JP3471077B2 - Vacuum vessel pressure control method - Google Patents

Vacuum vessel pressure control method

Info

Publication number
JP3471077B2
JP3471077B2 JP14557294A JP14557294A JP3471077B2 JP 3471077 B2 JP3471077 B2 JP 3471077B2 JP 14557294 A JP14557294 A JP 14557294A JP 14557294 A JP14557294 A JP 14557294A JP 3471077 B2 JP3471077 B2 JP 3471077B2
Authority
JP
Japan
Prior art keywords
pressure
vacuum container
gas
exhaust
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14557294A
Other languages
Japanese (ja)
Other versions
JPH07227534A (en
Inventor
謙治 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP14557294A priority Critical patent/JP3471077B2/en
Publication of JPH07227534A publication Critical patent/JPH07227534A/en
Application granted granted Critical
Publication of JP3471077B2 publication Critical patent/JP3471077B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、真空容器の圧力制御方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure control method for a vacuum container.

【0002】[0002]

【従来の技術】被処理体である例えば半導体ウエハの製
造においては、成膜、エッチング、イオン注入等の各種
の処理が行われるが、これらの処理は処理室、処理炉、
反応管等と称する真空容器内で行われている。
2. Description of the Related Art Various processes such as film formation, etching, ion implantation, etc. are carried out in the manufacture of an object to be processed, for example, a semiconductor wafer.
It is carried out in a vacuum container called a reaction tube or the like.

【0003】例えば、成膜処理の工程では、図10にタ
イムチャートで示すように熱処理装置の反応管内に被処
理体である半導体ウエハを大気圧(760Torr)下
で搬入した後、反応管内を所定の圧力例えば1×10-3
Torr程度まで減圧し、この減圧下で所要の処理ガス
を供給して半導体ウエハの表面にポリシリコン膜、シリ
コン窒化膜、シリコン酸化膜等の処理膜を成膜する処理
が行われる。そして、前記処理後は、反応管内に不活性
ガスである窒素(N2)ガスを供給して反応管内の圧力
を大気圧まで復帰させ、その反応管内から半導体ウエハ
を搬出する。
For example, in the film forming process step, as shown in the time chart of FIG. 10, a semiconductor wafer, which is an object to be processed, is loaded into a reaction tube of a heat treatment apparatus under atmospheric pressure (760 Torr), and then the inside of the reaction tube is predetermined. Pressure of eg 1 × 10 -3
A process of reducing the pressure to about Torr and supplying a required process gas under the reduced pressure to form a process film such as a polysilicon film, a silicon nitride film, or a silicon oxide film on the surface of the semiconductor wafer is performed. After the treatment, nitrogen (N 2 ) gas which is an inert gas is supplied into the reaction tube to return the pressure in the reaction tube to atmospheric pressure, and the semiconductor wafer is unloaded from the reaction tube.

【0004】前記半導体ウエハの成膜工程においては、
製造する半導体素子の微細化に伴いごみ(塵埃)の付着
(汚染)の少ないことが要求されており、熱処理装置の
反応管等は定期的に取り外して洗浄された綺麗な反応管
等と交換するようにしている。
In the film forming process of the semiconductor wafer,
Due to the miniaturization of manufactured semiconductor devices, it is required that less adhesion (contamination) of dust (dust) occurs, and the reaction tubes of the heat treatment equipment are regularly removed and replaced with clean cleaned reaction tubes. I am trying.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、たとえ
綺麗な反応管を用いたとしても、半導体ウエハの表面に
おけるごみの付着が確認されており、このため半導体ウ
エハ上に形成する半導体素子の歩留りが低下する問題が
あった。因みに、半導体ウエハの表面に付着した直径
0.2μm以上のごみの数をレーザー照射式ごみ検査装
置で計測した結果、6インチウエハ1枚当り100個以
上のごみの付着が確認されている。
However, even if a clean reaction tube is used, it has been confirmed that dust adheres to the surface of the semiconductor wafer, which lowers the yield of semiconductor elements formed on the semiconductor wafer. There was a problem to do. Incidentally, as a result of measuring the number of dust particles having a diameter of 0.2 μm or more attached to the surface of the semiconductor wafer with a laser irradiation type dust inspection device, it is confirmed that 100 or more dust particles are attached to each 6-inch wafer.

【0006】これは前述した真空容器である反応管内の
減圧工程及び常圧復帰工程での圧力制御方法に起因して
いるものと考えられる。例えば、従来の熱処理装置にお
ける減圧工程では、図2に曲線Cで示すように先ず排気
流量の小さい副排気系を動作させて反応管内の圧力を大
気圧から所定の圧力例えば10Torr程度までゆっく
りと減圧し、次に排気流量の大きい主排気系を動作させ
て目的の圧力例えば1×10-3Torrまで短時間で減
圧していた。また、常圧復帰工程では、図6に曲線Dで
示すように反応管内に窒素ガスを例えば1000cc/
分と大量に供給して反応容器内を短時間で常圧まで復帰
させていた。
It is considered that this is due to the pressure control method in the depressurizing process and the normal pressure restoring process in the reaction tube which is the vacuum container. For example, in the depressurizing step in the conventional heat treatment apparatus, as shown by the curve C in FIG. 2, first, the auxiliary exhaust system having a small exhaust flow rate is operated to slowly depressurize the pressure in the reaction tube from atmospheric pressure to a predetermined pressure, for example, about 10 Torr. Then, the main exhaust system having the larger exhaust flow rate was operated to reduce the pressure to the target pressure, for example, 1 × 10 −3 Torr in a short time. Further, in the normal pressure recovery step, as shown by the curve D in FIG. 6, nitrogen gas, for example, 1000 cc /
It was supplied in a large amount as much as a minute to return the inside of the reaction vessel to normal pressure in a short time.

【0007】従って、いずれの工程においても急激な圧
力変化を伴うため、図11の(a)〜(d)に示すよう
に断熱膨張により気体中(常圧復帰工程では窒素ガス
中)に含まれる水分mが反応管内の微細なごみ成分gを
核として水滴nとなり、この水滴nが半導体ウエハwの
表面に付着して、その後水分が蒸発することにより核と
なったごみ成分gだけがそのまま残ることによるものと
考えられる。また、成膜工程等で反応管の内壁等に付着
した反応生成物等が急激な圧力変化により反応管の内壁
等から剥離されて巻き上げられ、これがごみとなって反
応管内を浮遊して半導体ウエハの表面に付着することに
よるものと考えられる。
Therefore, since any of the steps is accompanied by a rapid pressure change, it is contained in the gas (in the nitrogen gas in the normal pressure restoring step) by adiabatic expansion as shown in FIGS. 11 (a) to 11 (d). The water content m becomes a water droplet n by using the fine dust component g in the reaction tube as a core, and the water droplet n adheres to the surface of the semiconductor wafer w, and the water content then evaporates, so that only the dust component g that is the core remains. It is thought to be due to. In addition, reaction products and the like attached to the inner wall of the reaction tube in the film forming process, etc. are peeled off from the inner wall of the reaction tube due to a sudden change in pressure and are wound up, which becomes dust and floats in the reaction tube and becomes a semiconductor wafer. It is thought that this is due to the adhesion to the surface of.

【0008】このような問題を解決するためには、急激
な圧力変化を起こさないように例えば常圧復帰工程では
図6に曲線Eで示すようにゆっくりと圧力を変化させれ
ばよいが、このような制御方法を採用すると、時間が多
くかかってしまうため、高価な熱処理装置の稼働率が低
下する問題がある。また、前記減圧工程では、高真空例
えば1×10-5Torr程度まで減圧する場合がある
が、この場合、反応管の内壁に吸着した水分等の吸着分
子の放出がなかなか行われず、吸着分子の放出ガスに起
因して減圧に多大な時間を要し、熱処理装置の稼働率が
低下する問題もある。
In order to solve such a problem, the pressure may be slowly changed as shown by a curve E in FIG. 6 in the normal pressure recovery step so as not to cause a sudden pressure change. If such a control method is adopted, it takes a lot of time, and there is a problem that the operating rate of an expensive heat treatment apparatus is lowered. In the depressurizing step, the pressure may be reduced to a high vacuum, for example, about 1 × 10 −5 Torr, but in this case, adsorbed molecules such as water adsorbed on the inner wall of the reaction tube are not easily released, and Due to the released gas, it takes a long time to reduce the pressure, and there is also a problem that the operating rate of the heat treatment apparatus is lowered.

【0009】そこで、本発明の目的は、減圧工程及び常
圧復帰工程における被処理体表面へのごみの付着を減少
させることができ、しかもこれらの工程に要する時間の
短縮が図れる真空容器の圧力制御方法を提供することに
ある。
Therefore, an object of the present invention is to reduce the adhesion of dust to the surface of the object to be treated in the depressurizing step and the normal pressure returning step, and further to reduce the time required for these steps. It is to provide a control method.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、請求項1記載の発明は、排気流量の大きい主排気系
と排気流量の小さい副排気系を備えた真空容器の圧力を
大気圧から所定の圧力まで減圧するに際して、前記副排
気系を動作させて前記真空容器内を減圧する副排気減圧
工程と、この副排気減圧工程後に前記主排気系を動作さ
せて前記真空容器内を減圧する主排気減圧工程とを備
え、少なくとも主排気減圧工程を前記真空容器内の気体
に含まれる水分の凝縮液化が生じない最大の減圧速度で
実行することを特徴とする。
In order to achieve the above object, the invention according to claim 1 sets the pressure of a vacuum container equipped with a main exhaust system having a large exhaust flow rate and an auxiliary exhaust system having a small exhaust flow rate to atmospheric pressure. To a predetermined pressure, the sub-exhaust system is operated to depressurize the inside of the vacuum container, and after the sub-exhaust depressurizing process, the main exhaust system is operated to depressurize the inside of the vacuum container. The main exhaust depressurization step is performed, and at least the main exhaust depressurization step is performed at a maximum depressurization speed at which condensation and liquefaction of water contained in the gas in the vacuum container does not occur.

【0011】請求項2記載の発明は、排気流量の大きい
主排気系と排気流量の小さい副排気系を備えた真空容器
の圧力を大気圧から所定の圧力まで減圧するに際して、
前記真空容器内の気体を水分の除去された不活性ガスに
より置換するガス置換工程と、このガス置換工程後に
記副排気系を動作させて前記真空容器内を減圧する副排
気減圧工程と、この副排気減圧工程後に前記主排気系を
動作させて前記真空容器内を減圧する主排気減圧工程と
を具備したことを特徴とする。
The invention according to claim 2 has a large exhaust flow rate.
When reducing the pressure of the vacuum container equipped with the main exhaust system and the auxiliary exhaust system with a small exhaust flow rate from atmospheric pressure to a predetermined pressure,
A gas replacement step of replacing the gas in the vacuum container with an inert gas from which water has been removed, and before the gas replacement step.
A secondary exhaust that operates the secondary exhaust system to reduce the pressure inside the vacuum container.
Air depressurization step, and the main exhaust system after the auxiliary exhaust depressurization step
A main exhaust depressurizing step of operating the vacuum container to depressurize the inside of the vacuum container .

【0012】請求項3記載の発明は、排気流量の大きい
主排気系と排気流量の小さい副排気系を備えた真空容器
の圧力を大気圧から所定の圧力まで減圧するに際して、
前記真空容器内に水分の除去された不活性ガスを供給し
状態で前記副排気系を動作させて前記真空容器内を
減圧する副排気減圧工程と、この副排気減圧工程後に前
記主排気系を動作させて前記真空容器内を減圧する主排
気減圧工程とを具備したことを特徴とする。
According to a third aspect of the present invention, when the pressure of the vacuum container provided with the main exhaust system having a large exhaust flow rate and the auxiliary exhaust system having a small exhaust flow rate is reduced from atmospheric pressure to a predetermined pressure,
The inert gas dewatered is supplied to the vacuum container.
In this state, the auxiliary exhaust system is operated to depressurize the inside of the vacuum container, and the main exhaust system is operated after this auxiliary exhaust depressurizing process to depressurize the inside of the vacuum container. And is provided .

