JPH1026638A - Current detecting sensor - Google Patents

Current detecting sensor

Info

Publication number
JPH1026638A
JPH1026638A JP8201236A JP20123696A JPH1026638A JP H1026638 A JPH1026638 A JP H1026638A JP 8201236 A JP8201236 A JP 8201236A JP 20123696 A JP20123696 A JP 20123696A JP H1026638 A JPH1026638 A JP H1026638A
Authority
JP
Japan
Prior art keywords
current
magnetic
magnetoresistive element
conductor
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8201236A
Other languages
Japanese (ja)
Inventor
Noboru Masuda
昇 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP8201236A priority Critical patent/JPH1026638A/en
Publication of JPH1026638A publication Critical patent/JPH1026638A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/205Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using magneto-resistance devices, e.g. field plates

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a current detecting sensor which is small, whose responsivity is fast and whose irregularity is small. SOLUTION: A current detecting sensor device is provided with magnetoresistance elements 82a, 82b which are magnetically biased and at least one or more cutout part 89 or a hole part constituted in a conductor part 81 which is an electric good conductor forming a current passage in an object to be detected and which is constituted of a nonmagnetic metal. The magnetoresistance elements 82a, 82b and a magnetic bias means 80 are inserted into the cutout part 89 or the hole part so as to be arranged. A load current is detected on the basis of a change in resistances of the magnetoresistance elements 82a, 82b. In addition, a soft magnetic material layer 87 is added as an auxiliary magnetic circuit.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【001】[0101]

【産業上の利用分野】最近電子機器のトランジェント電
流による障害や雑音が問題になっている。特に最近多発
しているキュピクル内に設置した進相コンデンサの破損
は、負荷によって生じる第五次高調波によるとされてい
る。しかし、その実体は、未だ完全に解明されたとは言
えず、良いトランジェント電流検出器の開発が宿望され
る。また、最近の動向として、省エネルギ−のため電動
機や空調機器などでも電子回路の助けを借りた複雑な制
御を行なうことが検討されているが、最近の電子装置の
高速化に適合する良好な電流検出センサがなく、この分
野では早い応答性を持った電流センサが必要である。一
方,電源器機中にSCRに代表される半導体電子回路が
導入され各種の制御を行うと,その装置から発生する雑
音が増大し、周辺に設置した他の装置が誤動作するなど
の弊害が発生しているものと推測されるが、適切な検出
手段が存在しない。このような背景から,電力分野や精
密電子機器分野では,小形で周波数特性が良い電流の計
測が必要になってきた。従来から用いられている電流計
測は,主にCTによって行われてきたが,CTに用いる
磁性体コア−の周波数特性から、その検出周波数特性
は、せいぜい10KHz止まりで、前述したような制御
装置が発生する雑音電流に追従できない。つまり、雑音
抑制センサとしては利用できない。一方,このような要
請ににもとずきホ−ル素子を用いた電流検出が着目され
つつあるが、この素子は、磁界感度が低く感度を向上す
るために磁性体コア−を用いている。すなわち、CTよ
り周波数特性が1桁以上改善されるものの、前記CTと
同様に周波数特性が磁性コア−の特性に依存することに
なり、形状、特性ともに満足しがたい。本発明は、磁気
抵抗素子に磁気バイアス装置を付加し構成した磁気セン
サが、磁界感度が良いこと、周波数特性が良いこと、素
子が持つ固有雑音の低さ、装置の小形化が可能なこと、
インピ−ダンスが低く誘導雑音の影響を受けにくいこと
に着目して、安価で家庭用ヒュ−ズボックスなどに組み
込み可能な小型で高性能な電流検出センサ装置を提供す
るものである。
2. Description of the Related Art Recently, problems and noises caused by transient currents in electronic equipment have become a problem. In particular, it is said that the most frequently occurring damage to the phase-advancing capacitor installed in the cupicle is caused by the fifth harmonic generated by the load. However, its substance has not been fully elucidated yet, and the development of a good transient current detector is eagerly awaited. As a recent trend, it has been considered to perform complicated control with the help of an electronic circuit in an electric motor or an air conditioner for energy saving. There is no current detection sensor, and a current sensor having a quick response is required in this field. On the other hand, when a semiconductor electronic circuit typified by an SCR is introduced into a power supply device and various controls are performed, noise generated from the device increases, and other devices installed in the vicinity malfunction. However, there is no appropriate detection means. Against this background, in the field of electric power and precision electronic equipment, it has become necessary to measure a small current with good frequency characteristics. Conventionally, current measurement has been mainly performed by CT. However, the frequency characteristic of a magnetic core used for CT has a detection frequency characteristic of 10 KHz at most. It cannot follow the generated noise current. That is, it cannot be used as a noise suppression sensor. On the other hand, in response to such a demand, attention has been paid to current detection using a ball element. However, this element uses a magnetic core to reduce the magnetic field sensitivity and improve the sensitivity. . That is, although the frequency characteristic is improved by one digit or more than the CT, the frequency characteristic depends on the characteristic of the magnetic core similarly to the CT, and both the shape and the characteristic are not satisfactory. According to the present invention, a magnetic sensor configured by adding a magnetic bias device to a magnetoresistive element has good magnetic field sensitivity, good frequency characteristics, low intrinsic noise of the element, and the device can be downsized.
It is an object of the present invention to provide a small-sized, high-performance current detection sensor device which is inexpensive and can be incorporated in a home-use fuse box or the like, focusing on the fact that the impedance is low and the influence of induction noise is low.

