JPH10265935A - Ultra-high vacuum vessel and ultra-high vacuum parts - Google Patents

Ultra-high vacuum vessel and ultra-high vacuum parts

Info

Publication number
JPH10265935A
JPH10265935A JP7584397A JP7584397A JPH10265935A JP H10265935 A JPH10265935 A JP H10265935A JP 7584397 A JP7584397 A JP 7584397A JP 7584397 A JP7584397 A JP 7584397A JP H10265935 A JPH10265935 A JP H10265935A
Authority
JP
Japan
Prior art keywords
titanium
ultra
vacuum
high vacuum
oxide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7584397A
Other languages
Japanese (ja)
Inventor
Michio Minato
道夫 湊
Yoshio Ito
好男 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vacuum Metallurgical Co Ltd
Original Assignee
Vacuum Metallurgical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vacuum Metallurgical Co Ltd filed Critical Vacuum Metallurgical Co Ltd
Priority to JP7584397A priority Critical patent/JPH10265935A/en
Publication of JPH10265935A publication Critical patent/JPH10265935A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To attain an ultra-high vacuum in a short time from the atm. pressure and the repetitively open the state to the atm. by forming thin oxidized layers of titanium and more particularly the oxidized layers having a dense crystalline structure on the surfaces to be exposed to vacuum of a ultra-high vacuum vessel and ultra-high vacuum parts made of the titanium or titanium alloy. SOLUTION: The ultra-high vacuum vessel and ultra-high vacuum parts to be used under about 10<-8> Pa are made of the titanium the titanium alloy contg. or aluminum, vanadium, etc., and further the thin oxidized layers of the titanium are formed on their surfaces to be exposed to the vacuum. the oxidized layers of the titanium preferably have the dense crystalline structure and the thickness thereof are preferably 10 to 60 nm above the thickness of the natural oxidized layers of several nm. The oxidized layers of the titanium are formable by heat treating the vessel and parts made of, for example, the titanium etc., to about 450 deg.C in an oxygen atmosphere after pickling.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、チタン又はチタン
合金製の超高真空容器及び超高真空部品、特にベーキン
グを必要とする該超高真空容器や、200℃以上の高温
真空中で使用するような該超高真空容器及び超高真空部
品に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrahigh-vacuum container and an ultrahigh-vacuum part made of titanium or a titanium alloy, particularly to an ultrahigh-vacuum container requiring baking, and a high-temperature vacuum of 200 ° C. or more. Such ultra-high vacuum container and ultra-high vacuum component.

【0002】[0002]

【従来の技術】従来、超高真空容器は、ステンレス鋼や
アルミニウム合金で製作されてきた。また、超高真空部
品も特殊耐熱金属等を除けば、一般にステンレス鋼で製
作されている。
2. Description of the Related Art Conventionally, ultrahigh vacuum vessels have been made of stainless steel or aluminum alloy. Ultra-high vacuum components are also generally made of stainless steel except for special heat-resistant metals.

【0003】[0003]

【発明が解決しようとする課題】一般に、一旦大気にさ
らした真空容器の排気過程は、(1)容積に依存して指
数関数的に圧力が減少する過程、(2)大気解放中に吸
着した水をはじめとするガス種が脱離し、圧力が決定さ
れる過程、(3)真空容器や真空部品材料の内部から拡
散し、表面に到達して真空中に解放されて放出されるガ
スが圧力を決定する過程、(4)最後に大気から透過す
るガスが圧力を決定する過程の4過程を経るといわれて
いる(図1)。初期の指数関数的に圧力が減少する過程
は通常の数10リットルから100リットル程度の真空
容器では数分と短いので、これらの真空容器をより早く
10-8Pa以下の超高真空に到達させるためには、
(2)と(3)の過程を短時間にすることが重要であ
る。すなわち、表面に吸着したガス種を早く脱離させ、
かつ、拡散により材料内部から放出されるガスを減らす
必要がある。
In general, the evacuation process of a vacuum vessel once exposed to the atmosphere includes (1) a process in which the pressure decreases exponentially depending on the volume, and (2) adsorption during release to the atmosphere. The process in which water and other gas species are desorbed and the pressure is determined. (3) The gas released from the inside of a vacuum vessel or vacuum component material, reaching the surface and being released into vacuum is released under pressure. (4) Finally, it is said that the gas permeating from the atmosphere goes through four processes of determining the pressure (FIG. 1). Since the initial process of exponentially decreasing the pressure is as short as several minutes in a normal vacuum vessel of several tens of liters to about 100 liters, these vacuum vessels are quickly brought to an ultra-high vacuum of 10 -8 Pa or less. In order to
It is important to shorten the steps (2) and (3). That is, the gas species adsorbed on the surface is quickly desorbed,
In addition, it is necessary to reduce gas released from inside the material due to diffusion.

