JPH10270037A - Non-sintered nickel electrode for alkaline storage battery - Google Patents

Non-sintered nickel electrode for alkaline storage battery

Info

Publication number
JPH10270037A
JPH10270037A JP9090292A JP9029297A JPH10270037A JP H10270037 A JPH10270037 A JP H10270037A JP 9090292 A JP9090292 A JP 9090292A JP 9029297 A JP9029297 A JP 9029297A JP H10270037 A JPH10270037 A JP H10270037A
Authority
JP
Japan
Prior art keywords
active material
weight
sodium
electrode
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9090292A
Other languages
Japanese (ja)
Other versions
JP3433043B2 (en
Inventor
Mitsunori Tokuda
光紀 徳田
Kousuke Satoguchi
功祐 里口
Mutsumi Yano
睦 矢野
Shin Fujitani
伸 藤谷
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP09029297A priority Critical patent/JP3433043B2/en
Publication of JPH10270037A publication Critical patent/JPH10270037A/en
Application granted granted Critical
Publication of JP3433043B2 publication Critical patent/JP3433043B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To increase the long-term availability of active substance and to decrease the availability after over-discharging, by adding a rare earth element and/or its compound to active substance powder which consists of composition particles in which a coating layer made of Na-containing cobalt compound on the surface of nickel hydroxide particles. SOLUTION: A coating layer made of Na-containing cobalt compound is produced, by adding sodium hydroxide aqueous solution to the powder consisting of composition particles in which a metallic cobalt layer or a cobalt hydroxide layer is formed on the surface of nickel hydroxide particles, and by heating them under oxidizing atmosphere. Preferable contents of the coating layer in each composition particle is 3-15 wt.%. Preferable contents of Na in the coating layer is 0.1-10 wt.%. The compound of a rare earth element, which is added to active substance powder, is oxide, hydroxide, fluoride and carbonate salt. The adding ratio of the rare earth element or its compound is 0.05-5 pts.wt. of rare earth elements to 100 pts.wt. of active substance powder.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ニッケル−亜鉛蓄
電池、ニッケル−カドミウム蓄電池、ニッケル−水素蓄
電池等のアルカリ蓄電池の正極として使用される非焼結
式ニッケル極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-sintered nickel electrode used as a positive electrode of an alkaline storage battery such as a nickel-zinc storage battery, a nickel-cadmium storage battery, and a nickel-hydrogen storage battery.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
アルカリ蓄電池のニッケル極として、ニッケル粉末を穿
孔鋼板等に焼結させて得た焼結基板に活物質(水酸化ニ
ッケル)を含浸させてなる焼結式ニッケル極がよく知ら
れている。
2. Description of the Related Art
As a nickel electrode of an alkaline storage battery, a sintered nickel electrode obtained by impregnating a sintered substrate obtained by sintering nickel powder on a perforated steel plate or the like with an active material (nickel hydroxide) is well known.

【0003】焼結式ニッケル極において活物質の充填密
度を大きくするためには、多孔度の大きい焼結基板を用
いる必要がある。しかし、焼結によるニッケル粒子間の
結合は弱く、焼結基板の多孔度を大きくするとニッケル
粉末が焼結基板から脱落し易くなる。従って、実用上
は、焼結基板の多孔度を80%より大きくすることがで
きず、それゆえ焼結式ニッケル極には、活物質の充填密
度が小さいという問題がある。また、一般にニッケル粉
末の焼結体の孔径は10μm以下と小さいため、活物質
の基板(焼結体)への充填を、煩雑な含浸工程を数回繰
り返し行う必要がある溶液含浸法により行わなければな
らないという問題もある。
[0003] In order to increase the packing density of the active material in the sintered nickel electrode, it is necessary to use a sintered substrate having a high porosity. However, the bond between the nickel particles due to sintering is weak, and if the porosity of the sintered substrate is increased, the nickel powder tends to fall off the sintered substrate. Therefore, in practice, the porosity of the sintered substrate cannot be made larger than 80%, and the sintered nickel electrode has a problem that the packing density of the active material is small. Further, since the pore diameter of the sintered body of nickel powder is generally as small as 10 μm or less, the active material must be filled into the substrate (sintered body) by a solution impregnation method which requires a complicated impregnation step to be repeated several times. There is also the problem that it must be done.

【0004】このようなことから、最近、非焼結式ニッ
ケル極が提案されている。非焼結式ニッケル極は、活物
質(水酸化ニッケル)と結合剤溶液(メチルセルロース
水溶液など)との混練物(ペースト)を多孔度の大きい
基板(耐アルカリ性金属をめっきした発泡メタルなど)
に直接充填することにより作製される。非焼結式ニッケ
ル極では、多孔度の大きい基板を用いることができるの
で(多孔度が95%以上の基板を用いることができ
る)、活物質の充填密度を大きくすることができるとと
もに、活物質の基板への充填を容易に行うことができ
る。
[0004] Under such circumstances, a non-sintered nickel electrode has recently been proposed. A non-sintered nickel electrode is made by mixing a kneaded product (paste) of an active material (nickel hydroxide) and a binder solution (methylcellulose aqueous solution) with a highly porous substrate (foamed metal plated with an alkali-resistant metal).
It is made by directly filling the In the non-sintered nickel electrode, a substrate having a high porosity can be used (a substrate having a porosity of 95% or more can be used), so that the packing density of the active material can be increased and Can be easily filled into the substrate.

【0005】しかしながら、非焼結式ニッケル極におい
て活物質の充填密度を大きくするべく多孔度の大きい基
板を用いると、基板の集電能力が焼結式ニッケル極で用
いられる焼結基板に比べて悪くなるので、焼結式ニッケ
ル極に比べて、導電性が悪くなり、活物質利用率が低下
する。
However, when a non-sintered nickel electrode having a large porosity is used to increase the packing density of the active material, the current collecting capability of the substrate is lower than that of the sintered substrate used in the sintered nickel electrode. As a result, the conductivity becomes worse as compared with the sintered nickel electrode, and the active material utilization decreases.

【0006】そこで、非焼結式ニッケル極の導電性を高
めるべく、活物質粉末として、水酸化ニッケル粒子の表
面に水酸化コバルトからなる被覆層を形成した複合体粒
子からなる粉末を用いることが提案されている(特開昭
62−234867号公報参照)。
Therefore, in order to enhance the conductivity of the non-sintered nickel electrode, it is necessary to use, as the active material powder, a powder composed of composite particles in which a coating layer composed of cobalt hydroxide is formed on the surface of nickel hydroxide particles. It has been proposed (see JP-A-62-234867).

【0007】しかしながら、この非焼結式ニッケル極に
は、過放電すると、その後の活物質利用率が大きく低下
するという問題があった。
[0007] However, this non-sintered nickel electrode has a problem that, when overdischarged, the subsequent utilization of the active material is greatly reduced.

【0008】本発明は、以上の事情に鑑みなされたもの
であって、充放電サイクルの初期はもとより、長期にわ
たって活物質利用率が高く、しかも過放電後の活物質利
用率の低下が小さいアルカリ蓄電池用非焼結式ニッケル
極を提供することを目的とする。
The present invention has been made in view of the above circumstances, and is an alkali which has a high active material utilization rate over a long period of time as well as at the beginning of a charge / discharge cycle, and a small decrease in the active material utilization rate after overdischarge. An object is to provide a non-sintered nickel electrode for a storage battery.

【0009】[0009]

【課題を解決するための手段】本発明に係るアルカリ蓄
電池用非焼結式ニッケル極(本発明電極)は、水酸化ニ
ッケル粒子の表面にナトリウム含有コバルト化合物から
なる被覆層が形成された複合体粒子からなる活物質粉末
に、希土類元素及び/又はその化合物が添加されている
ことを特徴とする。
The non-sintered nickel electrode for an alkaline storage battery according to the present invention (electrode of the present invention) is a composite in which a coating layer comprising a sodium-containing cobalt compound is formed on the surface of nickel hydroxide particles. It is characterized in that a rare earth element and / or a compound thereof is added to an active material powder composed of particles.

