a low-pressure turbine, and generates power for rotating a propeller of a ship. The turbine condenser 53 cools the steam discharged from the turbine group 52 with seawater or the like to generate turbine condensate. The generated turbine condensate passes through the ground condenser 54 and the feed water heater 55 by the operation of the pump 61, is heated by using a part of the steam introduced into the turbine group 52, and then is supplied to the deaerator 56. Introduced to remove oxygen and the like. The turbine condensate stored in the deaerator 56 is supplied to the boiler 51 by the operation of the pump 62, becomes steam again, and circulates in the circulation path 60. The steam turbine plant 50 can preferably be exemplified by those mounted on a steam turbine ship, but the application is not particularly limited, and may be for power generation, for example.

造水装置本体100は、上記の構成を備える蒸気タービンプラント50において、ポンプ61とグランドコンデンサ54との間の循環路60に分岐路63を経て介在されており、後述するように、循環路60を通過するタービン復水を造水用の冷却水として使用する。造水装置本体100に供給されるタービン復水の流量は、循環路60に設けられた調整弁64の操作により調整可能である。造水装置本体100は、本実施形態のように循環路60からバイパスさせる代わりに、循環路60に直接介在させてもよい。   In the steam turbine plant 50 having the above-described configuration, the fresh water generator main body 100 is interposed in a circulation path 60 between the pump 61 and the ground condenser 54 via a branch path 63. As will be described later, the circulation path 60 The turbine condensate passing through is used as cooling water for fresh water generation. The flow rate of the turbine condensate supplied to the fresh water generator main body 100 can be adjusted by operating an adjustment valve 64 provided in the circulation path 60. The fresh water generator main body 100 may be directly interposed in the circulation path 60 instead of being bypassed from the circulation path 60 as in the present embodiment.

図2は、造水装置本体100の系統図である。図2に示すように、造水装置本体100は、原料水である海水を加熱し水蒸気を生成する加熱器10と、水蒸気をブライン(濃縮海水)等の濃縮原料水と分離する蒸発器20と、水蒸気を冷却して蒸留水を生成する復水器30とを備えている。   FIG. 2 is a system diagram of the fresh water generator main body 100. As shown in FIG. 2, the fresh water generator main body 100 includes a heater 10 that heats seawater as raw water to generate water vapor, and an evaporator 20 that separates water vapor from concentrated raw water such as brine (concentrated seawater). And a condenser 30 that cools the steam and generates distilled water.

加熱器10は、原料水をそれぞれ導入および排出する原料水導入口11および水蒸気・ブライン出口12と、船舶用エンジンのジャケット冷却水などの温水をそれぞれ導入および排出する温水導入口13および温水排出口14とを備えており、原料水導入口11から導入された原料水が、温水導入口13から導入された温水により加熱されて蒸発し、水蒸気・ブライン出口12から排出される。加熱器10は、後述する復水器30と同様にプレート式熱交換器を備えるものを好ましく例示することができるが、熱交換器の種類は特に限定されるものではない。また、水蒸気の加熱源も温水に限定されるものではなく、例えば蒸気、燃焼式ヒータや電気ヒータ等であってもよい。   The heater 10 includes a raw water inlet 11 and a steam / brine outlet 12 through which raw water is introduced and discharged, and a hot water inlet 13 and a hot water outlet through which hot water such as jacket cooling water for a marine engine is introduced and discharged, respectively. 14, the raw water introduced from the raw water inlet 11 is heated by the hot water introduced from the hot water inlet 13 to evaporate and discharged from the steam / brine outlet 12. Although the heater 10 can illustrate preferably what is equipped with a plate-type heat exchanger similarly to the condenser 30 mentioned later, the kind of heat exchanger is not specifically limited. Further, the heating source of water vapor is not limited to hot water, and may be, for example, steam, a combustion heater, an electric heater, or the like.

蒸発器20は、水蒸気・ブライン出口12から排出された加熱後の原料水を導入する加熱原料水導入口21と、原料水から生成された水蒸気を排出する蒸気排出口22と、残留するブラインを排出するブライン排出口23とを備えている。   The evaporator 20 includes a heated raw water inlet 21 for introducing heated raw water discharged from the steam / brine outlet 12, a vapor outlet 22 for discharging water vapor generated from the raw water, and the remaining brine. And a brine discharge port 23 for discharging.

