JPH10268064A - System for judging degree of hazard of thunder occurrence - Google Patents

System for judging degree of hazard of thunder occurrence

Info

Publication number
JPH10268064A
JPH10268064A JP9075891A JP7589197A JPH10268064A JP H10268064 A JPH10268064 A JP H10268064A JP 9075891 A JP9075891 A JP 9075891A JP 7589197 A JP7589197 A JP 7589197A JP H10268064 A JPH10268064 A JP H10268064A
Authority
JP
Japan
Prior art keywords
lightning
information
determination
risk
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9075891A
Other languages
Japanese (ja)
Inventor
Fumihiro Yaginuma
文弘 柳沼
Kyoji Matsutani
恭司 松谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP9075891A priority Critical patent/JPH10268064A/en
Publication of JPH10268064A publication Critical patent/JPH10268064A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a system for judging degree of hazard of thunder occurrence capable of improving the judgment accuracy of thunder occurrence hazard degree by adding other information than meteorology radar information and upper air meteorological information. SOLUTION: Provided are an electric field magnitude measuring apparatus 1a to 1c measuring the electric field magnitude on the ground, and a thunder occurrence hazard degree judgment processor 3 judging the hazard degree based on meteorology radar information 4, upper air meteorology information 5 and electric field magnitude information 2. The thunder occurrence hazard degree judgment processor 3 obtain a plurality of thunder judgment factors based on the meteorology radar information 4, upper air meteorology information 5 and electric field magnitude information 2, judges whether or not respectively values of the obtained thunder judgment factors are over specific values, and judges the thunder occurrence hazard degree according to the number of the thunder judgment factors coinciding with the judgment conditions. Also, a radar reflection factor and cross polarization ratio of dual polarization radar information or thunder occurrence information of a thunder strike position marking device 32 are added to judge the thunder occurrence hazard degree. Furthermore, the upper air meteorology information is obtained with a radio acoustic sounding system(RASS) in real time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、気象レーダ等の
センサより雷雲を判別し、発雷の危険度を求める発雷危
険度判定システムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lightning risk determining system for determining a lightning risk by determining a thundercloud from a sensor such as a weather radar.

【0002】[0002]

【従来の技術】従来、発雷危険度の判定方法としては、
気象レーダによる雷雲検知による方法が知られている。
これは、気象レーダからのエコー強度・高度情報、ドッ
プラー情報及び高層気象情報を利用したものである。す
なわち、雷雲判定が、雲頂のエコー強度、雲の厚さ、雲
中の対流、低温度層、例えば、−10℃層のエコー強度
等によってなされ、発雷の危険度判定をしているもので
ある。
2. Description of the Related Art Conventionally, methods for determining the degree of lightning risk include:
A method based on thundercloud detection by a weather radar is known.
This uses echo intensity / altitude information, Doppler information, and high-level weather information from weather radar. That is, the thundercloud determination is made based on the echo intensity at the cloud top, the thickness of the cloud, the convection in the cloud, the echo intensity of the low temperature layer, for example, the -10 ° C layer, and the like, and the risk of lightning is determined. is there.

【0003】[0003]

【発明が解決しようとする課題】従来の発雷危険度判定
方法では、気象レーダ情報及び高層気象情報だけを利用
しているので、情報量に限りがあり、そのため、危険度
判定の精度が必ずしも高くないという問題点があった。
In the conventional method for determining the degree of risk of lightning strike, only the weather radar information and the high-level weather information are used, so the amount of information is limited. There was a problem that it was not high.

【0004】この発明は上記のような従来例に係る問題
点を解消するためになされたもので、気象レーダ情報及
び高層気象情報の他に他の情報をも加味して発雷危険度
の判定精度を向上させることができる発雷危険度判定シ
ステムを得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems of the prior art, and determines the degree of lightning risk in consideration of other information in addition to weather radar information and high-rise weather information. It is an object of the present invention to obtain a lightning risk determination system capable of improving accuracy.

