JPH02303075A - Manufacture of thermoelectric element - Google Patents
Manufacture of thermoelectric elementInfo
- Publication number
- JPH02303075A JPH02303075A JP1121534A JP12153489A JPH02303075A JP H02303075 A JPH02303075 A JP H02303075A JP 1121534 A JP1121534 A JP 1121534A JP 12153489 A JP12153489 A JP 12153489A JP H02303075 A JPH02303075 A JP H02303075A
- Authority
- JP
- Japan
- Prior art keywords
- iron silicide
- thermoelectric element
- heated
- coating film
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 64
- 229910052742 iron Inorganic materials 0.000 claims abstract description 34
- 229910021332 silicide Inorganic materials 0.000 claims abstract description 30
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims abstract description 30
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 9
- 238000010438 heat treatment Methods 0.000 claims abstract description 9
- 239000001301 oxygen Substances 0.000 claims abstract description 9
- 238000000576 coating method Methods 0.000 claims abstract description 8
- 239000011248 coating agent Substances 0.000 claims abstract description 7
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 6
- 238000000034 method Methods 0.000 claims description 7
- 238000004544 sputter deposition Methods 0.000 claims description 2
- 238000001771 vacuum deposition Methods 0.000 claims 1
- 229910052719 titanium Inorganic materials 0.000 abstract description 16
- 230000015572 biosynthetic process Effects 0.000 abstract description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 4
- 230000006866 deterioration Effects 0.000 abstract description 4
- 239000007789 gas Substances 0.000 abstract description 4
- 230000003647 oxidation Effects 0.000 abstract description 4
- 238000007254 oxidation reaction Methods 0.000 abstract description 4
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 229910052726 zirconium Inorganic materials 0.000 description 15
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000001704 evaporation Methods 0.000 description 5
- 230000008020 evaporation Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 239000010410 layer Substances 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Landscapes
- Silicon Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は熱電素子の製造方法に係り、特に、珪化鉄熱電
素子の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a thermoelectric element, and particularly to a method for manufacturing an iron silicide thermoelectric element.
(従来の技術〕
従来、「エネルギー変換技術−1984jp123〜p
133に記載のような珪化鉄熱電素子の製造方法が知ら
れている。これは、珪化鉄中にSiOを形成し、さらに
、Mnを混入することで、高性能の珪化鉄熱電素子を作
成する手法である。(Conventional technology) Previously, "Energy conversion technology-1984jp123-p
A method of manufacturing an iron silicide thermoelectric element as described in No. 133 is known. This is a method of creating a high-performance iron silicide thermoelectric element by forming SiO in iron silicide and further mixing Mn.
従来技術を用いて作成した珪化鉄は、大気中で加熱する
と、第2図に示すように、数分で熱起電力が低下する。When iron silicide produced using the conventional technique is heated in the atmosphere, the thermoelectromotive force decreases in a few minutes, as shown in FIG.
この原因は、大気中の酸素と珪化鉄中のSiOとが反応
し、より安定な5iOzの形成が内部にまで進行したこ
とに起因する。The reason for this is that oxygen in the atmosphere reacts with SiO in the iron silicide, and the formation of more stable 5iOz progresses into the interior.
本発明の目的は、内部に進行する5iOzの形成を防止
し、珪化鉄の熱電特性を低下させない手法を提供するこ
とにある。An object of the present invention is to provide a method that prevents the formation of 5iOz from proceeding inside and does not reduce the thermoelectric properties of iron silicide.
本発明はこの目的を達成するために、SiおよびFeを
主成分とする珪化鉄素子にTi、もしくは、Zrをコー
ティングし、酸素を含む雰囲気で加熱することによって
、珪化鉄と良好な密着性をもつ不動態膜を形成すること
を特徴とする。In order to achieve this object, the present invention coats an iron silicide element mainly composed of Si and Fe with Ti or Zr and heats it in an oxygen-containing atmosphere to achieve good adhesion to the iron silicide. It is characterized by forming a passive film with
本発明による製造方法を以下説明する。珪化鉄熱電素子
1を第1図に示す真空容器2の上部に設置し、蒸発るつ
ぼ3からTiもしくはZrを真空蒸着する0次に一コー
ティングした試料を、第3図に示す加熱炉に移し、真空
雰囲気中で試料を加熱する。これによって、TiやZr
は珪化鉄の表面近傍に拡散し、密着性の良いコーテイン
グ膜となる。また、表面近傍は、第4図のようにFe。The manufacturing method according to the present invention will be explained below. The iron silicide thermoelectric element 1 was placed on the upper part of the vacuum container 2 shown in FIG. 1, and the sample coated with Ti or Zr by vacuum evaporation from the evaporation crucible 3 was transferred to the heating furnace shown in FIG. 3. Heat the sample in a vacuum atmosphere. By this, Ti and Zr
diffuses near the surface of iron silicide, forming a coating film with good adhesion. In addition, the area near the surface is Fe as shown in FIG.