【002】[0092]

【従来の技術】図1,2は従来多用されている電流検出
器を図示したもので,図1はカ−レントランス,略称と
してCTと呼ばれるもので、図中13は電磁コア−を示
し、当該コア−には11、12で示すコイルが巻かれて
いる。コイル12は通常1タ−ンから数タ−ンの範囲で
構成され、このコイルは負荷Lに直列に結合されてい
る。従って、このように構成することで、2次コイル1
3には負荷に流れる電流Iに比例した電圧が誘起され、
この電圧を検出して負荷電流を計測する。また,図2に
はホ−ル素子を用いた電流検出器を示した。図2に示す
電流検出器は、ホ−ルマルチプライヤ−とも呼ばれ、電
磁コア−23の一部を欠切し、当該欠切部分にホ−ル素
子を挿入し固着する。而して、負荷に接続している電気
的導体24には、負荷Lによる電流Iに相当する磁界が
発生するが、この磁界は微弱なため電磁コア−21で磁
束を集中し磁界感度を高めるものである。また、近年至
り、半導体磁気抵抗素子を用いた電流検知センサの開発
が活発に行われており、図4a、bに示すように単純に
電流通路近傍に磁気バイアスを加えた磁気抵抗素子を配
置して、電流通路から発生する磁界を検出して負荷電流
を検出しょうとの試みも行われているが、電流通路と磁
気抵抗素子の位置関係を正確に確保することが難しいた
め特性にばらつきが生じ安く実用に至っていない。また
図3は、すでに発明者が提案し開示した(工学院大学
第38回研究要旨 P101)電流検出器の構造を示す
ものであるが、インジュウムアンチモナイド(InS
b)やインジュウム砒素(InAs)で作られた磁気抵
抗素子32a,bに1.2KG以上の表面磁束をもった
ストロンチュムフェライト系磁石30を用いて磁気バイ
アスを加える。特にInSbを用いた半導体磁気センサ
は,温度係数が大きく温度補償が必要になる。そこで図
3のように磁気抵抗素子32a,bを2個組み込み、後
述する分圧回路を構成することで磁気抵抗素子の温度補
償を行う。分圧回路を構成する2個の素子は、図示した
ように、負荷電流を流す1mm厚みの銅板31の両側端
に、それぞれ絶縁フィルム34を介して素子面を導体面
に接触するように平置する。また、前述したように、そ
れぞれの磁気抵抗素子を配置することで、素子の面に対
し電流通路による磁界が直角で、かつ、それぞれの磁気
抵抗素子32、33に対して反対方向に加わるように構
成した。しかしながら、図3に依る当該センサでは、磁
気抵抗素子32、33を銅板に平行して設置しずらく特
性にばらつきが生じる欠点がある、と共に、加工上にも
問題が生じた。
2. Description of the Related Art FIGS. 1 and 2 show a current detector which has been widely used in the past. FIG. 1 shows a current transformer, which is called a CT for short, and FIG. Coils indicated by 11 and 12 are wound around the core. The coil 12 is usually formed in a range of one turn to several turns, and this coil is connected to the load L in series. Therefore, with such a configuration, the secondary coil 1
3, a voltage proportional to the current I flowing through the load is induced,
The load current is measured by detecting this voltage. FIG. 2 shows a current detector using a ball element. The current detector shown in FIG. 2 is also called a hole multiplier, in which a part of the electromagnetic core 23 is cut, and a hole element is inserted and fixed in the cut part. Thus, a magnetic field corresponding to the current I due to the load L is generated in the electric conductor 24 connected to the load. However, since this magnetic field is weak, the magnetic flux is concentrated by the electromagnetic core 21 to increase the magnetic field sensitivity. Things. In recent years, current detection sensors using semiconductor magnetoresistive elements have been actively developed. As shown in FIGS. 4a and 4b, a magnetoresistive element in which a magnetic bias is simply applied near a current path is arranged. Attempts have been made to detect the load current by detecting the magnetic field generated from the current path.However, it is difficult to accurately maintain the positional relationship between the current path and the magnetoresistive element. It is not cheap and practical. FIG. 3 has already been proposed and disclosed by the inventor (Kogakuin University
38th Research Abstract P101) This shows the structure of a current detector, but it is indium antimonide (InS).
b) or a magnetic bias is applied to the magnetoresistive elements 32a and 32b made of indium arsenide (InAs) using a strontium ferrite magnet 30 having a surface magnetic flux of 1.2 KG or more. In particular, a semiconductor magnetic sensor using InSb has a large temperature coefficient and requires temperature compensation. Therefore, as shown in FIG. 3, two magnetic resistance elements 32a and 32b are incorporated and a voltage dividing circuit described later is configured to perform temperature compensation of the magnetic resistance elements. As shown in the figure, the two elements constituting the voltage dividing circuit are placed on both sides of a 1 mm thick copper plate 31 through which a load current flows so that the element surfaces are in contact with the conductor surfaces via insulating films 34, respectively. I do. Also, as described above, by arranging the respective magneto-resistive elements, the magnetic field generated by the current path is perpendicular to the surface of the element and applied to the respective magneto-resistive elements 32 and 33 in opposite directions. Configured. However, the sensor shown in FIG. 3 has a drawback that the magnetoresistive elements 32 and 33 are difficult to install in parallel with the copper plate, causing variations in characteristics, and also causes a problem in processing.