【0010】本発明電極の活物質粉末は、水酸化ニッケ
ル粒子の表面にナトリウム含有コバルト化合物からなる
被覆層が形成された複合体粒子からなる。電導度の高い
被覆層を形成することにより、活物質粒子表面の導電性
が高められる。水酸化ニッケル粒子としては、水酸化ニ
ッケルのみからなる粒子の外、水酸化ニッケルに、亜
鉛、コバルト、カルシウム、マンガン、アルミニウム、
マグネシウム、イットリウム、ビスマス、スカンジウ
ム、ランタノイド及びカドミウムよりなる群から選ばれ
た少なくとも一種の元素が固溶した粒子が挙げられる。
水酸化ニッケルに、上記の各元素を固溶させることによ
り、非焼結式ニッケル極の充電時の膨化が抑制される。
[0010] The active material powder of the electrode of the present invention comprises composite particles in which a coating layer made of a sodium-containing cobalt compound is formed on the surfaces of nickel hydroxide particles. By forming the coating layer having high conductivity, the conductivity of the active material particle surface is increased. Nickel hydroxide particles include, in addition to particles consisting of nickel hydroxide only, nickel hydroxide, zinc, cobalt, calcium, manganese, aluminum,
Examples include particles in which at least one element selected from the group consisting of magnesium, yttrium, bismuth, scandium, lanthanoid, and cadmium is dissolved.
By dissolving each of the above elements in nickel hydroxide, expansion of the non-sintered nickel electrode during charging is suppressed.

【0011】ナトリウム含有コバルト化合物からなる被
覆層は、水酸化ニッケル粒子の表面に、金属コバルト
層、水酸化コバルト層、一酸化コバルト層、オキシ水酸
化コバルト層等のコバルト化合物層を形成した複合体粒
子からなる粉末に、水酸化ナトリウム水溶液を添加し、
酸化性雰囲気下にて加熱処理することにより形成され
る。
The coating layer comprising a sodium-containing cobalt compound is a composite in which a cobalt compound layer such as a metal cobalt layer, a cobalt hydroxide layer, a cobalt monoxide layer and a cobalt oxyhydroxide layer is formed on the surface of nickel hydroxide particles. Sodium hydroxide aqueous solution is added to the powder consisting of particles,
It is formed by performing a heat treatment in an oxidizing atmosphere.

【0012】水酸化ニッケル粒子の表面に水酸化コバル
ト層を形成する方法としては、例えば、コバルト塩水溶
液(硫酸コバルト水溶液など)に水酸化ニッケル粉末を
添加し、攪拌しながらアルカリ水溶液を滴下してpHを
11程度に調整した後、pHが低下した時点でアルカリ
水溶液を適宜滴下してpHを常時11程度に維持しつつ
所定時間攪拌して、水酸化ニッケル粒子の表面に水酸化
コバルトを析出させる方法が挙げられる。水酸化コバル
ト層は、水酸化ニッケル粉末と水酸化コバルト粉末とを
不活性ガス中にて圧縮磨砕粉砕機を用いて乾式混合する
メカニカルチャージ法によっても形成することができ
る。このメカニカルチャージ法において、水酸化コバル
ト粉末に代えて一酸化コバルト粉末及び金属コバルト粉
末を用いれば、それぞれ一酸化コバルト層及び金属コバ
ルト層を形成することができる。
As a method for forming a cobalt hydroxide layer on the surface of nickel hydroxide particles, for example, nickel hydroxide powder is added to a cobalt salt aqueous solution (such as cobalt sulfate aqueous solution), and an alkaline aqueous solution is added dropwise with stirring. After adjusting the pH to about 11, after the pH is lowered, an alkaline aqueous solution is appropriately added dropwise and the mixture is stirred for a predetermined time while constantly maintaining the pH at about 11 to precipitate cobalt hydroxide on the surface of the nickel hydroxide particles. Method. The cobalt hydroxide layer can also be formed by a mechanical charge method in which nickel hydroxide powder and cobalt hydroxide powder are dry-mixed in an inert gas using a compression grinding mill. In this mechanical charge method, if a cobalt monoxide powder and a metal cobalt powder are used instead of the cobalt hydroxide powder, a cobalt monoxide layer and a metal cobalt layer can be formed, respectively.

【0013】オキシ水酸化コバルト層は、例えば、水酸
化ニッケル粒子の表面に水酸化コバルト層を形成した
後、表面の水酸化コバルト層を40°C程度に加熱した
過酸化水素水で酸化することにより形成することができ
る。
The cobalt oxyhydroxide layer is formed, for example, by forming a cobalt hydroxide layer on the surface of nickel hydroxide particles and then oxidizing the cobalt hydroxide layer on the surface with a hydrogen peroxide solution heated to about 40 ° C. Can be formed.

【0014】ナトリウム含有コバルト化合物からなる被
覆層は、コバルト化合物層を粒子表面に形成した複合体
粒子からなる粉末に水酸化ナトリウム水溶液を添加し、
酸化性雰囲気下にて加熱処理することにより形成され
る。水酸化ナトリウム水溶液を添加するだけではコバル
ト化合物層にナトリウムを含有させることはできず、酸
化性雰囲気下にて加熱処理することが必要である。この
ときの加熱処理温度は、50〜200°Cが好ましい。
加熱処理温度が50°C未満の場合は、電導率の低いC
oHO2 が多く析出し、一方加熱処理温度が200°C
を越えた場合は、電導率の低い四酸化三コバルト(Co
3 4 )が多く析出する。加熱処理時間は、水酸化ナト
リウム水溶液の量、濃度、加熱処理温度などによって異
なる。一般的には、0.5〜10時間である。
The coating layer made of a sodium-containing cobalt compound is prepared by adding an aqueous solution of sodium hydroxide to a powder consisting of composite particles having a cobalt compound layer formed on the particle surface,
It is formed by performing a heat treatment in an oxidizing atmosphere. Simply adding an aqueous solution of sodium hydroxide does not allow the cobalt compound layer to contain sodium, but requires heat treatment in an oxidizing atmosphere. The heat treatment temperature at this time is preferably 50 to 200 ° C.
When the heat treatment temperature is lower than 50 ° C., C
oHO 2 precipitates a lot, while heat treatment temperature is 200 ° C
Is exceeded, tricobalt tetroxide (Co) having low conductivity is used.
3 O 4 ) is largely precipitated. The heat treatment time depends on the amount and concentration of the aqueous sodium hydroxide solution, the heat treatment temperature, and the like. Generally, it is 0.5 to 10 hours.

【0015】複合体粒子の好適な被覆層含有率(ナトリ
ウム含有コバルト化合物含有率)は、3〜15重量%で
ある。被覆層含有率が3重量%未満の場合は、活物質粒
子の表面の導電性が充分に改善されないために、活物質
利用率の高い非焼結式ニッケル極を得ることが困難とな
る。一方、同比率が15重量%を超えた場合は、活物質
の充填量が低下するために電極の比容量(単位体積及び
単位重量当たりの容量)が低下する。また、ナトリウム
含有コバルト化合物からなる被覆層の好適なナトリウム
含有率は0.1〜10重量%である。ナトリウム含有率
がこの範囲を外れると被覆層の導電性が悪くなり、活物
質利用率の高い非焼結式ニッケル極を得ることが困難と
なる。
The preferred coating layer content (sodium-containing cobalt compound content) of the composite particles is 3 to 15% by weight. When the content of the coating layer is less than 3% by weight, the conductivity of the surface of the active material particles is not sufficiently improved, so that it is difficult to obtain a non-sintered nickel electrode having a high active material utilization rate. On the other hand, when the ratio exceeds 15% by weight, the specific capacity (capacity per unit volume and unit weight) of the electrode decreases because the amount of the active material charged decreases. The preferable sodium content of the coating layer made of the sodium-containing cobalt compound is 0.1 to 10% by weight. If the sodium content is out of this range, the conductivity of the coating layer will deteriorate, and it will be difficult to obtain a non-sintered nickel electrode having a high active material utilization rate.