【0005】[0005]

【課題を解決するための手段】この発明に係る発雷危険
度判定システムは、地上の電界強度を測定する電界強度
測定器と、気象レーダ情報と高層気象情報及び上記電界
強度測定器による電界強度情報に基づいて発雷危険度を
判定する発雷危険度判定処理装置とを備えたものであ
る。
According to the present invention, there is provided a system for determining a degree of risk of lightning strike, comprising: an electric field intensity measuring device for measuring electric field intensity on the ground; weather radar information, high-level weather information, and electric field intensity by the electric field intensity measuring device. And a lightning risk determination processing device for determining a lightning risk based on the information.

【0006】また、上記発雷危険度判定処理装置は、二
重偏波レーダ情報のレーダ反射因子及び交差偏波比をさ
らに加えて発雷危険度を判定することを特徴とするもの
である。
Further, the above-mentioned lightning risk determination processing device is characterized in that a lightning risk is determined by further adding a radar reflection factor and a cross polarization ratio of dual-polarized radar information.

【0007】また、上記発雷危険度判定処理装置は、落
雷位置標定装置の発雷情報をさらに加えて発雷危険度を
判定することを特徴とするものである。
Further, the above-mentioned lightning risk determination processing device is characterized in that the lightning risk is determined by further adding the lightning information of the lightning position locating device.

【0008】また、上記高層気象情報は、RASS(Ra
dio Acoustic Sounding System)によりリアルタイムで
得ることを特徴とするものである。
[0008] The above-mentioned high-level weather information is RASS (Ra
dio Acoustic Sounding System) in real time.

【0009】また、上記発雷危険度判定処理装置は、気
象レーダ情報と高層気象情報及び上記電界強度測定器に
よる電界強度情報に基づいて複数の発雷判定要素を求
め、求められた発雷判定要素の値がそれぞれ所定値以上
か否かを判定し、該判定条件に合致する発雷判定要素の
数に応じて発雷危険度を判定することを特徴とするもの
である。
The lightning risk determination processing device obtains a plurality of lightning determination elements based on weather radar information, high-level weather information, and electric field intensity information from the electric field intensity measuring device, and determines the obtained lightning judgment. It is characterized in that it is determined whether the value of each element is equal to or greater than a predetermined value, and the degree of risk of lightning is determined according to the number of lightning determination elements that meet the determination conditions.

【0010】さらに、上記発雷危険度判定処理装置は、
上記複数の発電判定要素にそれぞれ重み付けを加えて、
該重み付けが加えられた発雷判定要素の値がそれぞれ所
定値以上か否かを判定し、該判定条件に合致する発雷判
定要素の数に応じて発雷危険度を判定することを特徴と
するものである。
[0010] Further, the above-mentioned lightning risk determination processing device comprises:
By weighting each of the plurality of power generation determination elements,
Determining whether the value of the weighted lightning determination element is equal to or more than a predetermined value, and determining a lightning risk degree according to the number of lightning determination elements that meet the determination condition. Is what you do.

【0011】[0011]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施の形態1.以下、この発明の実施の形態1を図を参
照して説明する。図1は実施の形態1に係る発雷危険度
判定システムを示す構成図である。図1において、1a
ないし1cを総称する1は屋外に設置されて地上の電界
強度を測定する電界強度測定器、2は電界強度測定器1
による電界強度測定値を後述する発雷危険度判定処理装
置3へデータ伝送するための中継所であり、データ伝送
の方法としてはテレメータ等が考えられる。または、電
話回線にて伝送することも可能である。なお、発雷危険
度判定処理装置2は、汎用計算機で構成可能である。ま
た、3はエコー強度・高度情報やドップラー情報等気象
レーダ情報4と高層気象情報5及び上記電界強度測定器
1による電界強度情報に基づいて発雷危険度を判定する
発雷危険度判定処理装置であり、危険度の度合いは表示
装置6により表示される。
Embodiment 1 FIG. Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram showing a lightning risk determining system according to the first embodiment. In FIG. 1, 1a
1 to 1c are a field strength measuring device which is installed outdoors and measures the field strength on the ground, and 2 is a field strength measuring device 1
Is a relay station for data transmission of a measured electric field strength value to the lightning risk determination processing device 3 described later. As a data transmission method, a telemeter or the like can be considered. Alternatively, it is also possible to transmit by a telephone line. The lightning risk determination processing device 2 can be configured by a general-purpose computer. Reference numeral 3 denotes a lightning risk determination processing device for determining a lightning risk based on weather radar information 4 such as echo intensity / altitude information and Doppler information, high-level weather information 5, and electric field intensity information from the electric field intensity measuring device 1. And the degree of danger is displayed by the display device 6.

