JP2019138736A - Thunder risk determination device - Google Patents

Thunder risk determination device Download PDF

Info

Publication number
JP2019138736A
JP2019138736A JP2018021260A JP2018021260A JP2019138736A JP 2019138736 A JP2019138736 A JP 2019138736A JP 2018021260 A JP2018021260 A JP 2018021260A JP 2018021260 A JP2018021260 A JP 2018021260A JP 2019138736 A JP2019138736 A JP 2019138736A
Authority
JP
Japan
Prior art keywords
risk
data
lightning
cumulonimbus
state change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018021260A
Other languages
Japanese (ja)
Other versions
JP6994735B2 (en
Inventor
南海子 櫻井
Namiko Sakurai
南海子 櫻井
慎吾 清水
Shingo Shimizu
慎吾 清水
晃一 長谷川
Koichi Hasegawa
晃一 長谷川
大輔 内藤
Daisuke Naito
大輔 内藤
真樹子 早藤
Makiko Hayafuji
真樹子 早藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute for Earth Science and Disaster Prevention (NIED)
Chuden Cti Co Ltd
Original Assignee
National Research Institute for Earth Science and Disaster Prevention (NIED)
Chuden Cti Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute for Earth Science and Disaster Prevention (NIED), Chuden Cti Co Ltd filed Critical National Research Institute for Earth Science and Disaster Prevention (NIED)
Priority to JP2018021260A priority Critical patent/JP6994735B2/en
Publication of JP2019138736A publication Critical patent/JP2019138736A/en
Application granted granted Critical
Publication of JP6994735B2 publication Critical patent/JP6994735B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Abstract

To provide a thunder risk determination device capable of accurately predicting a risk of a thunder.SOLUTION: A thunder risk determination device 10 comprises: a dual polarization information acquisition unit 11 which detects a cumulonimbus cloud; a three-dimensional data creation unit 12 which creates three-dimensional data from the dual polarization data acquired by the dual polarization information acquisition unit 11 ; a state threshold value input unit 16 which defines a predetermined threshold value related to a state change; a state change calculation unit 14 which calculates a state change in a cumulonimbus cloud higher than or equal to the threshold value input from the state threshold value input unit 16 from the present-state data and past data created by the three-dimensional data creation unit 12; a risk calculation unit 17 which calculates thunder risk data representing the risk of thunder occurrence from the state change calculated by the state change calculation unit 14; and a thunder information creation unit 19 which creates location information at high risk places from the thunder risk data calculated by the risk calculation unit 17.SELECTED DRAWING: Figure 2

Description

本発明は、雷の危険度を判定する雷危険度判定装置に関する。   The present invention relates to a lightning risk determination device that determines the risk of lightning.

従来、雷の発生を気象レーダと外気温度を用いて判定している技術が開示されている(特許文献1参照)。特許文献1に記載された技術は、外気温に基づき凍結高度を決定し、凍結高度よりも上の高度に関する反射率が雷閾値よりも大きいとき雷アイコンを生成し、凍結高度と所定距離値との和における高度の反射率が雹閾値よりも大きいとき雹アイコンを生成する。   Conventionally, a technique for determining the occurrence of lightning using a weather radar and outside air temperature has been disclosed (see Patent Document 1). The technique described in Patent Literature 1 determines the freezing altitude based on the outside air temperature, generates a lightning icon when the reflectance related to the altitude above the freezing altitude is larger than the lightning threshold, A wrinkle icon is generated when the high reflectance in the sum of is greater than the wrinkle threshold.

特開2011−128150号公報JP 2011-128150 A

清水慎吾,前坂剛,「三次元風速場の推定のための変分法を用いた複数台ドップラーレーダデータの解析手法」,防災科学技術研究所研究報告第70号,2007年1月(http://dil-opac.bosai.go.jp/publication/nied_report/PDF/70/70shimizu.pdf)Shingo Shimizu and Tsuyoshi Maesaka, “A method for analyzing multiple Doppler radar data using the variational method for estimating the three-dimensional wind velocity field”, Research Report No. 70 of the National Research Institute for Earth Science and Disaster Prevention, January 2007 (http: //dil-opac.bosai.go.jp/publication/nied_report/PDF/70/70shimizu.pdf) TAKEHARU KOUKETSU, 外8名,「A Hydrometeor Classification Method for X-Band Polarimetric Rader: Construction and Validation Focusing on Solid Hydrometeors under Moist Environments」,American Meteorological Society,JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY,VOLUME 32,pp2052-2074,Nov 2015(https://journals.ametsoc.org/doi/abs/10.1175/JTECH-D-14-00124.1)TAKEHARU KOUKETSU, 8 others, “A Hydrometeor Classification Method for X-Band Polarimetric Rader: Construction and Validation Focusing on Solid Hydrometeors under Moist Environments”, American Meteorological Society, JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, VOLUME 32, pp2052-2074, Nov 2015 (https://journals.ametsoc.org/doi/abs/10.1175/JTECH-D-14-00124.1) HYPERLINK "https://journals.ametsoc.org/author/Hauser%2C+Dani%C3%A8le" Daniele Hauser HYPERLINK "https://journals.ametsoc.org/author/Amayenc%2C+Paul" Paul Amayenc,「Retrieval of Cloud Water and Water Vapor Contents from Doppler Radar Data in a Tropical Squall Line」,American Meteorological Society,JOURNAL OF ATMOSPHERIC SCIENCES,VOL 43,No.8,pp823-838,15 APRIL,1986(https://journals.ametsoc.org/doi/abs/10.1175/1520-0469%281986%29043%3C0823%3AROCWAW%3E2.0.CO%3B2)HYPERLINK "https://journals.ametsoc.org/author/Hauser%2C+Dani%C3%A8le" Daniele Hauser HYPERLINK "https://journals.ametsoc.org/author/Amayenc%2C+Paul" Paul Amayenc, Retrieval of Cloud Water and Water Vapor Contents from Doppler Radar Data in a Tropical Squall Line, American Meteorological Society, JOURNAL OF ATMOSPHERIC SCIENCES, VOL 43, No. 8, pp823-838, 15 APRIL, 1986 (https: // journals. ametsoc.org/doi/abs/10.1175/1520-0469%281986%29043%3C0823%3AROCWAW%3E2.0.CO%3B2) Lawrence D. Carey and Steven A. Rutledge,「The Relationship between Precipitation and Lightning in Tropical Island Convection:A C-Band Polarimetric Radar Study」,American Meteorological Society,MONTHLY WEATHER REVIEW,VOL 128,pp2687-2710,AUGUST 2000(https://journals.ametsoc.org/doi/full/10.1175/1520-0493%282000%29128%3C2687%3ATRBPAL%3E2.0.CO%3B2)Lawrence D. Carey and Steven A. Rutledge, “The Relationship between Precipitation and Lightning in Tropical Island Convection: A C-Band Polarimetric Radar Study”, American Meteorological Society, MONTHLY WEATHER REVIEW, VOL 128, pp2687-2710, AUGUST 2000 (https : //journals.ametsoc.org/doi/full/10.1175/1520-0493%282000%29128%3C2687%3ATRBPAL%3E2.0.CO%3B2) Gregory N. Seroka, Richard E. Orville, Courtney Schumacher, 「Radar Nowcasting of Total Lightning over the Kennedy Space Center」,American Meteorological Society,WEATHER AND FORECASTING, VOL 27, pp189-204, FEBRUARY 2012(https://journals.ametsoc.org/doi/pdf/10.1175/WAF-D-11-00035.1)Gregory N. Seroka, Richard E. Orville, Courtney Schumacher, "Radar Nowcasting of Total Lightning over the Kennedy Space Center", American Meteorological Society, WEATHER AND FORECASTING, VOL 27, pp189-204, FEBRUARY 2012 (https: // journals. ametsoc.org/doi/pdf/10.1175/WAF-D-11-00035.1)