【0013】請求項4記載の発明は、比較的大径の主排
気管と比較的小径の副排気管とを備えた真空容器の圧力
を大気圧から所定の圧力まで排気するに際して、前記真
空容器内を前記副排気管の弁開度を連続的に開いて排気
する第1の排気工程と、この第1の排気工程後に前記主
排気管の弁開度を連続的に開いて排気する第2の排気工
程とを具備したことを特徴とする。
[0013] The invention of claim 4, wherein, upon evacuating the pressure of the vacuum vessel and a relatively small diameter of the secondary exhaust pipe and a relatively large diameter of the main exhaust pipe from atmospheric pressure to a predetermined pressure, the vacuum chamber A first exhaust step of continuously opening the valve opening of the sub-exhaust pipe, and a second exhaust step of continuously opening the valve opening of the main exhaust pipe after the first exhaust step. And an exhaust step.

【0014】請求項5記載の発明は、真空容器の圧力を
所定の減圧状態から大気圧まで復帰させるに際して、前
記真空容器内を排気しながら同真空容器内に水分の除去
された気体を供給して所定の圧力まで復帰させる初期圧
力復帰工程と、この初期圧力復帰工程後に前記排気を停
止させると共に、前記真空容器内に前記気体を供給して
大気圧まで復帰させる主圧力復帰工程とを具備したこと
を特徴とする。
According to a fifth aspect of the invention, when the pressure in the vacuum container is returned from a predetermined depressurized state to the atmospheric pressure, a gas from which water has been removed is supplied into the vacuum container while exhausting the inside of the vacuum container. And a main pressure returning step of stopping the exhaust after the initial pressure returning step and supplying the gas into the vacuum container to return to the atmospheric pressure. It is characterized by

【0015】請求項6記載の発明は、請求項5記載の発
明において、前記気体の供給流量が前記初期圧力復帰工
程から主圧力復帰工程にかけて小から大に制御されるこ
とを特徴とする。
The invention of claim 6 is characterized in that, in the invention of claim 5, the supply flow rate of the gas is controlled from small to large from the initial pressure returning step to the main pressure returning step.

【0016】請求項7記載の発明は、請求項5又は6記
載の発明において、前記気体が水分除去装置で水分を除
去された不活性ガスであることを特徴とする。
The invention according to claim 7 is characterized in that, in the invention according to claim 5 or 6, the gas is an inert gas from which water has been removed by a water removing device.

【0017】請求項8記載の発明は、比較的大径の主気
体供給管と比較的小径の副気体供給管とを備えた真空容
器の圧力を真空状態から大気圧に解放するに際して、前
記真空容器内に前記副気体供給管の弁開度を連続的に開
いて気体を供給する第1の気体供給工程と、この第1の
気体供給工程後に前記主気体供給管の弁開度を連続的に
開いて気体を供給する第2の気体供給工程とを具備した
ことを特徴とする。
According to an eighth aspect of the present invention, when the pressure of a vacuum container provided with a main gas supply pipe having a relatively large diameter and a sub gas supply pipe having a relatively small diameter is released from a vacuum state to atmospheric pressure, the vacuum is applied. A first gas supply step of supplying a gas by continuously opening the valve opening degree of the sub gas supply tube in the container, and a continuous valve opening degree of the main gas supply tube after the first gas supply step. And a second gas supply step for opening and supplying gas.

【0018】[0018]

【作用】請求項1記載の発明によれば、少なくとも主排
気減圧工程を真空容器内の気体に含まれる水分の凝縮液
化が生じない最大の減圧速度で実行するため、真空容器
の圧力が急激に減圧されることなく速やかに減圧され
る。従って、圧力容器内の気体に含まれる水分の凝縮液
化に起因する被処理体表面へのごみの付着が解消される
と共に、減圧工程に要する時間が短縮される。
According to the first aspect of the invention, at least the main exhaust depressurization step is executed at the maximum depressurization rate at which the condensation and liquefaction of the water contained in the gas in the vacuum container does not occur. It is quickly depressurized without being depressurized. Therefore, the adhesion of dust to the surface of the object to be processed due to the condensation and liquefaction of the water contained in the gas in the pressure vessel is eliminated, and the time required for the depressurizing step is shortened.

【0019】請求項2記載の発明はによれば、真空容器
内の気体を水分の除去された不活性ガスにより置換した
後、副排気系を動作させて前記真空容器内を減圧する副
排気減圧工程と、この副排気減圧工程後に主排気系を動
作させて前記真空容器内を減圧する主排気減圧工程とを
行うため、真空容器内の気体の凝縮液化を伴わずに真空
容器の圧力を迅速に減圧することが可能となり、被処理
体表面へのごみの付着の防止及び減圧時間の短縮が図れ
る。
According to the second aspect of the present invention, after the gas in the vacuum container is replaced with the inert gas from which water has been removed, the auxiliary exhaust system is operated to reduce the pressure in the vacuum container.
Exhaust decompression process and main exhaust system is operated after this auxiliary exhaust decompression process
And a main exhaust pressure reduction step for reducing the pressure inside the vacuum container.
Since this is performed , the pressure in the vacuum container can be quickly reduced without condensing and liquefying the gas in the vacuum container, and it is possible to prevent dust from adhering to the surface of the object to be processed and shorten the decompression time.

【0020】請求項3記載の発明によれば、真空容器内
に水分の除去された不活性ガスを供給し状態で前記
副排気系を動作させて前記真空容器内を減圧する副排気
減圧工程と、この副排気減圧工程後に前記主排気系を動
作させて前記真空容器内を減圧する主排気減圧工程とを
具備しているため、真空容器内の気体の凝縮液化を抑え
て真空容器の圧力を迅速に減圧することが可能となり、
被処理体表面へのごみの付着の減少及び減圧時間の短縮
が図れる。また、この場合、真空容器内に供給される不
活性ガスの気体分子の持つ運動エネルギーによって、そ
の気体分子が真空容器の内壁に吸着した吸着分子に衝突
することにより吸着分子が真空容器の内壁から放出され
るため、真空容器を短時間で高真空に減圧することが可
能となる。
According to the third aspect of the present invention, while supplying the water inert gas removed in the vacuum chamber, said auxiliary exhaust system is operated to reduce the pressure within the vacuum vessel auxiliary exhaust vacuum And a step of depressurizing the main exhaust to depressurize the inside of the vacuum container by operating the main exhaust system after the step of depressurizing the auxiliary exhaust.
Since it is equipped, it is possible to quickly reduce the pressure of the vacuum container by suppressing the condensation and liquefaction of the gas in the vacuum container,
It is possible to reduce the adhesion of dust to the surface of the object to be processed and shorten the decompression time. In this case, the kinetic energy of the gas molecules of the inert gas supplied into the vacuum container causes the gas molecules to collide with the adsorbed molecules adsorbed on the inner wall of the vacuum container, so that the adsorbed molecules are separated from the inner wall of the vacuum container. Since it is released, the vacuum container can be depressurized to a high vacuum in a short time.

【0021】請求項4記載の発明によれば、真空容器
圧力を大気圧から所定の圧力まで排気するに際して、前
記真空容器内を比較的小径の副排気管の弁開度を連続的
に開いて排気した後、比較的大径の主排気管の弁開度を
連続的に開いて排気するため、急激な圧力変化を伴わ
ず、気体の凝縮液化やごみの巻き上げを抑えて真空容器
内を迅速に真空引きすることが可能となる。
According to the fourth aspect of the present invention, the vacuum container
In evacuating the pressure from atmospheric pressure to a predetermined pressure, after the relatively evacuated the valve opening degree of the small-diameter auxiliary exhaust pipe continuously open the vacuum vessel, a relatively large diameter of the valve of the main exhaust pipe Since the opening is continuously opened and the gas is exhausted, it is possible to quickly evacuate the inside of the vacuum container while suppressing the condensate liquefaction of gas and the rolling up of dust without abrupt pressure change.

【0022】請求項5記載の発明によれば、先ず真空容
器内を排気しながら同真空容器内に水分の除去された気
体を供給して所定の圧力まで復帰させるため、気体の供
給による真空容器内のごみの巻き上げがあったとして
も、この巻き上げられたごみが真空容器外に排出され
る。そして、前記排気を停止させると共に、前記真空容
器内に前記気体を供給して大気圧まで復帰させるため、
気体の凝縮液化を伴わずに真空容器の圧力を迅速に大気
圧まで復帰させることが可能となり、被処理体表面への
ごみの付着の防止及び常圧復帰時間の短縮が図れる。
According to the fifth aspect of the present invention, first, while exhausting the inside of the vacuum container, the gas from which water has been removed is supplied into the vacuum container to restore the pressure to a predetermined level. Even if the dust inside is rolled up, this rolled-up dust is discharged to the outside of the vacuum container. Then, while stopping the exhaust, in order to return to atmospheric pressure by supplying the gas in the vacuum container,
It is possible to quickly return the pressure of the vacuum container to the atmospheric pressure without condensing and liquefying the gas, and it is possible to prevent dust from adhering to the surface of the object to be processed and shorten the normal pressure recovery time.

【0023】請求項6記載の発明によれば、前記気体の
供給流量が前記圧力復帰工程で小から大に制御されるた
ため、常圧復帰時間を更に短縮できる。また、請求項7
記載の発明によれば、前記気体が水分除去装置で水分を
除去された不活性ガスであるため、容易に水分を除去さ
れた不活性ガスを真空容器内に速やかに供給することが
可能となり、被処理体表面へのごみの付着の防止及び常
圧復帰時間の短縮が更に助長される。
According to the sixth aspect of the present invention, since the supply flow rate of the gas is controlled from small to large in the pressure returning step, the normal pressure returning time can be further shortened. In addition, claim 7
According to the invention described, since the gas is an inert gas from which water has been removed by the water removing device, it becomes possible to easily supply the inert gas from which water has been easily removed into the vacuum container, The prevention of dust from adhering to the surface of the object to be processed and the shortening of the normal pressure recovery time are further promoted.

【0024】請求項8記載の発明によれば、真空容器内
を真空状態から大気圧に解放するに際して、前記真空容
器内に比較的小径の副気体供給管の弁開度を連続的に開
いて気体を供給した後、比較的大径の主気体供給管の弁
開度を連続的に開いて気体を供給するため、急激な圧力
変化を伴わず、気体の凝縮液化やごみの巻き上げを抑え
て真空容器内を迅速に大気圧に解放することが可能とな
る。
According to the invention of claim 8, when the inside of the vacuum container is released from the vacuum state to the atmospheric pressure, the valve opening of the auxiliary gas supply pipe having a relatively small diameter is continuously opened in the vacuum container. After supplying gas, the valve opening of the main gas supply pipe with a relatively large diameter is continuously opened to supply gas, so there is no sudden pressure change, and gas condensation and liquefaction are suppressed. The inside of the vacuum container can be quickly released to atmospheric pressure.

【0025】[0025]

【実施例】以下に、本発明の実施例を添付図面に基づい
て詳述する。図1は本発明を熱処理装置に適用した一実
施例を示す構成図である。この熱処理装置1は、バッチ
処理式の減圧CVDに適する構成としたものであり、ベ
ースプレート2に取付けられた耐熱・耐食性金属例えば
ステンレススチールからなる円筒状のマニホールド3を
備えており、このマニホールド3の上端部には縦型炉を
構成する真空容器として上端が閉塞され下端が開放され
た耐熱性材料例えば石英からなる反応管4が気密材であ
る例えばOリング5を介して気密に取付けられている。
Embodiments of the present invention will be described in detail below with reference to the accompanying drawings. FIG. 1 is a block diagram showing an embodiment in which the present invention is applied to a heat treatment apparatus. The heat treatment apparatus 1 is configured to be suitable for batch processing type low pressure CVD, and is provided with a cylindrical manifold 3 made of a heat resistant / corrosion resistant metal such as stainless steel attached to a base plate 2. A reaction tube 4 made of a heat-resistant material, for example, quartz, whose upper end is closed and whose lower end is opened, is hermetically attached to the upper end through an O-ring 5, which is an airtight material, as a vacuum container constituting a vertical furnace. .