復水器30は、蒸気排出口22から排出された水蒸気を導入する蒸気導入口31と、水蒸気を冷却して得られた蒸留水を排出する蒸留水排出口32と、蒸気を冷却するための冷却水をそれぞれ導入および排出する冷却水導入口33および冷却水排出口34と、同じく蒸気を冷却する原料水をそれぞれ導入および排出する原料水導入口35および原料水排出口36とを備えている。   The condenser 30 includes a steam inlet 31 for introducing the steam discharged from the steam outlet 22, a distilled water outlet 32 for discharging distilled water obtained by cooling the steam, and a steam for cooling the steam. A cooling water inlet 33 and a cooling water outlet 34 for introducing and discharging cooling water, respectively, and a raw water inlet 35 and a raw water outlet 36 for introducing and discharging raw water for similarly cooling steam are provided. .

冷却水導入口33には、図1に示す蒸気タービンプラント50のタービン復水が冷却水として導入され、冷却水排出口34から排出された冷却水は、再び蒸気タービンプラント50の循環路60に戻される。冷却水となるタービン復水は通常は高純度の清水であることから、復水器30には冷却水と原料水とが混合しないように仕切部材37が設けられている。復水器30は、この仕切部材37によって、水蒸気を冷却水と熱交換する第1の熱交換器310と、水蒸気を原料水と熱交換する第2の熱交換器320とに分離されている。冷却水は必ずしも清水である必要はなく、原料水とは異なる他の冷却液であってもよい。   Turbine condensate of the steam turbine plant 50 shown in FIG. 1 is introduced into the cooling water inlet 33 as cooling water, and the cooling water discharged from the cooling water outlet 34 again enters the circulation path 60 of the steam turbine plant 50. Returned. Since the turbine condensate serving as cooling water is usually high-purity fresh water, the condenser 30 is provided with a partition member 37 so that the cooling water and the raw water are not mixed. The condenser 30 is separated by the partition member 37 into a first heat exchanger 310 that exchanges heat of steam with cooling water and a second heat exchanger 320 that exchanges heat of steam with raw material water. . The cooling water is not necessarily fresh water, and may be another cooling liquid different from the raw water.

また、原料水導入口35には、他の系統、またはエゼクターポンプ41の作動により海水が原料水として導入され、原料水排出口36から排出された原料水が、加熱器10の原料水導入口11に導入される。原料水としては、本実施形態の海水以外に、水道水、雨水、地下水、河川水、工業排水、生活排水等を使用することができる。エゼクターポンプ41により供給される原料水は、水エゼクタ40の駆動水としても利用され、蒸発器20および復水器30は、水エゼクタ40の最大負圧部に接続されて不凝縮ガスが吸引されることにより真空状態が維持される。蒸留水排出口32から排出される蒸留水は、蒸留水ポンプ42により清水タンク(図示せず)に導かれる。   In addition, seawater is introduced into the raw material water inlet 35 as raw water by the operation of the other system or the ejector pump 41, and the raw water discharged from the raw water outlet 36 is the raw water inlet of the heater 10. 11 is introduced. As raw water, tap water, rain water, ground water, river water, industrial waste water, domestic waste water, etc. can be used in addition to the seawater of the present embodiment. The raw water supplied by the ejector pump 41 is also used as driving water for the water ejector 40, and the evaporator 20 and the condenser 30 are connected to the maximum negative pressure portion of the water ejector 40 to suck in non-condensable gas. Thus, the vacuum state is maintained. Distilled water discharged from the distilled water discharge port 32 is guided by a distilled water pump 42 to a fresh water tank (not shown).