しかしながら、特許文献1に記載された技術は、霰と雷を関係づけて予測したものではないので、予測精度がよくなかった。   However, since the technique described in Patent Document 1 is not a prediction based on the relationship between the hail and the lightning, the prediction accuracy is not good.

本発明は、従来技術と比較して、雷の危険度を精度良く予測することが可能な雷危険度判定装置を提供することを目的とする。   An object of the present invention is to provide a lightning risk determination apparatus capable of accurately predicting the lightning risk as compared with the prior art.

本発明に係る雷危険度判定装置は、
積乱雲を検出する二重偏波情報取得部と、
前記二重偏波情報取得部で取得された二重偏波データから三次元データを作成する三次元データ作成部と、
状態変化に関する予め定めた閾値を定義する状態閾値入力部と、
前記三次元データ作成部で作成した現況データ及び過去データから、状態変化が前記閾値以上となる積乱雲を特定して、その積乱雲内の状態変化を計算する状態変化計算部と、
前記状態変化計算部で計算された状態変化から雷発生の危険度を表す雷危険度データを計算する危険度計算部と、
前記危険度計算部が計算した雷危険度データから危険度の高い場所の位置情報を作成する雷情報作成部と、
を備える
ことを特徴とする。
The lightning danger determination device according to the present invention,
A dual polarization information acquisition unit for detecting cumulonimbus clouds;
A three-dimensional data creation unit that creates three-dimensional data from the dual polarization data acquired by the dual polarization information acquisition unit;
A state threshold value input part for defining a predetermined threshold value regarding the state change;
From the current state data and past data created by the three-dimensional data creation unit, a state change calculation unit that identifies a cumulonimbus whose state change is equal to or greater than the threshold, and calculates a state change in the cumulonimbus cloud; and
A risk calculation unit for calculating lightning risk data representing the risk of lightning occurrence from the state change calculated by the state change calculation unit;
A lightning information creation unit that creates location information of a high risk location from the lightning risk data calculated by the risk calculation unit;
It is characterized by providing.

本発明に係る雷危険度判定装置は、
前記現況データ及び前記過去データから積乱雲の移動を予測し、未来の積乱雲の状況を表す未来予測データを作成する移動予測部を備え、
前記状態変化計算部は、前記現況データ、前記過去データ及び前記未来予測データから、状態変化が前記閾値以上となる積乱雲を特定して、その積乱雲内の未来の状態変化を計算し、
前記危険度計算部は、前記未来の積乱雲内の状態変化から未来の雷危険度データを計算し、
前記雷情報作成部は、前記未来の雷危険度データから未来の危険度の高い場所の位置情報、移動方向及び移動速度を作成する
ことを特徴とする。
The lightning danger determination device according to the present invention,
Predicting the movement of cumulonimbus clouds from the current status data and the past data, comprising a movement prediction unit for creating future prediction data representing the status of future cumulonimbus clouds,
The state change calculation unit specifies a cumulonimbus whose state change is equal to or greater than the threshold from the current state data, the past data, and the future prediction data, and calculates a future state change in the cumulonimbus cloud,
The risk calculation unit calculates future lightning risk data from state changes in the future cumulonimbus,
The lightning information creation unit creates position information, a moving direction, and a moving speed of a place with a high future risk from the future lightning risk data.

本発明に係る雷危険度判定装置は、
前記三次元データ、前記雷危険度データ及び観測データのうち少なくとも1つを用いて学習処理することで作成された統計情報を前記危険度計算部に入力する観測データ入力部を備える
ことを特徴とする。
The lightning danger determination device according to the present invention,
An observation data input unit that inputs statistical information created by performing learning processing using at least one of the three-dimensional data, the lightning risk data, and the observation data to the risk calculation unit; To do.

本発明に係る雷危険度判定装置では、
前記状態変化計算部は、積乱雲内の上昇流の体積変化を計算し、
前記状態閾値入力部は、状態変化計算部で計算された値と比較する上昇流の体積の閾値を定義する
ことを特徴とする。
In the lightning danger determination device according to the present invention,
The state change calculation unit calculates the volume change of the upward flow in the cumulonimbus,
The state threshold value input unit defines a threshold value of an upward flow volume to be compared with the value calculated by the state change calculation unit.

本発明に係る雷危険度判定装置では、
前記状態変化計算部は、積乱雲内の霰の体積変化を計算し、
前記状態閾値入力部は、状態変化計算部で計算された値と比較する霰の体積の閾値を定義する
ことを特徴とする。
In the lightning danger determination device according to the present invention,
The state change calculation unit calculates the volume change of the soot in the cumulonimbus,
The state threshold value input unit may define a threshold value of the eyelid volume to be compared with the value calculated by the state change calculation unit.

このような雷危険度判定装置によれば、雷の危険度を精度良く予測することが可能となる。   According to such a lightning risk determination device, it is possible to accurately predict the lightning risk.

積乱雲内の雷の仕組みを示す。The mechanism of lightning in the cumulonimbus is shown. 本実施形態の雷危険度判定装置のシステムブロックを示す。1 shows a system block of a lightning risk determination device of the present embodiment. 本実施形態の積乱雲検出のイメージを示す。The image of the cumulonimbus detection of this embodiment is shown. 積乱雲が発生してから経過する時間に対する各高度での霰の体積を示す。It shows the volume of the kite at each altitude with respect to the time elapsed since the formation of cumulonimbus clouds. 本実施形態の積乱雲予測システムのシステムブロックを示す。The system block of the cumulonimbus cloud prediction system of this embodiment is shown. 本実施形態の積乱雲予測システムのフローチャートを示す。The flowchart of the cumulonimbus cloud prediction system of this embodiment is shown.

本発明にかかる実施の形態を図により説明する。   An embodiment according to the present invention will be described with reference to the drawings.

図1は、積乱雲内の雷の仕組みを示す。   FIG. 1 shows the mechanism of lightning in the cumulonimbus.