【0004】表面に吸着したガス種を脱離させるための
エネルギーを与えるには、通常、真空装置のベーキング
が行われ、これは材料の特性が損なわれない限り、高温
で行うことが望ましい。また、近年、スパッタリング等
で、高温で成膜すると生成される被膜の特性が向上する
という報告もあり、高温での真空処理が行われることが
多くなってきた。
[0004] In order to provide energy for desorbing the gas species adsorbed on the surface, baking of a vacuum apparatus is usually performed, and it is desirable to perform the baking at a high temperature unless the characteristics of the material are impaired. In recent years, there has been a report that the properties of a film formed by forming a film at a high temperature by sputtering or the like are improved, and a vacuum treatment at a high temperature is often performed.

【0005】そのための真空容器、真空部品の材料とし
て、アルミニウム合金は200℃以上で軟化するために
適していない。一方、ステンレス鋼は200℃以上の高
温でも、大丈夫であるが、本発明者の研究(M. Minato
及び Y. Itoh, Vacuum, Vol.47, No.6-8, pp.683-686
(1996) 参照)によれば、温度を上げると、一定の速度
で水素が放出され、しかもこの水素の放出はステンレス
鋼の温度が高ければ高いほど多くなることがわかってい
る。このため、ステンレス鋼製の真空容器や、ステンレ
ス鋼製の真空部品を内蔵する真空装置は、高温では圧力
がなかなか下がらず、超高真空領域に到達するのに20
0〜250℃で24時間以上の加熱ベーキングが必要と
されている。
[0005] As a material for vacuum containers and vacuum parts for that purpose, aluminum alloys are not suitable for softening at 200 ° C or higher. On the other hand, stainless steel can be used even at a high temperature of 200 ° C. or more, but the research by the present inventors (M. Minato
And Y. Itoh, Vacuum, Vol. 47, No. 6-8, pp. 683-686
(1996)) shows that increasing the temperature releases hydrogen at a constant rate, and that the higher the temperature of stainless steel, the greater the release of hydrogen. For this reason, a vacuum device made of a stainless steel vacuum container or a stainless steel vacuum component does not readily decrease in pressure at high temperatures and needs to reach an ultra-high vacuum region for 20 minutes.
Heat baking at 0 to 250 ° C. for 24 hours or more is required.

【0006】本発明者の前記研究によれば、温度を上げ
た状態では、チタンの場合、水素の放出速度はステンレ
ス鋼の場合に比べて低く、その比率は温度が高くなるに
つれて大きくなることがわかっている。例えば、250
℃に真空排気したときのステンレス鋼の場合、水素の放
出速度は、チタンの場合の水素の放出速度の12.2倍
である。従って、チタン製の真空容器、又は真空部品を
用いれば、拡散が律速する低い圧力領域では水素の放出
が低いため、圧力が早く下がることが期待できる。
According to the study by the present inventor, when the temperature is increased, the release rate of hydrogen is lower in the case of titanium than in the case of stainless steel, and the ratio increases as the temperature increases. know. For example, 250
For stainless steel when evacuated to ° C., the hydrogen release rate is 12.2 times the hydrogen release rate for titanium. Therefore, if a titanium vacuum container or a vacuum component is used, the pressure can be expected to decrease quickly because the hydrogen release is low in a low pressure region where diffusion is rate-determining.