【0016】被覆層を構成するナトリウム含有コバルト
化合物の化学構造は、本発明者らにおいても現在のとこ
ろ定かでないが、これが極めて高い電導率を有すること
から、コバルト化合物とナトリウムとの単なる混合物で
はなく、コバルト化合物の結晶中にナトリウムが取り込
まれた形の特殊な結晶構造を有する化合物ではないかと
推察される。
The chemical structure of the sodium-containing cobalt compound constituting the coating layer is not yet known by the present inventors, but since it has an extremely high electric conductivity, it is not a mere mixture of the cobalt compound and sodium. It is presumed that the compound has a special crystal structure in which sodium is incorporated in the crystal of the cobalt compound.

【0017】本発明電極においては、上記の活物質粉末
に、希土類元素及び/又はその化合物が添加されてい
る。これらは、一種単独を添加してもよく、必要に応じ
て二種以上を添加してもよい。希土類元素には、La、
Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、D
y、Ho、Er、Tm、Yb及びLuが含まれる。希土
類元素の化合物としては、酸化物、水酸化物、フッ化物
及び炭酸塩が例示される。活物質粉末に対する希土類元
素及び/又はその化合物の好適な添加割合は、活物質粉
末100重量部に対して、希土類元素として0.05〜
5重量部である。希土類元素及び/又はその化合物の添
加割合が希土類元素として0.05重量部未満の場合
は、過放電後の活物質利用率の低下を十分に抑制するこ
とが困難となり、一方同添加割合が希土類元素として5
重量部を超えた場合は、水酸化ニッケルの充填密度が減
少して、電極の容量が低下する。
In the electrode of the present invention, a rare earth element and / or a compound thereof is added to the above-mentioned active material powder. These may be used alone or in combination of two or more as needed. Rare earth elements include La,
Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, D
y, Ho, Er, Tm, Yb and Lu. Examples of the rare earth compound include oxides, hydroxides, fluorides, and carbonates. The preferable addition ratio of the rare earth element and / or the compound thereof to the active material powder is 0.05 to 500 parts by weight of the active material powder as the rare earth element.
5 parts by weight. When the addition ratio of the rare earth element and / or the compound thereof is less than 0.05 parts by weight as the rare earth element, it is difficult to sufficiently suppress the decrease in the active material utilization rate after overdischarge. 5 as an element
If the amount exceeds the weight part, the packing density of nickel hydroxide decreases, and the capacity of the electrode decreases.

【0018】本発明電極の具体例としては、導電性芯体
に、活物質粉末並びに希土類元素及び/又はその化合物
を含有するペーストを塗布し、乾燥してなるペースト式
ニッケル極が挙げられる。このときの導電性芯体として
は、発泡メタル、金属繊維焼結体、金属メッシュ及びパ
ンチングメタルが例示される。ペースト式ニッケル極の
外、本発明は、チューブ状の金属導電体の中に活物質を
充填するチューブ式ニッケル極、ポケット状の金属導電
体の中に活物質を充填するポケット式ニッケル極、活物
質を網目状の金属導電体とともに加圧成形したボタン型
電池用ニッケル極などにも適用し得る。
Specific examples of the electrode of the present invention include a paste-type nickel electrode obtained by applying a paste containing an active material powder and a rare earth element and / or a compound thereof to a conductive core and drying the paste. Examples of the conductive core at this time include a foamed metal, a sintered metal fiber, a metal mesh, and a punching metal. In addition to the paste nickel electrode, the present invention provides a tubular nickel electrode for filling an active material in a tubular metal conductor, a pocket nickel electrode for filling an active material in a pocket-shaped metal conductor, The present invention can also be applied to a nickel electrode for a button type battery formed by pressing a substance together with a mesh-shaped metal conductor under pressure.

【0019】水酸化ニッケル粒子の表面をナトリウム含
有コバルト化合物で被覆した活物質粉末を使用しただけ
では、過放電すると被覆層のナトリウム含有コバルト化
合物が還元されて、還元生成物の一部が水酸化ニッケル
粒子の内部に拡散し、活物質粒子の表面の電子伝導性が
低下するので、過放電後の活物質利用率が低下する。こ
れに対して、本発明電極では、上記の活物質粉末に希土
類元素及び/又はその化合物を添加してあるので、被覆
層のナトリウム含有コバルト化合物が還元されにくく、
過放電後も活物質粒子の表面の電子伝導性が低下しにく
い。このため、本発明電極は、充放電サイクルの初期及
び長期にわたって活物質利用率が高いとともに、過放電
後も活物質利用率が低下しにくい。
When the active material powder in which the surface of the nickel hydroxide particles is coated with the sodium-containing cobalt compound alone is used, the over-discharge reduces the sodium-containing cobalt compound in the coating layer, and a part of the reduction product is hydroxylated. Since it diffuses into the nickel particles and the electron conductivity of the surface of the active material particles decreases, the active material utilization after overdischarge decreases. On the other hand, in the electrode of the present invention, since the rare earth element and / or the compound thereof is added to the active material powder, the sodium-containing cobalt compound in the coating layer is not easily reduced,
Even after overdischarge, the electron conductivity of the surface of the active material particles does not easily decrease. For this reason, the electrode of the present invention has a high active material utilization over the initial and long periods of the charge / discharge cycle, and the active material utilization is unlikely to decrease even after overdischarge.

【0020】[0020]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, and the present invention may be practiced by appropriately changing the gist of the invention. Is possible.

【0021】(予備実験1)水酸化コバルト粉末と、5
重量%、10重量%、15重量%、25重量%、35重
量%、40重量%、45重量%又は50重量%の水酸化
ナトリウム水溶液とを、重量比1:10で混合し、空気
中にて、85°Cで8時間加熱処理した。加熱処理後、
水洗し、60°Cで乾燥して、ナトリウム含有コバルト
化合物を作製した。このナトリウム含有コバルト化合物
のナトリウム含有率を原子吸光法により求めたところ、
順に、0.05重量%、0.1重量%、0.5重量%、
1重量%、5重量%、10重量%、12重量%及び15
重量%であった。
(Preliminary Experiment 1) Cobalt hydroxide powder, 5
%, 10%, 15%, 25%, 35%, 40%, 45% or 50% by weight of an aqueous sodium hydroxide solution at a weight ratio of 1:10, And heat-treated at 85 ° C. for 8 hours. After heat treatment,
After washing with water and drying at 60 ° C., a sodium-containing cobalt compound was prepared. When the sodium content of the sodium-containing cobalt compound was determined by an atomic absorption method,
In order, 0.05% by weight, 0.1% by weight, 0.5% by weight,
1%, 5%, 10%, 12% and 15% by weight
% By weight.

【0022】(予備実験2)水酸化コバルト粉末と、2
5重量%水酸化ナトリウム水溶液とを、重量比1:10
で混合し、45°C、50°C、100°C、150°
C、200°C、220°C又は250°Cで8時間加
熱処理した。加熱処理後、水洗し、60°Cで乾燥し
て、ナトリウム含有コバルト化合物を作製した。このナ
トリウム含有コバルト化合物のナトリウム含有率を原子
吸光法により求めたところ、順に、0.05重量%、1
重量%、1重量%、1重量%、1重量%、0.05重量
%及び0.02重量%であった。
(Preliminary Experiment 2) Cobalt hydroxide powder and 2
5% by weight aqueous solution of sodium hydroxide was added at a weight ratio of 1:10
45 ° C, 50 ° C, 100 ° C, 150 °
C, 200 ° C, 220 ° C or 250 ° C for 8 hours. After the heat treatment, it was washed with water and dried at 60 ° C. to produce a sodium-containing cobalt compound. When the sodium content of the sodium-containing cobalt compound was determined by an atomic absorption method, the weight was 0.05% by weight,
%, 1%, 1%, 1%, 0.05% and 0.02% by weight.