【0026】この反応管4内には均熱及び重金属汚染防
止等を目的として例えば石英製の円筒状の内管6が同軸
で設けられ、反応管4の周囲には反応管4内を高温例え
ば800〜1200℃程度に加熱する加熱手段である例
えばカンタル線等の発熱抵抗線を螺旋状に巻いてなるヒ
ータ7、断熱材8及び水冷ジャケット構造のシェル9が
順に設けられている。
A cylindrical inner tube 6 made of, for example, quartz is coaxially provided in the reaction tube 4 for the purpose of soaking and prevention of heavy metal contamination. The reaction tube 4 is surrounded by a high temperature inside the reaction tube 4, for example. A heater 7, which is a heating means for heating to about 800 to 1200 ° C., which is formed by spirally winding a heating resistance wire such as Kanthal wire, a heat insulating material 8, and a shell 9 having a water cooling jacket structure are sequentially provided.

【0027】前記マニホールド3の下端開口部(炉口)
にはこれを開閉する例えばステンレススチール製の蓋体
10が昇降機構11により昇降可能に設けられ、この蓋
体10上には被処理体である多数枚例えば150枚程度
の半導体ウエハWを水平状態で上下方向に間隔をおいて
多段に保持するウエハボート12が石英製の保温筒13
を介して載置されている。なお、蓋体10には保温筒1
3を回転駆動する回転機構14等が設けられている。
Lower end opening (furnace opening) of the manifold 3
A lid 10 made of, for example, stainless steel that opens and closes the lid 10 is vertically movable by an elevating mechanism 11, and a large number of, for example, about 150 semiconductor wafers W to be processed are horizontally placed on the lid 10. The wafer boat 12 that is held in multiple stages at intervals in the up-and-down direction is a heat insulating tube 13 made of quartz.
Is placed through. In addition, the heat insulating cylinder 1 is provided on the lid 10.
A rotation mechanism 14 and the like for rotating and driving 3 are provided.

【0028】また、マニホールド3にはガス導入管15
が接続されており、このガス導入管15には処理ガス供
給源16が開閉弁17及び流量調節器18を介して接続
されると共に、不活性ガスである例えば窒素(N2)ガ
スの供給源19が開閉弁20、流量調節器21及び水分
除去装置22を介して接続されている。この水分除去装
置22は例えば液体窒素冷却器からなり、供給される窒
素ガス中に含まれる水分を液体窒素により−100℃以
下に冷却された配管の管壁に凝結させて窒素ガスの水分
含有量を例えば10ppm以下に低減させるように構成
されている。なお、水分除去装置22としては、ピュー
リファイヤを使用して水分含有量を1ppb以下に低減
させるものであってもよい。
Further, the manifold 3 has a gas introduction pipe 15
A processing gas supply source 16 is connected to the gas introduction pipe 15 via an opening / closing valve 17 and a flow rate controller 18, and a supply source of an inert gas such as nitrogen (N 2 ) gas. 19 is connected via an on-off valve 20, a flow rate controller 21, and a water removing device 22. The moisture removing device 22 is composed of, for example, a liquid nitrogen cooler, and moisture contained in the supplied nitrogen gas is condensed on the pipe wall of the pipe cooled to −100 ° C. or less by the liquid nitrogen so that the moisture content of the nitrogen gas is increased. Is reduced to, for example, 10 ppm or less. The water removing device 22 may be a device that uses a purifier to reduce the water content to 1 ppb or less.

【0029】更に、前記マニホールド3には工場排気系
に通じる排気流量の大きい主排気系としての比較的大径
の主排気管23が接続され、この主排気管23には上流
側より開閉弁24、圧力調節器25及び減圧ポンプ26
が順に介設されていると共に、その減圧ポンプ26より
も上流で前記開閉弁24及び圧力調節器25をバイパス
する排気流量の小さい副排気系としての比較的小径の小
さい副排気管(バイパス管)27が接続されている。こ
の副排気管27には開閉弁28及び圧力調節器29が介
設されている。なお、前記流量調節器18,21及び圧
力調節器25,29はガスを完全に遮断できる機能を有
しないため開閉弁17,20,24,28を必要として
いるが、ガスを完全に遮断できる機能を有するものであ
れば必ずしも開閉弁17,20,24,28を必要とす
るものではない。
Further, a relatively large-diameter main exhaust pipe 23 is connected to the manifold 3 as a main exhaust system leading to a factory exhaust system and having a large exhaust flow rate. The main exhaust pipe 23 is provided with an opening / closing valve 24 from the upstream side. , Pressure regulator 25 and pressure reducing pump 26
And a relatively small diameter auxiliary exhaust pipe (bypass pipe) as an auxiliary exhaust system with a small exhaust flow rate that bypasses the on-off valve 24 and the pressure regulator 25 upstream of the pressure reducing pump 26. 27 is connected. An opening / closing valve 28 and a pressure regulator 29 are provided in the sub exhaust pipe 27. The flow rate regulators 18 and 21 and the pressure regulators 25 and 29 do not have the function of completely shutting off the gas and thus require the on-off valves 17, 20, 24 and 28, but the function of shutting off the gas completely. On-off valves 17, 20, 24, 28 are not necessarily required as long as they have the above-mentioned features.

【0030】前記主排気管23の上流部には管内の圧力
を検出する圧力センサ30が設けられている。そして、
前記反応管4内の圧力を制御するために制御装置31が
採用され、この制御装置31は前記圧力センサ30から
の圧力信号が入力され、予め入力されたデータ及びプロ
グラムに基づいて前記流量調節器18,21、圧力調節
器25,29及び開閉弁17,20,24,28を後述
の如く制御するように構成されている。
A pressure sensor 30 for detecting the pressure inside the main exhaust pipe 23 is provided upstream of the main exhaust pipe 23. And
A control device 31 is used to control the pressure in the reaction tube 4, and the control device 31 receives the pressure signal from the pressure sensor 30, and the flow rate controller based on previously input data and program. 18, 21, pressure regulators 25 and 29, and on-off valves 17, 20, 24 and 28 are configured to be controlled as described later.

【0031】次に、前記熱処理装置1における反応管4
内の圧力制御方法について、反応管4内の圧力を大気圧
から所定の圧力に減圧する減圧工程と、反応管4内の圧
力を所定の減圧状態から大気圧に復帰させる常圧復帰工
程とに分けて説明する。なお、減圧工程では、減圧工程
1〜3の計三つの実施例について述べる。
Next, the reaction tube 4 in the heat treatment apparatus 1
Regarding the internal pressure control method, a pressure reducing step of reducing the pressure in the reaction tube 4 from atmospheric pressure to a predetermined pressure and a normal pressure returning step of returning the pressure in the reaction tube 4 from a predetermined reduced pressure state to atmospheric pressure. I will explain separately. In the depressurizing step, a total of three examples of the depressurizing steps 1 to 3 will be described.

【0032】[減圧工程1]この工程を行うに際して、
流量調節器18,21、圧力調節器25,29及び開閉
弁17,20,24,28は閉にされ、ウエハボート1
2に支持された多数枚の半導体ウエハWが昇降機構11
により反応管4内に搬入されると共に蓋体10が閉じら
れる(以下、これを準備工程という。)。そして、制御
装置31により先ず副排気系である副排気管27の開閉
弁28が開にされ、圧力センサ30で主排気管23内の
圧力(反応管4内の圧力とほぼ同じ)を検出しながら予
め定められた減圧特性すなわち反応管4内の気体(大
気)に含まれる水分の凝縮液化が生じない最大の減圧速
度となるように圧力調整器29の開度を制御して反応管
4内の圧力を所定の圧力例えば10Torr程度まで減
圧する(以下、これを副排気減圧工程という。)。
[Decompression Step 1] In carrying out this step,
The flow rate controllers 18, 21, the pressure controllers 25, 29 and the opening / closing valves 17, 20, 24, 28 are closed, and the wafer boat 1
A large number of semiconductor wafers W supported by
Thus, the lid body 10 is closed while being carried into the reaction tube 4 (hereinafter, this is referred to as a preparation step). Then, the control device 31 first opens the opening / closing valve 28 of the auxiliary exhaust pipe 27 which is the auxiliary exhaust system, and the pressure sensor 30 detects the pressure in the main exhaust pipe 23 (which is almost the same as the pressure in the reaction pipe 4). However, the inside of the reaction tube 4 is controlled by controlling the opening degree of the pressure regulator 29 so as to have a predetermined depressurization characteristic, that is, the maximum depressurization rate at which condensation of water contained in the gas (atmosphere) in the reaction tube 4 does not occur. Is reduced to a predetermined pressure, for example, about 10 Torr (hereinafter, this is referred to as a sub-exhaust pressure reducing step).

【0033】次に、前記制御装置31により副排気系の
開閉弁28及び圧力調整器29が閉に、且つ主排気系の
開閉弁24が開にされ、同じく予め定められた減圧特性
となるように圧力調整器25の開度を制御して反応管4
内の圧力を目的の圧力例えば1×10-5Torr程度ま
で減圧する(以下、これを主排気減圧工程という。)。
このような減圧工程における圧力と時間の関係を示す
と、図2の曲線A1に示す通りである。そして、反応管
4内の圧力が目的の圧力に到達したら、この減圧状態を
維持しつつ処理ガス供給源16の開閉弁17を開に、且
つ流量調節器18の開度を制御して処理ガス供給源16
から処理ガスをガス導入管15を介して反応管4内に供
給し、半導体ウエハWに所定の成膜処理を施す。
Next, the control device 31 closes the opening / closing valve 28 and the pressure regulator 29 of the auxiliary exhaust system, and opens the opening / closing valve 24 of the main exhaust system so that the same predetermined depressurization characteristic is obtained. Control the opening of the pressure regulator 25 to the reaction tube 4
The internal pressure is reduced to a target pressure, for example, about 1 × 10 −5 Torr (hereinafter referred to as the main exhaust pressure reduction step).
The relationship between the pressure and the time in such a depressurization step is shown by the curve A1 in FIG. Then, when the pressure inside the reaction tube 4 reaches the target pressure, the on-off valve 17 of the processing gas supply source 16 is opened and the opening degree of the flow rate controller 18 is controlled while maintaining this reduced pressure state, and the processing gas is controlled. Source 16
Process gas is supplied into the reaction tube 4 through the gas introduction tube 15 and the semiconductor wafer W is subjected to a predetermined film forming process.

【0034】このように副排気減圧工程及び主排気減圧
工程を反応管4内の気体(大気)に含まれる水分の凝縮
液化が生じない最大の減圧速度で実行するため、反応管
4の圧力が急激に減圧されることなく速やかに減圧され
る。従って、反応管4内の気体に含まれる水分の凝縮液
化に起因する半導体ウエハW表面へのごみの付着を解消
することができると共に、たとえ反応管4の内壁にごみ
が付着していたとしてもそのごみが巻き上げられて半導
体ウエハWの表面に付着するということもなく、しかも
減圧工程に要する時間を短縮することができる。なお、
この工程では副排気減圧工程及び主排気減圧工程の両方
で所定の減圧特性となる圧力制御を行ったが、副排気減
圧工程では排気流量が小さく急激な圧力変化が生じ難い
ため、主排気減圧工程のみで所定の減圧特性となる圧力
制御を行ってもよい。
As described above, since the auxiliary exhaust depressurization step and the main exhaust depressurization step are executed at the maximum depressurization rate at which the condensation of the water contained in the gas (atmosphere) in the reaction tube 4 does not occur, the pressure in the reaction tube 4 is reduced. The pressure is quickly reduced without sudden pressure reduction. Therefore, it is possible to eliminate the adhesion of dust to the surface of the semiconductor wafer W due to the condensation and liquefaction of the water contained in the gas in the reaction tube 4, and even if the dust adheres to the inner wall of the reaction tube 4. The dust does not wind up and adheres to the surface of the semiconductor wafer W, and the time required for the depressurizing step can be shortened. In addition,
In this process, pressure control with a predetermined depressurization characteristic was performed in both the auxiliary exhaust depressurization process and the main exhaust depressurization process. It is also possible to perform the pressure control with which the predetermined pressure reducing characteristic is obtained.