【0007】現在市販のチタンを用いて構造物を製作す
るにあたり、その表面加工方法として、一般に、機械切
削加工、ガラスビーズブラスティング、酸による化学研
磨が適用されている。しかし、これらの手法によりチタ
ン製真空容器を製作しようとする際に、次のような問題
点がある。すなわち、これらの表面加工を行った容器の
内表面からのガス放出を調べたところ前記排気の過程
(3)に相当する水素の拡散・放出が支配的な排気後半
(ガス放出速度が2×10-6Pa・m/sより低い領
域)では、電解研磨により表面加工を行ったステンレス
鋼製の場合よりも低いガス放出速度を示したものの、前
記排気の過程(2)に相当する領域(ガス放出速度が2
×10-6Pa・m/s以上の領域)でのガス放出は電解
研磨を施したステンレス鋼製の場合と同等かあるいは高
い値を示した。トータルの排気時間を短くするために
は、真空容器及び真空部品の真空にさらされる表面を、
吸着ガスが脱離しやすい表面に改質する必要があること
がわかった。
In manufacturing a structure using commercially available titanium, mechanical cutting, glass bead blasting, and chemical polishing with an acid are generally applied as surface processing methods. However, there are the following problems when attempting to manufacture a titanium vacuum container by these methods. That is, when the gas release from the inner surface of the surface-treated container was examined, the latter half of the exhaust (gas release rate of 2 × 10 In the region (lower than −6 Pa · m / s), the gas release rate was lower than that in the case of stainless steel surface-treated by electrolytic polishing, but the region (gas) corresponding to the exhausting process (2) Release rate is 2
The gas release in the range of × 10 −6 Pa · m / s or more) was equal to or higher than that of stainless steel subjected to electrolytic polishing. In order to shorten the total evacuation time, the surfaces of the vacuum container and
It was found that it was necessary to modify the surface so that the adsorbed gas was easily desorbed.

【0008】そこで、本発明の目的は、かかる従来技術
の欠点を解消し、大気圧より短時間で超高真空状態を達
成することのできる超高真空容器及び超高真空部品を提
供することにある。
An object of the present invention is to provide an ultrahigh vacuum vessel and an ultrahigh vacuum component which can solve the above-mentioned drawbacks of the prior art and can achieve an ultrahigh vacuum state in a shorter time than atmospheric pressure. is there.

【0009】[0009]

【課題を解決するための手段】チタン表面に形成されて
いる自然酸化層の厚さは約数nmであるが、本発明者の
研究によれば、さらにその上にチタンの酸化層を形成す
ることにより、特に水に対して、加熱した真空中での脱
離が早い表面を実現できることがわかり、本発明を完成
させるに至った。本発明のチタン又はチタン合金製の超
高真空容器及び超高真空部品は、真空にさらされる表面
に薄いチタンの酸化層が形成されているものである。こ
のチタンの酸化層は緻密な結晶構造を有するものである
ことが望ましい。
The thickness of the natural oxide layer formed on the surface of titanium is about several nm. According to the research of the present inventors, a titanium oxide layer is further formed thereon. As a result, it has been found that a surface that can be quickly desorbed in a heated vacuum, particularly for water, can be realized, and the present invention has been completed. The ultrahigh-vacuum container and ultrahigh-vacuum part made of titanium or a titanium alloy of the present invention have a thin titanium oxide layer formed on the surface exposed to vacuum. The titanium oxide layer preferably has a dense crystal structure.

【0010】前記チタンの酸化層の厚さは10〜60n
mであることが望ましい。酸化層の厚さの下限値を10
nmとしたのは、チタンの自然酸化層の厚さ以上の新た
な酸化層が必要であるため、また、酸化処理によって制
御可能な厚さが10nm以上であるためである。また、
酸化層の厚さの上限値を60nmとしたのは、酸化層の
厚みが増すに従ってガス放出速度が増大することから、
自然酸化層だけが形成されている場合のガス放出速度よ
り低いガス放出速度を得ることができる酸化層の厚さと
するためである。この範囲内の厚さの酸化層を設けたも
のが、超高真空を大気圧より短時間で実現するために有
効である。
The thickness of the titanium oxide layer is 10 to 60 n.
m is desirable. Lower limit of oxide layer thickness is 10
The reason why the thickness is set to nm is that a new oxide layer having a thickness greater than the thickness of the natural oxide layer of titanium is required, and the thickness that can be controlled by the oxidation treatment is 10 nm or more. Also,
The reason for setting the upper limit of the thickness of the oxide layer to 60 nm is that the gas release rate increases as the thickness of the oxide layer increases,
This is because the thickness of the oxide layer is such that a gas release rate lower than that in the case where only the natural oxide layer is formed can be obtained. The provision of an oxide layer having a thickness within this range is effective for realizing ultra-high vacuum in a shorter time than atmospheric pressure.