本実施形態の復水器30は、プレート式熱交換器により構成されている。図3に要部斜視図で示すように、復水器30は、2つの端板111,112の間に、2種類の伝熱プレート113a,113bがそれぞれ複数交互に積層配置されて構成されており、縁部が連結棒30a,30aにより結合されている。なお、図3においては、構成の理解を容易にするため一方の端板111を破線で示している。各伝熱プレート113a,113bは矩形状に形成されており、積層方向の中央付近に隣接配置された2枚の伝熱プレート113b,113b間に、上述した仕切部材37が設けられている。各伝熱プレート113a,113bは、この仕切部材37によって2つのプレート群に分離される。本実施形態の仕切部材37は、伝熱プレート113a,113bよりも肉厚のプレートの開口を口栓37aにより密封して構成されており、冷却水が高圧のタービン復水である場合でも高い耐圧性能を発揮して、冷却水と原料水との混合を確実に防止することができる。但し、仕切部材37の構成は本実施形態のものには限定されず、例えば、図4に示すように、隣接配置された2枚の伝熱プレート113a,113bによって仕切部材37を構成することも可能である。図4に示す仕切部材37を構成する2つの伝熱プレート113a,113bは、後述する蒸留流通口114、115を有する一方で、それ以外の開口が口栓37aにより密封されている。なお、図4において図1と同様の構成部分には、同一の符号を付している。   The condenser 30 of this embodiment is comprised by the plate type heat exchanger. As shown in the perspective view of the main part in FIG. 3, the condenser 30 is configured such that a plurality of two types of heat transfer plates 113 a and 113 b are alternately stacked between the two end plates 111 and 112. And the edges are joined by connecting rods 30a, 30a. In FIG. 3, one end plate 111 is indicated by a broken line in order to facilitate understanding of the configuration. Each of the heat transfer plates 113a and 113b is formed in a rectangular shape, and the partition member 37 described above is provided between the two heat transfer plates 113b and 113b disposed adjacent to each other in the vicinity of the center in the stacking direction. Each of the heat transfer plates 113a and 113b is separated into two plate groups by the partition member 37. The partition member 37 of the present embodiment is configured by sealing the opening of a plate thicker than the heat transfer plates 113a and 113b with a plug 37a, and has a high pressure resistance even when the cooling water is high-pressure turbine condensate. Performance can be demonstrated and mixing of cooling water and raw material water can be prevented reliably. However, the configuration of the partition member 37 is not limited to that of the present embodiment. For example, as shown in FIG. 4, the partition member 37 may be configured by two heat transfer plates 113a and 113b arranged adjacent to each other. Is possible. The two heat transfer plates 113a and 113b constituting the partition member 37 shown in FIG. 4 have distillation circulation ports 114 and 115, which will be described later, while the other openings are sealed by a plug 37a. In FIG. 4, the same components as those in FIG. 1 are denoted by the same reference numerals.

蒸気導入口31および蒸留水排出口32は、一方の端板111における一方の対角にそれぞれ形成されている。各伝熱プレート113a,113bは、蒸気導入口31および蒸留水排出口32に対応する位置にそれぞれ蒸留流通口114,115が形成されており、各蒸留流通口114によって形成される流路に蒸気導入口31が接続され、各蒸留流通口115によって形成される流路に蒸留水排出口32が接続されている。   The steam inlet 31 and the distilled water outlet 32 are respectively formed at one diagonal of the one end plate 111. The heat transfer plates 113a and 113b have distillation flow ports 114 and 115 formed at positions corresponding to the steam introduction port 31 and the distilled water discharge port 32, respectively, and steam is formed in the flow path formed by each distillation flow port 114. An introduction port 31 is connected, and a distilled water discharge port 32 is connected to a flow path formed by each distillation flow port 115.

冷却水導入口33および冷却水排出口34は、一方の端板111における他方の対角にそれぞれ形成されている。一方の端板111と仕切部材37との間に配置された一方のプレート群を構成する各伝熱プレート113a,113bは、冷却水導入口33および冷却水排出口34に対応する位置にそれぞれ冷却水流通口116,117が形成されており、各冷却水流通口116によって形成される流路に冷却水導入口33が接続され、各冷却水流通口117によって形成される流路に冷却水排出口34が接続されている。   The cooling water introduction port 33 and the cooling water discharge port 34 are respectively formed on the other diagonal of the one end plate 111. Each of the heat transfer plates 113a and 113b constituting one plate group disposed between the one end plate 111 and the partition member 37 is cooled to a position corresponding to the cooling water introduction port 33 and the cooling water discharge port 34, respectively. Water circulation ports 116 and 117 are formed, the cooling water introduction port 33 is connected to the flow path formed by each cooling water circulation port 116, and the cooling water drainage is connected to the flow path formed by each cooling water circulation port 117. An outlet 34 is connected.