【0035】[減圧工程2]先ず、準備工程後に、制御
装置31により窒素ガス供給源19の開閉弁20が開に
され、流量調整器21の開度を例えば500cc/分程
度に設定して窒素ガス供給源19から水分除去装置22
を介して水分の殆どが除去された乾燥窒素ガスを反応管
4内に供給する。この状態で、副排気系の開閉弁28が
開にされ、且つ圧力調整器29の開度が主排気管内の圧
力を760Torrに保つように制御されることによ
り、反応管4内の気体(大気)が乾燥窒素ガスで置換さ
れる(以下、これをガス置換工程という。)。
[Decompression Step 2] First, after the preparation step, the control device 31 opens the on-off valve 20 of the nitrogen gas supply source 19, and the opening degree of the flow rate regulator 21 is set to, for example, about 500 cc / min. Water removal device 22 from gas supply source 19
The dry nitrogen gas from which most of the water has been removed is supplied into the reaction tube 4 via. In this state, the opening / closing valve 28 of the auxiliary exhaust system is opened, and the opening of the pressure regulator 29 is controlled so as to maintain the pressure in the main exhaust pipe at 760 Torr. ) Is replaced with dry nitrogen gas (hereinafter, this is referred to as a gas replacement step).

【0036】このガス置換工程後に、例えば前述した副
排気減圧工程及び主排気減圧工程を順に行って反応管4
内を目的の圧力に減圧すればよい。このような減圧工程
における圧力と時間の関係を示すと、図3の曲線A2に
示す通りである。このように反応管4内の気体(大気)
を水分の除去された乾燥窒素ガスにより置換した後、前
記反応管4内を減圧するため、反応管4内の気体の凝縮
液化を伴わずに反応管4の圧力を迅速に減圧することが
でき、半導体ウエハW表面へのごみの付着の防止及び減
圧時間の短縮が図れる。なお、この減圧工程では、水分
の除去された乾燥窒素ガスを反応管4内から排気して減
圧するため、凝結液化が発生し難いので、副排気減圧工
程を前記[減圧工程1]よりも急激な排気により行うこ
とができる。
After the gas replacement step, for example, the above-described auxiliary exhaust depressurization step and main exhaust depressurization step are carried out in order to carry out the reaction tube 4.
The inside pressure may be reduced to the target pressure. The relationship between the pressure and the time in the depressurizing step is shown by the curve A2 in FIG. In this way, the gas (atmosphere) in the reaction tube 4
Since the inside of the reaction tube 4 is depressurized after the gas is replaced with dry nitrogen gas from which water is removed, the pressure in the reaction tube 4 can be quickly depressurized without condensing and liquefying the gas in the reaction tube 4. It is possible to prevent dust from adhering to the surface of the semiconductor wafer W and shorten the decompression time. In this depressurization step, the dry nitrogen gas from which water has been removed is exhausted from the reaction tube 4 to reduce the pressure, so that condensation liquefaction is less likely to occur. It can be performed by exhausting.

【0037】[減圧工程3]先ず、準備工程後に、制御
装置31により窒素ガス供給源19の開閉弁20が開に
され、流量調節器21の開度を例えば100cc/分程
度に設定して窒素ガス供給源19から水分除去装置22
を介して水分の殆どが除去された乾燥窒素ガスを反応管
4内に供給する。この状態で、副排気減圧工程及び主排
気減圧工程を順に行って、反応管4内の圧力を所定の圧
力例えば1×10-1程度まで減圧する。次に、前記窒素
ガス供給源19の開閉弁20及び流量調節器21を閉に
し、主排気系の圧力調節器25の開度を制御しながら反
応管4内の圧力を目的の圧力(1×10-5Torr程
度)まで減圧する。このような減圧工程における圧力と
時間の関係を示すと、図4の曲線A3に示す通りであ
る。
[Decompression Step 3] First, after the preparation step, the opening / closing valve 20 of the nitrogen gas supply source 19 is opened by the controller 31, and the opening degree of the flow rate controller 21 is set to, for example, about 100 cc / min. Water removal device 22 from gas supply source 19
The dry nitrogen gas from which most of the water has been removed is supplied into the reaction tube 4 via. In this state, the auxiliary exhaust depressurizing step and the main exhaust depressurizing step are sequentially performed to reduce the pressure in the reaction tube 4 to a predetermined pressure, for example, about 1 × 10 −1 . Next, the on-off valve 20 and the flow rate controller 21 of the nitrogen gas supply source 19 are closed, and the pressure in the reaction tube 4 is adjusted to the target pressure (1 ×) while controlling the opening degree of the pressure controller 25 of the main exhaust system. The pressure is reduced to about 10 −5 Torr). The relationship between the pressure and time in the depressurizing step is shown by the curve A3 in FIG.

【0038】このように反応管4内に水分の除去された
乾燥窒素ガスを供給しながら同反応管4内を減圧するた
め、反応管4内の気体の凝縮液化を抑えて反応管4の圧
力を迅速に減圧することができ、半導体ウエハW表面へ
のごみの付着の減少及び減圧時間の短縮が図れる。ま
た、この場合、反応管4内に供給される窒素ガスの気体
分子の持つ運動エネルギーによって、その気体分子が反
応管4の内壁に吸着した水分の吸着分子に衝突すること
により吸着分子が反応管4の内壁から放出されるため、
反応管4を短時間で高真空に減圧することができる。な
お、この減圧工程では、乾燥窒素ガスの供給を連続的で
はなく、例えば図5に示すように供給と停止をパルス状
に繰り返して行ってもよく、またこれを目的の圧力に到
達する間で行ってもよい。更に、乾燥窒素ガスの供給量
を一定とせずに、減圧工程の進行に伴ってなだらかに変
化(増減を含む)させたり、或いは階段状に変化させて
よい。
Since the pressure inside the reaction tube 4 is reduced while supplying the dry nitrogen gas from which water has been removed to the reaction tube 4 as described above, the condensation and liquefaction of the gas inside the reaction tube 4 is suppressed and the pressure in the reaction tube 4 is suppressed. The pressure can be quickly reduced, and the adhesion of dust to the surface of the semiconductor wafer W and the pressure reduction time can be shortened. Further, in this case, the kinetic energy of the gas molecule of the nitrogen gas supplied into the reaction tube 4 causes the gas molecule to collide with the adsorbed molecule of the water adsorbed on the inner wall of the reaction tube 4, whereby the adsorbed molecule is Since it is released from the inner wall of 4,
The reaction tube 4 can be depressurized to a high vacuum in a short time. In this depressurizing step, the supply of the dry nitrogen gas may not be continuously performed, and for example, as shown in FIG. 5, the supply and the stop may be repeated in a pulsed manner, and this may be performed while the target pressure is reached. You can go. Further, the supply amount of the dry nitrogen gas may not be constant, but may be changed gently (including increase / decrease) with the progress of the depressurizing step, or may be changed stepwise.

【0039】[常圧復帰工程]半導体ウエハWの所定の
成膜処理が終了したなら、処理ガス供給源16の開閉弁
17及び流量調節器18を閉にし、主排気系の動作を続
けて反応管4内に残存する処理ガスを排出する。そし
て、前記反応管4内の圧力をこの所定の減圧状態(1×
10-5Torr程度)から大気圧に復帰させるに際し
て、先ず制御装置31により主排気系の開閉弁24及び
圧力調節器25が閉に、副排気系の開閉弁28が開にさ
れ、且つ圧力調節器29を所定の開度にした状態で反応
管4内を排気しながら、窒素ガス供給源19の開閉弁2
0を開にして、且つ流量調節器21の開度を例えば10
00cc/分程度に設定して窒素ガス供給源19から水
分除去装置22を介して水分の殆どが除去された乾燥窒
素ガスを反応管4内に供給し、この状態を所定時間例え
ば1分程度続けることにより反応管4内の圧力を所定の
圧力例えば5Torr程度まで復帰させる(以下、これ
を初期圧力復帰工程という。)。
[Normal Pressure Return Step] When the predetermined film forming process of the semiconductor wafer W is completed, the on-off valve 17 and the flow rate controller 18 of the process gas supply source 16 are closed and the operation of the main exhaust system is continued to react. The processing gas remaining in the pipe 4 is discharged. Then, the pressure in the reaction tube 4 is set to the predetermined depressurized state (1 ×
At the time of returning from 10 -5 Torr) to atmospheric pressure, the control device 31 first closes the main exhaust system on-off valve 24 and the pressure regulator 25, and opens the sub-exhaust system on-off valve 28 and adjusts the pressure. The on-off valve 2 of the nitrogen gas supply source 19 while exhausting the inside of the reaction tube 4 in a state where the vessel 29 is at a predetermined opening degree.
0 is opened, and the opening degree of the flow rate controller 21 is set to, for example, 10
The dry nitrogen gas from which most of the water has been removed is supplied from the nitrogen gas supply source 19 through the water removing device 22 to the reaction tube 4 at a setting of about 00 cc / minute, and this state is continued for a predetermined time, for example, about 1 minute. As a result, the pressure in the reaction tube 4 is returned to a predetermined pressure, for example, about 5 Torr (hereinafter, this is referred to as an initial pressure returning step).

【0040】次に、副排気系の開閉弁28及び圧力調節
器29を閉にして排気を停止させると共に、窒素ガス供
給源19の流量調節器21の開度を例えば5000cc
/分程度に設定して乾燥窒素ガスを反応管4内に供給
し、これ状態を所定時間例えば20分程度続けることに
より反応管4内の圧力を大気圧まで復帰させる(以下、
これを主圧力復帰工程という。)。このような常圧復帰
工程における圧力と時間の関係を示すと、図6の曲線B
に示す通りである。反応管4内の圧力が大気圧まで復帰
したら、窒素ガス供給源19の開閉弁20及び流量調節
器21を閉にして窒素ガスの供給を停止し、昇降機構1
1により蓋体10を下方へ開放して反応管4内から半導
体ウエハWを搬出すればよい。
Next, the opening / closing valve 28 and the pressure controller 29 of the auxiliary exhaust system are closed to stop the exhaust, and the opening degree of the flow rate controller 21 of the nitrogen gas supply source 19 is set to 5000 cc, for example.
/ Min to supply dry nitrogen gas into the reaction tube 4, and this state is continued for a predetermined time, for example, about 20 minutes to return the pressure in the reaction tube 4 to atmospheric pressure (hereinafter,
This is called a main pressure recovery step. ). The relationship between the pressure and time in the normal pressure recovery process is shown by the curve B in FIG.
As shown in. When the pressure in the reaction tube 4 returns to atmospheric pressure, the on-off valve 20 and the flow rate controller 21 of the nitrogen gas supply source 19 are closed to stop the supply of nitrogen gas, and the lifting mechanism 1
The semiconductor wafer W may be unloaded from the inside of the reaction tube 4 by opening the lid body 10 downward by 1.