【003】[0093]

【発明が解決しようとする課題】そこで本発明では負荷
電流よって作られる磁界を2個の磁気抵抗素子にほぼ等
しく作用させ、特性のばらつきが少ない電流検出センサ
装置を提供しょうとするものである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a current detection sensor device in which a magnetic field generated by a load current acts almost equally on two magnetoresistive elements, and there is little variation in characteristics.

【004】[0093]

【課題を解決するための手段】そこで本発明に依る電流
センサ装置では、負荷電流通路をなす非磁性体導体片
と、当該導体片には磁気抵抗素子を設置する素子取り付
け部を設けると共に、磁気バイヤスを加えた磁気抵抗素
子を取り付け周知手段を用いて固着し、導体片に流れる
負荷電流によって生じる磁界変化を磁気抵抗素子に加え
ることで、磁気抵抗素子に抵抗変化を生じさせ、負荷電
流変化に応じた電気的信号を取り出すものである。
Therefore, in the current sensor device according to the present invention, a non-magnetic conductor piece forming a load current path and an element mounting portion for installing a magnetoresistive element are provided on the conductor piece, A biased magnetoresistive element is attached and fixed using well-known means, and a magnetic field change caused by a load current flowing through the conductor piece is applied to the magnetoresistive element, thereby causing a resistance change in the magnetoresistive element and causing a change in the load current. A corresponding electrical signal is extracted.

【005】[0056]

【作用】図4a,bは、本願による電流検出装置理解を
助けるための基本動作原理を述べるための模式図を示し
たもので、図aは、非磁性体片41に負荷電流によって
発生する磁束Φと電流Iとの関係を図示したものであ
る。また、図4bは、Ac商用電源と被検出体の負荷L
との関係を示すもので、このように接続すると、負荷変
動や負荷Lの状態が変化することで導体41に流れる電
流Iが被検出体である負荷Lの変動に従って変動する。
また、電流Iは負荷Lの大小に比例し、またこの電流に
よって電線の近傍に作られる磁束も負荷Lに流れる電流
Iに比例する。そこで、図4aに示したように負荷Lに
よって変化する電流の向きを仮定し、磁気バイアスマグ
ネットの極性N、Sを図のように仮定するれば、負荷電
流Iが増加したとき導体41aに生じる磁束φが増加
し、かつ、この磁束が磁気バイアスマグネットの磁束に
相加され磁気抵抗素子42aに印加される磁束も増加す
る。と同時に、当該磁気抵抗素子42aの抵抗値も増加
する。また、42bに対して電流Iによって作られる磁
束は、磁気バイアスマグネットの磁束と逆向きになり磁
気抵抗素子42bに加わる磁束は、減少し抵抗値も低下
する。また、電流の向きが図と逆の方向になると、この
電流で作られる磁束は、図4aに示す磁束の向きと逆向
きになり、磁気バイアスマグネットの磁束が導体41に
流れる電流によって生じる磁束と相殺され減少するの
で、磁気抵抗素子41aの抵抗値は低下する。さらに、
導体41を中心にしてその周囲に生じる磁束Φは、右ネ
ジの法則に従って素子を取り付ける部位では矢印で示す
ように、それぞれの素子面に対して逆向きとなる。
FIGS. 4A and 4B are schematic diagrams for explaining the basic operation principle for assisting the understanding of the current detecting device according to the present invention. FIG. 4A shows the magnetic flux generated by the load current in the nonmagnetic piece 41. 3 illustrates the relationship between Φ and the current I. FIG. 4B shows the relationship between the Ac commercial power supply and the load L of the detected object.
In such a connection, the current I flowing through the conductor 41 fluctuates according to the fluctuation of the load L, which is the object to be detected, due to the load fluctuation and the change in the state of the load L.
The current I is proportional to the magnitude of the load L, and the magnetic flux generated near the electric wire by this current is also proportional to the current I flowing through the load L. Therefore, assuming the direction of the current that changes depending on the load L as shown in FIG. 4A and assuming the polarities N and S of the magnetic bias magnet as shown in FIG. 4A, when the load current I increases, the conductor 41a is generated. The magnetic flux φ increases, and this magnetic flux is added to the magnetic flux of the magnetic bias magnet, and the magnetic flux applied to the magnetoresistive element 42a also increases. At the same time, the resistance value of the magnetoresistive element 42a also increases. Further, the magnetic flux generated by the current I with respect to 42b is opposite to the magnetic flux of the magnetic bias magnet, the magnetic flux applied to the magnetoresistive element 42b decreases, and the resistance value also decreases. When the direction of the current is opposite to the direction shown in the figure, the magnetic flux generated by this current becomes opposite to the direction of the magnetic flux shown in FIG. Since they are offset and decreased, the resistance value of the magnetoresistive element 41a decreases. further,
The magnetic flux Φ generated around the conductor 41 is opposite to the surface of each element as shown by an arrow at a portion where the element is mounted according to the right-hand rule.