【0011】[0011]

【実施例】以下、本発明の実施例を図面を参照して説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】(実施例1)純チタン(JIS第2種)の
100×80×2tの板5枚を1組として、酸洗処理後
自然酸化層を表面に持つ試料(CP)、及び酸洗処理後
酸素雰囲気中で加熱し(450℃)、その加熱時間を変
えることにより酸化層の厚さを変えた3種類の試料(S
1、S2及びS3)について、それぞれ、200℃で2
4時間加熱、24時間冷却でのガス放出速度をコンダク
タンス変調法を用いて測定し、加熱中のガス放出速度を
調べた。S1、S2及びS3の酸化層の厚さは、XPS
観察により、それぞれ、17.9nm、42.7nm及
び183.1nmであり、また、ガス放出速度は、C
P:8.06×10-8Pa・m/s、S1:2.7×1
-8Pa・m/s、S2:4.27×10-8Pa・m/
s、S3:1.33×10-7Pa・m/sであった。こ
れらの結果を図2に示す。
(Example 1) A sample (CP) having a naturally oxidized layer on its surface after pickling treatment using a set of five 100 × 80 × 2t plates of pure titanium (JIS type 2), and pickling After the treatment, the sample was heated in an oxygen atmosphere (450 ° C.), and the thickness of the oxide layer was changed by changing the heating time.
1, S2 and S3) at 200 ° C.
The gas release rate during heating for 4 hours and cooling for 24 hours was measured using the conductance modulation method, and the gas release rate during heating was examined. The oxide layers of S1, S2 and S3 have a thickness of XPS
According to observation, they were 17.9 nm, 42.7 nm and 183.1 nm, respectively, and the outgassing rate was C
P: 8.06 × 10 −8 Pa · m / s, S1: 2.7 × 1
0 −8 Pa · m / s, S2: 4.27 × 10 −8 Pa · m /
s, S3: 1.33 × 10 −7 Pa · m / s. These results are shown in FIG.

【0013】酸化層の厚さが増すに従い、加熱中のガス
放出速度が増大した。これは、酸化の進行によりチタン
の表面構造が粗くなって、吸着面積が大きくなり、吸着
ガスの脱離速度は速くても、その絶対量が増えるためで
ある。従って、チタンの酸化層の厚さを10〜60nm
にしたものが超高真空を短時間で実現するためには望ま
しい。 (実施例2)純チタン(JIS第2種)により、内径3
98mm、高さ417mmで内容積55リットルの真空
容器を製作した。この容器の全面を酸で洗浄した後、排
気実験を行った。この時の真空容器の内表面に形成され
ているのはチタンの自然酸化層である。ベーキング温度
は250℃であった。この場合の排気曲線は、図3中に
点線により示されている。この図から明らかなように、
大気より排気8時間後の圧力は6.52×10-8Paで
あった。
As the thickness of the oxide layer increased, the rate of outgassing during heating increased. This is because the surface structure of titanium is roughened by the progress of oxidation, the adsorption area is increased, and the absolute amount of the adsorbed gas is increased even if the desorption speed is high. Therefore, the thickness of the titanium oxide layer is set to 10 to 60 nm.
This is desirable for achieving ultra-high vacuum in a short time. (Example 2) Inner diameter 3 with pure titanium (JIS type 2)
A vacuum container having a volume of 98 liters, a height of 417 mm and an internal volume of 55 liters was manufactured. After washing the entire surface of the container with an acid, an evacuation experiment was performed. At this time, the natural oxide layer of titanium is formed on the inner surface of the vacuum vessel. The baking temperature was 250 ° C. The exhaust curve in this case is shown by a dotted line in FIG. As is clear from this figure,
The pressure 8 hours after evacuation from the atmosphere was 6.52 × 10 −8 Pa.