原料水導入口35および原料水排出口36は、他方の端板112における他方の対角にそれぞれ形成されている。他方の端板112と仕切部材37との間に配置された他方のプレート群を構成する各伝熱プレート113a,113bは、原料水導入口35および原料水排出口36に対応する位置にそれぞれ原料水流通口118,119が形成されており、各原料水流通口118によって形成される流路に原料水導入口35が接続され、各原料水流通口119によって形成される流路に原料水排出口36が接続されている。仕切部材37は、蒸留流通口114、115を有する一方で、上記のように、冷却水流通口116,117および原料水流通口118,119に対応する開口が口栓37aにより密閉されている。   The raw water inlet 35 and the raw water outlet 36 are formed at the other diagonal of the other end plate 112. Each of the heat transfer plates 113a and 113b constituting the other plate group disposed between the other end plate 112 and the partition member 37 is a raw material at a position corresponding to the raw water inlet 35 and the raw water outlet 36, respectively. Water flow ports 118 and 119 are formed, the raw water introduction port 35 is connected to the flow path formed by each raw water flow port 118, and the raw water drain is connected to the flow path formed by each raw water flow port 119. An outlet 36 is connected. While the partition member 37 has the distillation flow ports 114 and 115, the opening corresponding to the cooling water flow ports 116 and 117 and the raw water flow ports 118 and 119 is sealed with the plug 37a as described above.

各伝熱プレート113a,113bは、いずれも一方面に溝部120a,120bが形成されており、伝熱プレート113aの溝部120aは、2つの蒸留流通口114,115同士を連通する一方、2つの冷却水流通口116,117同士または2つの原料水流通口118,119同士は隔離する。また、伝熱プレート113bの溝部120bは、2つの蒸留流通口114,115同士を隔離する一方、2つの冷却水流通口116,117同士または2つの原料水流通口118,119同士は連通する。隣接する各伝熱プレート113a,113bの間は、ガスケット(図示せず)によりシールされる。なお、図3においては理解を容易にするため、伝熱プレート113a,113bの積層方向に形成される流路が、溝部120a,120bと連通する部分を破線で示し、溝部120a,120bと隔離されている部分を実線で示している。   Each of the heat transfer plates 113a and 113b is formed with grooves 120a and 120b on one surface, and the groove 120a of the heat transfer plate 113a communicates the two distillation flow ports 114 and 115 with each other and two cooling plates. The water distribution ports 116 and 117 or the two raw water distribution ports 118 and 119 are isolated from each other. Further, the groove 120b of the heat transfer plate 113b isolates the two distillation circulation ports 114 and 115, while the two cooling water circulation ports 116 and 117 or the two raw water circulation ports 118 and 119 communicate with each other. Adjacent heat transfer plates 113a and 113b are sealed with a gasket (not shown). In FIG. 3, for easy understanding, the flow path formed in the stacking direction of the heat transfer plates 113 a and 113 b indicates a portion communicating with the groove portions 120 a and 120 b by a broken line, and is isolated from the groove portions 120 a and 120 b. The part that is shown is shown by a solid line.

復水器30のこのような構成により、一方の端板111と仕切部材37との間では、蒸気導入口31および冷却水導入口33から導入された水蒸気および冷却水が、伝熱プレート113aの溝部120aおよび伝熱プレート113bの溝部120bをそれぞれ流れるため、伝熱プレート113a,113bの積層方向でみると、隣接する伝熱プレート113a,113b間を水蒸気および冷却水が交互に通過する。この結果、水蒸気と冷却水との間で伝熱プレート113a,113bを介して熱交換が行われ、この部分が第1の熱交換器310として機能する。熱交換を終えて生成された蒸留水および冷却水は、それぞれ蒸留水排出口32および冷却水排出口34から排出される。   With such a configuration of the condenser 30, between the one end plate 111 and the partition member 37, steam and cooling water introduced from the steam inlet 31 and the cooling water inlet 33 are transferred to the heat transfer plate 113a. Since the groove 120a and the groove 120b of the heat transfer plate 113b respectively flow, when viewed in the stacking direction of the heat transfer plates 113a and 113b, steam and cooling water alternately pass between the adjacent heat transfer plates 113a and 113b. As a result, heat exchange is performed between the steam and the cooling water via the heat transfer plates 113a and 113b, and this portion functions as the first heat exchanger 310. Distilled water and cooling water generated after the heat exchange are discharged from the distilled water discharge port 32 and the cooling water discharge port 34, respectively.