【006】さらに、2個の磁気抵抗素子42a,bは、
図5に52a、bと示すように直流電源Vin(DC)
とそれぞれの素子も直列に接続し、分圧回路を構成する
ことによって両素子51a,bの抵抗変化を中性点VN
から電圧変化として出力することで温度特性の改善と出
力電圧の増加を計る。また、両磁気抵抗素子52aと5
2bに同一磁極の磁気バイアスを加え、すでに述べたよ
うに、電流Iによって作られる磁束φに対しては図4中
に矢印示すように2素子の関係が逆極になるように配置
するが、良好な逆極の関係を得るように導体の構造や補
助磁気回路を付与すると共に、素子を設置する端面を適
宜選定する。
Further, the two magnetoresistive elements 42a and 42b are
As shown by 52a and 52b in FIG. 5, a DC power source Vin (DC)
And the respective elements are also connected in series to form a voltage dividing circuit, so that the resistance change of the two elements 51a and 51b can be changed to the neutral point VN.
Output as a voltage change to improve temperature characteristics and increase output voltage. In addition, the two magnetoresistive elements 52a and 52
A magnetic bias of the same magnetic pole is applied to 2b, and as described above, the magnetic flux φ generated by the current I is arranged such that the relationship between the two elements is opposite as shown by the arrow in FIG. A conductor structure and an auxiliary magnetic circuit are provided so as to obtain a good reverse polarity relationship, and an end face on which the element is installed is appropriately selected.

【007】007

【実施例1】以下図面に従って本発明の実施例について
詳述する。図6は本発明に依る電流検出センサ装置の第
1の実施例を示すもので、図中61は、銅、アルミ、
錫、亜鉛などの単一または混合物からなる一連の電気的
良導体で、かつ、非磁性体金属で構成された導体部であ
る。また、当該導体部61には、磁気抵抗素子62a,
bと磁気バイアスマグネット60を挿入するための穿孔
69を施した。本願に依る1実施例では、当該穿孔部6
9には、磁気抵抗素子62a,bと磁気バイアスマグネ
ットと導体部66との電気的絶縁を得るため、ナイロ
ン、ポリエステル、ポリカ−ボネイト、ポリエチレンか
らなる一連の絶縁物と呼ばれる絶縁層64をマグネット
周辺に抱着した。また、磁気抵抗素子の磁気バイアス手
段としては、コイルや自己バイアス法も考えられるが、
例えば、もっとも簡便な磁気バイアス手段として図示し
たような円形マグネットを用いる時の絶縁物は、熱収縮
チュ−ブを用いるのが好ましい。さらに、導体部66の
裏面全面やその一部には、図示したようにパ−マロイ、
鉄板、珪素綱板、フェライトなどの中から適宜選定した
軟磁性体層67を構成し、補助磁気回路を構成すると共
に、導体層に生じる磁界が磁気抵抗素子に直角に進入す
るように機能させる形状を作る。磁気抵抗素子設置位置
は、導体部表面と同じ位置か突出しても良く、また、導
体部の形状の如何で表面からわずか下がった位置に設置
することもある。いずれにしても、両素子にほぼ均等な
磁界が加わるように最適設置位置に当該素子を配置し固
着する。
Embodiment 1 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 6 shows a first embodiment of a current detection sensor device according to the present invention. In the drawing, reference numeral 61 denotes copper, aluminum,
A series of electrically good conductors made of a single or a mixture of tin, zinc, etc., and a conductor portion made of a non-magnetic metal. In addition, the conductor portion 61 includes a magnetoresistive element 62a,
B and a perforation 69 for inserting the magnetic bias magnet 60 were made. In one embodiment according to the present application, the perforated portion 6
In order to obtain electrical insulation between the magnetoresistive elements 62a and b, the magnetic bias magnet and the conductor 66, an insulating layer 64 made of a series of insulators made of nylon, polyester, polycarbonate and polyethylene is provided around the magnet. Hugged. Also, as a magnetic bias means of the magnetoresistive element, a coil or a self-bias method can be considered.
For example, it is preferable to use a heat-shrinkable tube as an insulator when using a circular magnet as shown as the simplest magnetic bias means. Further, permalloy, as shown in FIG.
A soft magnetic material layer 67 appropriately selected from iron plate, silicon steel plate, ferrite, etc., forms an auxiliary magnetic circuit, and functions to allow a magnetic field generated in the conductor layer to enter the magnetoresistive element at right angles. make. The magnetoresistive element may be installed at the same position as the surface of the conductor, or may be located slightly below the surface depending on the shape of the conductor. In any case, the element is arranged and fixed at an optimal installation position so that a substantially uniform magnetic field is applied to both elements.