【0041】このように、先ず反応管4内を排気しなが
ら同反応管4内に水分の除去された乾燥窒素ガスを供給
して所定の圧力まで復帰させるため、窒素ガスの供給に
よる反応管4内のごみの巻き上げがあったとしても、こ
の巻き上げられたごみが反応管外に排出される。そし
て、前記排気を停止させると共に、前記反応管4内に乾
燥窒素ガスを供給して大気圧まで復帰させるため、大気
の凝縮液化を伴わずに反応管4内の圧力を迅速に大気圧
まで復帰させることができ、半導体ウエハW表面へのご
みの付着の防止及び常圧復帰時間の短縮が図れる。ま
た、窒素ガスの供給流量が前記初期圧力復帰工程から主
圧力復帰工程にかけて小から大に制御されるたため、常
圧復帰時間を更に短縮できる。更に、窒素ガスを水分除
去装置22を介して反応管4内に供給するため、容易に
且つ十分に水分の除去された窒素ガスを反応管4内に速
やかに供給することができる。
As described above, first, while the inside of the reaction tube 4 is being evacuated, the dry nitrogen gas from which water has been removed is supplied into the reaction tube 4 to return it to a predetermined pressure. Therefore, the reaction tube 4 is supplied with the nitrogen gas. Even if the internal waste is rolled up, this rolled-up waste is discharged outside the reaction tube. Then, since the exhaust is stopped and the dry nitrogen gas is supplied into the reaction tube 4 to return it to the atmospheric pressure, the pressure in the reaction tube 4 is quickly returned to the atmospheric pressure without condensing and liquefying the atmosphere. Therefore, it is possible to prevent dust from adhering to the surface of the semiconductor wafer W and shorten the normal pressure recovery time. Moreover, since the supply flow rate of the nitrogen gas is controlled from small to large from the initial pressure returning step to the main pressure returning step, the normal pressure returning time can be further shortened. Further, since the nitrogen gas is supplied into the reaction tube 4 via the water removing device 22, the nitrogen gas from which the water is sufficiently removed can be easily and quickly supplied into the reaction tube 4.

【0042】なお、前記初期圧力復帰工程では、例えば
副排気系の圧力調節器29の開度を全開状態から徐々に
閉じて行くことにより、排気能力を徐々に低下させ、急
激な排気能力の変化を生じさせないようにしてもよい。
また、前記初期圧力復帰工程及び主圧力復帰工程におけ
る反応管4内への乾燥窒素ガスの供給は連続的でなく、
供給と停止を繰り返して断続的に行ってもよい。更に、
この常圧復帰工程で使用される乾燥気体としては、乾燥
窒素ガスでなく、乾燥大気であってもよい。また、前記
減圧工程及び常圧復帰工程で使用される不活性ガスとし
ては、窒素ガス以外に、例えばアルゴンガス、ヘリウム
ガス等が適用可能である。
In the initial pressure returning step, the exhaust capacity is gradually reduced by, for example, gradually closing the opening degree of the pressure regulator 29 of the sub exhaust system from the fully open state, and abruptly changing the exhaust capacity. May not be generated.
Further, the supply of dry nitrogen gas into the reaction tube 4 in the initial pressure returning step and the main pressure returning step is not continuous,
It may be intermittently performed by repeatedly supplying and stopping. Furthermore,
The dry gas used in the step of returning to normal pressure may be dry air instead of dry nitrogen gas. Further, as the inert gas used in the depressurizing step and the normal pressure returning step, for example, argon gas, helium gas, etc. can be applied in addition to nitrogen gas.

【0043】図7は本発明の別の実施例を示す概略ブロ
ック図である。この実施例の装置例えば熱処理装置の全
体は、被処理体処理室例えば熱処理炉40と、この熱処
理炉40に被処理体例えば半導体ウエハWを予め真空引
きした後に移すための真空容器としての予備室41と、
真空引き機構42と、大気圧解放機構43とから主に構
成されている。前記熱処理炉40と予備室41とは遮断
弁(ゲートバルブ)44により開閉可能に遮断されてい
る。前記真空引き機構42は、減圧ポンプ(真空ポン
プ)45と、その減圧ポンプ45と前記予備室41を結
ぶ真空引き配管機構46とから主に構成されている。前
記真空引き配管機構46は、比較的大径の主排気管47
と、比較的小径の副排気管48が並列に連結された状態
で構成されている。また、前記減圧ポンプ45付近の主
排気管47には管内真空度を測定する真空度測定端子
(圧力センサ)49が設けられている。前記主排気管4
7と副排気管48にはそれぞれの真空引き能力を遮断す
る遮断弁50,51が取付けられ、副排気管48には真
空引き能力すなわち開度を連続的に調整できる可変制御
弁52が取付けられ、減圧ポンプ45に接続された主排
気管47には同様に開度を連続的に調整できる可変制御
弁53が取付けられている。
FIG. 7 is a schematic block diagram showing another embodiment of the present invention. The apparatus of this embodiment, for example, the heat treatment apparatus as a whole is provided with a treatment chamber for a target object, for example, a heat treatment furnace 40, and a preliminary chamber as a vacuum container for transferring the target object, for example, a semiconductor wafer W to the heat treatment furnace 40 after vacuuming it in advance. 41,
The vacuum pumping mechanism 42 and the atmospheric pressure releasing mechanism 43 are mainly configured. The heat treatment furnace 40 and the auxiliary chamber 41 are opened / closed by a shutoff valve (gate valve) 44. The vacuum evacuation mechanism 42 is mainly composed of a decompression pump (vacuum pump) 45 and a vacuum evacuation piping mechanism 46 that connects the decompression pump 45 and the preliminary chamber 41. The vacuum evacuation piping mechanism 46 includes a main exhaust pipe 47 having a relatively large diameter.
And the auxiliary exhaust pipes 48 having a relatively small diameter are connected in parallel. A vacuum degree measuring terminal (pressure sensor) 49 for measuring the degree of vacuum inside the tube is provided in the main exhaust pipe 47 near the decompression pump 45. Main exhaust pipe 4
7 and the sub-exhaust pipe 48 are provided with shut-off valves 50 and 51 for shutting off their respective vacuuming capabilities, and the sub-exhaust pipe 48 is provided with a variable control valve 52 capable of continuously adjusting the vacuuming capability, that is, the opening. A variable control valve 53 that can continuously adjust the opening degree is attached to the main exhaust pipe 47 connected to the decompression pump 45.

【0044】一方、前記大気圧解放機構43は、前記真
空引き機構42と類似した機構であり、これら大気圧解
放機構43と真空引き機構42との差異は前記真空引き
機構42の減圧ポンプ45の代りに前記予備室41を大
気圧に解放するための気体例えば窒素(N2)ガスを供
給する気体供給機構54が接続されている点である。こ
の大気圧解放機構43は、比較的大径の主気体供給管5
5と比較的小径の副気体供給管56を並列に連結した大
気圧解放配管機構57を備えており、その主気体供給管
55と副気体供給管56には遮断弁57,58が取付け
られている。副気体供給管56には開度を連続的に調整
できる可変制御弁60が取付けられ、気体供給機構54
に接続された主排気管55には同様に開度を連続的に調
整できる可変制御弁61が取付けられている。なお、6
2は気体供給機構54に設けられた気圧測定端子(圧力
センサ)、63は予備室41に設けられた真空度測定端
子(圧力センサ)である。前記弁44,50,51,5
2,53,58,59,60,61等は、予め記憶され
たプログラムを有するマイクロコンピュータからなる制
御装置64により、自動制御される構成になっている。
On the other hand, the atmospheric pressure release mechanism 43 is a mechanism similar to the vacuum evacuation mechanism 42, and the difference between the atmospheric pressure release mechanism 43 and the vacuum evacuation mechanism 42 is that of the vacuum pump 45 of the vacuum evacuation mechanism 42. Instead, a gas supply mechanism 54 for supplying a gas for releasing the preliminary chamber 41 to the atmospheric pressure, for example, nitrogen (N 2 ) gas is connected. The atmospheric pressure release mechanism 43 is a main gas supply pipe 5 having a relatively large diameter.
5 is provided with an atmospheric pressure release pipe mechanism 57 in which a sub gas supply pipe 56 having a relatively small diameter is connected in parallel, and shutoff valves 57 and 58 are attached to the main gas supply pipe 55 and the sub gas supply pipe 56. There is. A variable control valve 60 capable of continuously adjusting the opening is attached to the sub gas supply pipe 56, and the gas supply mechanism 54
Similarly, a variable control valve 61 capable of continuously adjusting the opening is attached to the main exhaust pipe 55 connected to. 6
Reference numeral 2 is an atmospheric pressure measuring terminal (pressure sensor) provided in the gas supply mechanism 54, and 63 is a vacuum degree measuring terminal (pressure sensor) provided in the auxiliary chamber 41. The valves 44, 50, 51, 5
2, 53, 58, 59, 60, 61 and the like are automatically controlled by a control device 64 including a microcomputer having a program stored in advance.

【0045】このように構成された熱処理装置において
は、先ず前記予備室41と外部との間に設けられた大気
遮断弁(ゲートバルブ、図示せず)を開けて予備室41
を予め大気圧に解放した後、半導体ウエハWを前記予備
室41に搬送機構(図示せず)により搬入する。その
後、前記搬送機構を元の位置、つまり前記予備室41か
ら外部の所定位置に戻す。その後、前記大気遮断弁を閉
じ、予備室41を気密にする。この時の前記大気遮断弁
の開閉及び前記搬送機構の制御は全て制御装置64によ
り実行する。
In the heat treatment apparatus having the above-described structure, first, the atmosphere shutoff valve (gate valve, not shown) provided between the preliminary chamber 41 and the outside is opened to open the preliminary chamber 41.
Is released to the atmospheric pressure in advance, and then the semiconductor wafer W is loaded into the preliminary chamber 41 by a transfer mechanism (not shown). After that, the transport mechanism is returned to the original position, that is, the predetermined position outside the preliminary chamber 41. After that, the atmosphere shutoff valve is closed and the preliminary chamber 41 is made airtight. At this time, the opening and closing of the atmosphere shutoff valve and the control of the transfer mechanism are all executed by the controller 64.

【0046】次に、前記真空引き機構42が制御装置6
4により自動的に作動し、後述する手順で前記予備室4
1の真空引きを行う。前記予備室41の圧力が熱処理炉
40とほぼ同一の所定の真空度に達すると、前記遮断弁
44が開いて半導体ウエハWを前記予備室41内にある
搬送ロボットすなわち真空室内搬送機構(図示せず)に
より前記熱処理炉40内に搬入する。この場合、前記熱
処理炉40を予備室41よりも僅かに陽圧にすると、搬
入操作時の熱処理炉40内へのごみの巻き込みを防止で
きる。その後、前記遮断弁44を前記制御装置64の制
御により自動的に気密に閉じる。その後、熱処理炉40
内において、前記半導体ウエハWの所定の処理、例えば
熱酸化処理を行う。この処理は、例えば酸素(O2)ガ
スと水素(H2)ガスを燃焼化合させて発生した水蒸気
を熱処理炉40内に導入し、600〜700℃に加熱さ
れた半導体ウエハWの表面に供給し、表面酸化膜を形成
する。
Next, the vacuuming mechanism 42 causes the controller 6 to
4 automatically operates, and the preliminary chamber 4 is operated by the procedure described later.
Evacuate 1. When the pressure in the preliminary chamber 41 reaches a predetermined degree of vacuum, which is almost the same as that in the heat treatment furnace 40, the shut-off valve 44 is opened and the semiconductor wafer W is transported in the preliminary chamber 41 by a transfer robot, that is, a vacuum chamber transfer mechanism (not shown). No.) is carried into the heat treatment furnace 40. In this case, if the heat treatment furnace 40 is set to have a slightly positive pressure than the preliminary chamber 41, it is possible to prevent dust from being trapped in the heat treatment furnace 40 during the loading operation. Then, the shutoff valve 44 is automatically and airtightly closed under the control of the control device 64. Then, heat treatment furnace 40
In the inside, predetermined processing of the semiconductor wafer W, for example, thermal oxidation processing is performed. In this process, for example, steam generated by combusting oxygen (O 2 ) gas and hydrogen (H 2 ) gas is introduced into the heat treatment furnace 40 and supplied to the surface of the semiconductor wafer W heated to 600 to 700 ° C. Then, a surface oxide film is formed.