【0023】(実験1)本発明電極と従来電極との特性
を比較した。
(Experiment 1) The characteristics of the electrode of the present invention and the conventional electrode were compared.

【0024】〔本発明電極A〜Rの作製〕硫酸コバルト
粉末13.1gを水に溶かした水溶液1000mlに、
水酸化ニッケル粉末100gを投入し、次いで1モル/
リットルの水酸化ナトリウム水溶液を攪拌しながら滴下
して液のpHを11に調整した後、1時間攪拌した。こ
の間、自動温度補償付ガラス電極(pHメータ)にて液
のpHを監視して、必要に応じて水酸化ナトリウム水溶
液を滴下して液のpHを常時ほぼ11に保持した。
[Preparation of Electrodes A to R of the Present Invention] In 1,000 ml of an aqueous solution obtained by dissolving 13.1 g of cobalt sulfate powder in water,
100 g of nickel hydroxide powder is charged, and then 1 mol /
One liter of an aqueous sodium hydroxide solution was added dropwise with stirring to adjust the pH of the solution to 11, and then stirred for 1 hour. During this time, the pH of the solution was monitored with a glass electrode (pH meter) with automatic temperature compensation, and the pH of the solution was constantly maintained at approximately 11 by dropping an aqueous solution of sodium hydroxide as needed.

【0025】次いで、生成せる沈殿物を濾別し、水洗
し、真空乾燥して、水酸化ニッケル粒子の表面に水酸化
コバルトからなる被覆層が形成された複合体粒子からな
る粉末を得た。
Next, the resulting precipitate was separated by filtration, washed with water, and dried under vacuum to obtain a powder composed of composite particles having a coating layer composed of cobalt hydroxide formed on the surface of nickel hydroxide particles.

【0026】この複合体粒子からなる粉末と、25重量
%水酸化ナトリウム水溶液とを、重量比1:10で混合
し、空気中にて、85°Cで8時間加熱処理した後、水
洗し、65°Cで乾燥して、水酸化ニッケル粒子の表面
にナトリウム含有コバルト化合物からなる被覆層が形成
された複合体粒子からなる活物質粉末を得た。複合体粒
子の被覆層含有率は、5重量%であった。被覆層を構成
するナトリウム含有コバルト化合物のナトリウム含有率
は、先の予備実験1から1重量%と推定される。
The powder comprising the composite particles and a 25% by weight aqueous sodium hydroxide solution are mixed at a weight ratio of 1:10, and heated in air at 85 ° C. for 8 hours, and then washed with water. After drying at 65 ° C., an active material powder composed of composite particles having a coating layer composed of a sodium-containing cobalt compound formed on the surface of nickel hydroxide particles was obtained. The coating layer content of the composite particles was 5% by weight. The sodium content of the sodium-containing cobalt compound constituting the coating layer is estimated to be 1% by weight from the preliminary experiment 1 described above.

【0027】上記の活物質粉末(平均粒径10μm)1
00重量部と、表1に示す希土類元素又は希土類元素化
合物を希土類元素として2重量部と、結着剤としての1
重量%メチルセルロース水溶液20重量部とを混練して
ペーストを調製し、このペーストをニッケルの発泡体
(多孔度95%;平均孔径200μm)の空孔内に充填
し、乾燥し、加圧成形して、非焼結式ニッケル極(本発
明電極)A〜Rを作製した。
The above active material powder (average particle size: 10 μm) 1
00 parts by weight, 2 parts by weight of a rare earth element or a rare earth element compound shown in Table 1 as a rare earth element, and 1 part as a binder.
A paste is prepared by kneading 20 parts by weight of an aqueous solution of 20% by weight of methylcellulose, and the paste is filled in the pores of a nickel foam (porosity: 95%; average pore diameter: 200 μm), dried, and pressure-formed. And non-sintered nickel electrodes (electrodes of the present invention) A to R were produced.

【0028】〔従来電極Xの作製〕硫酸コバルト粉末1
3.1gを水に溶かした水溶液1000mlに、水酸化
ニッケル粉末100gを投入し、次いで1モル/リット
ルの水酸化ナトリウム水溶液を攪拌しながら滴下して液
のpHを11に調整した後、1時間攪拌した。この間、
自動温度補償付ガラス電極(pHメータ)にて液のpH
を監視して、必要に応じて水酸化ナトリウム水溶液を滴
下して液のpHを常時ほぼ11に保持した。
[Preparation of Conventional Electrode X] Cobalt sulfate powder 1
100 g of nickel hydroxide powder was added to 1000 ml of an aqueous solution in which 3.1 g was dissolved in water, and then a 1 mol / l aqueous solution of sodium hydroxide was added dropwise with stirring to adjust the pH of the solution to 11, and then 1 hour. Stirred. During this time,
PH of liquid with glass electrode (pH meter) with automatic temperature compensation
Was monitored, and the pH of the solution was constantly maintained at about 11 by dropwise addition of an aqueous sodium hydroxide solution as needed.

【0029】次いで、生成せる沈殿物を濾別し、水洗
し、真空乾燥して、水酸化ニッケル粒子の表面に水酸化
コバルトからなる被覆層が形成された複合体粒子からな
る粉末を得た。複合体粒子の被覆層含有率を、原子吸光
法により求めたところ、5重量%であった。
Next, the resulting precipitate was separated by filtration, washed with water, and dried under vacuum to obtain a powder composed of composite particles having a coating layer composed of cobalt hydroxide formed on the surface of nickel hydroxide particles. The content of the coating layer of the composite particles as determined by atomic absorption spectrometry was 5% by weight.

【0030】活物質粉末として上記の粉末を使用したこ
と以外は本発明電極A〜Rの作製と同様にして、非焼結
式ニッケル極(従来電極)Xを作製した。この電極は、
水酸化ニッケル粒子の表面に水酸化コバルトからなる被
覆層が形成された複合体粒子からなる粉末を活物質粉末
とするものであり、特開昭62−234867号に開示
されている電極に相当する。
A non-sintered nickel electrode (conventional electrode) X was produced in the same manner as in the production of the electrodes A to R of the present invention except that the above-mentioned powder was used as the active material powder. This electrode is
A powder composed of composite particles in which a coating layer composed of cobalt hydroxide is formed on the surface of nickel hydroxide particles is used as an active material powder, and corresponds to an electrode disclosed in JP-A-62-234867. .

【0031】〔従来電極Yの作製〕硫酸ニッケル16
6.9gを水に溶かした水溶液1000mlに、硝酸ラ
ンタン(La(NO3 3 )7.2gを添加混合し、ア
ンモニア水を滴下した後、水酸化ナトリウム水溶液を滴
下しながら激しく攪拌し、ろ別し、水洗して、水酸化ニ
ッケルにランタンが固溶した粒子からなる粉末を作製し
た。因みに、この固溶体粒子のランタン含有量を、発光
分析により求めたところ、水酸化ニッケルに対して3重
量%であった。この固溶体粒子粉末100重量部と、導
電剤としての水酸化カドミウム(Cd(OH)2 )粉末
2重量部と、結着剤としての1重量%メチルセルロース
水溶液20重量部とを混練してペーストを調製し、この
ペーストをニッケルの発泡体(多孔度95%;平均孔径
200μm)の空孔内に充填し、乾燥し、加圧成形し
て、非焼結式ニッケル極(従来電極)Yを作製した。こ
の電極は、被覆層が形成されていない固溶体粒子からな
る粉末を活物質粉末とするものであり、特開平8−45
508号公報に開示されている電極に相当する。
[Preparation of Conventional Electrode Y] Nickel sulfate 16
To 1000 ml of an aqueous solution of 6.9 g in water, 7.2 g of lanthanum nitrate (La (NO 3 ) 3 ) was added and mixed. After dropwise addition of aqueous ammonia, the mixture was vigorously stirred while adding an aqueous solution of sodium hydroxide. Separately, the powder was washed with water to prepare a powder composed of particles in which lanthanum was dissolved in nickel hydroxide. Incidentally, the lanthanum content of the solid solution particles was determined by emission spectroscopy and found to be 3% by weight based on nickel hydroxide. A paste is prepared by kneading 100 parts by weight of the solid solution particle powder, 2 parts by weight of cadmium hydroxide (Cd (OH) 2 ) powder as a conductive agent, and 20 parts by weight of a 1% by weight aqueous solution of methylcellulose as a binder. Then, this paste was filled in pores of a nickel foam (porosity: 95%; average pore diameter: 200 μm), dried, and pressed to prepare a non-sintered nickel electrode (conventional electrode) Y. . This electrode uses, as an active material powder, a powder composed of solid solution particles on which a coating layer is not formed.
This corresponds to the electrode disclosed in Japanese Patent Publication No. 508.