【008】図7は、穿孔部の詳細拡大断面図を示すもの
である。図中71は、銅、アルミ、錫、亜鉛などの単一
または混合物からなる一連の良導体非磁性体金属金属で
構成した導体部で、当該導体部には、磁気抵抗素子と磁
気バイアスマグネットを挿入するための穿孔79が施さ
れている。しかしながら、軟質磁性体層77の穿孔部7
9’は完全に穿孔させても良く、或いは図示したように
凹部を構成しても良い。さらに、図示したように導体部
71の一部分のみに配置したり、素子面に適合するよう
に小さな穿孔を設けることもあるし、さらに、素子の面
積に対応した寸法であたりなどするが、何れにしても、
軟磁性体層77の形状の選定は、負荷Lの電流容量を満
足する導体部の寸法や形状に対応して適宜決定する。さ
らに、2素子の磁気抵抗素子71a,bは、72a’,
72b’と図示したように軟質磁性層77の対面に近接
して配置しても良い。また、当該素子の配置位置は、機
械加工精度と、導体部の層の厚みと導体部に流れる電流
容量に依存し、これら相互の条件によって決定する導体
部71の寸法と形状による。すでに前述したように、当
該穿孔79には、磁気抵抗素子と磁気バイアスマグネッ
トと導体部との電気的絶縁を得るためナイロン、ポリエ
ステル、ポリカ−ボネイト、ポリエチレンなどの一連の
絶縁物と呼ばれるもの中から選定された絶縁層74を導
体部71と磁気バイアスマグネット70間の絶縁を確保
するために、絶縁物を抱着していることをここで改めて
述べるまでもない。
FIG. 7 is a detailed enlarged sectional view of the perforated portion. In the figure, reference numeral 71 denotes a conductor portion composed of a series of good conductor nonmagnetic metal metals made of a single material or a mixture of copper, aluminum, tin, zinc, etc., into which a magnetoresistive element and a magnetic bias magnet are inserted. Perforations 79 are provided. However, the perforated portion 7 of the soft magnetic layer 77
9 'may be completely perforated or may define a recess as shown. Further, as shown in the figure, the conductor may be disposed only on a part of the conductor portion 71, or a small perforation may be provided so as to fit the element surface. Even
The shape of the soft magnetic layer 77 is appropriately determined according to the size and shape of the conductor that satisfies the current capacity of the load L. Further, the two magneto-resistive elements 71a, b include 72a ',
As shown in the figure, the soft magnetic layer 77 may be disposed in the vicinity of the opposite surface of the soft magnetic layer 77. Further, the arrangement position of the element depends on the machining accuracy, the thickness of the conductor layer and the current capacity flowing through the conductor, and depends on the size and shape of the conductor 71 determined by these mutual conditions. As already described above, the perforations 79 are formed from a series of insulators such as nylon, polyester, polycarbonate, and polyethylene in order to obtain electrical insulation between the magnetoresistive element, the magnetic bias magnet, and the conductor. It is needless to mention here again that the selected insulating layer 74 holds an insulator in order to ensure insulation between the conductor portion 71 and the magnetic bias magnet 70.

【009】[0099]

【実施例2】図8はは本発明による第2の実施例を示す
もので 図中81は、銅、アルミ、錫、亜鉛などの単一
または混合物からなる一連の良導体非磁性体金属金属で
構成された導体部で、当該導体部両側面には、磁気抵抗
素子82a,bを独立して配置すると共に、独立した各
磁気抵抗素子に対応した磁気バイアスマグネット80を
挿入するための欠切部89a,bがが両側面に作られて
いる。当該欠切部89a,bには、2個の磁気抵抗素子
82a、bと磁気バイアスマグネットと導体部81との
電気的絶縁を得るため、ナイロン、ポリエステル、ポリ
カ−ボネイト、ポリエチレン、雲母などの一連の絶縁物
と呼ばれるものからなる絶縁層84が、少なくともそれ
ぞれのマグネットの3辺に抱着されている。さらに、導
体部81の裏面全面や一部にはすでに実施例1で述べた
と同様に、パ−マロイ、鉄板、珪素綱板、フェライトな
どの中から適宜選定した磁性体層87を構成し、補助磁
気回路を構成すると共に、導体部に生じる磁界が磁気抵
抗素子に直角に進入せしめるような形状をすでに図3と
図7で述べた思想に基づき構成する。なお、85はプリ
ント基板、87は取り付け穴を示し、88は86の導体
部と87の軟磁性体層を結合するための取り付けネジを
示すが、ロ−づけなどの周知な接合技術によって一体構
造とすることもある。また、磁気抵抗素子設置位置は、
導体層表面と同じ位置か突出しても良く、また、導体層
の形状の如何で表面からわずか下がった位置に設置する
こともある。いずれにしても、両素子にほぼ均等な磁界
が加わるように設置位置関係を配慮して固着する。
Embodiment 2 FIG. 8 shows a second embodiment according to the present invention. In the figure, reference numeral 81 denotes a series of nonconductive magnetic metals composed of a single conductor or a mixture of copper, aluminum, tin, zinc and the like. In the configured conductor portion, on both side surfaces of the conductor portion, notch portions for independently disposing the magnetoresistive elements 82a and 82b and inserting the magnetic bias magnets 80 corresponding to the respective independent magnetoresistive elements. 89a and 89b are formed on both sides. In order to obtain electrical insulation between the two magnetoresistive elements 82a, b, the magnetic bias magnet and the conductor 81, a series of nylon, polyester, polycarbonate, polyethylene, mica, etc. An insulating layer 84 made of what is called an insulator is held on at least three sides of each magnet. Further, a magnetic layer 87 appropriately selected from permalloy, iron plate, silicon steel plate, ferrite, or the like is formed on the entire back surface or a part of the conductor portion 81 in the same manner as described in the first embodiment. In addition to forming the magnetic circuit, a shape that allows the magnetic field generated in the conductor to enter the magnetoresistive element at a right angle is configured based on the concept already described with reference to FIGS. Reference numeral 85 indicates a printed circuit board, 87 indicates a mounting hole, and 88 indicates a mounting screw for connecting the conductor portion of 86 and the soft magnetic layer of 87. The integrated structure is formed by a known bonding technique such as brazing. Sometimes it is. In addition, the installation position of the magnetoresistive element
It may protrude at the same position as the surface of the conductor layer, or may be provided at a position slightly lower than the surface depending on the shape of the conductor layer. In any case, the elements are fixed in consideration of the installation positional relationship so that a substantially uniform magnetic field is applied to both elements.