【0047】このような処理及び監視を前記制御装置6
4で自動的に行い、処理が完了すると、遮断弁44を開
け、処理後の半導体ウエハWを前記真空室内搬送機構に
より予備室41に移す。その後、前記遮断弁44が自動
的に閉じ、前記予備室41を大気圧解放機構43により
後述する手順で大気に解放した後、前記大気遮断弁を開
け、処理後の半導体ウエハWを搬送機構により予備室4
1から外部に搬出する。このような搬出入時、予備室4
1を外部よりも僅かに陽圧にすると、大気中のごみの巻
き込みを防止できる。その後、前記大気遮断弁を閉じ
る。以下に、予備室41、熱処理炉40の真空引き(減
圧)と大気圧解放(常圧復帰)の手順について説明す
る。
Such processing and monitoring are performed by the control device 6
4 automatically, and when the processing is completed, the shutoff valve 44 is opened, and the processed semiconductor wafer W is transferred to the preliminary chamber 41 by the vacuum chamber transfer mechanism. After that, the shutoff valve 44 is automatically closed, the preliminary chamber 41 is released to the atmosphere by the atmospheric pressure release mechanism 43 by the procedure described later, the atmosphere shutoff valve is opened, and the processed semiconductor wafer W is transferred by the transfer mechanism. Reserve room 4
Carry out from 1. When carrying in and out like this, the spare room 4
By setting 1 to a slightly positive pressure than the outside, it is possible to prevent the inclusion of dust in the atmosphere. Then, the air shutoff valve is closed. The procedure for vacuuming (reducing pressure) and releasing atmospheric pressure (returning to normal pressure) in the preliminary chamber 41 and the heat treatment furnace 40 will be described below.

【0048】[真空引き工程]先ず、真空引き工程につ
いて説明すると、最初、全ての前記弁50,51,5
2,53,58,59,60,61等が閉じた状態にな
っている。前記制御装置の予め記憶されたプログラムに
基づいて、真空引き工程をスタートさせると、副排気管
48の遮断弁51が開き、やや遅れて少しずつ前記可変
制御弁52が自動的に開いて前記予備室41内の真空引
きを副排気管48を介して開始する。なお、可変制御弁
53は構造上、閉じ状態でも完全に遮断できないもので
ある場合にはそのままでもよく、完全に遮断できるもの
である場合には少し例えば可変制御弁52の最大開度と
同程度に開けておく。この状態で、前記可変制御弁52
の開度を徐々に連続的に開きながら排気すなわち真空引
きを行い(第1の排気工程)、所定の時間経過後に予め
定められた所定の真空度に達すると、前記可変制御弁5
2(若しくは遮断弁51)が自動的に閉じて副排気管4
8による真空引きを完了する。次いで、主排気管47の
遮断弁50が開き、可変制御弁53による主排気管47
を介した真空引き工程に移る。この時、前記可変制御弁
53は予め定められた所定量開いた状態である。すなわ
ち、副排気管48により達した前記予備室41の真空度
に対して急激な真空度の変化が生じないように、前記可
変制御弁53の開度が予め制御機構64により設定され
ている。
[Vacuating Step] First, the vacuuming step will be described. First, all of the valves 50, 51, 5 will be described.
2, 53, 58, 59, 60, 61 and the like are in a closed state. When the evacuation process is started based on the program stored in advance in the control device, the shutoff valve 51 of the auxiliary exhaust pipe 48 is opened, and the variable control valve 52 is automatically opened little by little with the preliminary operation. The evacuation of the chamber 41 is started via the auxiliary exhaust pipe 48. Note that the variable control valve 53 may be left as it is if it cannot be completely shut off even in a closed state due to its structure, and if it can be completely shut off, for example, it may be about the same as the maximum opening degree of the variable control valve 52. Leave it open. In this state, the variable control valve 52
The variable control valve 5 is evacuated, i.e., evacuated while gradually opening the opening (first evacuation step), and reaches a predetermined degree of vacuum after a predetermined time has elapsed.
2 (or shutoff valve 51) automatically closes and the auxiliary exhaust pipe 4
The evacuation by 8 is completed. Then, the shutoff valve 50 of the main exhaust pipe 47 is opened, and the main exhaust pipe 47 by the variable control valve 53 is opened.
Move to the vacuuming process via. At this time, the variable control valve 53 is in an opened state by a predetermined amount. That is, the opening degree of the variable control valve 53 is set in advance by the control mechanism 64 so that a sudden change in the degree of vacuum with respect to the degree of vacuum in the auxiliary chamber 41 reached by the auxiliary exhaust pipe 48 does not occur.

【0049】そして、前記可変制御弁53を予め定めら
れた開放値まで漸次連続的に開いて主排気管47による
真空引きを進行させ(第2の排気工程)、最終的にプロ
セス可能真空度に達する。このプロセス可能真空度と
は、次の工程つまり熱処理炉40内への半導体ウエハW
の搬入可能な真空度をいう。これらの真空引き工程の様
子をグラフに示すと、図8の曲線A4に示す通りであ
る。このグラフにおいて、時間帯aは真空引きを開始し
てから副排気管48による真空引き工程を、時間帯bは
主排気管47による真空引き工程を示している。また、
グラフ上の点cは前記時間帯aと時間帯bとの接点であ
り、前記時間帯aにおける予備室41の最後の真空度
と、前記時間帯bにおける予備室41の最初の真空度と
が一致する点であり、つまり前記予備室41内の圧力が
連続的に下がっていることを示している。
Then, the variable control valve 53 is gradually and continuously opened to a predetermined open value to proceed with evacuation by the main exhaust pipe 47 (second evacuation step), and finally to a processable vacuum degree. Reach This processable vacuum degree means the next step, that is, the semiconductor wafer W into the heat treatment furnace 40.
The degree of vacuum that can be carried in. The state of these vacuuming steps is shown in a graph as shown by the curve A4 in FIG. In this graph, the time zone a shows the vacuuming process by the auxiliary exhaust pipe 48 after the evacuation is started, and the time zone b shows the vacuuming process by the main exhaust pipe 47. Also,
A point c on the graph is a contact point between the time zone a and the time zone b, and the last vacuum degree of the preliminary chamber 41 in the time zone a and the first vacuum degree of the preliminary chamber 41 in the time zone b are set. It is a point where they coincide with each other, that is, it indicates that the pressure in the preliminary chamber 41 continuously decreases.

【0050】前記図7に示した真空引き工程の制御方法
は、予め実験により求められる二つの条件、つまり急激
な真空引きにより前記予備室41内の気体中の水分凝結
が発生しないこと及び前記予備室41内のごみを巻き上
げないことの条件を満たし、この条件下における最大限
の真空引き能力すなわち最小の真空引き時間が実現する
ように予め設定されている。そして、その実行制御は、
前記制御装置64が真空度測定端子49,63からの検
出値をフィードバックし、遮断弁50,51及び可変制
御弁52,53を総合的に制御することにより行ってい
る。このように真空容器である予備室41内を真空引き
するに際して、予備室41内を比較的小径の副排気管4
8の弁開度を連続的に開いて排気し、次いで比較的大径
の主排気管47の弁開度を連続的に開いて排気するた
め、急激な圧力変化を伴わず、気体の凝縮液化やごみの
巻き上げを抑えて予備室41内を迅速に真空引きするこ
とができる。
The control method of the evacuation step shown in FIG. 7 is based on two conditions preliminarily obtained by experiments, that is, moisture condensation in the gas in the auxiliary chamber 41 does not occur due to sudden evacuation, and It is preset to satisfy the condition that the dust inside the chamber 41 is not rolled up, and to realize the maximum vacuuming capability, that is, the minimum vacuuming time under this condition. And the execution control is
The control device 64 feeds back the detected values from the vacuum degree measuring terminals 49 and 63 to comprehensively control the shutoff valves 50 and 51 and the variable control valves 52 and 53. When the inside of the auxiliary chamber 41, which is a vacuum container, is evacuated in this way, the inside of the auxiliary chamber 41 has a relatively small diameter.
Since the valve opening of No. 8 is continuously opened and exhausted, and then the valve opening of the main exhaust pipe 47 having a relatively large diameter is continuously opened and exhausted, the gas is condensed and liquefied without sudden pressure change. It is possible to quickly evacuate the inside of the auxiliary chamber 41 by suppressing the winding of dust.

【0051】[大気圧解放工程]次に大気圧解放工程に
ついて説明する。前記予備室41を真空状態から大気圧
に解放するとき、前記弁50,51,52,53,5
8,59,60,61等は閉じた状態になっている。そ
して、前記制御装置64の予め定められたプログラムに
基づいて大気圧解放工程をスタートさせると、先ず副気
体供給管56の遮断弁59が開く。次に可変制御弁60
が制御装置64の予め記憶された速度で少しずつ連続的
に開いて前記予備室41内に大気圧解放用気体例えば窒
素(N2)ガスを導入する(第1の気体供給工程)。な
お、可変制御弁61は構造上、閉じ状態でも完全に遮断
できないものである場合にはそのままでもよく、完全に
遮断できるものである場合には少し例えば可変制御弁6
0の最大開度と同程度に開けておく。この状態で一定時
間経過後、前記遮断弁59(若しくは可変制御弁60)
が閉じ、続いて遮断弁58が開いて主気体供給管55を
介した大気圧解放工程に移る。この工程では、前記可変
制御弁61が徐々に連続的に開き(第2の気体供給工
程)、予備室41が最終的に大気圧まで解放される。
[Atmospheric Pressure Releasing Step] Next, the atmospheric pressure releasing step will be described. When releasing the preliminary chamber 41 from the vacuum state to the atmospheric pressure, the valves 50, 51, 52, 53, 5
8, 59, 60, 61 and the like are in a closed state. Then, when the atmospheric pressure release step is started based on the predetermined program of the control device 64, the shutoff valve 59 of the sub gas supply pipe 56 is opened first. Next, the variable control valve 60
Continuously opens little by little at a pre-stored speed of the controller 64 to introduce the atmospheric pressure releasing gas, for example, nitrogen (N 2 ) gas into the preliminary chamber 41 (first gas supply step). Note that the variable control valve 61 may be left as it is if it cannot be completely shut off even in the closed state due to its structure.
Open it to the same degree as the maximum opening of 0. In this state, after a certain time has passed, the shutoff valve 59 (or the variable control valve 60)
Is closed, and then the shutoff valve 58 is opened to proceed to the atmospheric pressure releasing step via the main gas supply pipe 55. In this step, the variable control valve 61 is gradually and continuously opened (second gas supply step), and the preliminary chamber 41 is finally released to atmospheric pressure.

【0052】以上の大気圧解放工程の様子をグラフに示
すと、図8の曲線B2に示す通りである。このグラフに
おいて、時間帯dは副気体供給管56による大気圧解放
工程を示し、時間帯eは主気体供給管55による大気圧
解放工程を示している。また、グラフ上の点fは前記時
間帯dと時間帯eとの接点であり、前記時間帯dにおけ
る予備室41の最後の真空度と、前記時間帯eにおける
予備室41の最初の真空度とが一致する点であり、つま
り前記予備室41内の圧力が連続的上がっていることを
示している。
The state of the above atmospheric pressure releasing step is shown in a graph as shown by the curve B2 in FIG. In this graph, the time zone d shows the atmospheric pressure releasing step by the sub gas supply pipe 56, and the time zone e shows the atmospheric pressure releasing step by the main gas supply tube 55. The point f on the graph is the contact point between the time zone d and the time zone e, and the final vacuum degree of the preliminary chamber 41 in the time zone d and the first vacuum degree of the preliminary chamber 41 in the time zone e. Are coincident with each other, which means that the pressure in the preliminary chamber 41 is continuously increased.