Si、OとTi、あるいは、Zrの混在層15が形成さ
れる0次に、この試料を酸素を含む雰囲気で加熱すると
、TiやZrの存在する表面近傍では、次の反応が起こ
る。When a mixed layer 15 of Si, O and Ti or Zr is formed, the sample is heated in an oxygen-containing atmosphere, and the following reaction occurs near the surface where Ti and Zr are present.
T i +Oz−*T i 0x
Zr+Oz−+Zr0z
この反応は、厚さ方向に換算すると0.5〜1.0μm
で止まる(即ち、不動態度が形成される)、従つて、こ
れ以上内部に酸化が進行することはない。T i +Oz-*T i 0x Zr+Oz-+Zr0z This reaction is 0.5 to 1.0 μm when converted in the thickness direction.
(that is, an immobile attitude is formed), and therefore, oxidation will not proceed further inside.
また、TiやZrは第5図に示すように、Fe、Siよ
りも酸化物の形成エネルギが大きい、従って、FeやS
iとTiやZrが混在していたとしても、不動態の形成
を阻害することはない、こうして、TiやZrの不動態
度を形成した珪化鉄熱電素子は、この処理を終えた後は
、大気中の酸素が侵入できなくなる。ため、珪化鉄中で
5iOzが形成されず、熱電特性が低下しない。Furthermore, as shown in Figure 5, Ti and Zr have a higher oxide formation energy than Fe and Si.
Even if i and Ti or Zr coexist, it will not inhibit the formation of passivation.The iron silicide thermoelectric element in which Ti and Zr have formed a passive state will be exposed to the atmosphere after this treatment. Oxygen cannot enter inside. Therefore, 5iOz is not formed in iron silicide, and the thermoelectric properties do not deteriorate.
本発明による実施例を以下説明する。5zm角の石英ガ
ラス上に、従来手法で珪化鉄熱電素子1を形成し、珪化
鉄熱電素子1を直径500■程度の真空容器lに装着す
る0次に、真空引きを行ない、真空容器内部を10−6
〜10−BTorrにする0次にTi、もしくは、Zr
を蒸発るつぼ3から蒸発させ、珪化鉄熱電素子1の上に
Ti、もしくは、Zrのコーテイング膜を形成する。珪
化鉄熱電素子1への蒸着量は蒸発速度計5でモニタし、
蒸着量を0.5〜1.0μmとする0次に、この試料を
第2図に示す加熱炉の支持7に装置し、バルブ8を開け
、バルブ9を閉じて真空ポンプ10で真空引きを行ない
、10”−”Torr程度の真空度にする。Examples according to the present invention will be described below. An iron silicide thermoelectric element 1 is formed on a 5 zm square quartz glass using a conventional method, and the iron silicide thermoelectric element 1 is mounted in a vacuum vessel l with a diameter of approximately 500 mm.Next, a vacuum is drawn and the inside of the vacuum vessel is 10-6
0-order Ti or Zr to ~10-BTorr
is evaporated from the evaporation crucible 3 to form a coating film of Ti or Zr on the iron silicide thermoelectric element 1. The amount of vapor deposited on the iron silicide thermoelectric element 1 is monitored with an evaporation rate meter 5,
Next, this sample was placed on the support 7 of the heating furnace shown in FIG. to create a vacuum of about 10"-" Torr.
そして、赤外線ヒータに通電し、Ti、もしくは、Zr
のコーテイング膜を形成した珪化鉄電素子1を500℃
で約二時間加熱する。これによって表面近傍には、第4
図の様なFe、Si、Oと、TiあるいはZrの混在M
15が形成される0次にバルブ8を閉じ、バルブ9を開
けて、酸素を含む雰囲気ガスを入れながら、酸素分圧を
0.1Torr以上に保ち、500℃で約一時間加熱す
る。Then, the infrared heater is energized and the Ti or Zr
The silicide ferroelectric device 1 with the coating film formed thereon was heated to 500°C.