雷は、積乱雲から発生する。積乱雲は、強い上昇気流によって下層の空気が持ち上げられ、上空で空気中の水蒸気が水滴となることで形成される。気温が氷点下の高度では、雨粒だけでなく霰や氷晶といった氷の粒も形成される。氷の粒は、上昇流の中で周囲の過冷却水滴と呼ばれる水滴と衝突することで成長する。やがて、氷の粒は、上昇気流で支えきれないほど大きくなると、落下し始める。   Thunder is generated from cumulonimbus clouds. A cumulonimbus cloud is formed when the lower air is lifted by a strong updraft and water vapor in the air becomes water droplets in the sky. At temperatures below freezing, not only raindrops but also ice grains such as hail and ice crystals are formed. Ice grains grow by colliding with surrounding water droplets called supercooled water droplets in the upward flow. Eventually, ice particles begin to fall when they become too large to support the updraft.

この上昇中および落下時に、氷の粒同士は、ぶつかり合い、大きな粒と小さな粒の間で電荷の受け渡しが発生する。それぞれの氷の粒が帯電する電荷の符号は、雲水量と呼ばれる単位体積あたりの大気に含まれている水の質量と周囲の気温によって決まる。適度な雲水量がある場合は、気温が−10℃より低いところでは、大きな氷の粒はマイナス、小さな氷の粒はプラスの電荷が帯電する。このような氷の粒どうしの衝突が続くと、積乱雲内に多くの電荷が蓄えられる。   During the rising and falling, the ice particles collide with each other, and charge transfer occurs between the large and small particles. The sign of the charge of each ice particle is determined by the mass of water contained in the atmosphere per unit volume called the amount of cloud water and the ambient temperature. When there is an appropriate amount of cloud water, large ice particles are negatively charged and small ice particles are positively charged when the temperature is lower than −10 ° C. When such collisions of ice particles continue, a lot of electric charge is stored in the cumulonimbus.

空気は電気を通さない絶縁体だが、電位差が1メートルあたり300万Vを超えると、絶縁破壊という現象が発生し、空気中を電気が通る放電が始まり、雷が発生する。雷には、落雷と雲放電があり、落雷は積乱雲と地面の間で電気が流れる現象で、雲放電は積乱雲内や異なる積乱雲同士などで電気が流れる現象である。   Air is an insulator that does not conduct electricity. However, when the potential difference exceeds 3 million V per meter, a phenomenon called dielectric breakdown occurs, and a discharge starts when electricity passes through the air, generating lightning. Lightning strikes include lightning strikes and cloud discharges. Lightning strikes are a phenomenon in which electricity flows between cumulonimbus clouds and the ground, and cloud discharges are phenomena in which electricity flows in cumulonimbus clouds or between different cumulonimbus clouds.

本実施形態の雷危険度判定装置10は、積乱雲内の霰や気流の体積変化を求め、急激な増加が認められた場合に危険であると判定する。   The thunder danger determination device 10 according to the present embodiment obtains volume changes of soot and airflow in the cumulonimbus and determines that it is dangerous when a rapid increase is recognized.

図2は、本実施形態の雷危険度判定装置10のシステムブロックを示す。図3は、本実施形態の積乱雲検出のイメージを示す。   FIG. 2 shows a system block of the lightning danger determination device 10 of the present embodiment. FIG. 3 shows an image of cumulonimbus detection according to this embodiment.

雷危険度判定装置10は、積乱雲を検出する二重偏波情報取得部11と、三次元データを作成する三次元データ作成部12と、積乱雲の移動を予測する移動予測部13と、積乱雲内の状態変化を計算する状態変化計算部14と、状態変化計算部14で計算された値と比較する閾値を定義し入力する状態閾値入力部16と、状態変化計算部14で計算された状態変化から危険度を計算する危険度計算部17と、三次元データ等を学習処理することで作成された統計情報を入力する観測データ入力部18と、危険度計算部17が計算したデータから危険度の高い場所の位置情報、移動方向及び移動速度を作成する雷情報作成部19と、を備える。   The thunder hazard determination device 10 includes a dual polarization information acquisition unit 11 that detects cumulonimbus clouds, a three-dimensional data generation unit 12 that generates three-dimensional data, a movement prediction unit 13 that predicts the movement of cumulonimbus clouds, State change calculation unit 14 for calculating the state change of the state, state threshold value input unit 16 for defining and inputting a threshold value to be compared with the value calculated by the state change calculation unit 14, and the state change calculated by the state change calculation unit 14 A risk level calculation unit 17 that calculates the risk level from the observation data, an observation data input unit 18 that inputs statistical information created by learning the three-dimensional data, and the risk level from the data calculated by the risk level calculation unit 17 A lightning information creation unit 19 that creates position information, a moving direction, and a moving speed of a high place.

本実施形態の二重偏波情報取得部11は、マルチパラメータレーダによって二重偏波データを取得する。二重偏波データは、極座標系の仰角を表すデータでよい。マルチパラメータレーダは、2種類の電波(水平偏波と垂直偏波)を同時に送受信することで、雨粒や氷粒の形などに関わる情報を含む、通常の気象レーダより多くの観測パラメータを計測でき、雨量の正確な把握、雨雲の中の風の観測や、雨、雪、あられなど粒子の種類の判別が可能である。   The dual polarization information acquisition unit 11 of the present embodiment acquires dual polarization data using a multi-parameter radar. The dual polarization data may be data representing the elevation angle of the polar coordinate system. Multi-parameter radar can measure more observation parameters than ordinary weather radar by sending and receiving two types of radio waves (horizontal polarization and vertical polarization) simultaneously, including information on the shape of raindrops and icedrops. It is possible to accurately grasp rainfall, observe wind in rain clouds, and discriminate the types of particles such as rain, snow and hail.

三次元データ作成部12は、二重偏波情報取得部11が取得した複数の極座標系の仰角データを、直交座標系における格子状の三次元データに変換する。例えば、作成される三次元格子データは、反射強度、反射因子差、偏波間位相差変化率、偏波間相関係数等について積乱雲を輪切りのように等高度面で切り出すCAPPI(Constant Altitude Plan Position Indicator)でよい。   The three-dimensional data creation unit 12 converts elevation angle data of a plurality of polar coordinate systems acquired by the dual polarization information acquisition unit 11 into lattice-shaped three-dimensional data in an orthogonal coordinate system. For example, the generated three-dimensional lattice data includes CAPPI (Constant Altitude Plan Position Indicator) that cuts out cumulonimbus clouds at the same altitude plane like a circular slice for reflection intensity, reflection factor difference, polarization phase difference change rate, polarization correlation coefficient, etc. )

三次元データ作成部12は、現在の積乱雲の状況を示す現況データを作成すると共に、過去の積乱雲の状況を過去データとして保存しておく。   The three-dimensional data creation unit 12 creates current status data indicating the current status of cumulonimbus clouds, and stores the past status of cumulonimbus clouds as past data.