【0012】すなわち、上記発雷危険度判定処理装置3
は、電界強度測定値を入力し、従来より用いられている
気象レーダ情報と高層気象情報とを統合処理して、発雷
危険度判定を行うもので、その発雷危険度判定のアルゴ
リズムの例としては図2に示される。図2に示すよう
に、上記発雷危険度判定処理装置3は、ステップ3a1
〜3a5で、気象レーダ情報、高層気象情報、電界強度
情報に基づいて発雷判定要素として、雲頂のエコー強
度、雲の厚さ、雲中の対流、−10℃層のエコー強度及
び電界強度値をそれぞれ算出し、ステップ3b1〜3b5
で、これらの発雷判定要素の値がそれぞれ一定値以上か
否かを判定し、ステップ3c及び3dによりこれらの判
定条件に合致する数により発雷危険度を判定している。
That is, the lightning risk determination processing device 3
Is to input the measured electric field strength, integrate the conventionally used weather radar information and the high-level weather information, and determine the risk of lightning hazard. As shown in FIG. As shown in FIG. 2, the lightning risk degree determination processing device 3 performs step 3a 1
In to 3 A 5, the weather radar information, high-rise weather information, as lightning determination factor based on the field strength information, the echo intensity of the cloud top, cloud thickness, convection clouds, the -10 ° C. layer echo intensity and field strength calculates the value each, step 3b 1 ~3b 5
Then, it is determined whether or not the values of these lightning determination elements are each equal to or greater than a predetermined value, and the lightning risk is determined by the numbers matching these determination conditions in steps 3c and 3d.

【0013】図2の例では、発雷危険度判定の際に、判
定条件に合致する数により危険度判定の度合いを、大、
中、小を分け、実用の便に供している。例えば、ステッ
プ3b1〜3b5での判定結果、危険度判定の度合いは、
判定条件に合致する数が4及び5である場合に「大」と
なり、判定条件に合致する数が3である場合に「中」、
判定条件に合致する数が1及び2である場合に「小」と
なる。
In the example of FIG. 2, when determining the degree of lightning danger, the degree of danger determination is determined as large,
It is divided into small and medium, and is used for practical use. For example, the determination in step 3b 1 ~3b 5, the degree of determination risk is
If the number that matches the determination condition is 4 and 5, the result is “large”. If the number that matches the determination condition is 3, “medium”.
If the number that matches the determination condition is 1 or 2, the result is “small”.

【0014】また、図2では判定条件に合致する数を発
雷危険度判定の基準としているが、危険度判定基準とし
て、各発雷判定要素に対して、重み付けを加えることも
可能である。ステップ3a1〜3a5での各発雷判定要素
の演算の際に、例えば図2に示すように、重み付け係数
H1〜H5を加えるようにして各発雷判定要素を演算す
ることができる。
Further, in FIG. 2, the number that satisfies the determination condition is used as the criterion for determining the degree of lightning risk. However, as the criterion for determining the degree of risk of lightning, it is also possible to weight each lightning determination element. During operation of the lightning determining element in Step 3a 1 to 3 A 5, for example, as shown in FIG. 2, may be as adding a weighting factor H1~H5 calculates each lightning determination element.