【0014】上記酸洗後の真空容器を8%酸素を含むア
ルゴン雰囲気中で加熱し(450℃、2時間)、その容
器の内表面に20nmの酸化層を形成し、上記と同じ排
気条件で真空排気した。形成された酸化層は緻密な結晶
構造を有していた。この時の排気曲線は図3中に実線に
より示されている。大気より排気8時間後の圧力は8.
8×10-9Paであり、自然酸化層だけが形成されてい
た場合と比べて一桁近く低い圧力が得ら、短時間で超高
真空に到達したことがわかる。
After the pickling, the vacuum vessel is heated in an argon atmosphere containing 8% oxygen (450 ° C., 2 hours) to form an oxide layer of 20 nm on the inner surface of the vessel, and under the same exhaust conditions as above. Evacuated. The formed oxide layer had a dense crystal structure. The exhaust curve at this time is shown by a solid line in FIG. The pressure 8 hours after exhaust from the atmosphere is 8.
The pressure was 8 × 10 −9 Pa, which was lower than that of the case where only the natural oxide layer was formed, by almost an order of magnitude, indicating that the ultrahigh vacuum was reached in a short time.

【0015】上記実施例では純チタンを用いたが、アル
ミニウムやバナジウムを含んだチタン合金(例えば、6
%のアルミニウムと4%のバナジウムとを含有するチタ
ン合金等)でも純チタンと同じく水素のガス放出は少な
いので、この材料で真空容器又は真空部品を製作し、そ
の真空にさらされる表面に薄いチタンの酸化層を形成す
れば、純チタンの場合と同じ結果が得られる。また、上
記実施例では、チタンの酸化層を得るのに、酸素雰囲気
中での高温加熱を行ったが、オゾン雰囲気中での加熱、
あるいはチタン表面の酸素イオン注入、プラズマ酸化等
により、真空にさらされる表面に酸化層を形成しても、
同じ結果が得られる。
Although pure titanium is used in the above embodiment, a titanium alloy containing aluminum or vanadium (for example, 6
% Aluminum and 4% vanadium, etc.), as in the case of pure titanium, hydrogen gas emission is low as in pure titanium. Therefore, a vacuum container or a vacuum component is manufactured using this material, and a thin titanium film is formed on the surface exposed to the vacuum. When the oxide layer is formed, the same result as in the case of pure titanium can be obtained. In the above embodiment, high-temperature heating in an oxygen atmosphere was performed to obtain an oxide layer of titanium.
Or even if an oxide layer is formed on the surface exposed to vacuum by oxygen ion implantation of titanium surface, plasma oxidation, etc.
The same result is obtained.

【0016】[0016]

【発明の効果】本発明の超高真空容器及び超高真空部品
によれば、大気圧より短時間で超高真空状態を達成する
ことができると共に、繰り返し大気に開放可能である。
According to the ultrahigh vacuum vessel and the ultrahigh vacuum component of the present invention, the ultrahigh vacuum state can be achieved in a shorter time than the atmospheric pressure, and the apparatus can be repeatedly opened to the atmosphere.

【図面の簡単な説明】[Brief description of the drawings]

【図1】大気にさらした通常の真空容器の排気時におけ
る律速過程を示す線図。
FIG. 1 is a diagram showing a rate-determining process during evacuation of a normal vacuum vessel exposed to the atmosphere.

【図2】チタンの酸化層の厚さと表面からのガス放出速
度との関係を示すグラフ。
FIG. 2 is a graph showing the relationship between the thickness of an oxide layer of titanium and the rate of gas release from the surface.

【図3】本発明の真空容器及びチタンの自然酸化層のみ
を有する真空容器の排気曲線を示すグラフ。
FIG. 3 is a graph showing an evacuation curve of the vacuum vessel of the present invention and a vacuum vessel having only a natural oxide layer of titanium.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 チタン又はチタン合金製の超高真空容器
及び超高真空部品であって、真空にさらされる表面に薄
いチタンの酸化層が形成されていることを特徴とする超
高真空容器及び超高真空部品。
An ultra-high vacuum vessel and an ultra-high vacuum component made of titanium or a titanium alloy, wherein a thin titanium oxide layer is formed on a surface exposed to a vacuum. Ultra high vacuum parts.
【請求項2】 前記チタンの酸化層が緻密な結晶構造を
有するものであることを特徴とする請求項1記載の超高
真空容器及び超高真空部品。
2. The ultra-high vacuum vessel and the ultra-high vacuum component according to claim 1, wherein the titanium oxide layer has a dense crystal structure.
【請求項3】 前記チタンの酸化層の厚さが10〜60
nmであることを特徴とする請求項1又は2記載の超高
真空容器及び超高真空部品。
3. The thickness of the titanium oxide layer is 10 to 60.
The ultrahigh vacuum vessel and the ultrahigh vacuum component according to claim 1 or 2, wherein the ultrahigh vacuum container and the ultrahigh vacuum component have a thickness of 1 nm.
JP7584397A 1997-03-27 1997-03-27 Ultra-high vacuum vessel and ultra-high vacuum parts Pending JPH10265935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7584397A JPH10265935A (en) 1997-03-27 1997-03-27 Ultra-high vacuum vessel and ultra-high vacuum parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7584397A JPH10265935A (en) 1997-03-27 1997-03-27 Ultra-high vacuum vessel and ultra-high vacuum parts

