JPH10265815A - Operation of smelting reduction furnace - Google Patents

Operation of smelting reduction furnace

Info

Publication number
JPH10265815A
JPH10265815A JP7314997A JP7314997A JPH10265815A JP H10265815 A JPH10265815 A JP H10265815A JP 7314997 A JP7314997 A JP 7314997A JP 7314997 A JP7314997 A JP 7314997A JP H10265815 A JPH10265815 A JP H10265815A
Authority
JP
Japan
Prior art keywords
raw material
tuyere
heat
amount
moisture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7314997A
Other languages
Japanese (ja)
Inventor
Yoshiaki Hara
義明 原
Natsuo Ishiwatari
夏生 石渡
Shoji Miyagawa
昌治 宮川
Hiroshi Itaya
宏 板谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP7314997A priority Critical patent/JPH10265815A/en
Publication of JPH10265815A publication Critical patent/JPH10265815A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably recover valuable metal from moisture-containing sludge containing metallic oxide and/or metallic hydroxide. SOLUTION: A vertical furnace having plural tuyeres for blowing high temp. air into a packing layer of the carbon base solid reducing agent and arranged in at least two steps, is used and the moisture-containing powdery and granular metallic oxide and/or metallic hydroxide-containing raw material is injected from at least the upper step tuyere and enriched oxygen quantity for blowing from the upper step tuyere is changed according to the moisture content in the raw material. By this method, the moisture content in the raw material can effectively correspond to about 40%, and the temp. at the front of the tuyere is secured, and the operation is stably executed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属酸化物及び/
又は金属水酸化物を含有する含水スラジを溶融還元して
有価金属を回収する方法に関する。
TECHNICAL FIELD The present invention relates to a metal oxide and / or metal oxide.
Alternatively, the present invention relates to a method for recovering valuable metals by melting and reducing hydrous sludge containing metal hydroxide.

【0002】[0002]

【従来の技術】地下資源としての鉄鉱石、クロム鉱石な
どの金属酸化物の形態としては、塊状のものよりも粉状
のものが大半であり、将来さらに粉状鉱石が増大するも
のと予想される。このような鉱石を粉状のままで直接使
用することが省エネルギー、製造コストなどの面で有利
となる。また、製鉄所等で発生するダストやスラジには
有価金属が含有されているものが多いが、処理方法がな
くて廃棄されているものや、再使用されているものの処
理コストが高いか、あるいは、回収歩留りが低い等の問
題を有しているものがある。これらのダストやスラジの
固形分は大部分、粉粒状であり、直接処理できれば省エ
ネルギー、製造コスト、環境保護上有利となる。
2. Description of the Related Art The form of metal oxides such as iron ore and chromium ore as underground resources is mostly powdery rather than lump, and it is expected that powdery ore will further increase in the future. You. Direct use of such an ore as it is in powder form is advantageous in terms of energy saving and production cost. In addition, dust and sludge generated in steelworks and the like often contain valuable metals, but those that have been discarded without a treatment method or that have been reused have high disposal costs, or Some have problems such as a low recovery yield. Most of the solid content of these dusts and sludges is in the form of powder and granules, and if it can be directly treated, it is advantageous in energy saving, production cost, and environmental protection.

【0003】このような粉粒状の酸化物含有原料を溶融
還元する方法として竪型炉タイプの溶融還元炉が特公昭
59−18452号公報に開示されている。それによる
と、炉下部に設置された高温空気を吹込む上下2段の羽
口のうち、少なくとも上段の羽口から粉状原料を高温空
気とともに竪型炉内に吹込み、炉内に充填した炭材を燃
焼させて溶融還元することを特徴としている。上段およ
び下段羽口を有する竪型炉では、上下羽口間に充填層を
形成している炭材が燃焼して高温が発生する。したがっ
て、上段羽口から吹込まれる原料は加熱されて溶融し、
充填層を滴下する間に固体炭材により直接還元された溶
融状態のメタルおよびスラグを生成し、炉底部に溜ま
る。
A smelting reduction furnace of the vertical furnace type is disclosed in JP-B-59-18452 as a method of smelting and reducing such a powdery oxide-containing raw material. According to the report, the powdery raw material was blown into the vertical furnace together with the high-temperature air from at least the upper tuyere of the upper and lower two-stage tuyeres for blowing high-temperature air installed at the lower part of the furnace, and charged into the furnace. It is characterized by burning and reducing carbonaceous materials. In a vertical furnace having upper and lower tuyeres, a high temperature is generated by burning the carbon material forming a packed bed between the upper and lower tuyeres. Therefore, the raw material blown from the upper tuyere is heated and melted,
During the dropping of the packed bed, metal and slag in a molten state directly reduced by the solid carbon material are generated and accumulated at the furnace bottom.