【010】以上詳述した実施例1、2の数多くある使用
形態の一部として、家庭内のフュ−ズボックス内の板フ
ュ−ズと置換し得る。このような利用形態を考慮した電
流検出センサ装置の形状寸法は、実施例1、2ともに導
体層の厚み1mm,幅10mm,長さ55mm、取り付
け穴寸法45mm、磁気バイアスマグネット寸法は、実
施例1に対応して直径4mm、実施例2に対応して、長
さ6、幅が3mm,厚み2mmの角形、いずれも稀土類
マグネットである。また磁性体層の厚みは、厚み1mm
の軟鉄版を用いる。得られた出力電圧は、商用電源10
0Vで負荷電流1アンペアに対して約3mmボルトでダ
イナミックレンジも広く直線性の良い出力電圧が得られ
た。
As a part of the many uses of the first and second embodiments described above, a plate fuse in a fuse box at home can be replaced. The shape and dimensions of the current detection sensor device in consideration of such a use form are as follows. 4 mm, corresponding to Example 2, a length of 6, a width of 3 mm, and a thickness of 2 mm, each of which is a rare earth magnet. The thickness of the magnetic layer is 1 mm thick.
Use a soft iron plate. The obtained output voltage is
At 0 V, an output voltage with a wide dynamic range and good linearity was obtained at about 3 mm volts with respect to a load current of 1 amp.