【0053】前記図8に示した大気圧解放工程の制御方
法は、予め実験により求められる二つの条件、つまり急
激な大気圧解放により前記予備室41内に気体中の水分
の凝結が発生しないこと及び前記予備室41内のごみを
巻き上げないことの条件を満たし、この条件下における
最大限の大気圧解放能力すなわち最小の大気圧解放時間
が実現するように予め設定されている。そして、その実
行制御は、前記制御装置64が真空度測定端子63及び
気圧測定端子62からの検出値をフィードバックし、遮
断弁58,59及び可変制御弁60,61を総合的に制
御することにより行っている。このように真空容器であ
る予備室41内を真空状態から大気圧に解放するに際し
て、前記予備室41内に比較的小径の副気体供給管56
の弁開度を連続的開いて気体を供給し、次いで比較的大
径の主気体供給管55の弁開度を連続的に開いて気体を
供給するため、急激な圧力変化を伴わず、気体の凝縮液
化やごみの巻き上げを抑えて予備室41内を迅速に大気
圧に解放することができる。
The control method of the atmospheric pressure releasing step shown in FIG. 8 is such that the condensation of water in the gas does not occur in the preliminary chamber 41 due to two conditions preliminarily obtained by experiments, that is, the rapid atmospheric pressure release. It is preset so as to satisfy the condition that the dust in the spare chamber 41 is not rolled up and to realize the maximum atmospheric pressure release capability, that is, the minimum atmospheric pressure release time under this condition. The execution control is performed by the control device 64 feeding back the detection values from the vacuum degree measurement terminal 63 and the atmospheric pressure measurement terminal 62, and comprehensively controlling the cutoff valves 58 and 59 and the variable control valves 60 and 61. Is going. As described above, when the inside of the preliminary chamber 41, which is a vacuum container, is released from the vacuum state to the atmospheric pressure, the auxiliary gas supply pipe 56 having a relatively small diameter is provided in the preliminary chamber 41.
Is continuously opened to supply gas, and then the valve opening of the main gas supply pipe 55 having a relatively large diameter is continuously opened to supply gas, so that gas is not abruptly changed. It is possible to quickly release the inside of the preparatory chamber 41 to the atmospheric pressure while suppressing the condensation and liquefaction of the above and the winding of dust.

【0054】なお、本発明は、前記実施例に限定される
ものではなく、本発明の要旨の範囲内で種々の変形実施
が可能である。例えば、被処理体としては、少なくとも
面状の被処理体であればよく、半導体ウエハW以外に、
例えばLCD基板等が適用可能である。更に、本発明
は、熱処理装置1に限らず半導体ウエハWやLCD基板
の如くごみの付着を防いで大気圧から所定の圧力に減圧
したり、逆に所定の減圧状態から大気圧に復帰させる装
置であれば、どのようなものにも適用することができ、
例えばエッチング装置、スパッタ装置、イオン注入装
置、枚葉処理式CVD装置、PVD装置やこれら装置の
ロードロック室(予備室)等にも適用可能である。特
に、クラスタロール構造の各室の真空引きに有効であ
る。
The present invention is not limited to the above embodiment, but various modifications can be made within the scope of the gist of the present invention. For example, the object to be processed may be at least a planar object to be processed, and in addition to the semiconductor wafer W,
For example, an LCD substrate or the like can be applied. Further, the present invention is not limited to the heat treatment apparatus 1, but is an apparatus for preventing the adhesion of dust such as a semiconductor wafer W or an LCD substrate to reduce the atmospheric pressure to a predetermined pressure, or vice versa. So you can apply it to anything,
For example, it can be applied to an etching device, a sputtering device, an ion implantation device, a single-wafer processing CVD device, a PVD device, a load lock chamber (preliminary chamber) of these devices, and the like. In particular, it is effective for vacuuming each chamber of the cluster roll structure.

【0055】[0055]

【発明の効果】以上要するに本発明によれば、次のよう
な優れた効果が得られる。
In summary, according to the present invention, the following excellent effects can be obtained.

【0056】(1)請求項1記載の発明によれば、少な
くとも主排気減圧工程を真空容器内の気体に含まれる水
分の凝縮液化が生じない最大の減圧速度で実行するた
め、真空容器の圧力が急激に減圧されることなく速やか
に減圧されることになり、圧力容器内の気体に含まれる
水分の凝縮液化に起因する被処理体表面へのごみの付着
が解消されると共に、減圧工程に要する時間が短縮され
る。
(1) According to the first aspect of the invention, at least the main evacuation depressurization step is executed at the maximum depressurization speed at which the condensation and liquefaction of the water contained in the gas in the vacuum vessel does not occur, so that the pressure in the vacuum vessel is reduced. Will be decompressed rapidly without being decompressed rapidly, and the adhesion of dust to the surface of the object to be processed due to the condensation and liquefaction of the water contained in the gas in the pressure vessel is eliminated, and the decompression step is performed. The time required is reduced.

【0057】(2)請求項2記載の発明によれば、真空
容器内の気体を水分の除去された不活性ガスにより置換
した後、副排気系を動作させて前記真空容器内を減圧す
る副排気減圧工程と、この副排気減圧工程後に主排気系
を動作させて前記真空容器内を減圧する主排気減圧工程
とを行うため、真空容器内の気体の凝縮液化を伴わずに
真空容器の圧力を迅速に減圧することが可能となり、被
処理体表面へのごみの付着の防止及び減圧時間の短縮が
図れる。
(2) According to the invention of claim 2, after replacing the gas in the vacuum container with an inert gas from which water has been removed, the auxiliary exhaust system is operated to reduce the pressure in the vacuum container.
Sub-exhaust depressurization process and the main exhaust system after this sub-exhaust depressurization process
Main exhaust depressurization step to depressurize the inside of the vacuum container by operating the
To perform the bets, it is possible to quickly reduce the pressure of the vacuum container without condensation liquefaction of gas in the vacuum chamber, it can be shortened to prevent and decompression time of dust adhering to the surface of the object.

【0058】(3)請求項3記載の発明によれば、真空
容器内に水分の除去された不活性ガスを供給し状態
前記副排気系を動作させて前記真空容器内を減圧す
る副排気減圧工程と、この副排気減圧工程後に前記主排
気系を動作させて前記真空容器内を減圧する主排気減圧
工程とを具備しているため、真空容器内の気体の凝縮液
化を抑えて真空容器の圧力を迅速に減圧することが可能
となり、被処理体表面へのごみの付着の減少及び減圧時
間の短縮が図れる。また、この場合、真空容器内に供給
される不活性ガスの気体分子の持つ運動エネルギーによ
って、その気体分子が真空容器の内壁に吸着した吸着分
子に衝突することにより吸着分子が真空容器の内壁から
放出されるため、真空容器を短時間で高真空に減圧する
ことが可能となる。
[0058] (3) According to the third aspect of the present invention, while supplying the water removal inert gas into the vacuum vessel, depressurizing the vacuum vessel by operating the auxiliary exhaust system Since the auxiliary exhaust depressurizing step and the main exhaust depressurizing step of operating the main exhaust system to depressurize the inside of the vacuum container after the auxiliary exhaust depressurizing step are provided, it is possible to suppress condensation and liquefaction of gas in the vacuum container. It is possible to quickly reduce the pressure in the vacuum container, and it is possible to reduce the adhesion of dust to the surface of the object to be processed and the time for reducing the pressure. In this case, the kinetic energy of the gas molecules of the inert gas supplied into the vacuum container causes the gas molecules to collide with the adsorbed molecules adsorbed on the inner wall of the vacuum container, so that the adsorbed molecules are separated from the inner wall of the vacuum container. Since it is released, the vacuum container can be depressurized to a high vacuum in a short time.

【0059】(4)請求項4記載の発明によれば、真空
容器の圧力を大気圧から所定の圧力まで排気するに際し
て、前記真空容器内を比較的小径の副排気管の弁開度を
連続的に開いて排気した後、比較的大径の主排気管の弁
開度を連続的に開いて排気するため、急激な圧力変化を
伴わず、気体の凝縮液化やごみの巻き上げを抑えて真空
容器内を迅速に真空引きすることが可能となる。
(4) According to the invention described in claim 4, when exhausting the pressure of the vacuum container from atmospheric pressure to a predetermined pressure , the valve opening of the auxiliary exhaust pipe having a relatively small diameter is continuously maintained in the vacuum container. after evacuating to open, in order to relatively exhausting valve opening of the large diameter of the main exhaust pipe continuously open, without rapid pressure changes, by suppressing the winding condensed and dust gas It is possible to quickly evacuate the inside of the vacuum container.

【0060】(5)請求項5記載の発明によれば、先ず
真空容器内を排気しながら同真空容器内に水分の除去さ
れた気体を供給して所定の圧力まで復帰させるため、気
体の供給による真空容器内のごみの巻き上げがあったと
しても、この巻き上げられたごみを真空容器外に排出す
ることができ、次に前記排気を停止させると共に、前記
真空容器内に前記気体を供給して大気圧まで復帰させる
ため、気体の凝縮液化を伴わずに真空容器の圧力を迅速
に大気圧まで復帰させることができ、被処理体表面への
ごみの付着の防止及び常圧復帰時間の短縮が図れる。
(5) According to the fifth aspect of the present invention, first, while the vacuum container is being evacuated, the gas from which moisture has been removed is supplied to the vacuum container to restore the pressure to a predetermined level. Even if the dust in the vacuum container is rolled up by the, the rolled up dust can be discharged to the outside of the vacuum container, and then the exhaust is stopped and the gas is supplied into the vacuum container. Since the pressure is returned to atmospheric pressure, the pressure in the vacuum container can be quickly returned to atmospheric pressure without condensing and liquefying the gas, preventing dust from adhering to the surface of the object to be processed and shortening the normal pressure return time. Can be achieved.

【0061】(6)請求項6記載の発明によれば、前記
気体の供給流量が前記圧力復帰工程で小から大に制御さ
れるたため、常圧復帰時間を更に短縮できる。
(6) According to the sixth aspect of the invention, since the supply flow rate of the gas is controlled from small to large in the pressure returning step, the normal pressure returning time can be further shortened.

【0062】(7)請求項7記載の発明によれば、前記
気体が水分除去装置で水分を除去された不活性ガスであ
るため、容易に水分を除去された不活性ガスを真空容器
内に速やかに供給することができ、被処理体表面へのご
みの付着の防止及び常圧復帰時間の短縮を更に助長でき
る。
(7) According to the invention of claim 7, since the gas is an inert gas from which water has been removed by a water removing device, the inert gas from which water has been easily removed is placed in a vacuum container. It can be promptly supplied, and it is possible to further promote the prevention of adhesion of dust to the surface of the object to be processed and the shortening of the normal pressure recovery time.

【0063】(8)請求項8記載の発明によれば、真空
容器内を真空状態から大気圧に解放するに際して、前記
真空容器内に比較的小径の副気体供給管の弁開度を連続
的に開いて気体を供給した後、比較的大径の主気体供給
管の弁開度を連続的に開いて気体を供給するため、急激
な圧力変化を伴わず、気体の凝縮液化やごみの巻き上げ
を抑えて真空容器内を迅速に大気圧に解放することが可
能となる。
(8) According to the invention described in claim 8, when the inside of the vacuum container is released from the vacuum state to the atmospheric pressure, the valve opening of the auxiliary gas supply pipe having a relatively small diameter is continuously set in the vacuum container. After the gas is opened and supplied with gas, the valve opening of the main gas supply pipe with a relatively large diameter is continuously opened to supply the gas, so there is no sudden pressure change, and the gas does not condense and liquefy. It is possible to suppress the winding and quickly release the inside of the vacuum container to the atmospheric pressure.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を熱処理装置に適用した一実施例を示す
構成図である。
FIG. 1 is a configuration diagram showing an embodiment in which the present invention is applied to a heat treatment apparatus.

【図2】減圧工程における圧力と時間の関係を示すグラ
フである。
FIG. 2 is a graph showing the relationship between pressure and time in the depressurization step.

【図3】減圧工程における圧力と時間の関係を示すグラ
フである。
FIG. 3 is a graph showing a relationship between pressure and time in a depressurizing step.

【図4】減圧工程において窒素ガスを供給する場合の供
給方法及び圧力と時間の関係を示すグラフである。
FIG. 4 is a graph showing a supply method and a relationship between pressure and time when supplying nitrogen gas in a depressurizing step.

【図5】減圧工程において窒素ガスを供給する場合の供
給方法を説明するグラフである。
FIG. 5 is a graph illustrating a supply method when supplying nitrogen gas in the depressurizing step.

【図6】常圧復帰工程における圧力と時間の関係を示す
グラフである。
FIG. 6 is a graph showing the relationship between pressure and time in the normal pressure recovery step.

【図7】本発明の別の実施例を示す概略ブロック図であ
る。
FIG. 7 is a schematic block diagram showing another embodiment of the present invention.