Publications (1)

Publication Number Publication Date
JPH10265935A true JPH10265935A (en) 1998-10-06

Family

ID=13587903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7584397A Pending JPH10265935A (en) 1997-03-27 1997-03-27 Ultra-high vacuum vessel and ultra-high vacuum parts

Country Status (1)

Country Link
JP (1) JPH10265935A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002083286A1 (en) * 2001-03-26 2002-10-24 Hiroki Kurisu Titanium alloy vacuum container and vacuum part
JP2006009038A (en) * 2003-06-10 2006-01-12 Shinku Jikkenshitsu:Kk Material for parts in vacuum apparatus, parts in vacuum apparatus, vacuum apparatus, method for manufacturing material for parts in vacuum apparatus, method for treating parts in vacuum apparatus, and treatment method in vacuum apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002083286A1 (en) * 2001-03-26 2002-10-24 Hiroki Kurisu Titanium alloy vacuum container and vacuum part
EP1374984A1 (en) * 2001-03-26 2004-01-02 Hiroki Kurisu Titanium alloy vacuum container and vacuum part
EP1374984A4 (en) * 2001-03-26 2004-10-27 Hiroki Kurisu Titanium alloy vacuum container and vacuum part
US6841265B2 (en) 2001-03-26 2005-01-11 Yamaguchi Technology Licensing Organization, Ltd. Titanium alloy vacuum and vacuum part
JP2006009038A (en) * 2003-06-10 2006-01-12 Shinku Jikkenshitsu:Kk Material for parts in vacuum apparatus, parts in vacuum apparatus, vacuum apparatus, method for manufacturing material for parts in vacuum apparatus, method for treating parts in vacuum apparatus, and treatment method in vacuum apparatus

Similar Documents

Publication Publication Date Title
FR2652288A1 (en) CONTROL OF OXYGEN CONTENT IN MATERIAL OF TANTALIUM.
JP3878417B2 (en) Method and getter device for use in thin layer deposition
JPS60211061A (en) Ion-nitrifying method of aluminum material
Ishikawa et al. Importance of the surface oxide layer in the reduction of outgassing from stainless steels
JP2009522104A (en) Improvements on thin film getter devices
WO1992017406A1 (en) Production method for oxide superconductor film
US4055686A (en) Method of forming metal hydride films
JPH10265935A (en) Ultra-high vacuum vessel and ultra-high vacuum parts
JP7446640B2 (en) Vacuum evacuation method
JPH0517877A (en) Method and apparatus for production of oxide thin film
CN113005406B (en) Preparation method of niobium-tin film
JPS6362862A (en) Ceramic coated ti and ti alloy product and its production
JPH0192354A (en) Aluminum composite material excellent in corrosion resistance and its production
JP4421180B2 (en) Surface treatment method and vacuum containers
CN112973617A (en) Ti film getter and preparation method thereof
TW202035746A (en) Joint body of target material and backing plate, and method for manufacturing joint body of target material and backing plate
JP3434857B2 (en) Ultra-vacuum material and manufacturing method thereof
CN112981366B (en) Preparation method of boron film in fusion device
JP4522569B2 (en) Heat treatment method
JPS6390138A (en) Method for cleaning semiconductor surface
JPH02303075A (en) Manufacture of thermoelectric element
JPH0579368B2 (en)
JPH0331451A (en) Stainless steel for ultrahigh vacuum apparatus
JPH0528943A (en) Vacuum device
JPH02119928A (en) Vacuum device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031226

A02 Decision of refusal

Effective date: 20040224

Free format text: JAPANESE INTERMEDIATE CODE: A02