【0015】このように、従来の気象レーダ情報、高層
気象情報を利用するだけではなく、電界強度情報をも利
用することにより、発雷危険度判定精度を向上させるこ
とができる。すなわち、雷雲は、プラスまたはマイナス
の電荷を持っているため、雷雲の下では電界強度が大き
くなるという現象があり、そのため、雷雲か否かの判定
に、電界強度情報を利用することで、雷雲判定に役立て
ることができ、発雷危険度判定精度を向上させることが
できる。
As described above, not only the conventional weather radar information and the high-level weather information are used, but also the electric field strength information is used, so that the accuracy of determining the degree of lightning risk can be improved. In other words, since a thundercloud has a positive or negative charge, there is a phenomenon that the electric field strength increases under the thundercloud. Therefore, the electric field strength information is used to determine whether the thundercloud is a thundercloud. This can be used for the determination, and the accuracy of the lightning risk determination can be improved.

【0016】実施の形態2.実施の形態1では、従来の
気象レーダ情報と高層気象情報に加え電界強度測定値を
用いたが、さらに他の情報として、二重偏波レーダ装置
の情報を利用し、さらに発雷危険度判定の精度を向上さ
せることも可能である。二重偏波レーダは、レーダ反射
因子ZH,ZV、交差偏波比ZDR(=10log(ZH
V))を観測することができ、レーダ反射因子ZH,Z
DRの値により、図3に示すように、氷晶や雨の区別が可
能である。雷は、氷晶が衝突し電荷をもつことにより発
生することから、氷晶の存在は発雷危険度を判定する重
要な要素といえる。
Embodiment 2 In the first embodiment, the electric field strength measurement value is used in addition to the conventional weather radar information and the high-level weather information. However, as other information, the information of the dual-polarization radar device is used to further determine the lightning risk degree. Can be improved. The dual polarization radar has a radar reflection factor Z H , Z V , a cross polarization ratio Z DR (= 10 log (Z H /
Z V )) can be observed, and the radar reflection factors Z H , Z
As shown in FIG. 3, it is possible to distinguish between ice crystals and rain according to the DR value. Since lightning is caused by collision of ice crystals with charges, the presence of ice crystals is an important factor in determining the degree of risk of lightning.

【0017】二重偏波レーダ情報を利用した発雷危険度
判定アルゴリズムの例を図4に示す。すなわち、発雷判
定要素の演算ステップとして、ステップ3a1〜3a4
の雲頂のエコー強度、雲の厚さ、雲中の対流、−10℃
層のエコー強度の演算の他に、二重偏波レーダのレーダ
反射因子ZH,ZVを演算するステップ3a6を新たに加
えると共に、判定ステップとして、氷晶か否かの判定ス
テップ3b6を加え、実施の形態1と同様にして、危険
度判定の度合いを、判定条件に合致する数により求める
ものである。
FIG. 4 shows an example of a lightning risk assessment algorithm using dual-polarized radar information. That is, as a calculation step lightning determination element, the echo intensity of the cloud top at Step 3a 1 to 3 A 4, cloud thickness, cloud convection, -10 ° C.
The other operations of the echo strength of the layer, dual polarization radar of radar reflectivity factor Z H, newly with addition of step 3a 6 for calculating a Z V, as the determination step, ice crystals determined whether the step 3b 6 In the same manner as in the first embodiment, the degree of risk determination is obtained from a number that matches the determination condition.

【0018】実施の形態3.さらに、落雷位置標定装置
よりの発雷情報を利用し、実際に発雷が発生した地点の
付近または実際に発雷が発生した雷雲の覆う地域に対し
て、その発雷情報を発雷危険度判定要素として加味し、
発雷危険度判定精度を向上させることが可能である。
Embodiment 3 Furthermore, using the lightning information from the lightning location device, the lightning risk information is given to the area near the point where the lightning actually occurred or the area covered by the thundercloud where the lightning actually occurred. Considering as a judgment element,
It is possible to improve the lightning risk degree determination accuracy.