【0032】〔比較電極Zの作製〕活物質粉末に希土類
元素又は希土類元素化合物を添加しなかったこと以外は
本発明電極A〜Rの作製と同様にして、非焼結式ニッケ
ル極(比較電極)Zを作製した。
[Preparation of Comparative Electrode Z] A non-sintered nickel electrode (reference electrode) was prepared in the same manner as in the preparation of the electrodes A to R of the present invention except that no rare earth element or rare earth compound was added to the active material powder. ) Z was prepared.

【0033】〔電池の作製〕上記の各非焼結式ニッケル
極(正極)、その1.6倍の電気化学的容量を有する従
来公知のペースト式カドミウム極(負極)、ポリアミド
不織布(セパレータ)、30重量%水酸化カリウム水溶
液(アルカリ電解液)、金属製の電池缶、金属製の電池
蓋などを用いて、AAサイズのニッケル−カドミウム蓄
電池A〜R,X,Y,Zを作製した。電池の符号は、正
極として使用した非焼結式ニッケル極の電極の符号に一
致させてある。
[Preparation of Battery] Each of the above-mentioned non-sintered nickel electrodes (positive electrodes), a conventionally known paste-type cadmium electrode (anode) having an electrochemical capacity 1.6 times that of the above, a polyamide nonwoven fabric (separator), AA size nickel-cadmium storage batteries A to R, X, Y, and Z were produced using a 30% by weight aqueous solution of potassium hydroxide (alkaline electrolyte), a metal battery can, a metal battery cover, and the like. The reference number of the battery matches the reference number of the electrode of the non-sintered nickel electrode used as the positive electrode.

【0034】〔各電池に使用した非焼結式ニッケル極の
特性〕電池A〜R,X,Y,Zについて、25°Cにて
0.1Cで160%充電した後、25°Cにて1Cで
1.0Vまで放電する工程を1サイクルとする充放電サ
イクル試験を行い、各電池に使用した非焼結式ニッケル
極の1サイクル目の活物質利用率D0及び100サイク
ル目の活物質利用率D1を求めた。D0及びD1は、下
式に基づき算出した。次いで、100サイクル目の放電
状態にある各電池に、1Ωの抵抗を接続して、70°C
で7日間放置して過放電させた後、抵抗を外し、25°
Cで充放電を5サイクル行って、5サイクル目の活物質
利用率D2を求め、D1に対するD2の比率Q〔Q=
(D2/D1)×100〕を求めた。D2は、下式に基
づき算出した。比率Qは過放電後の活物質利用率の高低
を表す指標であり、この値が大きい電極ほど、過放電後
の活物質利用率の低下が小さい電極である。結果を表1
に示す。表1中のD0,D1,D2は、それぞれ電極A
の1サイクル目の活物質利用率D0を100としたとき
の相対指数である。
[Characteristics of Non-Sintered Nickel Electrode Used in Each Battery] For the batteries A to R, X, Y, and Z, they were charged at 25 ° C. at 0.1 C at 160%, and then charged at 25 ° C. A charge / discharge cycle test was performed in which the process of discharging to 1.0 V at 1 C was defined as one cycle, and the active material utilization D0 in the first cycle and the active material utilization in the 100th cycle of the non-sintered nickel electrode used for each battery were used. The rate D1 was determined. D0 and D1 were calculated based on the following equation. Next, a 1 Ω resistor was connected to each battery in the discharge state at the 100th cycle,
And let it discharge for 7 days, remove the resistor,
The charge / discharge was performed 5 times at C, and the active material utilization rate D2 at the 5th cycle was obtained, and the ratio Q of D2 to D1 [Q =
(D2 / D1) × 100] was obtained. D2 was calculated based on the following equation. The ratio Q is an index indicating the level of the active material utilization rate after overdischarge, and the electrode having a larger value indicates a smaller decrease in the active material utilization rate after overdischarge. Table 1 shows the results
Shown in D0, D1 and D2 in Table 1 are the electrodes A
Is a relative index when the active material utilization rate D0 in the first cycle is 100.

【0035】活物質利用率(%)={1サイクル目又は
100サイクル目の放電容量(mAh)/〔水酸化ニッ
ケルの量(g)×288(mAh/g)〕}×100
Active material utilization rate (%) = {discharge capacity (mAh) at the first or 100th cycle / [amount of nickel hydroxide (g) × 288 (mAh / g)]} × 100

【0036】[0036]

【表1】 [Table 1]

【0037】表1に示すように、本発明電極A〜Rは、
従来電極X,Y及び比較電極Zに比べて、1サイクル目
の活物質利用率D0及び100サイクル目の活物質利用
率D1が高く、しかも比率Qが大きい。電極Xの1サイ
クル目の活物質利用率D0が低いのは、活物質粒子の表
面の電子伝導性が充分高くないためであり、また100
サイクル目の活物質利用率D1が低いのは、充放電サイ
クルを重ねるうちに被覆層内の水酸化コバルトが水酸化
ニッケル粒子の内部に拡散したために、活物質粒子の表
面の電子伝導性が低下したことによる。また、電極Y,
Zの1サイクル目の活物質利用率D0及び100サイク
ル目の活物質利用率D1はかなり高いが、比率Qが小さ
い、すなわち過放電後の活物質利用率の低下が大きい。
As shown in Table 1, the electrodes A to R of the present invention
Compared to the conventional electrodes X and Y and the comparative electrode Z, the active material utilization D0 in the first cycle and the active material utilization D1 in the 100th cycle are higher, and the ratio Q is larger. The reason why the active material utilization D0 in the first cycle of the electrode X is low is that the electron conductivity on the surface of the active material particles is not sufficiently high.
The reason why the active material utilization D1 in the cycle is low is that the cobalt hydroxide in the coating layer diffused into the nickel hydroxide particles during repeated charge / discharge cycles, and the electron conductivity on the surface of the active material particles decreased. It depends. Also, the electrodes Y,
The active material utilization D0 in the first cycle of Z and the active material utilization D1 in the 100th cycle are considerably high, but the ratio Q is small, that is, the decrease in the active material utilization after overdischarge is large.

【0038】これらの結果から、水酸化ニッケル粒子の
表面にナトリウム含有コバルト化合物からなる被覆層が
形成された複合体粒子からなる活物質粉末に、希土類元
素及び/又はランタン化合物を添加することにより、充
放電サイクルの初期はもとより、長期にわたって活物質
利用率が高く、しかも過放電後の活物質利用率の低下が
小さい非焼結式ニッケル極が得られることが分かる。
From these results, by adding a rare earth element and / or a lanthanum compound to an active material powder composed of composite particles having a coating layer composed of a sodium-containing cobalt compound formed on the surface of nickel hydroxide particles, It can be seen that a non-sintered nickel electrode having a high active material utilization rate over a long period of time as well as at the beginning of the charge / discharge cycle and a small decrease in the active material utilization rate after overdischarge can be obtained.