Heat for about two hours. As a result, there is a fourth layer near the surface.
Mixture M of Fe, Si, O, and Ti or Zr as shown in the figure
15 is formed.Next, valve 8 is closed, valve 9 is opened, and while introducing atmospheric gas containing oxygen, the oxygen partial pressure is maintained at 0.1 Torr or more, and heating is performed at 500° C. for about one hour.
これによって、TiやZrの存在する表面近傍では1次
の反応が起こる。As a result, a first-order reaction occurs near the surface where Ti and Zr exist.
T i +Oz−+T i 0z
Zr+Oz→Zr0z
この反応は、厚さ方向に換算すると0.5μmで止まり
、これ以上内部に酸化が進行することはない、すなわち
、珪化鉄熱電素子1の表面に形成した不動態層によって
内部への酸化を防ぐことが°で台、珪化鉄熱電素子の劣
化が防げる。T i +Oz−+T i 0z Zr+Oz→Zr0z This reaction stops at 0.5 μm when calculated in the thickness direction, and oxidation does not proceed further inside. The passive layer prevents internal oxidation and prevents deterioration of the iron silicide thermoelectric element.
また、第6図に示す様な装置によっても、コーテイング
膜を形成することができる。これは、陽極12の上に珪
化鉄熱電素子、1を装着し、陰極13にTi、もしくは
、Zrを装着し、1.0〜2.0kV を印加する。そ
して、ガス導入器14からArなどの不活性ガスを入れ
、放電を起こし。Further, the coating film can also be formed using an apparatus as shown in FIG. In this case, an iron silicide thermoelectric element 1 is mounted on the anode 12, Ti or Zr is mounted on the cathode 13, and 1.0 to 2.0 kV is applied. Then, an inert gas such as Ar is introduced from the gas inlet 14 to generate electric discharge.
TiやZr珪化鉄熱電素子1にスパッタリング蒸着する
。次に、試料を加熱炉に移し、上述した手法で加熱し、
密着性の良い不動態を形成する。Ti or Zr is deposited on the iron silicide thermoelectric element 1 by sputtering. Next, the sample was transferred to a heating furnace and heated using the method described above.
Forms a passive state with good adhesion.
さらに、第7図は、熱起電力の特性図であるが。Furthermore, FIG. 7 is a characteristic diagram of thermoelectromotive force.
600℃程度の加熱では、性能の低下は見られない、即
ち、従来問題とされていた大気中の劣化の防止策として
、本発明で形成した不動態が有効に働くことを示してい
る。No deterioration in performance was observed when heated to about 600°C, indicating that the passive state formed by the present invention works effectively as a preventive measure against deterioration in the atmosphere, which has been a problem in the past.
本発明によれば、珪化鉄表面に密着性の良い不動体を形
成することができる6本発明によって作成した試料の場
合、高温側を使用温度の600℃程度にしても、表面層
が珪化鉄から剥がれることはない。According to the present invention, it is possible to form a passive body with good adhesion on the iron silicide surface.6 In the case of the sample prepared according to the present invention, even if the high temperature side is set to the operating temperature of about 600°C, the surface layer is made of iron silicide. It will never come off.
第1図は本発明に用い、る装置の断面図、第2図は試験
結果を示す熱起電力特性図、第3図は本発明に用いる装
置の断面図、第4図は本発明で作成した試料の断面図、
第5図は自由エネルギの温度特性図、第6図は本発明に
用いる装置の断面図、第7図は本発明で作成した試料の
特性図である。
1・・・珪化鉄熱電素子、2・・・真空容器、3・・・
蒸発るつぼ、4・・・基板、5・・・蒸発速度計、6・
・・赤外線ランプ、7・・・支持板、8,9・・・バル
ブ、10・・・真空ポンプ、11.14・・・ガス導入
器、12・・・陽極。
第1 図
第2 ヱ
加熱時間(Min、)
第321
ム
努4 二
Z+−1
温度(K)
乃 1.)!
第7図Figure 1 is a sectional view of the device used in the present invention, Figure 2 is a thermoelectromotive force characteristic diagram showing test results, Figure 3 is a sectional view of the device used in the present invention, and Figure 4 is created using the present invention. A cross-sectional view of the sample
FIG. 5 is a free energy temperature characteristic diagram, FIG. 6 is a sectional view of the apparatus used in the present invention, and FIG. 7 is a characteristic diagram of a sample prepared according to the present invention. 1... Iron silicide thermoelectric element, 2... Vacuum container, 3...