【0004】上記の技術では、上下羽口間で還元する際
の還元吸熱量が大きいため融体の滴下不良を起こし操業
トラブルの原因となるので、還元吸熱を補償するために
下段羽口から高温空気や酸素富化空気を吹込んでいる。
炭材を充填した竪型溶融還元炉では生成した融体を炉体
に溜めて炉外へ排出するため、羽口破損や冷込みを起こ
さず操業を安定に継続するには、高炉の場合と同様に、
適正な融体温度を確保しなければならない。炭材を充填
した竪型溶融還元炉での安定操業方法として、特開昭6
4−213号公報、特公平3−59966号公報が開示
されている。特開昭64−216号公報は装置条件に応
じて上下羽口間の熱的条件を決めるものであり、特公平
3−59966号公報は羽口冷却水の温度差により送風
条件を制御するものである。
[0004] In the above-mentioned technique, since the amount of heat absorbed by reduction during the reduction between the upper and lower tuyeres is large, it causes dropping of the melt and causes operation trouble. Injects air and oxygen-enriched air.
In a vertical smelting reduction furnace filled with carbon material, the generated melt is stored in the furnace body and discharged outside the furnace.Therefore, in order to maintain stable operation without tuyere damage or cooling, it is necessary to use a blast furnace. Similarly,
An appropriate melt temperature must be ensured. As a stable operation method in a vertical smelting reduction furnace filled with carbonaceous material, see
JP-A-4-213 and JP-B-3-59966 are disclosed. Japanese Unexamined Patent Publication (Kokai) No. 64-216 discloses a technique for determining the thermal condition between the upper and lower tuyeres according to the conditions of the apparatus, and Japanese Patent Publication No. 3-59966 controls the blowing condition by the temperature difference of the tuyere cooling water. It is.

【0005】[0005]

【発明が解決しようとする課題】炭材を充填した竪型溶
融還元炉で水分を多量に含んだスラジを吹込むと熱量不
足又は羽口前温度の低下により内容物が凝固し、操業停
止、炉床の冷え込みが起こる。特に、高炉のように羽口
が一段の場合、羽口より下部に熱補償機能がないため、
多量の水分を吹込むことはできない。これに対して、2
段羽口を有する竪型溶融還元炉では、下段羽口からの熱
補償効果が期待できるため、多量の水分を吹込んでも製
錬できる可能性がある。
When a sludge containing a large amount of water is blown into a vertical smelting reduction furnace filled with carbonaceous material, the content solidifies due to insufficient heat or a decrease in the temperature in front of the tuyere. Cooling of the hearth occurs. Especially when the tuyere has one stage like a blast furnace, there is no heat compensation function below the tuyere.
A large amount of water cannot be blown. In contrast, 2
In a vertical smelting reduction furnace having a stage tuyere, since a heat compensation effect from the lower stage tuyere can be expected, smelting may be possible even if a large amount of water is blown.