復水器30の他方の端板112と仕切部材37との間では、原料水導入口35から導入された原料水が伝熱プレート113bの溝部120bを流れるため、伝熱プレート113a,113bの積層方向でみると、隣接する伝熱プレート113a,113b間を水蒸気および原料水が交互に通過する。この結果、水蒸気と原料水との間で伝熱プレート113a,113bを介して熱交換が行われ、この部分が第2の熱交換器320として機能する。熱交換を終えて加熱された原料水は、原料水排出口36から排出される。   Between the other end plate 112 of the condenser 30 and the partition member 37, the raw water introduced from the raw water introduction port 35 flows through the groove 120b of the heat transfer plate 113b, so that the heat transfer plates 113a and 113b are stacked. When viewed in the direction, water vapor and raw material water alternately pass between adjacent heat transfer plates 113a and 113b. As a result, heat exchange is performed between the steam and the raw material water via the heat transfer plates 113a and 113b, and this portion functions as the second heat exchanger 320. The raw water heated after the heat exchange is discharged from the raw water outlet 36.

上記の構成を備える造水装置1によれば、復水器30の一方の端板111から冷却水導入口33を介して導入された冷却水と、他方の端板112から原料水導入口35を介して導入された原料水とが、それぞれ第1の熱交換器310および第2の熱交換器320において水蒸気と熱交換することにより、蒸留水を生成するように構成されているため、従来のように単に冷却水と水蒸気とを熱交換させる構成に比べて水蒸気の復水を容易に行うことができ、復水器30の効率を高めることができる。また、加熱器10には、第2の熱交換器320において水蒸気との熱交換により昇温された原料水が導入されるため、加熱器10に導入される原料水を初期段階で蒸発させて熱交換効率を向上させることができ、省エネルギー化を図ることができる。加熱器10に導入される原料水の温度は、復水器30に設けられる伝熱プレート113a,113bの枚数や、仕切部材37の位置を選択することにより、適宜調整可能である。   According to the fresh water generator 1 having the above configuration, the cooling water introduced from one end plate 111 of the condenser 30 through the cooling water introduction port 33 and the raw water introduction port 35 from the other end plate 112. Since the raw water introduced through the water is configured to generate distilled water by exchanging heat with water vapor in the first heat exchanger 310 and the second heat exchanger 320, respectively, Thus, compared with the configuration in which the cooling water and the steam are simply subjected to heat exchange, the steam condensate can be easily performed, and the efficiency of the condenser 30 can be increased. Moreover, since the raw material water heated by heat exchange with water vapor in the second heat exchanger 320 is introduced into the heater 10, the raw material water introduced into the heater 10 is evaporated at an initial stage. Heat exchange efficiency can be improved and energy saving can be achieved. The temperature of the raw material water introduced into the heater 10 can be appropriately adjusted by selecting the number of heat transfer plates 113 a and 113 b provided in the condenser 30 and the position of the partition member 37.

造水装置1が奏する上記の効果は、本実施形態のように蒸気タービンプラント50のタービン復水を冷却水とする場合に特に顕著であり、蒸気条件の高温化に伴いタービン復水が比較的高温であっても、必要な造水量を容易に確保することができる。但し、復水器30に導入される冷却水は、必ずしも蒸気タービンプラント50のタービン復水には限定されず、例えば、他の蒸気サイクルシステムで生成された凝縮水や、蒸気を熱源や動力源として使用することにより生成されて高温のまま他の用途等に利用されるドレン等を使用してもよい。   The above-described effect produced by the fresh water generator 1 is particularly noticeable when the turbine condensate of the steam turbine plant 50 is used as cooling water as in the present embodiment. Even if the temperature is high, the required amount of water can be easily secured. However, the cooling water introduced into the condenser 30 is not necessarily limited to the turbine condensate of the steam turbine plant 50. For example, the condensed water generated in another steam cycle system or steam is used as a heat source or power source. Drains and the like that are generated by using as such and are used for other purposes while being at a high temperature may be used.