Evaporation crucible, 4... Substrate, 5... Evaporation rate meter, 6.
... Infrared lamp, 7... Support plate, 8, 9... Valve, 10... Vacuum pump, 11.14... Gas introducer, 12... Anode. Fig. 1 Fig. 2 ヱHeating time (Min,) No. 321 Mutsu 4 2Z+-1 Temperature (K) No 1. )! Figure 7
Claims (1)
もしくは、Zrをコーティングし、酸素を含む雰囲気で
加熱することによつて、珪化鉄と良好な密着性をもつ不
動態膜を形成することを特徴とする熱電素子の製造方法
。 2、特許請求の範囲第1項において、 前記コーティングの手法として、真空蒸着、もしくは、
スパッタリング法を用いることを特徴とする熱電素子の
製造方法。 3、特許請求の範囲第1項において、 まず、真空中で加熱し、次に酸素雰囲気中で加熱する二
段階の加熱プロセスを行なうことを特徴とする熱電素子
の製造方法。[Claims] 1. An iron silicide element containing Si and Fe as main components;
Alternatively, a method for producing a thermoelectric element, which comprises coating Zr and heating it in an oxygen-containing atmosphere to form a passive film that has good adhesion to iron silicide. 2. In claim 1, the coating method includes vacuum deposition, or
A method for manufacturing a thermoelectric element, characterized by using a sputtering method. 3. A method for manufacturing a thermoelectric element according to claim 1, characterized in that a two-step heating process is performed, first heating in a vacuum and then heating in an oxygen atmosphere.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1121534A JPH02303075A (en) | 1989-05-17 | 1989-05-17 | Manufacture of thermoelectric element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1121534A JPH02303075A (en) | 1989-05-17 | 1989-05-17 | Manufacture of thermoelectric element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02303075A true JPH02303075A (en) | 1990-12-17 |
Family
ID=14813623
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1121534A Pending JPH02303075A (en) | 1989-05-17 | 1989-05-17 | Manufacture of thermoelectric element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02303075A (en) |
-
1989
- 1989-05-17 JP JP1121534A patent/JPH02303075A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2004241203A (en) | Treatment method of plasma treatment chamber wall | |
JPH0578844A (en) | Amorphous thin film having solid lubricity and its production thereof | |
US3669724A (en) | Method of vapor depositing a tungsten-tungsten oxide coating | |
Thuillard et al. | Al3Ti formation by diffusion of aluminum through titanium | |
US3560364A (en) | Method for preparing thin unsupported films of silicon nitride | |
JPH02138469A (en) | Material for vacuum having diamond surface, surface treatment of this material for vacuum production, of diamond film surface, vacuum vessel and its parts formed by using material for vacuum, in-vacuum driving mechanism, electron release source, in-vacuum heater and vessel of vapor deposition source | |
JPH02303075A (en) | Manufacture of thermoelectric element | |
JP2741745B2 (en) | Semiconductor electrode forming method and apparatus | |
US4214018A (en) | Method for making adherent pinhole free aluminum films on pyroelectric and/or piezoelectric substrates | |
JPS60197730A (en) | Formation of polyimide film | |
JPH04362017A (en) | Formation of oriented ta2o5 thin film | |
JPS62261128A (en) | Manufacture of mos type semiconductor device | |
JPS5840831A (en) | Semiconductor device | |
CN111206213B (en) | AlN amorphous film and preparation method thereof | |
JPS61128521A (en) | Manufacture of semiconductor device | |
JPH01104763A (en) | Production of thin metal compound film | |
JP2743707B2 (en) | Glass with mixed coating and method for producing the same | |
JPS5973413A (en) | Insulating material of thin film and its preparation | |
JP2000348902A (en) | Manufacture of thermistor thin film | |
JPH10265935A (en) | Ultra-high vacuum vessel and ultra-high vacuum parts | |
JP2000054114A (en) | Film structure excellent in heat and wear resistance | |
RU2179345C1 (en) | Manufacturing process for tritium beta-ray source | |
JPH0492897A (en) | Method and apparatus for chemical vapor-phase growth of tantalum oxide film | |
JPH01225767A (en) | Production of silicon nitride film | |
JPS59218732A (en) | Formation of semiconductor protective film |