【0006】しかし、上記2件の安定操業方法は上下羽
口間での熱的条件を与えてはいるが、水分を含む原料に
ついては考慮しておらず、含水スラジの処理に対して、
十分な条件であるとはいえない。本発明は、金属酸化物
及び/又は金属水酸化物を含有する含水スラジを安定し
て処理するための方法を提供することを目的とする。
[0006] However, although the above two stable operation methods provide thermal conditions between the upper and lower tuyeres, they do not take into account raw materials containing water and do not consider the treatment of hydrous sludge.
Not enough conditions. An object of the present invention is to provide a method for stably treating a hydrous sludge containing a metal oxide and / or a metal hydroxide.

【0007】[0007]

【課題を解決するための手段】本発明は、炭素系固体還
元剤の充填層に高温空気を吹込む上下少なくとも2段に
設けられた複数の羽口を有する竪型炉を用いて、水分を
含む粉粒状の金属酸化物及び/又は金属水酸化物含有原
料を少なくとも上段羽口から吹込み溶融金属を製造する
溶融還元炉の操業方法である。この場合、原料中の水分
の含有量に応じて上段羽口吹き込み富化酸素量の変更、
送風温度の変更、送風量の変更等の手段を用いれば良い
が、送風温度や送風量の変更は、原料中の水分含有量が
5%程度までに効果的に対応することができ、それ以上
の水分含有量では羽口前温度を確保するためには酸素富
化量を変更することが好適である。
SUMMARY OF THE INVENTION According to the present invention, water is removed by using a vertical furnace having a plurality of tuyeres provided in at least two upper and lower stages for blowing high-temperature air into a packed bed of a carbon-based solid reducing agent. This is a method for operating a smelting reduction furnace for producing a molten metal by injecting at least an upper tuyere from a powdery metal oxide and / or metal hydroxide-containing raw material containing the same. In this case, change of the upper tuyere blow-enriched oxygen amount according to the moisture content in the raw material,
Means such as a change in the blast temperature and a change in the blast volume may be used, but the change in the blast temperature and the blast volume can effectively cope with the water content in the raw material up to about 5%, and more. It is preferable to change the oxygen-enriched amount in order to secure the tuyere pre-temperature at the water content of.

【0008】[0008]

【発明の実施の形態】上段および下段羽口を有し、粉状
の金属酸化物及び/又は金属水酸化物を含有する原料を
少なくとも上段羽口から吹込む竪型溶融還元炉では、上
下羽口間に充填層を形成する炭材が加熱された空気によ
り燃焼して高温が発生する。上段羽口から吹込まれた原
料は加熱され、溶融し、充填層を滴下する間に、固体炭
材により直接還元されて溶融状態のメタルおよびスラグ
を生成する。原料中の酸化物および水酸化物の固体炭材
による直接還元反応は大きな吸熱を伴う反応であるが、
この吸熱分は下段羽口からの送風により補償される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In a vertical smelting reduction furnace having upper and lower tuyeres and in which a raw material containing powdered metal oxide and / or metal hydroxide is blown from at least the upper tuyeres, The high temperature is generated by burning the carbon material forming the filling layer between the mouths by the heated air. The raw material blown from the upper tuyere is heated and melted, and is dropped directly by the solid carbon material to form molten metal and slag while dropping the packed bed. The direct reduction reaction of oxides and hydroxides in the raw material with solid carbon is a reaction involving a large endotherm,
This heat absorption is compensated for by blowing air from the lower tuyere.

【0009】上下羽口間に投入される熱量が不足すると
原料中の酸化物および水酸化物の還元反応が遅くなり、
融体は還元反応が完了しないうちに下段羽口より下部に
滴下してしまう。この結果、残りの還元反応が熱補償の
ない下段羽口より下部で生じることになる。還元反応は
大きな吸熱を伴うため、下段羽口より下部で還元反応が
生じると炉床で融体やコークスから熱が奪われ、これが
冷込みの原因となる。上下羽口間に投入される熱量を大
きくし、この領域の温度を上げることにより、還元反応
が十分進行し、炉床の冷え込みを防止することができ
る。
[0009] If the amount of heat supplied between the upper and lower tuyeres is insufficient, the reduction reaction of oxides and hydroxides in the raw material becomes slow,
The melt is dropped below the lower tuyere before the reduction reaction is completed. As a result, the remaining reduction reaction occurs below the lower tuyeres without thermal compensation. Since the reduction reaction involves a large heat absorption, if the reduction reaction occurs below the lower tuyere, heat is removed from the melt or coke in the hearth, which causes cooling. By increasing the amount of heat supplied between the upper and lower tuyeres and raising the temperature in this region, the reduction reaction can proceed sufficiently and the cooling of the hearth can be prevented.