また、本実施形態においては、第1の熱交換器310および第2の熱交換器320が、冷却水および原料水の混合を生じないように一体化されているので、構成のコンパクト化を図りつつ、復水器30の効率向上を図ることができる。具体的には、第1の熱交換器310および第2の熱交換器320を、伝熱プレート113a,113bの積層方向に沿って並列配置することができる。本実施形態の構成は、復水器30に導入される水蒸気が、最初にその一部が第1の熱交換器310に導入され、次に、残りの水蒸気が第2の熱交換器320に導入される。但し、第1の熱交換器310および第2の熱交換器320の配置は本実施形態のものに限定されず、例えば、冷却水導入口33および冷却水排出口34を他方の端板112に設け、原料水導入口35および原料水排出口36を一方の端板111に設けた構成にすることもできる。   In the present embodiment, the first heat exchanger 310 and the second heat exchanger 320 are integrated so as not to cause mixing of the cooling water and the raw water, so that the configuration can be made compact. However, the efficiency of the condenser 30 can be improved. Specifically, the first heat exchanger 310 and the second heat exchanger 320 can be arranged in parallel along the stacking direction of the heat transfer plates 113a and 113b. In the configuration of this embodiment, the steam introduced into the condenser 30 is first partially introduced into the first heat exchanger 310 and then the remaining steam is introduced into the second heat exchanger 320. be introduced. However, the arrangement of the first heat exchanger 310 and the second heat exchanger 320 is not limited to that of this embodiment. For example, the cooling water inlet 33 and the cooling water outlet 34 are connected to the other end plate 112. The raw material water inlet 35 and the raw water outlet 36 may be provided on one end plate 111.

また、第1の熱交換器310および第2の熱交換器320は、本実施形態のようにプレート式熱交換器により形成することが好ましいが、シェルアンドチューブ式など他の熱交換器を使用することもできる。また、第1の熱交換器310および第2の熱交換器320は、必ずしも一体化されている必要はなく、互いに分離された構成であってもよい。第1の熱交換器310および第2の熱交換器320は、水蒸気の流れを分岐させて第1の熱交換器310および第2の熱交換器320にそれぞれ導入するように構成することもできる。   The first heat exchanger 310 and the second heat exchanger 320 are preferably formed by plate heat exchangers as in this embodiment, but other heat exchangers such as a shell and tube type are used. You can also Moreover, the 1st heat exchanger 310 and the 2nd heat exchanger 320 do not necessarily need to be integrated, The structure isolate | separated from each other may be sufficient. The first heat exchanger 310 and the second heat exchanger 320 can also be configured to branch and introduce the steam flow into the first heat exchanger 310 and the second heat exchanger 320, respectively. .

1 造水装置
10 加熱器
30 復水器
310 第1の熱交換器
320 第2の熱交換器
37 仕切部材
50 蒸気タービンプラント
100 造水装置本体
111,112 端板
113a,113b 伝熱プレート
DESCRIPTION OF SYMBOLS 1 Fresh water generator 10 Heater 30 Condenser 310 1st heat exchanger 320 2nd heat exchanger 37 Partition member 50 Steam turbine plant 100 Fresh water generator main body 111,112 End plate 113a, 113b Heat-transfer plate

Claims (4)