【0039】この実験1の本発明電極の作製において
は、活物質粉末に酸化ランタン(La2 3 )、フッ化
ランタン(LaF3 )又は炭酸ランタン(La2 (CO
3 3)を添加したが、水酸化物や、他の希土類元素の
酸化物、水酸化物、フッ化物又は炭酸塩を添加した場合
も、同様の優れた特性を有する非焼結式ニッケル極が得
られることを別途確認した。
In the preparation of the electrode of the present invention in Experiment 1, lanthanum oxide (La 2 O 3 ), lanthanum fluoride (LaF 3 ) or lanthanum carbonate (La 2 (CO 2 )
3) 3) was added, the hydroxide or oxide of other rare earth elements, hydroxides, even if the addition of fluoride or carbonate, non-sintered nickel electrode having similar excellent properties Was separately confirmed.

【0040】(実験2)被覆量と活物質利用率の関係を
調べた。
(Experiment 2) The relationship between the coating amount and the active material utilization was examined.

【0041】硫酸コバルト粉末の使用量を、13.1g
に代えて、1.31g、5.25g、7.88g、2
6.3g、39.4g、44.7g又は52.5gとし
たこと以外は本発明電極Bの作製方法と同様にして、順
に非焼結式ニッケル極B1〜B7を作製し、これらの各
電極を用いて、順に、AAサイズのニッケル−カドミウ
ム蓄電池B1〜B7を作製した。活物質粉末を構成する
複合体粒子の被覆層含有率は、順に、0.5重量%、2
重量%、3重量%、10重量%、15重量%、17重量
%及び20重量%であった。被覆層を構成するナトリウ
ム含有コバルト化合物のナトリウム含有率は、先の予備
実験1から、いずれも1重量%と推定される。
The amount of cobalt sulfate powder used was 13.1 g.
In place of 1.31 g, 5.25 g, 7.88 g, 2
Except that 6.3 g, 39.4 g, 44.7 g, or 52.5 g was used, non-sintered nickel electrodes B1 to B7 were sequentially manufactured in the same manner as the method of manufacturing electrode B of the present invention, and each of these electrodes was manufactured. , Nickel-cadmium storage batteries B1 to B7 of AA size were manufactured in order. The coating layer content of the composite particles constituting the active material powder was 0.5% by weight,
%, 3%, 10%, 15%, 17% and 20% by weight. From the preliminary experiment 1, the sodium content of the sodium-containing cobalt compound constituting the coating layer is estimated to be 1% by weight in each case.

【0042】上記の各電池について、先と同じ条件の充
放電サイクル試験を行い、各電池に使用した非焼結式ニ
ッケル極の300サイクル目の放電容量を求めた。結果
を図1に示す。図1は、複合体粒子の被覆層含有率と3
00サイクル目の放電容量の関係を、縦軸に300サイ
クル目の放電容量を、横軸に被覆層含有率(重量%)を
とって示したグラフである。図1には、先の本発明電極
Bの300サイクル目の放電容量も示してあり、縦軸の
300サイクル目の放電容量は、本発明電極Bの300
サイクル目の放電容量を100とした相対指数である。
A charge / discharge cycle test was performed on each of the above batteries under the same conditions as above, and the discharge capacity at the 300th cycle of the non-sintered nickel electrode used for each battery was determined. The results are shown in FIG. FIG. 1 shows the coating layer content of the composite particles and 3
5 is a graph showing the relationship between the discharge capacity at the 00th cycle, the discharge capacity at the 300th cycle on the vertical axis, and the coating layer content (% by weight) on the horizontal axis. FIG. 1 also shows the discharge capacity at the 300th cycle of the electrode B of the present invention.
This is a relative index when the discharge capacity at the cycle is 100.

【0043】図1に示すように、本発明電極B,B3〜
B5の300サイクル目の放電容量が特に大きい。この
事実から、複合体粒子の被覆層含有率は、3〜15重量
%が好ましいことが分かる。
As shown in FIG. 1, the electrodes B, B3 to
The discharge capacity at the 300th cycle of B5 is particularly large. From this fact, it is understood that the coating layer content of the composite particles is preferably 3 to 15% by weight.

【0044】(実験3)被覆層を構成するナトリウム含
有コバルト化合物のナトリウム含有率と活物質利用率の
関係を調べた。
(Experiment 3) The relationship between the sodium content of the sodium-containing cobalt compound constituting the coating layer and the active material utilization was examined.

【0045】30重量%水酸化ナトリウム水溶液に代え
て、0.1重量%、5重量%、10重量%、20重量
%、35重量%、40重量%、45重量%及び50重量
%をそれぞれ添加したこと以外は本発明電極Bの作製方
法と同様にして、順に非焼結式ニッケル極f〜mを作製
し、これらの各電極を用いて、順に、AAサイズのニッ
ケル−カドミウム蓄電池f〜mを作製した。複合体粒子
の被覆層含有率はいずれも、5重量%であった。また、
被覆層を構成するナトリウム含有コバルト化合物のナト
リウム含有率は、先の予備実験1から、順に、0.00
重量%、0.05重量%、0.1重量%、0.5重量
%、5重量%、10重量%、12重量%及び15重量%
と推定される。
In place of the 30% by weight aqueous sodium hydroxide solution, 0.1% by weight, 5% by weight, 10% by weight, 20% by weight, 35% by weight, 40% by weight, 45% by weight and 50% by weight were added respectively. Other than that, non-sintered nickel electrodes f to m were sequentially manufactured in the same manner as the method of manufacturing electrode B of the present invention, and AA-size nickel-cadmium storage batteries f to m were sequentially manufactured using these electrodes. Was prepared. The coating layer content of each of the composite particles was 5% by weight. Also,
The sodium content of the sodium-containing cobalt compound constituting the coating layer was 0.00
Wt%, 0.05 wt%, 0.1 wt%, 0.5 wt%, 5 wt%, 10 wt%, 12 wt% and 15 wt%
It is estimated to be.

【0046】上記の各電池について、先と同じ条件の充
放電サイクル試験を行い、各電池に使用した非焼結式ニ
ッケル極の10サイクル目の活物質利用率を求めた。結
果を図2に示す。図2は、被覆層を構成するナトリウム
含有コバルト化合物のナトリウム含有率と活物質利用率
の関係を、縦軸に10サイクル目の活物質利用率を、横
軸にナトリウム含有コバルト化合物のナトリウム含有率
(%)をとって示したグラフである。図2には、先の本
発明電極B(ナトリウム含有率1重量%)の10サイク
ル目の活物質利用率も示してあり、縦軸の10サイクル
目の活物質利用率は、本発明電極Bの10サイクル目の
活物質利用率を100とした相対指数である。
A charge / discharge cycle test was performed on each of the above batteries under the same conditions as above, and the active material utilization rate of the 10th cycle of the non-sintered nickel electrode used for each battery was determined. The results are shown in FIG. FIG. 2 shows the relationship between the sodium content of the sodium-containing cobalt compound constituting the coating layer and the active material utilization, the ordinate represents the active material utilization at the tenth cycle, and the abscissa represents the sodium content of the sodium-containing cobalt compound. It is the graph shown by taking (%). FIG. 2 also shows the active material utilization at the 10th cycle of the electrode B of the present invention (sodium content: 1% by weight). It is a relative index when the active material utilization rate at the 10th cycle of No. is 100.

【0047】図2に示すように、本発明電極B,h〜k
の10サイクル目の活物質利用率が特に高い。この事実
から、被覆層を構成するナトリウム含有コバルト化合物
のナトリウム含有率は、0.1〜10重量%が好ましい
ことが分かる。
As shown in FIG. 2, the electrodes B, h to k of the present invention
The active material utilization rate at the 10th cycle is particularly high. From this fact, it is understood that the sodium content of the sodium-containing cobalt compound constituting the coating layer is preferably 0.1 to 10% by weight.