また、2台以上のマルチパラメータレーダが使用可能な場合、デュアル解析によって気流を三次元データで作成してもよい。デュアル解析の入力値は、極座標形のPPI(Plan Position Indicator)形式のドップラー速度を利用すればよい。   When two or more multi-parameter radars can be used, the airflow may be created with three-dimensional data by dual analysis. The input value of the dual analysis may be a polar coordinate PPI (Plan Position Indicator) format Doppler speed.

ドップラー速度は、各レーダにおける視線方向の速度成分である。1台のレーダだけでは、積乱雲がレーダに接近又は離間する方向の成分しか観測できないが、複数台のレーダと流体力学の連続式を解くことで、三次元成分(東西、南北、鉛直)の風の三次元分布が作成可能となる。   The Doppler velocity is a velocity component in the line-of-sight direction in each radar. Only one radar can observe components in the direction in which the cumulonimbus approaches or separates from the radar, but by solving multiple radars and fluid dynamics, the wind of the three-dimensional component (east-west, north-south, vertical) 3D distribution can be created.

移動予測部13は、三次元データ作成部12で作成された現況データ及び過去データを用いて積乱雲の移動を予測する。具体的には、過去データと現況データから相互相関数法等によるパターンマッチを行うことで、移動ベクトルを算出し、未来予測データとして出力すればよい。移動予測部13を用いることによって、精度良く未来の雷の予測をすることが可能となる。なお、予測を行わず、過去データと現況データのみ使用する場合には、移動予測部13を用いなくてもよい。   The movement prediction unit 13 predicts the movement of cumulonimbus clouds using the current status data and past data created by the three-dimensional data creation unit 12. Specifically, the movement vector may be calculated by performing pattern matching by the cross correlation method or the like from the past data and the current data, and output as future prediction data. By using the movement prediction unit 13, it is possible to accurately predict future lightning. Note that the movement prediction unit 13 may not be used when only past data and current data are used without performing prediction.

図4は、積乱雲が発生してから経過する時間に対する各高度での霰の体積を示す。   FIG. 4 shows the volume of the kite at each altitude with respect to the time elapsed since the formation of cumulonimbus clouds.

状態変化計算部14は、三次元データ作成部12で作成された現況データ及び過去データ並びに移動予測部13で作成された未来予測データから積乱雲の状態の変化を計算する。状態変化を評価する変数としては、上昇流の体積、霰と判別された領域の体積、霰の単位体積当たりの質量、鉛直積算した降水粒子の質量、エコー頂高度、又は、等温度面エコー強度のうち少なくとも1つでよい。   The state change calculation unit 14 calculates a change in the state of the cumulonimbus cloud from the current state data and past data created by the three-dimensional data creation unit 12 and the future prediction data created by the movement prediction unit 13. Variables to evaluate the state change include the volume of the updraft, the volume of the area identified as cocoon, the mass per unit volume of the cocoon, the mass of precipitation particles accumulated vertically, the echo top height, or the isothermal surface echo intensity. At least one of them.

例えば、計算される状態変化は、状態閾値入力部16から入力される予め定めた閾値以上とする。状態変化計算部14は、過去、現在、未来の三次元データにおいて、同一と思われる積乱雲を特定し、その状態変化を計算する。同一と思われる積乱雲の特定は、既存の積乱雲自動追跡技術を利用すればよい。   For example, the calculated state change is not less than a predetermined threshold value input from the state threshold value input unit 16. The state change calculation unit 14 identifies cumulonimbus clouds that appear to be the same in past, present, and future three-dimensional data, and calculates the state change. To identify cumulonimbus clouds that appear to be identical, existing cumulonimbus automatic tracking technology may be used.

ここで、状態変化を評価する変数について説明する。図4は、これらの状態変化のうち、一例として霰の体積を示している。   Here, the variables for evaluating the state change will be described. FIG. 4 shows the volume of the bag as an example of these state changes.

上昇流の体積を求めるには、複数台のレーダで観測されたドップラー速度を合成し、風の三成分を推定する。三成分は東西風、南北風、鉛直風であって、鉛直上向きを正とする座標系において、正の鉛直風を上昇流と呼ぶ。閾値以上の上昇流が検出された格子グリッドの総体積を「上昇流の体積」とする。風の三成分を推定する手法は、非特許文献1を参照すればよい。   To determine the volume of the updraft, the three components of the wind are estimated by combining Doppler velocities observed by multiple radars. The three components are east-west wind, north-south wind, and vertical wind. In the coordinate system in which the vertical upward direction is positive, the positive vertical wind is called ascending current. The total volume of the grid grid in which the upward flow exceeding the threshold is detected is defined as “upward flow volume”. For a method for estimating the three components of wind, Non-Patent Document 1 may be referred to.

霰と判別された領域の体積は、例えば、二重偏波レーダを用いた降水粒子の判別法を用いて霰と分類された格子グリッドの総体積を求めればよい。二重偏波レーダを用いた降水粒子の判別法は、非特許文献2を参照すればよい。   The volume of the region determined to be cocoon may be obtained, for example, by determining the total volume of the grid grid classified as cocoon using a precipitation particle discrimination method using dual polarization radar. Non-patent document 2 may be referred to for a method for discriminating precipitation particles using a dual polarization radar.

霰の単位体積当たりの質量は、例えば、二重偏波レーダを用いた降水粒子の判別法を用いて霰と分類された格子グリッドにおいて、反射強度及び偏波パラメータ等の測定値から単位体積当たりの質量を推定する手法を用いて算出された各格子グリッドにおける単位体積当たりの質量である。霰の単位体積当たりの質量を推定する手法は、非特許文献3及び4を参照すればよい。   The mass per unit volume of the kite is calculated from the measured values of reflection intensity, polarization parameter, etc. in the lattice grid classified as kite using the method of discriminating precipitation particles using dual polarization radar. It is the mass per unit volume in each lattice grid calculated using the method of estimating the mass of. Non-patent literatures 3 and 4 may be referred to for a method for estimating the mass per unit volume of the bag.

鉛直積算した降水粒子の質量は、反射強度および偏波パラメータ等の測定値から単位体積当たりの降水粒子(雨、霰、雪)の質量を推定する手法を用いて、各格子グリッドにおける降水粒子の質量を算出し、各格子グリッドの質量を鉛直方向に積算したものである(非特許文献5参照)。   The vertically accumulated mass of precipitation particles is calculated using a method that estimates the mass of precipitation particles (rain, hail, snow) per unit volume from the measured values of reflection intensity and polarization parameters. The mass is calculated and the mass of each grid grid is integrated in the vertical direction (see Non-Patent Document 5).

エコー頂高度は、積乱雲内にあるレーダ反射強度の等値面の最高到達高度である。   The echo peak altitude is the highest altitude reached on the isosurface of the radar reflection intensity in the cumulonimbus cloud.