【0010】さらに、原料を吹込む羽口の羽口前理論燃
焼温度(TFT)が低下すると、吹込んだ原料が一気に
溶融せず、ガスとともに炉内を上昇して炉頂から排出し
てしまう。また、吹込んだ羽口前での溶融が遅れるた
め、上下羽口間で還元が完全に終了しなくなる。水分を
含んだ原料は、乾燥した原料に比べて、水分の乾燥及び
コークスと水との反応の分だけ製錬に余分の熱量を必要
とする。また、原料吹込み羽口前のレースウェイ内で吸
熱反応が起こるためTFTが低下する。この入熱量の不
足およびTFTの低下については原理的に吹込み原料当
りの送風量の増加、送風温度の増大、吹込み原料当りの
吹込み羽口富化酸素量の増加で補償することができる。
各要因の入熱量の補償およびTFTの補償に対する効果
を羽口前の空間での熱収支から検討し、図1〜図3に示
す。ここで、〇は実施例の操業点を、□は比較例の操業
点を示す。水分を含まない場合の操業条件は後に示す表
1の実施例1に記載する通りであり、水分を含んだ場合
は、図1〜図3のそれぞれにおいて富化酸素量、送風温
度、送風量のうちひとつだけを変更し、それ以外の条件
は一定で操業した。原料供給量については、ドライベー
スでの原料吹込量を一定とした。また、入熱量/製錬必
要熱における入熱量は送風顕熱とCOまでのコークス燃
焼との和であり、製錬必要熱は原料の還元熱、水分の蒸
発・分解熱、生成した融体の顕熱の和である。
[0010] Further, if the theoretical combustion temperature (TFT) before the tuyere of the tuyere into which the raw material is blown drops, the blown raw material does not melt at once, but rises in the furnace together with the gas and is discharged from the furnace top. . Further, since the melting in front of the injected tuyere is delayed, the reduction between the upper and lower tuyeres does not completely end. A raw material containing moisture requires an extra amount of heat for smelting as much as the drying of water and the reaction between coke and water, as compared with a dried raw material. In addition, since an endothermic reaction occurs in the raceway in front of the material injection tuyere, the TFT is reduced. This shortage of heat input and the decrease in TFT can be compensated in principle by increasing the amount of air blown per blown material, increasing the temperature of blown air, and increasing the amount of oxygen enriched in blown tuyere per blown raw material. .
Effects of each factor on the compensation of the heat input and the compensation of the TFT are examined from the heat balance in the space in front of the tuyere, and are shown in FIGS. Here, Δ indicates the operating point of the example, and □ indicates the operating point of the comparative example. The operating conditions when no water is contained are as described in Example 1 of Table 1 below, and when water is contained, the enriched oxygen amount, the blast temperature, and the blast amount in each of FIGS. Only one of them was changed, and the other conditions remained constant. As for the raw material supply amount, the raw material injection amount on a dry basis was fixed. The heat input in the heat input / heat required for smelting is the sum of the sensible heat of the blast and the coke combustion up to CO. It is the sum of sensible heat.