【0048】(実験4)ナトリウム含有コバルト化合物
からなる被覆層を形成する際の加熱処理温度と活物質利
用率の関係を調べた。
(Experiment 4) The relationship between the heat treatment temperature and the active material utilization when forming a coating layer comprising a sodium-containing cobalt compound was examined.

【0049】加熱処理温度を、45°C、50°C、1
00°C、150°C、200°C、220°C又は2
50°Cとしたこと以外は本発明電極Bの作製方法と同
じ作製方法で、順に非焼結式ニッケル極n〜tを作製
し、これらの各電極を用いて、順に、AAサイズのニッ
ケル−カドミウム蓄電池n〜tを作製した。複合体粒子
の被覆層含有率はいずれも、5重量%であった。また、
被覆層を構成するナトリウム含有コバルト化合物のナト
リウム含有率は、先の予備実験2から、順に、0.05
重量%、1重量%、1重量%、1重量%、1重量%、
0.05重量%及び0.02重量%と推定される。
When the heat treatment temperature is 45 ° C., 50 ° C., 1
00 ° C, 150 ° C, 200 ° C, 220 ° C or 2
Except that the temperature was set to 50 ° C., non-sintered nickel electrodes n to t were sequentially manufactured by the same manufacturing method as the manufacturing method of the electrode B of the present invention, and an AA size nickel electrode was sequentially manufactured using these electrodes. Cadmium storage batteries n to t were produced. The coating layer content of each of the composite particles was 5% by weight. Also,
From the preliminary experiment 2, the sodium content of the sodium-containing cobalt compound constituting the coating layer was 0.05
% By weight, 1% by weight, 1% by weight, 1% by weight, 1% by weight,
It is estimated to be 0.05% and 0.02% by weight.

【0050】上記の各電池について、先と同じ条件の充
放電サイクル試験を行い、各電池に使用した非焼結式ニ
ッケル極の10サイクル目の活物質利用率を求めた。結
果を図3に示す。図3は、ナトリウム含有コバルト化合
物からなる被覆層を形成する際の加熱処理温度と活物質
利用率の関係を、縦軸に10サイクル目の活物質利用率
を、横軸に加熱処理温度(°C)をとって示したグラフ
である。図3には、先の本発明電極B(加熱処理温度8
5°C)の10サイクル目の活物質利用率も示してあ
り、縦軸の10サイクル目の活物質利用率は、本発明電
極Bの10サイクル目の活物質利用率を100とした相
対指数である。
A charge / discharge cycle test was performed on each of the above batteries under the same conditions as above, and the active material utilization of the non-sintered nickel electrode used in each battery at the tenth cycle was determined. The results are shown in FIG. FIG. 3 shows the relationship between the heat treatment temperature and the active material utilization rate when forming a coating layer made of a sodium-containing cobalt compound, the vertical axis represents the active material utilization rate at the tenth cycle, and the horizontal axis represents the heat treatment temperature (° C.). It is the graph shown by taking C). FIG. 3 shows the electrode B of the present invention (heat treatment temperature of 8).
The active material utilization rate at the 10th cycle at 5 ° C.) is also shown, and the active material utilization rate at the 10th cycle on the vertical axis is a relative index with the active material utilization rate at the 10th cycle of the electrode B of the present invention being 100. It is.

【0051】図3に示すように、電極B,o〜rの10
サイクル目の活物質利用率が特に高い。この事実から、
ナトリウム含有コバルト化合物からなる被覆層を形成す
る際の加熱処理温度は、50〜200°Cが好ましいこ
とが分かる。
As shown in FIG. 3, the electrodes B, or
The active material utilization rate in the cycle is particularly high. From this fact,
It is understood that the heat treatment temperature when forming the coating layer made of the sodium-containing cobalt compound is preferably 50 to 200 ° C.

【0052】(実験5)活物質粉末に対する酸化ランタ
ンの添加割合と活物質利用率の関係を調べた。
(Experiment 5) The relationship between the addition ratio of lanthanum oxide to the active material powder and the utilization rate of the active material was examined.

【0053】活物質粉末100重量部に対する酸化ラン
タンのランタン原子としての添加割合を、0.01重量
部、0.05重量部、0.1重量部、0.5重量部、1
重量部、3重量部、5重量部、6重量部又は7重量部と
したこと以外は本発明電極B(酸化ランタンのランタン
原子としての添加割合2重量部)の作製方法と同じ作製
方法で、順に非焼結式ニッケル極(1)〜(9)を作製
し、これらの各電極を用いて、順に、AAサイズのニッ
ケル−カドミウム蓄電池(1)〜(9)を作製した。複
合体粒子の被覆層含有率はいずれも、5重量%であっ
た。また、被覆層を構成するナトリウム含有コバルト化
合物のナトリウム含有率は、先の予備実験1から、いず
れも1重量%と推定される。
The addition ratio of lanthanum oxide as lanthanum atom to 100 parts by weight of the active material powder is 0.01 part by weight, 0.05 part by weight, 0.1 part by weight, 0.5 part by weight,
The same method as the method for producing the electrode B of the present invention (addition ratio of lanthanum oxide as lanthanum atom: 2 parts by weight) except that the parts were 3 parts by weight, 5 parts by weight, 6 parts by weight, or 7 parts by weight, Non-sintered nickel electrodes (1) to (9) were manufactured in order, and AA size nickel-cadmium storage batteries (1) to (9) were manufactured in order using these electrodes. The coating layer content of each of the composite particles was 5% by weight. Further, the sodium content of the sodium-containing cobalt compound constituting the coating layer is estimated to be 1% by weight in each of the preliminary experiments 1.

【0054】上記の各電池について、先と同じ条件の充
放電サイクル試験及び過放電試験を行い、各電池に使用
した非焼結式ニッケル極の100サイクル目の放電容量
及び比率Qを求めた。結果を表2に示す。表2には、本
発明電極B及び比較電極Zについての結果も示してあ
る。
A charge / discharge cycle test and an overdischarge test under the same conditions as described above were performed on each of the above batteries, and the discharge capacity and ratio Q of the 100th cycle of the non-sintered nickel electrode used for each battery were determined. Table 2 shows the results. Table 2 also shows the results for the electrode B of the present invention and the comparative electrode Z.

【0055】[0055]

【表2】 [Table 2]

【0056】表2に示すように、電池B,(2)〜
(7)は、100サイクル目の放電容量が大きく、しか
も比率Qが大きい。したがって、活物質粉末100重量
部に対する酸化ランタンの添加割合は、ランタン原子換
算で0.05〜5重量部とすることが好ましいことが分
かる。
As shown in Table 2, batteries B, (2) to
In (7), the discharge capacity at the 100th cycle is large, and the ratio Q is large. Therefore, it can be seen that the addition ratio of lanthanum oxide to 100 parts by weight of the active material powder is preferably 0.05 to 5 parts by weight in terms of lanthanum atoms.

【0057】実験2〜5では、希土類元素化合物とし
て、酸化ランタンを使用したが、本発明で規定する他の
希土類元素化合物又は希土類元素を添加した場合も、同
様の結果が得られることを別途確認した。
In Experiments 2 to 5, lanthanum oxide was used as the rare earth element compound, but it was separately confirmed that similar results could be obtained when other rare earth element compounds or rare earth elements specified in the present invention were added. did.

【0058】[0058]

【発明の効果】本発明により、充放電サイクルの初期は
もとより、長期にわたって活物質利用率が高く、しかも
過放電後の活物質利用率の低下が小さいアルカリ蓄電池
用非焼結式ニッケル極が提供される。
According to the present invention, there is provided a non-sintered nickel electrode for an alkaline storage battery having a high active material utilization rate over a long period of time as well as at the beginning of a charge / discharge cycle, and a small decrease in the active material utilization rate after overdischarge. Is done.