等温度面エコー強度は、気温の三次元分布から気温の等値面を作成し、ある温度の等値面における反射強度をいう。具体的には、−10度程度の霰が負に帯電する温度を選択し、−10度高度における反射強度を抽出すればよい。   The isothermal surface echo intensity refers to a reflection intensity on an isosurface of a certain temperature by creating an isosurface of the air temperature from a three-dimensional distribution of the air temperature. Specifically, the temperature at which the eyelids of about −10 degrees are negatively charged is selected, and the reflection intensity at the altitude of −10 degrees may be extracted.

危険度計算部17は、状態変化計算部14が計算した上昇流の体積変化率、霰の体積変化率、霰の質量変化率、鉛直積算した降水粒子の質量の変化率、エコー頂高度変化率、又は、等温度面エコー強度変化率、並びに、観測データ入力部18から入力される統計情報を用いて、変化率が予め定めた所定値以上の積乱雲を雷の危険度が高いと判定する。危険度の判定は、統計情報によってモデル化される。   The degree-of-risk calculation unit 17 calculates the volume change rate of the upflow calculated by the state change calculation unit 14, the volume change rate of the kite, the mass change rate of the kite, the rate of change of the mass of precipitation particles vertically integrated, and the rate of change of the echo peak height Alternatively, by using the isothermal surface echo intensity change rate and the statistical information input from the observation data input unit 18, a cumulonimbus with a change rate equal to or higher than a predetermined value is determined to have a high lightning risk. The determination of the risk level is modeled by statistical information.

観測データ入力部18は、三次元データ、雷危険度データ及びLMA(Lightning Mapping Array)センサ等の観測データを用いて学習処理することで作成された統計情報を危険度計算部17に入力する。学習処理をすることによって、より精度良く、雷の危険度を予測することが可能となる。なお、観測データ入力部18は、必ず用いる必要は無い。   The observation data input unit 18 inputs statistical information created by learning processing using observation data such as three-dimensional data, lightning risk data, and LMA (Lightning Mapping Array) sensor to the risk calculation unit 17. By performing the learning process, it is possible to predict the risk of lightning with higher accuracy. Note that the observation data input unit 18 is not necessarily used.

モデル化された雷危険度データは、水平分布図として出力される。水平分布図は、三次元データ作成部12で作成された現況のデータ及び過去データと移動予測部13で作成された未来予測データをそれぞれ用いて、現況水平分布図及び未来水平分布図として出力される。   The modeled lightning risk data is output as a horizontal distribution map. The horizontal distribution map is output as a current horizontal distribution map and a future horizontal distribution map using the current data and past data created by the three-dimensional data creation unit 12 and the future prediction data created by the movement prediction unit 13, respectively. The

雷情報作成部19は、危険度計算部17で計算された時系列の雷危険度データと移動予測部13で計算された移動ベクトルを用いて、三次元分布の予測を行う。その後、現況の雷危険度の高い積乱雲の位置、並びに、積乱雲の未来の移動方向及び移動速度を計算する。   The lightning information creation unit 19 uses the time-series lightning risk data calculated by the risk calculation unit 17 and the movement vector calculated by the movement prediction unit 13 to predict a three-dimensional distribution. Thereafter, the position of the current cumulonimbus cloud with a high lightning risk, and the future moving direction and speed of the cumulonimbus cloud are calculated.

このように、本実施形態の雷危険度判定装置1によれば、雷の危険度を精度良く予測することが可能となる。   As described above, according to the lightning risk determination device 1 of the present embodiment, it is possible to accurately predict the lightning risk.

図5は、本実施形態の積乱雲予測システムのシステムブロックを示す。   FIG. 5 shows system blocks of the cumulonimbus cloud prediction system of this embodiment.

積乱雲予測システム1は、雷危険度判定装置10と、受信者の情報を入力する受信者情報入力部4と、積乱雲情報演算部3が演算した積乱雲の情報と受信者情報入力部4から受信者が入力した受信者の情報とからそれぞれの関係を演算する積乱雲・受信者関係演算部5と、積乱雲・受信者関係演算部5が演算した結果を出力する出力部6と、を備える。   The cumulonimbus cloud prediction system 1 includes a thunder danger determination device 10, a receiver information input unit 4 for inputting receiver information, and information on the cumulonimbus cloud calculated by the cumulonimbus information calculation unit 3 and the receiver information input unit 4. The cumulonimbus cloud / recipient relationship computing unit 5 computes each relationship from the information of the recipients input, and the output unit 6 outputs the result computed by the cumulonimbus / receiver relationship computing unit 5.

受信者情報入力部4は、受信者が予め自分の情報を入力するものである。例えば、受信者情報入力部4は、携帯端末等を使用してもよい。受信者が危険か否かを知りたい位置を知らせる受信者の位置情報4a、受信者が設定した危険度のレベル及び距離等を知らせる受信者の危険設定情報4b、受信者が設定した位置ズレの許容範囲を知らせる受信者の位置ズレ許容情報4cを入力する。   The receiver information input unit 4 is for the receiver to input his / her information in advance. For example, the recipient information input unit 4 may use a mobile terminal or the like. Recipient's position information 4a that informs the receiver of the location where the receiver wants to know whether or not it is dangerous, the receiver's risk setting information 4b that informs the level and distance of the risk set by the receiver, and the positional deviation set by the receiver The receiver's positional deviation allowable information 4c that informs the allowable range is input.

受信者の位置情報4aは、受信者が現在存在する場所、受信者がこれから移動する場所又は受信者が知りたい場所等でよい。場所は、GPS等の緯度経度情報から特定すればよい。受信者はこれらの場所から少なくとも1つを選択する。   The location information 4a of the recipient may be a location where the recipient currently exists, a location where the recipient will move, a location that the recipient wants to know, or the like. The location may be specified from latitude and longitude information such as GPS. The recipient selects at least one of these locations.

受信者の危険設定情報4bは、受信者が設定する危険度の情報である。例えば、受信者は危惧している現象を雨、風、雷、雹の中から少なくとも1つ特定し、その現象の危険度をレベル毎に選択する。危険度は、雨の場合は時間雨量又は積算雨量等、風の場合は風速等、雷の場合は気象庁の定めた雷ナウキャストの活動度等、雹の場合は上空での存在又は落下確認等を参考にして少なくとも注意及び警戒等の2つのレベルを設定すればよい。受信者はこれらのレベルから少なくとも1つを選択する。   The receiver risk setting information 4b is information on the degree of risk set by the receiver. For example, the receiver specifies at least one phenomenon of concern from rain, wind, thunder, and hail, and selects the risk level of the phenomenon for each level. The degree of danger is the hourly or cumulative rainfall in the case of rain, wind speed in the case of wind, etc. It is sufficient to set at least two levels such as caution and vigilance with reference to. The recipient selects at least one of these levels.