原料水を加熱して水蒸気を生成する加熱器と、生成された水蒸気を冷却して蒸留水を生成する復水器とを備える造水装置であって、
前記復水器は、水蒸気を冷却水と熱交換する第1の熱交換器と、水蒸気を原料水と熱交換する第2の熱交換器とを備え、
前記第2の熱交換器を通過した原料水を前記加熱器に導入するように構成され
ボイラで発生した蒸気がタービンの駆動後にタービン復水器で凝縮されて前記ボイラに還流されるように循環路が構成された蒸気タービンプラントを更に備え、
前記タービン復水器で生成されたタービン復水が冷却水となるように、前記第1の熱交換器を前記循環路に介在させた造水装置。
A fresh water generator comprising a heater for heating raw material water to generate water vapor, and a condenser for cooling the generated water vapor to generate distilled water,
The condenser includes a first heat exchanger that exchanges heat between steam and cooling water, and a second heat exchanger that exchanges heat between steam and raw water,
The raw water that has passed through the second heat exchanger is configured to be introduced into the heater ,
A steam turbine plant in which a circulation path is configured such that steam generated in the boiler is condensed in a turbine condenser after being driven by the turbine and is returned to the boiler;
A fresh water generator in which the first heat exchanger is interposed in the circulation path so that turbine condensate generated by the turbine condenser becomes cooling water .
前記第1の熱交換器および第2の熱交換器は、冷却水および原料水が混合しないように一体化されている請求項1に記載の造水装置。   The fresh water generator according to claim 1, wherein the first heat exchanger and the second heat exchanger are integrated so that the cooling water and the raw water are not mixed. 前記復水器は、2つの端板の間に積層配置された複数の伝熱プレートを備え、複数の前記伝熱プレートは、介在された仕切部材によって2つのプレート群に分離されており、
前記第1の熱交換器は、一方の前記端板から冷却水を導入し、一方の前記プレート群を介して水蒸気との熱交換を行い、熱交換後の冷却水を一方の前記端板から排出するように構成されており、
前記第2の熱交換器は、他方の前記端板から原料水を導入し、他方の前記プレート群を介して水蒸気との熱交換を行い、熱交換後の原料水を他方の前記端板から排出するように構成された請求項1または2に記載の造水装置。
The condenser includes a plurality of heat transfer plates stacked between two end plates, and the plurality of heat transfer plates are separated into two plate groups by an interposed partition member,
The first heat exchanger introduces cooling water from one of the end plates, performs heat exchange with water vapor through the one plate group, and supplies the cooling water after heat exchange from one of the end plates. Configured to discharge,
The second heat exchanger introduces raw water from the other end plate, performs heat exchange with water vapor through the other plate group, and supplies the raw water after heat exchange from the other end plate. The fresh water generator according to claim 1 or 2 configured to discharge.
原料水を加熱器で加熱して水蒸気を生成する加熱ステップと、
生成された水蒸気を第1の熱交換器および第2の熱交換器においてそれぞれ冷却水および原料水により冷却して蒸留水を生成する復水ステップとを備え、
前記加熱ステップは、前記復水ステップで水蒸気と熱交換した原料水を前記加熱器に導入し、
前記復水ステップは、ボイラで発生した蒸気がタービンの駆動後にタービン復水器で凝縮されて前記ボイラに還流されるように循環路が構成された蒸気タービンプラントの前記循環路に前記第1の熱交換器を介在させて、前記タービン復水器で生成されたタービン復水を冷却水とする造水方法。
A heating step of heating the raw water with a heater to generate water vapor;
A condensate step for producing distilled water by cooling the generated water vapor with cooling water and raw water in the first heat exchanger and the second heat exchanger, respectively .
In the heating step, the raw material water heat-exchanged with the steam in the condensate step is introduced into the heater ,
In the condensate step, the steam generated in the boiler is condensed in the turbine condenser after the turbine is driven and is returned to the boiler. A desalination method in which the turbine condensate generated by the turbine condenser is used as cooling water with a heat exchanger interposed .
JP2011040914A 2011-02-25 2011-02-25 Fresh water generator and fresh water generation method Active JP5672450B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011040914A JP5672450B2 (en) 2011-02-25 2011-02-25 Fresh water generator and fresh water generation method
TW100129224A TWI568680B (en) 2011-02-25 2011-08-16 Water desalination system and water desalination method
CN201110309700.5A CN102649591B (en) 2011-02-25 2011-10-10 Water-producing device and water-producing method
KR1020110103616A KR101305085B1 (en) 2011-02-25 2011-10-11 Water desalination system and water desalination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011040914A JP5672450B2 (en) 2011-02-25 2011-02-25 Fresh water generator and fresh water generation method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014228724A Division JP5979395B2 (en) 2014-11-11 2014-11-11 Fresh water generator and fresh water generation method