【図面の簡単な説明】[Brief description of the drawings]

【図1】複合体粒子の被覆層含有率と300サイクル目
の放電容量の関係を示したグラフである。
FIG. 1 is a graph showing the relationship between the coating layer content of composite particles and the discharge capacity at the 300th cycle.

【図2】被覆層を構成するナトリウム含有コバルト化合
物のナトリウム含有率と活物質利用率の関係を示したグ
ラフである。
FIG. 2 is a graph showing a relationship between a sodium content of a sodium-containing cobalt compound constituting a coating layer and an active material utilization rate.

【図3】被覆層を形成する際の加熱処理温度と活物質利
用率の関係を示したグラフである。
FIG. 3 is a graph showing a relationship between a heat treatment temperature and an active material utilization rate when forming a coating layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤谷 伸 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Shin Fujitani 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Koji Nishio 2-5-2 Keihanhondori, Moriguchi-shi, Osaka No. 5 Sanyo Electric Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】水酸化ニッケル粒子の表面にナトリウム含
有コバルト化合物からなる被覆層が形成された複合体粒
子からなる活物質粉末に、希土類元素及び/又はその化
合物が添加されていることを特徴とするアルカリ蓄電池
用非焼結式ニッケル極。
A rare earth element and / or a compound thereof is added to an active material powder composed of composite particles having a coating layer composed of a sodium-containing cobalt compound formed on the surface of nickel hydroxide particles. Non-sintered nickel electrode for alkaline storage batteries.
【請求項2】前記水酸化ニッケル粒子が、水酸化ニッケ
ルに、亜鉛、コバルト、カルシウム、マンガン、アルミ
ニウム、マグネシウム、イットリウム、ビスマス、スカ
ンジウム、ランタノイド及びカドミウムよりなる群から
選ばれた少なくとも一種の元素が固溶した粒子である請
求項1記載のアルカリ蓄電池用非焼結式ニッケル極。
2. The nickel hydroxide particles according to claim 1, wherein the nickel hydroxide contains at least one element selected from the group consisting of zinc, cobalt, calcium, manganese, aluminum, magnesium, yttrium, bismuth, scandium, lanthanoid and cadmium. The non-sintered nickel electrode for an alkaline storage battery according to claim 1, which is a solid-solution particle.
【請求項3】前記ナトリウム含有コバルト化合物からな
る被覆層が、水酸化ニッケル粒子の表面に金属コバルト
層又はコバルト化合物層が形成された複合体粒子からな
る粉末に、水酸化ナトリウム水溶液を添加し、酸化性雰
囲気下にて加熱処理することにより形成されたものであ
る請求項1又は2記載のアルカリ蓄電池用非焼結式ニッ
ケル極。
3. A method according to claim 1, wherein said coating layer comprising said sodium-containing cobalt compound is prepared by adding an aqueous solution of sodium hydroxide to powder comprising composite particles having a metal cobalt layer or a cobalt compound layer formed on the surface of nickel hydroxide particles; 3. The non-sintered nickel electrode for an alkaline storage battery according to claim 1, wherein the non-sintered nickel electrode is formed by heat treatment in an oxidizing atmosphere.
【請求項4】前記希土類元素の化合物が、希土類元素の
酸化物、水酸化物、フッ化物又は炭酸塩である請求項1
〜3のいずれかに記載のアルカリ蓄電池用非焼結式ニッ
ケル極。
4. The rare earth element compound is a rare earth element oxide, hydroxide, fluoride or carbonate.
A non-sintered nickel electrode for an alkaline storage battery according to any one of claims 1 to 3.
【請求項5】前記ナトリウム含有コバルト化合物が、ナ
トリウムを0.1〜10重量%含有する請求項1〜4の
いずれかに記載のアルカリ蓄電池用非焼結式ニッケル
極。
5. The non-sintered nickel electrode for an alkaline storage battery according to claim 1, wherein said sodium-containing cobalt compound contains 0.1 to 10% by weight of sodium.
【請求項6】前記複合体粒子が、前記ナトリウム含有コ
バルト化合物からなる被覆層を、3〜15重量%含有す
る請求項1〜5のいずれかに記載のアルカリ蓄電池用非
焼結式ニッケル極。
6. The non-sintered nickel electrode for an alkaline storage battery according to claim 1, wherein the composite particles contain 3 to 15% by weight of a coating layer made of the sodium-containing cobalt compound.
【請求項7】前記希土類元素及び/又はその化合物が、
活物質粉末100重量部に対して、希土類元素として
0.05〜5重量部添加されている請求項1〜6のいず
れかに記載のアルカリ蓄電池用非焼結式ニッケル極。
7. The rare earth element and / or a compound thereof,
The non-sintered nickel electrode for an alkaline storage battery according to any one of claims 1 to 6, wherein 0.05 to 5 parts by weight of a rare earth element is added to 100 parts by weight of the active material powder.
JP09029297A 1997-03-24 1997-03-24 Non-sintered nickel electrode for alkaline storage batteries Expired - Lifetime JP3433043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09029297A JP3433043B2 (en) 1997-03-24 1997-03-24 Non-sintered nickel electrode for alkaline storage batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09029297A JP3433043B2 (en) 1997-03-24 1997-03-24 Non-sintered nickel electrode for alkaline storage batteries

Publications (2)

Publication Number Publication Date
JPH10270037A true JPH10270037A (en) 1998-10-09
JP3433043B2 JP3433043B2 (en) 2003-08-04

Family

ID=13994466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09029297A Expired - Lifetime JP3433043B2 (en) 1997-03-24 1997-03-24 Non-sintered nickel electrode for alkaline storage batteries

Country Status (1)

Country Link
JP (1) JP3433043B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1251574A2 (en) * 2001-04-17 2002-10-23 SANYO ELECTRIC Co., Ltd. Nickel electrode for alkaline storage battery and alkaline storage battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1251574A2 (en) * 2001-04-17 2002-10-23 SANYO ELECTRIC Co., Ltd. Nickel electrode for alkaline storage battery and alkaline storage battery
EP1251574A3 (en) * 2001-04-17 2006-11-02 SANYO ELECTRIC Co., Ltd. Nickel electrode for alkaline storage battery and alkaline storage battery

Also Published As

Publication number Publication date
JP3433043B2 (en) 2003-08-04

Similar Documents

Publication Publication Date Title
EP0817291B1 (en) Non-sintered nickel electrode for alkaline storage battery, alkaline storage battery including the same, and method for production of non-sintered nickel electrode for alkaline storage battery
JP3433050B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3469766B2 (en) Non-sintered nickel electrodes and batteries for sealed alkaline storage batteries
JP2000173614A (en) Positive electrode active material for sealed type alkaline storage battery
US6077625A (en) Non-sintered nickel electrode for alkaline storage battery
JP3433049B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP2002304991A (en) Nickel electrode for alkaline storage battery, and alkaline storage battery
JP3433043B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3433083B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3249414B2 (en) Method for producing non-sintered nickel electrode for alkaline storage battery
JP3253476B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP2002358957A (en) Nickel pole for alkaline storage battery and alkaline storage battery
JP3229800B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3263601B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3249398B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3481068B2 (en) Method for producing non-sintered nickel electrode for alkaline storage battery
JP3851022B2 (en) Nickel electrode for alkaline storage battery and alkaline storage battery
JPH1197009A (en) Non-sintered type electrode for alkaline storage battery
JP3229801B2 (en) Conductive agent for alkaline storage battery and non-sintered nickel electrode for alkaline storage battery using the same
JP3433062B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JPH10270040A (en) Non-sintered nickel electrode for alkaline storage battery
JPH10294109A (en) Nonsintered nickel pole for alkaline storage battery
JPH1021909A (en) Non-sintered nickel electrode for alkaline storage battery
JP3234491B2 (en) Conductive agent for alkaline storage battery and non-sintered nickel electrode for alkaline storage battery using the same
JPH11219703A (en) Active material for alkaline storage battery, non-sintered type nickel electrode and battery using it

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 10

EXPY Cancellation because of completion of term