【0019】発雷危険度判定アルゴリズムの例を図5に
示す。すなわち、発雷判定要素の演算ステップとして、
ステップ3a1〜3a4での雲頂のエコー強度、雲の厚
さ、雲中の対流、−10℃層のエコー強度の演算の他
に、落雷位置標定装置の落雷位置標定情報から発雷位置
情報を演算するステップ3a7を新たに加えると共に、
判定ステップとして、発雷があったか否かの判定ステッ
プ3b7を加え、実施の形態1と同様にして、危険度判
定の度合いを、判定条件に合致する数により求めるもの
である。
FIG. 5 shows an example of the algorithm for determining the degree of risk of lightning strike. That is, as a calculation step of the lightning judgment element,
Echo intensity of the cloud top at Step 3a 1 to 3 A 4, cloud thickness, convection cloud, in addition to the operation of the echo intensity of -10 ° C. layer, lightning location information from lightning position locating information lightning strike position locating system Step 3a 7 is newly added to calculate
As the determination step, in addition to whether or not the determination step 3b 7 there is lightning, in the same manner as in the first embodiment, the degree of determination risk, and requests the number that matches the judgment condition.

【0020】実施の形態4.また、従来の方式では、高
層気象情報は、気象庁等の外部機関より特定の時間間
隔、例えば12時間おきに入手し、それに基づいて、例
えば−10℃層のエコー強度を算出しているが、この高
層気象情報を外部機関より入手するのではなく、RAS
S(Radio Acoustic Sounding System)を設置し、その
情報を用いて高層気象情報とする構成とすることも可能
である。なお、RASSとは、地上より上空へ音波を放
射し、音速が気温により異なることを利用し音波のドッ
プラ速度を測定することにより上空の温度を測定する装
置のことである。RASSを利用することにより、リア
ルタイムの高層気象情報が得られ、発雷危険度精度の向
上が期待できる。
Embodiment 4 Also, in the conventional method, high-level weather information is obtained from an external organization such as the Japan Meteorological Agency at specific time intervals, for example, every 12 hours, and based on that, for example, the echo intensity of the -10 ° C layer is calculated. Instead of obtaining this high-level weather information from external organizations, the RAS
It is also possible to install S (Radio Acoustic Sounding System) and use that information as high-level weather information. Note that RASS is a device that emits sound waves from the ground to the sky and measures the Doppler velocity of the sound waves by utilizing the fact that the sound speed varies depending on the temperature, thereby measuring the temperature in the sky. By using RASS, real-time high-level weather information can be obtained, and improvement in accuracy of lightning risk can be expected.

【0021】[0021]

【発明の効果】以上のように、この発明によれば、地上
の電界強度を測定する電界強度測定器と、気象レーダ情
報と高層気象情報及び上記電界強度測定器による電界強
度情報に基づいて発雷危険度を判定する発雷危険度判定
処理装置とを備えたので、従来の気象レーダ情報、高層
気象情報を利用するだけではなく、電界強度情報をも利
用し、発雷危険度判定精度を向上させることができる。
As described above, according to the present invention, the electric field intensity measuring device for measuring the electric field intensity on the ground, the weather radar information, the high-level weather information, and the electric field intensity information from the electric field intensity measuring device are generated. The system is equipped with a lightning risk judgment processing device that judges the lightning risk, so that not only conventional weather radar information and high-level weather information are used, but also electric field strength information is used to improve the lightning risk judgment accuracy. Can be improved.

【0022】また、上記発雷危険度判定処理装置は、二
重偏波レーダ情報のレーダ反射因子及び交差偏波比をさ
らに加えて発雷危険度を判定するようにしたので、氷晶
の存在に基づいて発雷危険度を判定することができる。
Further, since the above-mentioned lightning risk determination processing device is adapted to determine the lightning risk by further adding the radar reflection factor and the cross polarization ratio of the dual-polarized radar information, the presence of ice crystals The lightning risk can be determined based on the

【0023】また、上記発雷危険度判定処理装置は、落
雷位置標定装置の発雷情報をさらに加えて発雷危険度を
判定するようにしたので、実際に発雷が発生した雷雲の
覆う地域に対して発雷危険度の判定精度を向上させるこ
とができる。
Further, since the above-mentioned lightning risk determination processing device determines the lightning risk by further adding the lightning information of the lightning position locating device, the area covered by the thunder cloud where the lightning actually occurred is covered. However, the accuracy of determining the degree of risk of lightning can be improved.