受信者の位置ズレ許容情報4cは、受信者が設定する位置ズレを許容できる範囲である。例えば、受信者は位置ズレ無し〜20kmまでを調整すればよい。位置ズレ距離は、連続的又は段階的に設定可能であればよい。積乱雲の大きさは約10kmなので、その2倍を最大値とすることが好ましい。   The receiver positional deviation allowable information 4c is a range in which the positional deviation set by the receiver can be allowed. For example, the receiver only needs to adjust the positional deviation up to 20 km. The positional deviation distance only needs to be set continuously or stepwise. Since the cumulonimbus is about 10km in size, it is preferable to set the maximum value to twice that size.

積乱雲・受信者関係演算部5は、積乱雲の座標系を受信者の座標系に変換して、受信者が設定した位置の危険度レベルを現象毎に時系列で演算する。積乱雲は常に大きさを変え、移動する。また、受信者は、危険度を知りたい現象、位置等が時間毎にかわる場合がある。したがって、座標系をあわせて積乱雲と受信者の関係を演算する。   The cumulonimbus / recipient relationship calculation unit 5 converts the cumulonimbus coordinate system into the receiver's coordinate system, and calculates the risk level at the position set by the receiver in time series for each phenomenon. Cumulonimbus always changes size and moves. In addition, the receiver may want to know the degree of danger, the position, etc., from time to time. Therefore, the relationship between the cumulonimbus and the receiver is calculated with the coordinate system.

出力部6は、積乱雲・受信者関係演算部5が演算した結果を出力する。出力部6は、受信者が受信者情報入力部4で設定した場所が危険な位置か否かを知らせる危険位置情報6a、受信者が受信者情報入力部4で設定した時刻が危険な時刻か否かを知らせる危険時刻情報6b、受信者が受信者情報入力部4で設定した雨、風、雷又は雹等の種別が危険か否かを知らせる危険種別情報6c、及び、受信者が受信者情報入力部4で設定した危険レベルのどのレベルなのかを知らせる危険レベル情報6d等のうち少なくとも1つを出力する。   The output unit 6 outputs the result calculated by the cumulonimbus / recipient relationship calculation unit 5. The output unit 6 includes dangerous position information 6a for notifying whether or not the place set by the receiver in the receiver information input unit 4 is a dangerous position, and whether the time set by the receiver in the receiver information input unit 4 is a dangerous time Risk time information 6b that informs whether or not, the risk type information 6c that informs whether or not the type of rain, wind, thunder, or hail set by the receiver in the receiver information input unit 4 is dangerous, and the receiver is the receiver At least one of the danger level information 6d and the like for informing which level of the danger level set by the information input unit 4 is output.

なお、受信者情報入力部4と出力部6は、パーソナルコンピュータ又は携帯端末等でよい。受信者は、パーソナルコンピュータ又は携帯端末等から受信者の情報及び知りたい情報を入力し、演算された後の積乱雲に関する情報を携帯端末等で見ることができる。   The recipient information input unit 4 and the output unit 6 may be a personal computer or a portable terminal. The receiver can input the information of the receiver and the information he / she wants to know from a personal computer or a portable terminal, and can view information about the cumulonimbus cloud after the calculation on the portable terminal or the like.

図6は、本実施形態の積乱雲予測システムのフローチャートを示す。   FIG. 6 shows a flowchart of the cumulonimbus cloud prediction system of this embodiment.

まず、ステップ1で、雷危険度判定装置10が危険な雷の情報を演算して出力する(ST1)。   First, in step 1, the lightning risk determination device 10 calculates and outputs dangerous lightning information (ST1).

次に、ステップ2で、受信者情報入力部4が、受信者の情報を取得する(ST2)。取得される受信者の情報は、受信者の位置情報4a、受信者の危険設定情報4b、受信者の位置ズレ許容情報4c等でよい。   Next, in step 2, the recipient information input unit 4 acquires recipient information (ST2). The acquired receiver information may be the receiver's position information 4a, the receiver's danger setting information 4b, the receiver's positional deviation allowable information 4c, and the like.

次に、ステップ3で、積乱雲・受信者関係演算部5が、積乱雲と受信者の関係を演算する(ST3)。積乱雲と受信者の関係は、積乱雲の座標系を受信者の座標系に変換して、受信者が設定した位置の危険度レベルを現象毎に時系列で演算すればよい。   Next, in step 3, the cumulonimbus / recipient relationship calculation unit 5 calculates the relationship between the cumulonimbus and the receiver (ST3). As for the relationship between the cumulonimbus and the receiver, the coordinate system of the cumulonimbus cloud may be converted into the coordinate system of the receiver, and the risk level at the position set by the receiver may be calculated in time series for each phenomenon.

次に、ステップ4で、出力部5が、積乱雲と受信者の関係を出力する(ST4)。出力部6は、危険位置情報6a、危険時刻情報6b、危険種別情報6c、及び、危険レベル情報6d等のうち少なくとも1つを出力すればよい。   Next, in step 4, the output unit 5 outputs the relationship between the cumulonimbus and the receiver (ST4). The output unit 6 may output at least one of the dangerous position information 6a, the dangerous time information 6b, the dangerous type information 6c, the dangerous level information 6d, and the like.

このように、積乱雲予測システム1によれば、雷危険度判定装置1によって雷の危険度を精度良く予測することができ、受信者に的確に積乱雲の情報を知らせることが可能となる。   As described above, according to the cumulonimbus prediction system 1, the thunder danger determination device 1 can accurately predict the danger of thunder, and can accurately notify the receiver of information on the cumulonimbus.

以上、本実施形態の雷危険度判定装置10は、積乱雲を検出する二重偏波情報取得部11と、二重偏波情報取得部11で取得された二重偏波データから三次元データを作成する三次元データ作成部12と、状態変化に関する予め定めた閾値を定義する状態閾値入力部と、三次元データ作成部12で作成した現況データ及び過去データから積乱雲内の状態変化を計算する状態変化計算部14と、状態変化計算部14で計算された状態変化から雷発生の危険度を表す雷危険度データを計算する危険度計算部17と、危険度計算部17が計算した雷危険度データから危険度の高い場所の位置情報を作成する雷情報作成部19と、を備える。したがって、雷の危険度を精度良く予測することが可能となる。   As described above, the lightning risk determination device 10 according to the present embodiment has a dual polarization information acquisition unit 11 that detects cumulonimbus and three-dimensional data from the dual polarization data acquired by the dual polarization information acquisition unit 11. A state for calculating a state change in the cumulonimbus cloud from the current data and past data created by the three-dimensional data creation unit 12 to be created, a state threshold value input unit for defining a predetermined threshold for state change, and the three-dimensional data creation unit 12 A change calculating unit 14; a risk calculating unit 17 that calculates lightning risk data representing the risk of lightning from the state change calculated by the state change calculating unit 14; and a lightning risk calculated by the risk calculating unit 17. A lightning information creation unit 19 that creates position information of a high risk location from the data. Therefore, it is possible to accurately predict the risk of lightning.