【図8】真空引き工程における圧力と時間の関係を示す
グラフである。
FIG. 8 is a graph showing a relationship between pressure and time in a vacuuming process.

【図9】大気圧解放工程における圧力と時間の関係を示
すグラフである。
FIG. 9 is a graph showing a relationship between pressure and time in an atmospheric pressure releasing step.

【図10】熱処理装置で半導体ウエハの処理を行う場合
のタイムチャートを示す図である。
FIG. 10 is a diagram showing a time chart when a semiconductor wafer is processed by a heat treatment apparatus.

【図11】半導体ウエハの表面にごみが付着する状況を
説明する図である。
FIG. 11 is a diagram illustrating a situation in which dust adheres to the surface of a semiconductor wafer.

【符号の説明】[Explanation of symbols]

1 熱処理装置 W 半導体ウエハ(被処理体) 4 反応管(真空容器) 23 排気管(主排気系) 27 副排気管(副排気系) 31 制御装置 41 予備室(真空容器) 47 主排気管 48 副排気管 55 主気体供給管 56 副気体供給管 1 Heat treatment equipment W Semiconductor wafer (Processing object) 4 Reaction tube (vacuum container) 23 Exhaust pipe (main exhaust system) 27 Sub exhaust pipe (sub exhaust system) 31 Control device 41 Spare chamber (vacuum container) 47 Main exhaust pipe 48 auxiliary exhaust pipe 55 Main gas supply pipe 56 Sub gas supply pipe

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−99051(JP,A) 特開 平6−93427(JP,A) 特開 平3−144281(JP,A) 特開 平2−305383(JP,A) 特開 平6−179063(JP,A) 特開 平4−362712(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 3/00 - 3/08 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-6-99051 (JP, A) JP-A-6-93427 (JP, A) JP-A-3-144281 (JP, A) JP-A-2- 305383 (JP, A) JP-A-6-179063 (JP, A) JP-A-4-362712 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) B01J 3/00-3 / 08

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 排気流量の大きい主排気系と排気流量の
小さい副排気系を備えた真空容器の圧力を大気圧から所
定の圧力まで減圧するに際して、前記副排気系を動作さ
せて前記真空容器内を減圧する副排気減圧工程と、この
副排気減圧工程後に前記主排気系を動作させて前記真空
容器内を減圧する主排気減圧工程とを備え、少なくとも
主排気減圧工程を前記真空容器内の気体に含まれる水分
の凝縮液化が生じない最大の減圧速度で実行することを
特徴とする真空容器の圧力制御方法。
1. When reducing the pressure of a vacuum container having a main exhaust system having a large exhaust flow rate and a sub exhaust system having a small exhaust flow rate from atmospheric pressure to a predetermined pressure, the sub exhaust system is operated to operate the vacuum container. A sub-exhaust depressurizing step for depressurizing the inside, and a main exhaust depressurizing step for depressurizing the inside of the vacuum container by operating the main exhaust system after the sub-exhaust depressurizing step, at least a main exhaust depressurizing step in the vacuum container A pressure control method for a vacuum container, which is executed at a maximum depressurization rate at which condensation of water contained in gas does not occur.
【請求項2】 排気流量の大きい主排気系と排気流量の
小さい副排気系を備えた真空容器の圧力を大気圧から所
定の圧力まで減圧するに際して、前記真空容器内の気体
を水分の除去された不活性ガスにより置換するガス置換
工程と、このガス置換工程後に前記副排気系を動作させ
て前記真空容器内を減圧する副排気減圧工程と、この副
排気減圧工程後に前記主排気系を動作させて前記真空容
器内を減圧する主排気減圧工程とを具備したことを特徴
とする真空容器の圧力制御方法。
2. When reducing the pressure of a vacuum container equipped with a main exhaust system with a large exhaust flow rate and a sub exhaust system with a small exhaust flow rate from atmospheric pressure to a predetermined pressure, the gas in the vacuum container is dewatered. A gas replacement step of replacing with an inert gas, an auxiliary exhaust pressure reducing step of operating the auxiliary exhaust system to reduce the pressure in the vacuum container after the gas replacement step, and an operation of the main exhaust system after the auxiliary exhaust pressure reducing step. And a main exhaust depressurization step of depressurizing the inside of the vacuum container.
【請求項3】 排気流量の大きい主排気系と排気流量の
小さい副排気系を備えた真空容器の圧力を大気圧から所
定の圧力まで減圧するに際して、前記真空容器内に水分
の除去された不活性ガスを供給し状態で前記副排気
系を動作させて前記真空容器内を減圧する副排気減圧工
程と、この副排気減圧工程後に前記主排気系を動作させ
て前記真空容器内を減圧する主排気減圧工程とを具備し
ことを特徴とする真空容器の圧力制御方法。
3. When reducing the pressure of a vacuum container equipped with a main exhaust system with a large exhaust flow rate and a sub-exhaust system with a small exhaust flow rate from atmospheric pressure to a predetermined pressure, the water content in the vacuum container is not removed. while supplying the inert gas, the pressure reducing and auxiliary exhaust depressurizing step of auxiliary exhaust system is operated to reduce the pressure within the vacuum vessel, the auxiliary exhaust reduced pressure after the step to operate the main exhaust system wherein the vacuum chamber comprising a main exhaust decompression step of
A method for controlling pressure in a vacuum container, comprising:
【請求項4】 比較的大径の主排気管と比較的小径の副
排気管とを備えた真空容器の圧力を大気圧から所定の圧
力まで排気するに際して、前記真空容器内を前記副排気
管の弁開度を連続的に開いて排気する第1の排気工程
と、この第1の排気工程後に前記主排気管の弁開度を連
続的に開いて排気する第2の排気工程とを具備したこと
を特徴とする真空容器の圧力制御方法。
4. When the pressure of a vacuum container provided with a main exhaust pipe having a relatively large diameter and a sub exhaust pipe having a relatively small diameter is exhausted from atmospheric pressure to a predetermined pressure, the inside of the vacuum container is the auxiliary exhaust pipe. A first exhaust step of continuously opening the valve opening of the main exhaust pipe and a second exhaust step of continuously opening the valve opening of the main exhaust pipe after the first exhaust step A method for controlling a pressure in a vacuum container, comprising:
【請求項5】 真空容器の圧力を所定の減圧状態から大
気圧まで復帰させるに際して、前記真空容器内を排気し
ながら同真空容器内に水分の除去された気体を供給して
所定の圧力まで復帰させる初期圧力復帰工程と、この初
期圧力復帰工程後に前記排気を停止させると共に、前記
真空容器内に前記気体を供給して大気圧まで復帰させる
主圧力復帰工程とを備えたことを特徴とする真空容器の
圧力制御方法。
5. When returning the pressure of the vacuum container from a predetermined depressurized state to atmospheric pressure, while exhausting the inside of the vacuum container, a gas from which moisture has been removed is supplied to the vacuum container to return to the predetermined pressure. A vacuum characterized by comprising an initial pressure restoring step of: and a main pressure restoring step of stopping the exhaust after the initial pressure returning step and supplying the gas into the vacuum container to restore the atmospheric pressure. Container pressure control method.
【請求項6】 前記気体の供給流量が、前記初期圧力復
帰工程から主圧力復帰工程にかけて小から大に制御され
ることを特徴とする請求項5記載の真空容器の圧力制御
方法。
6. The pressure control method for a vacuum container according to claim 5, wherein the supply flow rate of the gas is controlled from small to large from the initial pressure returning step to the main pressure returning step.
【請求項7】 前記気体が、水分除去装置で水分を除去
された不活性ガスであることを特徴とする請求項5又は
6記載の真空容器の圧力制御方法。
7. The pressure control method for a vacuum container according to claim 5, wherein the gas is an inert gas from which water has been removed by a water removing device.
【請求項8】 比較的大径の主気体供給管と比較的小径
の副気体供給管とを備えた真空容器の圧力を真空状態か
ら大気圧に解放するに際して、前記真空容器内に前記副
気体供給管の弁開度を連続的に開いて気体を供給する第
1の気体供給工程と、この第1の気体供給工程後に前記
主気体供給管の弁開度を連続的に開いて気体を供給する
第2の気体供給工程とを具備したことを特徴とする真空
容器の圧力制御方法。
8. When releasing the pressure of a vacuum container provided with a main gas supply pipe having a relatively large diameter and a sub gas supply pipe having a relatively small diameter from a vacuum state to atmospheric pressure, the sub gas in the vacuum container A first gas supply step of continuously supplying the gas by opening the valve opening of the supply pipe, and a gas being supplied by continuously opening the valve opening of the main gas supply tube after the first gas supplying step. And a second gas supply step for controlling the pressure of the vacuum container.
JP14557294A 1993-12-24 1994-06-03 Vacuum vessel pressure control method Expired - Lifetime JP3471077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14557294A JP3471077B2 (en) 1993-12-24 1994-06-03 Vacuum vessel pressure control method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-347864 1993-12-24
JP34786493 1993-12-24
JP14557294A JP3471077B2 (en) 1993-12-24 1994-06-03 Vacuum vessel pressure control method

Publications (2)

Publication Number Publication Date
JPH07227534A JPH07227534A (en) 1995-08-29
JP3471077B2 true JP3471077B2 (en) 2003-11-25

Family

ID=26476649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14557294A Expired - Lifetime JP3471077B2 (en) 1993-12-24 1994-06-03 Vacuum vessel pressure control method

Country Status (1)

Country Link
JP (1) JP3471077B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6406553B1 (en) 1999-08-03 2002-06-18 Applied Materials, Inc. Method to reduce contaminants from semiconductor wafers
US7381969B2 (en) * 2006-04-24 2008-06-03 Axcelis Technologies, Inc. Load lock control
US8113757B2 (en) 2006-08-01 2012-02-14 Tokyo Electron Limited Intermediate transfer chamber, substrate processing system, and exhaust method for the intermediate transfer chamber
JP5037058B2 (en) * 2006-08-01 2012-09-26 東京エレクトロン株式会社 Intermediate transfer chamber, substrate processing system, and exhaust method for intermediate transfer chamber

Also Published As

Publication number Publication date
JPH07227534A (en) 1995-08-29

Similar Documents

Publication Publication Date Title
US4985372A (en) Method of forming conductive layer including removal of native oxide
WO1996025760A1 (en) Method and device for manufacturing semiconductor
JP3396431B2 (en) Oxidation treatment method and oxidation treatment device
JPH04245627A (en) Cleaning method of processing vessel
JP3471077B2 (en) Vacuum vessel pressure control method
JP2011040636A (en) Gas port structure and processing apparatus
JP3575240B2 (en) Method for manufacturing semiconductor device
JP3543949B2 (en) Heat treatment equipment
JP2008010619A (en) Etching method and recording medium
JPH0254751A (en) Metallic oxidation treatment apparatus
JPH1112738A (en) Cvd film forming method
JP2010109335A (en) Removing method and processing device for silicon oxide film
US6596091B1 (en) Method for sweeping contaminants from a process chamber
JP2023138317A (en) Gas cleaning method, manufacturing method for semiconductor device, substrate processing method, program, and substrate processing device
JP2003332322A (en) Apparatus and method for processing substrate
JP2000040669A (en) Semiconductor vacuum equipment and use thereof
JP3058909B2 (en) Cleaning method
JPH0729962A (en) Method and device for evacuation
JPH05326477A (en) Method for removal of halogen from semiconductor substrate surface
JP3374256B2 (en) Heat treatment apparatus and cleaning method thereof
JP5597433B2 (en) Vacuum processing equipment
JP7394115B2 (en) Substrate processing equipment, semiconductor device manufacturing method, substrate support, and processing method thereof
JP3058655B2 (en) Wafer diffusion processing method and wafer heat treatment method
JP3582784B2 (en) Substrate processing apparatus and substrate processing method
WO2024057590A1 (en) Exhaust structure, exhaust system, processing device, and method for manufacturing semiconductor device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090912

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140912

Year of fee payment: 11

EXPY Cancellation because of completion of term