【0024】また、上記高層気象情報は、RASS(Ra
dio Acoustic Sounding System)により得るようにした
ので、リアルタイムで高層気象情報が得られ、発雷危険
度の判定精度が向上する。
The high-level weather information is RAS (Ra
dio Acoustic Sounding System), real-time weather information is obtained in real time, and the accuracy of lightning risk determination is improved.

【0025】また、上記発雷危険度判定処理装置は、気
象レーダ情報と高層気象情報及び上記電界強度測定器に
よる電界強度情報に基づいて複数の発雷判定要素を求
め、求められた発雷判定要素の値がそれぞれ所定値以上
か否かを判定し、該判定条件に合致する発雷判定要素の
数に応じて発雷危険度を判定するようにしたので、発雷
危険度の度合いを確実に知ることができる。
The lightning risk determination processing device obtains a plurality of lightning determination elements based on weather radar information, high-level weather information, and electric field intensity information from the electric field intensity measuring device, and determines the obtained lightning judgment. It is determined whether the value of each element is equal to or greater than a predetermined value, and the degree of risk of lightning is determined according to the number of lightning determination elements that meet the determination conditions. You can know.

【0026】さらに、上記発雷危険度判定処理装置は、
上記複数の発電判定要素にそれぞれ重み付けを加えて、
該重み付けが加えられた発雷判定要素の値がそれぞれ所
定値以上か否かを判定し、該判定条件に合致する発雷判
定要素の数に応じて発雷危険度を判定するようにしたの
で、各発雷判定要素に重み付けを加えて発雷危険度を正
確に求めることができる。
Further, the above-mentioned lightning risk determination processing device comprises:
By weighting each of the plurality of power generation determination elements,
Since it is determined whether or not the values of the weighted lightning determination elements are equal to or greater than predetermined values, and the lightning risk is determined according to the number of lightning determination elements that meet the determination conditions. By adding weight to each lightning determination element, the lightning risk can be accurately obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1に係る発雷危険度判
定システムの構成を示すブロック図である。
FIG. 1 is a block diagram showing a configuration of a lightning risk determining system according to Embodiment 1 of the present invention.

【図2】 実施の形態1に係る発雷危険度判定処理装置
の発雷危険度判定アルゴリズムを例示するブロック図で
ある。
FIG. 2 is a block diagram illustrating a lightning risk determination algorithm of the lightning risk determination processing device according to the first embodiment;

【図3】 実施の形態2に係る二重偏波レーダ情報を利
用して氷晶や雨の区別が可能なことを説明するための反
射因子と交差偏波比との関係特性図である。
FIG. 3 is a relationship characteristic diagram between a reflection factor and a cross polarization ratio for explaining that ice crystals and rain can be distinguished by using dual polarization radar information according to the second embodiment.

【図4】 実施の形態2に係る二重偏波レーダ情報を利
用した発雷危険度判定処理装置の発雷危険度判定アルゴ
リズムを例示するブロック図である。
FIG. 4 is a block diagram illustrating a lightning risk determination algorithm of a lightning risk determination processing device using dual polarization radar information according to a second embodiment;

【図5】 実施の形態3に係る落雷位置標定情報を利用
した発雷危険度判定アルゴリズムを例示するブロック図
である。
FIG. 5 is a block diagram illustrating a lightning risk assessment algorithm using lightning strike location information according to a third embodiment;

【符号の説明】[Explanation of symbols]