Publications (2)

Publication Number Publication Date
JP2012176364A JP2012176364A (en) 2012-09-13
JP5672450B2 true JP5672450B2 (en) 2015-02-18

Family

ID=46691723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011040914A Active JP5672450B2 (en) 2011-02-25 2011-02-25 Fresh water generator and fresh water generation method

Country Status (4)

Country Link
JP (1) JP5672450B2 (en)
KR (1) KR101305085B1 (en)
CN (1) CN102649591B (en)
TW (1) TWI568680B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101821660B1 (en) * 2012-01-16 2018-01-24 가부시키가이샤 사사꾸라 Vacuum evaporation desalination system
JP6090839B2 (en) * 2013-02-13 2017-03-08 国立研究開発法人日本原子力研究開発機構 Multistage flash type seawater desalination apparatus and method
JP2014171962A (en) * 2013-03-08 2014-09-22 Sasakura Engineering Co Ltd Fresh water generator and fresh water generation method
CN103787434B (en) * 2013-12-19 2016-05-18 潘庆光 Condensing steam turbine generator group electricity, water, salt joint production process
CN109179842B (en) * 2018-10-30 2023-11-21 南京工程学院 Slaughterhouse process water regeneration system based on solar energy and air source heat pump
CN114856739B (en) * 2022-05-24 2023-08-08 华能国际电力股份有限公司 Water-heat cogeneration system based on low-temperature multi-effect evaporation technology

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3015584B2 (en) * 1992-04-15 2000-03-06 三菱重工業株式会社 Fresh water generator
JP3596642B2 (en) * 1996-05-14 2004-12-02 株式会社ササクラ Plate type fresh water generator
JP2003106782A (en) * 2001-09-28 2003-04-09 Hisaka Works Ltd Welded plate type heat exchanger
TW200700682A (en) * 2005-06-17 2007-01-01 Far East College Dual-function distilling system
JP4621597B2 (en) * 2006-01-20 2011-01-26 株式会社東芝 Steam turbine cycle
JP5132091B2 (en) * 2006-06-20 2013-01-30 株式会社ササクラ Plate type fresh water generator
KR100774546B1 (en) 2006-11-13 2007-11-08 두산중공업 주식회사 Seawater desalinating apparatus using blowdown of heat recovery steam generator
CN201132777Y (en) * 2007-11-23 2008-10-15 广东东南薄膜科技股份有限公司 Distilled water producing device

Also Published As

Publication number Publication date
CN102649591A (en) 2012-08-29
CN102649591B (en) 2015-04-08
KR20120098388A (en) 2012-09-05
TW201235304A (en) 2012-09-01
TWI568680B (en) 2017-02-01
JP2012176364A (en) 2012-09-13
KR101305085B1 (en) 2013-09-12

Similar Documents

Publication Publication Date Title
JP5672450B2 (en) Fresh water generator and fresh water generation method
JP6524298B2 (en) Vacuum evaporation type fresh water generator
JP5132091B2 (en) Plate type fresh water generator
JP5462939B2 (en) Power generation and seawater desalination complex plant
KR20140060353A (en) Steam power cycle system
JP6456407B2 (en) Evaporator
JP4400857B2 (en) Plate type fresh water generator
WO2020045659A1 (en) Desalination and temperature difference power generation system
US20150075963A1 (en) Water Treatment Device
EP0114830B1 (en) De-salinator for brackish or salt water
WO2022037001A1 (en) Wastewater treatment system
JP5979395B2 (en) Fresh water generator and fresh water generation method
KR101323160B1 (en) Marine vertical multistage desalinator
US11465068B2 (en) Multi-stage flash (MSF) reversal system and method
KR100749223B1 (en) Multi-stage flash evaporator
CN113710980B (en) Plate heat exchanger for treating a supply
CN110448930B (en) Water making device
KR100937447B1 (en) An long tube evaporator for a multiple stage flashing facility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141209

R150 Certificate of patent or registration of utility model

Ref document number: 5672450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250