【011】当該電流検出センサで得られた出力電圧は、
紙幣識別用センサに比べ3から4倍の信号レベルとなる
が、実用回路では、この信号を図9の増幅回路を用いて
増幅する。 図9中92は磁気抵抗素子
で、すでに詳述したように構成されている。99は、演
算増幅器、さらにRecは整流回路、Vinは入力電圧
のそれぞれを示す。まず、図に於いて、磁気抵抗素子に
商用電源の負荷Lに相当した交番磁界が印加され2個の
磁気抵抗素子の抵抗値が交番的に変化し、得られる電圧
信号も交番的に変化するものとなるが、当該信号にはV
inの直流電圧が重畳したものであるから、重畳直流信
号を除くために第一段の増幅器をコンデンサ結合増幅器
として交流増幅する。しかし、ここで図示した増幅回路
の1例は、商用電源の電流値計測を目的としているの
で、検出する周波数が50ないし60Hzと低く、この
ような場合には、第一段の交流増幅回路の結合コンデン
サ、第2段の結合コンデンサを図示したように直列接続
するとともに、コンデンサの極性を逆接続してコンデン
サのリ−ク電流を阻止する。第一段で交流増幅後、商用
電源周波数と同意一な周期を持った信号を整流回路で整
流し直流信号として第2段直流信号増幅回路に導き増幅
し、図示してない表示器で出力信号を表示し、電流レベ
ルを知る。当該回路は、電流検出を目的とした場合の事
例であるが、比較的小さなトランジェント電流の検出が
可能ではある。がしかし、複雑なトランジェント電流の
検出など、検出目的によって、当該センサに周知なAD
変換器を付加したり、FFT(高速フエリエ変換)回路
などの処理回路を付加するなどしてこのセンサの機能が
有効に利用できる。さらに、商用電源での早いトランジ
ェント電流の検出を目的とするものでは、商用電源の5
0ないし60Hzの周波数を用い、センサ装置の出力波
と同期検波するなどの方法で瞬時に変化する負荷変動を
忠実に検出できる。ここでは、各種用途に適合する回路
をすべてに亘り述べるいとまはないが、当然、商用電源
電流の検出に留まることなく、非常に高い周波のトラン
ジェント検出や、電流検出にも当該電流検出センサ装置
を用いることができるため、その周辺回路は、目的にあ
った回路形式を採用すべきであり、本願の主旨を図9に
限定する意図は全くない。更に、以上半導体磁気抵抗素
子を中心として動作、構造を詳述したが、この考え方の
原理原則は、磁性薄膜磁気抵抗素子や最近注目されてい
る巨大磁気抵抗素子(GMR)にも容易に適用できるこ
とはその言を待たない。
The output voltage obtained by the current detection sensor is:
Although the signal level becomes three to four times as high as that of the bill discrimination sensor, in a practical circuit, this signal is amplified using the amplifier circuit shown in FIG. In FIG. 9, reference numeral 92 denotes a magnetoresistive element, which is configured as described above in detail. 99 indicates an operational amplifier, Rec indicates a rectifier circuit, and Vin indicates an input voltage. First, in the figure, an alternating magnetic field corresponding to the load L of the commercial power supply is applied to the magnetoresistive element, whereby the resistance values of the two magnetoresistive elements change alternately, and the resulting voltage signal also changes alternately. The signal is V
Since the in DC voltage is superimposed, the first-stage amplifier is AC-amplified as a capacitor-coupled amplifier to remove the superimposed DC signal. However, since the example of the amplifier circuit shown here is intended for measuring the current value of the commercial power supply, the frequency to be detected is as low as 50 to 60 Hz. In such a case, the first-stage AC amplifier circuit is not used. A coupling capacitor and a second-stage coupling capacitor are connected in series as shown, and the polarity of the capacitor is reversed to prevent leakage current of the capacitor. After AC amplification in the first stage, a signal having a period that is the same as the commercial power frequency is rectified by a rectifier circuit, guided to the second stage DC signal amplifier circuit as a DC signal, amplified, and output by a display (not shown). Is displayed to know the current level. Although this circuit is an example for the purpose of current detection, it can detect a relatively small transient current. However, depending on the purpose of detection, such as detection of complicated transient currents, the well-known AD
By adding a converter or a processing circuit such as an FFT (high-speed Fourier transform) circuit, the function of this sensor can be used effectively. Further, for the purpose of detecting a fast transient current in a commercial power supply, the 5
Using a frequency of 0 to 60 Hz, a load fluctuation that changes instantaneously can be faithfully detected by a method such as synchronous detection with the output wave of the sensor device. Here, it is not necessary to describe all circuits suitable for various applications, but naturally, not only detection of commercial power supply current, but also transient detection of very high frequency and current detection sensor device for current detection Therefore, the peripheral circuit should adopt a circuit form suitable for the purpose, and there is no intention to limit the gist of the present application to FIG. Furthermore, the operation and structure of the semiconductor magnetoresistive element have been described in detail above, but the principle of this concept can be easily applied to a magnetic thin film magnetoresistive element and a giant magnetoresistive element (GMR) that has recently attracted attention. Does not wait for that statement.

【012】[0122]

【発明の効果】以上詳述したように、本発明では、負荷
電流によって作られる微少磁界変化を磁気抵抗素子で検
出することで100KHz以上の周波数特性を持ち商用
電源の早いトランジェント電流の検出や高周波電流の検
出ができる、雑音のレベルが低く、かつ、安価で加工容
易な家庭用ヒュ−ズボックスなどに組み込みができるな
ど、小型で高性能なセンサが得られる効果を持つ電流検
出センサ装置を提供するものである。
As described in detail above, according to the present invention, a small magnetic field change generated by a load current is detected by a magnetoresistive element to detect a fast transient current of a commercial power supply having a frequency characteristic of 100 KHz or more, and a high frequency Provide a current detection sensor device that has the effect of obtaining a small, high-performance sensor, such as being capable of detecting a current, having a low noise level, and being capable of being incorporated in an inexpensive and easy-to-process household fuse box. Is what you do.

【図面の簡単な説明】[Brief description of the drawings]

図1は、カ−レントトランスの説明図 図2は、ホ−ル素子を用いた電流検出器 図3は、発明者がすでに提案した電流検出器の平面図 図4a、 図4bは、電流検出装置の動作説明模式図 図5は、磁気抵抗素子の分圧回路構成図 図6は、本発明による電流検出センサの実施例1の正
面、側面図 図7は、本発明による電流検出センサの穿孔部の詳細拡
大断面図 図8は、本発明による電流検出センサの実施例2の正
面、側面図 図9は、増幅回路の構成図
1 is an explanatory view of a current transformer. FIG. 2 is a current detector using a Hall element. FIG. 3 is a plan view of a current detector already proposed by the inventor. FIG. 5 is a schematic diagram of a voltage dividing circuit of a magnetoresistive element. FIG. 6 is a front and side view of a current detection sensor according to a first embodiment of the present invention. FIG. FIG. 8 is a front and side view of a current detection sensor according to a second embodiment of the present invention. FIG. 9 is a configuration diagram of an amplifier circuit.