また、本実施形態の雷危険度判定装置10は、現況データ及び過去データから積乱雲の移動を予測し、未来の積乱雲の状況を表す未来予測データを作成する移動予測部13を備え、状態変化計算部14は、現況データ、過去データ及び未来予測データから、状態変化が前記閾値以上となる積乱雲を特定して、その積乱雲内の未来の状態変化を計算し、危険度計算部17は、未来の積乱雲内の状態変化から未来の雷危険度データを計算し、雷情報作成部19は、未来の雷危険度データから未来の危険度の高い場所の位置情報、移動方向及び移動速度を作成する。したがって、精度良く未来の雷の予測をすることが可能となる。   Further, the lightning danger determination device 10 of the present embodiment includes a movement prediction unit 13 that predicts the movement of cumulonimbus clouds from current data and past data, and creates future prediction data representing the state of future cumulonimbus clouds. The unit 14 identifies a cumulonimbus cloud whose state change is equal to or greater than the threshold value from the current state data, past data, and future prediction data, calculates a future state change in the cumulonimbus cloud, and the risk level calculation unit 17 The future lightning risk data is calculated from the state change in the cumulonimbus cloud, and the lightning information creation unit 19 creates the position information, the moving direction and the moving speed of the future high-risk place from the future lightning risk data. Therefore, it is possible to accurately predict future lightning.

また、本実施形態の雷危険度判定装置10は、三次元データ、雷危険度データ及び観測データのうち少なくとも1つを用いて学習処理することで作成された統計情報を危険度計算部17に入力する観測データ入力部18を備える。したがって、より精度良く、雷の危険度を予測することが可能となる。   In addition, the lightning risk determination device 10 according to the present embodiment stores statistical information created by performing learning processing using at least one of three-dimensional data, lightning risk data, and observation data in the risk calculation unit 17. An observation data input unit 18 is provided. Therefore, it is possible to predict the risk of lightning with higher accuracy.

また、本実施形態の雷危険度判定装置10では、状態変化計算部14は、積乱雲内の上昇流の体積変化を計算し、状態閾値入力部16は、状態変化計算部で計算された値と比較する上昇流の体積の閾値を定義する。したがって、より精度良く、雷の危険度を予測することが可能となる。   Further, in the lightning risk determination device 10 of the present embodiment, the state change calculation unit 14 calculates the volume change of the upward flow in the cumulonimbus, and the state threshold input unit 16 has the value calculated by the state change calculation unit. Define the upflow volume threshold to compare. Therefore, it is possible to predict the risk of lightning with higher accuracy.

また、本実施形態の雷危険度判定装置10では、状態変化計算部14は、積乱雲内の霰の体積変化を計算し、状態閾値入力部16は、状態変化計算部で計算された値と比較する霰の体積の閾値を定義する。したがって、より精度良く、雷の危険度を予測することが可能となる。   Further, in the lightning risk determination device 10 of the present embodiment, the state change calculation unit 14 calculates the volume change of the soot in the cumulonimbus, and the state threshold input unit 16 compares the value calculated by the state change calculation unit. Define a threshold for the volume of the kite to be. Therefore, it is possible to predict the risk of lightning with higher accuracy.

なお、この実施形態によって本発明は限定されるものではない。すなわち、実施形態の説明に当たって、例示のために特定の詳細な内容が多く含まれるが、当業者であれば、これらの詳細な内容に色々なバリエーションや変更を加えてもよい。   In addition, this invention is not limited by this embodiment. That is, in describing the embodiment, many specific details are included for illustration, but those skilled in the art may add various variations and changes to these details.

1…積乱雲予測システム
2…積乱雲検出部
3…積乱雲情報演算部
4…受信者情報入力部
5…積乱雲受信者関係演算部
6…出力部
10…雷危険度判定装置
11…二重偏波情報取得部
12…三次元データ作成部
13…移動予測部
14…状態変化計算部
16…状態閾値入力部
17…危険度計算部
18…観測データ入力部
19…雷情報作成部
DESCRIPTION OF SYMBOLS 1 ... Cumulonimbus cloud prediction system 2 ... Cumulonimbus cloud detection part 3 ... Cumulonimbus cloud information calculation part 4 ... Receiver information input part 5 ... Cumulonimbus receiver relation calculation part 6 ... Output part 10 ... Lightning risk determination apparatus 11 ... Double polarization information acquisition Unit 12 ... Three-dimensional data creation unit 13 ... Movement prediction unit 14 ... State change calculation unit 16 ... State threshold value input unit 17 ... Risk level calculation unit 18 ... Observation data input unit 19 ... Lightning information creation unit

Claims (5)