1(1a〜1c) 電界強測定器、3 発雷危険度判定
処理装置。
1 (1a-1c) Electric field strength measuring device, 3 Lightning risk judgment processing device.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 地上の電界強度を測定する電界強度測定
器と、気象レーダ情報と高層気象情報及び上記電界強度
測定器による電界強度情報に基づいて発雷危険度を判定
する発雷危険度判定処理装置とを備えた発雷危険度判定
システム。
An electric field intensity measuring device for measuring the electric field intensity on the ground, and a lightning risk determination for judging a lightning risk based on weather radar information, high-level weather information, and electric field intensity information from the electric field intensity measuring device. A lightning risk determination system including a processing device.
【請求項2】 上記発雷危険度判定処理装置は、二重偏
波レーダ情報のレーダ反射因子及び交差偏波比をさらに
加えて発雷危険度を判定することを特徴とする請求項1
記載の発雷危険度判定システム。
2. The lightning risk determination processing device according to claim 1, wherein the lightning risk is further determined by further adding a radar reflection factor and a cross polarization ratio of the dual polarization radar information.
The lightning risk assessment system described.
【請求項3】 上記発雷危険度判定処理装置は、落雷位
置標定装置の発雷情報をさらに加えて発雷危険度を判定
することを特徴とする請求項1または2記載の発雷危険
度判定システム。
3. The lightning risk level according to claim 1, wherein the lightning risk determination processing device determines the lightning risk level by further adding the lightning information of the lightning position locating device. Judgment system.
【請求項4】 上記高層気象情報は、RASS(Radio
Acoustic SoundingSystem)によりリアルタイムで得る
ことを特徴とする請求項1ないし3のいずれかに記載の
発雷危険度判定システム。
4. The high-level weather information is RAS (Radio
4. The lightning risk determination system according to claim 1, wherein the lightning risk determination system is obtained in real time by an Acoustic Sounding System.
【請求項5】 上記発雷危険度判定処理装置は、気象レ
ーダ情報と高層気象情報及び上記電界強度測定器による
電界強度情報に基づいて複数の発雷判定要素を求め、求
められた発雷判定要素の値がそれぞれ所定値以上か否か
を判定し、該判定条件に合致する発雷判定要素の数に応
じて発雷危険度を判定することを特徴とする請求項1な
いし4のいずれかに記載の発雷危険度判定システム。
5. The lightning risk determination processing device obtains a plurality of lightning determination elements based on weather radar information, high-level weather information, and electric field intensity information from the electric field intensity measuring device, 5. The method according to claim 1, wherein it is determined whether or not the value of each element is equal to or greater than a predetermined value, and the degree of risk of lightning is determined according to the number of lightning determination elements that meet the determination condition. Lightning risk assessment system described in 1.
【請求項6】 上記発雷危険度判定処理装置は、上記複
数の発電判定要素にそれぞれ重み付けを加えて、該重み
付けが加えられた発雷判定要素の値がそれぞれ所定値以
上か否かを判定し、該判定条件に合致する発雷判定要素
の数に応じて発雷危険度を判定することを特徴とする請
求項5記載の発雷危険度判定システム。
6. The lightning risk degree determination processing device weights each of the plurality of power generation determination elements and determines whether or not the value of each of the weighted lightning determination elements is equal to or greater than a predetermined value. 6. The lightning risk determination system according to claim 5, wherein the lightning risk is determined according to the number of lightning determination elements that meet the determination condition.
JP9075891A 1997-03-27 1997-03-27 System for judging degree of hazard of thunder occurrence Pending JPH10268064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9075891A JPH10268064A (en) 1997-03-27 1997-03-27 System for judging degree of hazard of thunder occurrence

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9075891A JPH10268064A (en) 1997-03-27 1997-03-27 System for judging degree of hazard of thunder occurrence

Publications (1)

Publication Number Publication Date
JPH10268064A true JPH10268064A (en) 1998-10-09

Family

ID=13589402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9075891A Pending JPH10268064A (en) 1997-03-27 1997-03-27 System for judging degree of hazard of thunder occurrence

Country Status (1)