【符号の説明】[Explanation of symbols]

40、60、70は磁気バイアスマグネット 31、41、61、71、81導体層 32、42a、b,52a、b,62a、b,82a、
bは磁気抵抗素子 69、79、94、89、は穿孔部または欠切部 67、77、87は磁性体層 Voutは出力電圧 Vinは入力電圧 Lは負荷 VACは交流電圧電源 DCは直流電圧電源 Φは磁束 VNは中性点 MRは磁気センサ
40, 60, 70 are magnetic bias magnets 31, 41, 61, 71, 81 conductor layers 32, 42a, b, 52a, b, 62a, b, 82a,
b is a magnetoresistive element 69, 79, 94, 89 is a perforated or notched portion 67, 77, 87 is a magnetic layer Vout is an output voltage Vin is an input voltage L is a load VAC is an AC voltage power supply DC is a DC voltage power supply Φ is magnetic flux VN is neutral point MR is magnetic sensor

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】磁気バイアスした磁気抵抗素子を用いて構
成する電流検出センサに於いて、被検出体の電流通路を
なす電気的良導体で、かつ、非磁性体金属で構成した導
体部に少なくても一カ所以上の欠切部を構成し、当該欠
切部には、磁気抵抗素子と磁気バイアス手段を挿入固着
することで、前記導体部に流れる負荷電流によって生じ
る磁界を、磁気抵抗素子で検出することを特徴とした電
流検出センサ装置。
In a current detection sensor formed by using a magnetically biased magnetoresistive element, at least a good electric conductor forming a current path of an object to be detected and a conductor portion formed of a nonmagnetic metal are used. The magnetic field generated by the load current flowing in the conductor is detected by the magnetoresistive element by inserting and fixing the magnetoresistive element and the magnetic bias means in the notch. A current detection sensor device characterized in that:
【請求項2】磁気バイアスした磁気抵抗素子を用いて構
成する電流検出センサに於いて、被検出体の電流通路を
なす電気的良導体で、かつ、非磁性体金属で構成した導
体部の少なくても一カ所以上に穿孔部を構成し、当該穿
孔部には、磁気抵抗素子と磁気バイアス手段を挿入固着
することで、前記導体部に流れる負荷電流によって生じ
る磁界を磁気抵抗素子で検出することを特徴とした電流
検出センサ装置。
2. A current detecting sensor using a magnetically biased magnetoresistive element, wherein at least a conductive portion made of a nonmagnetic metal is an electrically good conductor forming a current path of an object to be detected. Also, a perforated portion is formed at one or more places, and a magnetic field generated by a load current flowing through the conductor portion is detected by the magnetoresistive element by inserting and fixing a magnetoresistive element and a magnetic bias means in the perforated portion. Characterized current detection sensor device.
【請求項3】電気的導体部の裏面全面或いは一部に軟磁
性体層で補助磁気回路を構成したことを特徴とした請求
範囲1項記載の電流検出センサ装置。
3. The current detection sensor device according to claim 1, wherein an auxiliary magnetic circuit is constituted by a soft magnetic layer on the entire back surface or a part of the electric conductor portion.
【請求項4】電気的導体部の裏面全面或いは一部に軟磁
性体層で補助磁気回路を構成したことを特徴とした請求
範囲2項記載の電流検出センサ装置。
4. The current detection sensor device according to claim 2, wherein an auxiliary magnetic circuit is formed by a soft magnetic layer on the entire back surface or a part of the electric conductor portion.
JP8201236A 1996-07-11 1996-07-11 Current detecting sensor Pending JPH1026638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8201236A JPH1026638A (en) 1996-07-11 1996-07-11 Current detecting sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8201236A JPH1026638A (en) 1996-07-11 1996-07-11 Current detecting sensor

Publications (1)

Publication Number Publication Date
JPH1026638A true JPH1026638A (en) 1998-01-27

Family

ID=16437603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8201236A Pending JPH1026638A (en) 1996-07-11 1996-07-11 Current detecting sensor

Country Status (1)

Country Link
JP (1) JPH1026638A (en)

Similar Documents

Publication Publication Date Title
US4385273A (en) Transducer for measuring a current-generated magnetic field
JP4515905B2 (en) Magnetic bridge type current sensor, magnetic bridge type current detection method, and magnetic bridge used in the sensor and detection method
US6989666B2 (en) Current sensor and current detection unit using the same
JP2001013231A (en) Magnetic sensor formed on semiconductor substrate
JP2002131342A (en) Current sensor
JPWO2014181382A1 (en) Magnetic current sensor and current measuring method
JP2003004831A (en) Orthogonal flux gate type magnetic sensor
JP4853807B2 (en) Current sensing device
JPH1026639A (en) Current sensor and electric device housing current sensor
JPS58106462A (en) Rotation detector
CN112213679B (en) Magnetic-sensing current transformer estimation method based on position information
JP3764834B2 (en) Current sensor and current detection device
US4963818A (en) Current sensor having an element made of amorphous magnetic metal
JP2013171013A (en) Current sensor
US5541503A (en) Alternating current sensor based on concentric-pipe geometry and having a transformer for providing separate self-powering
JPH1026638A (en) Current detecting sensor
JPH09210610A (en) High-frequency excitation differential transformer for preventing influence of external magnetism and metal, etc.
EP3851864B1 (en) Magnetic sensor and current sensor
JP2001336906A (en) Electromagnetic induction type displacement detecting device
JP5006511B2 (en) Current sensor and current detection unit using the same
JP3093529B2 (en) DC current sensor
JPH0763833A (en) Superconductor-loop type magnetic-field measuring apparatus
JP2014013151A (en) Current sensor
JP2514338B2 (en) Current detector
JP3970401B2 (en) Current detector