積乱雲を検出する二重偏波情報取得部と、
前記二重偏波情報取得部で取得された二重偏波データから三次元データを作成する三次元データ作成部と、
状態変化に関する予め定めた閾値を定義する状態閾値入力部と、
前記三次元データ作成部で作成した現況データ及び過去データから、状態変化が前記閾値以上となる積乱雲を特定して、その積乱雲内の状態変化を計算する状態変化計算部と、
前記状態変化計算部で計算された状態変化から雷発生の危険度を表す雷危険度データを計算する危険度計算部と、
前記危険度計算部が計算した雷危険度データから危険度の高い場所の位置情報を作成する雷情報作成部と、
を備える
ことを特徴とする雷危険度判定装置。
A dual polarization information acquisition unit for detecting cumulonimbus clouds;
A three-dimensional data creation unit that creates three-dimensional data from the dual polarization data acquired by the dual polarization information acquisition unit;
A state threshold value input part for defining a predetermined threshold value regarding the state change;
From the current state data and past data created by the three-dimensional data creation unit, a state change calculation unit that identifies a cumulonimbus whose state change is equal to or greater than the threshold, and calculates a state change in the cumulonimbus cloud; and
A risk calculation unit for calculating lightning risk data representing the risk of lightning occurrence from the state change calculated by the state change calculation unit;
A lightning information creation unit that creates location information of a high risk location from the lightning risk data calculated by the risk calculation unit;
A lightning risk determination device comprising:
前記現況データ及び前記過去データから積乱雲の移動を予測し、未来の積乱雲の状況を表す未来予測データを作成する移動予測部を備え、
前記状態変化計算部は、前記現況データ、前記過去データ及び前記未来予測データから、状態変化が前記閾値以上となる積乱雲を特定して、その積乱雲内の未来の状態変化を計算し、
前記危険度計算部は、前記未来の積乱雲内の状態変化から未来の雷危険度データを計算し、
前記雷情報作成部は、前記未来の雷危険度データから未来の危険度の高い場所の位置情報、移動方向及び移動速度を作成する
ことを特徴とする請求項1に記載の雷危険度判定装置。
Predicting the movement of cumulonimbus clouds from the current status data and the past data, comprising a movement prediction unit for creating future prediction data representing the status of future cumulonimbus clouds,
The state change calculation unit specifies a cumulonimbus whose state change is equal to or greater than the threshold from the current state data, the past data, and the future prediction data, and calculates a future state change in the cumulonimbus cloud,
The risk calculation unit calculates future lightning risk data from state changes in the future cumulonimbus,
2. The lightning risk determination device according to claim 1, wherein the lightning information generation unit generates position information, a moving direction, and a moving speed of a place with a high future risk from the future lightning risk data. .
前記三次元データ、前記雷危険度データ及び観測データのうち少なくとも1つを用いて学習処理することで作成された統計情報を前記危険度計算部に入力する観測データ入力部を備える
ことを特徴とする請求項1又は2に記載の雷危険度判定装置。
An observation data input unit that inputs statistical information created by performing learning processing using at least one of the three-dimensional data, the lightning risk data, and the observation data to the risk calculation unit; The lightning danger determination apparatus according to claim 1 or 2.
前記状態変化計算部は、積乱雲内の上昇流の体積変化を計算し、
前記状態閾値入力部は、状態変化計算部で計算された値と比較する上昇流の体積の閾値を定義する
ことを特徴とする請求項1乃至3のいずれか1つに記載の雷危険度判定装置。
The state change calculation unit calculates the volume change of the upward flow in the cumulonimbus,
The lightning risk determination according to any one of claims 1 to 3, wherein the state threshold value input unit defines a threshold value of an upflow volume to be compared with a value calculated by a state change calculation unit. apparatus.
前記状態変化計算部は、積乱雲内の霰の体積変化を計算し、
前記状態閾値入力部は、状態変化計算部で計算された値と比較する霰の体積の閾値を定義する
ことを特徴とする請求項1乃至3のいずれか1つに記載の雷危険度判定装置。
The state change calculation unit calculates the volume change of the soot in the cumulonimbus,
The lightning risk determination device according to any one of claims 1 to 3, wherein the state threshold value input unit defines a threshold value of the volume of the kite to be compared with the value calculated by the state change calculation unit. .
JP2018021260A 2018-02-08 2018-02-08 Lightning risk judgment device Active JP6994735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018021260A JP6994735B2 (en) 2018-02-08 2018-02-08 Lightning risk judgment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018021260A JP6994735B2 (en) 2018-02-08 2018-02-08 Lightning risk judgment device

Publications (2)

Publication Number Publication Date
JP2019138736A true JP2019138736A (en) 2019-08-22
JP6994735B2 JP6994735B2 (en) 2022-01-14

Family

ID=67693652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018021260A Active JP6994735B2 (en) 2018-02-08 2018-02-08 Lightning risk judgment device

Country Status (1)

Country Link
JP (1) JP6994735B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5621410A (en) * 1992-11-05 1997-04-15 New Mexico Tech Research Foundation Remote prediction of lightning hazards
JPH09329672A (en) * 1996-06-07 1997-12-22 Kansai Electric Power Co Inc:The Method for predicting thunder
JPH10268064A (en) * 1997-03-27 1998-10-09 Mitsubishi Electric Corp System for judging degree of hazard of thunder occurrence
JP2009192311A (en) * 2008-02-13 2009-08-27 Nippon Telegr & Teleph Corp <Ntt> Device for predicting generation of thunder, and method therefor, and program
JP2014048273A (en) * 2012-09-04 2014-03-17 Toshiba Corp Weather radar device, phased array radar device and observation sequence preparation method
WO2015005020A1 (en) * 2013-07-11 2015-01-15 古野電気株式会社 Weather information processing device, weather radar system, and weather information processing method
JP2017125833A (en) * 2016-01-08 2017-07-20 株式会社東芝 Estimation device, estimation method, and estimation program

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5621410A (en) * 1992-11-05 1997-04-15 New Mexico Tech Research Foundation Remote prediction of lightning hazards
JPH09329672A (en) * 1996-06-07 1997-12-22 Kansai Electric Power Co Inc:The Method for predicting thunder
JPH10268064A (en) * 1997-03-27 1998-10-09 Mitsubishi Electric Corp System for judging degree of hazard of thunder occurrence
JP2009192311A (en) * 2008-02-13 2009-08-27 Nippon Telegr & Teleph Corp <Ntt> Device for predicting generation of thunder, and method therefor, and program
JP2014048273A (en) * 2012-09-04 2014-03-17 Toshiba Corp Weather radar device, phased array radar device and observation sequence preparation method
WO2015005020A1 (en) * 2013-07-11 2015-01-15 古野電気株式会社 Weather information processing device, weather radar system, and weather information processing method
JP2017125833A (en) * 2016-01-08 2017-07-20 株式会社東芝 Estimation device, estimation method, and estimation program

Also Published As

Publication number Publication date
JP6994735B2 (en) 2022-01-14

Similar Documents

Publication Publication Date Title
CN106950614B (en) A kind of region automatic weather station hour rainfall data method of quality control
US8089391B1 (en) Weather radar system and method using data from a lightning sensor
EP3070501B1 (en) Prediction of ice crystal presence in a volume of airspace
US11353625B1 (en) Systems and methods for forecasting lightning and severe storms
EP2339372B1 (en) Method and systems for detection of hazard to aviation due to convective weather
JP6949332B2 (en) Lightning risk judgment device
TWI637191B (en) Weather forecasting device
JP6689396B2 (en) Weather forecasting device, weather forecasting method, and program
KR101983938B1 (en) System and method for warning lightning
KR101541519B1 (en) Rainfall estimation apparatus using 3-dimensional grid data establishing from radar observation data
US20040041725A1 (en) Radar signal processing unit and radar signal processing method
KR101860742B1 (en) Lightning risk analysis system and lightning risk analysis method using the same
KR101255966B1 (en) Method and system for detecting bright band using three dimensional radar reflectivity
US20200355846A1 (en) Systems and methods for forecasting weather
Salvador et al. Thunderstorm charge structures favouring cloud-to-ground lightning
KR101221755B1 (en) Method for identifying reflectivity cells associated with severe weather
RU2725508C1 (en) Method of determining atmospheric cyclones parameters
JP2019138736A (en) Thunder risk determination device
JP7165973B2 (en) Cumulonimbus prediction system
Yang et al. Radar-derived quantitative precipitation estimation based on precipitation classification
Basri et al. Analyses of Cloud Characteristic during Malaysian 2014 Flood Event
JP2019219236A (en) Processing device, processing method, and program
Villa High resolution forecasts of short duration extreme precipitation-forecasting quality and sensitivity to parameterization for two Norwegian cases
CN113447724B (en) Lightning activity distinguishing method and system
KR102260990B1 (en) Lightning Prediction Method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211206

R150 Certificate of patent or registration of utility model

Ref document number: 6994735

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150