Country Link
JP (1) JPH10268064A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003098270A (en) * 2001-09-25 2003-04-03 Japan Radio Co Ltd System for judge-determining occurrence of thunder
KR100775656B1 (en) 2006-10-31 2007-11-13 한국항공우주연구원 Apparatus for estimating cross polarization using spectrum information and method for estimating thereof
JP2013250211A (en) * 2012-06-01 2013-12-12 Ohbayashi Corp Cloud-to-ground discharge warning system
JP2019138737A (en) * 2018-02-08 2019-08-22 国立研究開発法人防災科学技術研究所 Thunder risk determination device
JP2019138736A (en) * 2018-02-08 2019-08-22 国立研究開発法人防災科学技術研究所 Thunder risk determination device
CN111175755A (en) * 2020-02-21 2020-05-19 厦门大恒科技有限公司 Lightning comprehensive detection early warning system and lightning detection method thereof
JPWO2020183862A1 (en) * 2019-03-12 2021-03-18 株式会社東芝 Lightning estimation device, system and method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003098270A (en) * 2001-09-25 2003-04-03 Japan Radio Co Ltd System for judge-determining occurrence of thunder
JP4723771B2 (en) * 2001-09-25 2011-07-13 日本無線株式会社 Lightning determination system and lightning determination method
KR100775656B1 (en) 2006-10-31 2007-11-13 한국항공우주연구원 Apparatus for estimating cross polarization using spectrum information and method for estimating thereof
JP2013250211A (en) * 2012-06-01 2013-12-12 Ohbayashi Corp Cloud-to-ground discharge warning system
JP2019138737A (en) * 2018-02-08 2019-08-22 国立研究開発法人防災科学技術研究所 Thunder risk determination device
JP2019138736A (en) * 2018-02-08 2019-08-22 国立研究開発法人防災科学技術研究所 Thunder risk determination device
JPWO2020183862A1 (en) * 2019-03-12 2021-03-18 株式会社東芝 Lightning estimation device, system and method
JP2022000651A (en) * 2019-03-12 2022-01-04 株式会社東芝 Thunder estimation system and method
CN111175755A (en) * 2020-02-21 2020-05-19 厦门大恒科技有限公司 Lightning comprehensive detection early warning system and lightning detection method thereof

Similar Documents

Publication Publication Date Title
US7530266B2 (en) Acoustic profiler for wind, temperature, and turbulence
EP2921887B1 (en) Lightning-strike electric charge estimation system and method
WO2018019278A1 (en) Small radar-based thunder and lightning monitoring and warning method for electric transmission line, and storage medium
JP6689396B2 (en) Weather forecasting device, weather forecasting method, and program
US10598756B2 (en) System and method for determining the source location of a firearm discharge
Chen et al. Ionospheric disturbances detected during a typhoon based on GNSS phase observations: A case study for typhoon Mangkhut over Hong Kong
Brown et al. Improved WSR-88D scanning strategies for convective storms
JP2001165870A (en) Method and system of detecting condition of concrete structure by using electromagnetic wave signal
JPH10268064A (en) System for judging degree of hazard of thunder occurrence
Gunter et al. Validation of dual-Doppler wind profiles with in situ anemometry
Lentz et al. A note on the depth of sidelobe contamination in acoustic Doppler current profiles
Smith et al. Applications of radar to meteorological operations and research
US10598820B2 (en) Apparatus and method for measuring amount of snowfall for vinyl house
Melas Sodar estimates of surface heat flux and mixed layer depth compared with direct measurements
KR102276135B1 (en) Disaster response device and system thereof
JP5973124B2 (en) Sudden local heavy rain prediction method and apparatus
Ecklund et al. Sounding of the lower atmosphere with a portable 50‐MHz coherent radar
JP2022516219A (en) Rain sensor
Hughes et al. Determining characteristics of HF communications links using SuperDARN
Zhao et al. A new way of estimating ionospheric virtual height based on island multipath echoes in HFSWR
Sotirin et al. Fine‐scale measurements of the vertical ambient noise field
KR20170104100A (en) System and Method For Ground Clutter Removing of WindProfiler
US20220260441A1 (en) Electronic hail pad
JP3139985B2 (en) Weather information observation system
Houminer et al. Study of sporadic-E clouds by backscatter radar