【0011】いずれの方法によっても入熱量および吹込
み羽口前温度を補償することはできる。しかし、現実的
には1300℃を越える送風温度は工業的には実現が難
しい。従って、図2より、送風温度の上昇では原料中水
分5%までしか対応できない。また、送風量で対応する
場合、図3において、TFT一定の線と入熱量/製錬必
要熱一定の線とが大きく離れている。これは、TFT一
定となるように送風量を増せば入熱量/製錬必要熱が過
剰になることを示しており、炉全体の熱収支を考える
と、炉頂ガス温度が上昇しすぎて操業できないことを示
している。吹込み羽口への富化酸素量で対応する場合、
図1より、TFT一定とする酸素富化量と入熱量/製錬
必要熱一定とする酸素富化量とほぼ同じであり、入熱量
過剰にならずにTFTを確保できることがわかる。ま
た、原料中水分がない場合に比較して、水分20%の時
に必要となる富化酸素量は約5倍、水分40%の場合に
約10倍であり、いずれも実現可能な値である。したが
って、原料中水分の増加に対して、吹込み羽口への富化
酸素量の増加で対応するのが最も現実的であるといえ
る。ここでは、送風温度、送風量、富化酸素量をそれぞ
れ単独に変更して説明したが、富化酸素の増加ととも
に、送風温度、送風量を付加的に増加しても差し支えな
いことは当然である。
Either method can compensate for the amount of heat input and the temperature before the blowing tuyere. However, in reality, it is difficult to industrially achieve a blowing temperature exceeding 1300 ° C. Therefore, as shown in FIG. 2, it is possible to cope with only up to 5% moisture in the raw material when the blowing temperature is increased. Further, in the case of responding by the amount of air blow, in FIG. 3, a line with a constant TFT and a line with a constant heat input amount / a constant heat required for smelting are largely apart. This indicates that if the blowing rate is increased to keep the TFT constant, the amount of heat input / the heat required for smelting becomes excessive. Considering the heat balance of the entire furnace, the furnace top gas temperature rises too much and the operation starts. Indicates that it cannot be done. When responding with the enriched oxygen amount to the injection tuyere,
FIG. 1 shows that the amount of oxygen enrichment at a fixed TFT and the amount of heat enrichment / oxygen enrichment at a constant required smelting heat are almost the same, and it can be seen that a TFT can be secured without excessive heat input. Further, compared to the case where there is no moisture in the raw material, the amount of enriched oxygen required at 20% moisture is about 5 times, and the amount of oxygen enriched at 40% moisture is about 10 times, all of which are feasible values. . Therefore, it can be said that it is most realistic to cope with the increase in the moisture in the raw material by increasing the amount of oxygen enriched in the blowing tuyere. Here, the blowing temperature, the blowing amount, and the enriched oxygen amount are individually changed and described. However, it is natural that the blowing temperature and the blowing amount may be additionally increased with the increase of the enriched oxygen. is there.

【0012】さらに、図1〜図3からわかるように、富
化酸素量、送風温度、送風量のいずれで対応した場合で
も、TFTを確保するための条件は入熱量/製錬必要熱
を確保するための条件より厳しい。すなわち、原料中水
分に対応して、原料吹込み羽口のTFTを確保するよう
に吹込み羽口への富化酸素量を変更することが必要であ
るといえる。
Further, as can be seen from FIGS. 1 to 3, regardless of the amount of oxygen enriched, the temperature of the blown air, and the amount of blown air, the conditions for securing the TFT are: heat input / heat required for smelting. Conditions to be stricter. In other words, it can be said that it is necessary to change the amount of oxygen enriched in the blowing tuyere in accordance with the moisture in the raw material so as to secure the TFT of the blowing tuyere.

【0013】なお、含水スラジは非常に微細な粒子であ
ることと水酸化物であるために親水性が高く、脱水が非
常に困難である。そのため、乾燥するには多量のエネル
ギーを必要とする。これに対して、スラジを水分を含ん
だまま製錬すると、乾燥には同様のエネルギーが必要で
はあるが、コークスとの反応でCO及びH2 が発生しカ
ロリーの高いガスが回収できる利点がある。
Since the hydrous sludge is very fine particles and a hydroxide, it has high hydrophilicity and is very difficult to dehydrate. Therefore, a large amount of energy is required for drying. On the other hand, when smelting sludge while containing sludge, the same energy is required for drying, but there is an advantage that CO and H 2 are generated by the reaction with coke and a high calorie gas can be recovered. .

【0014】含水スラジとしては、金属加工時に発生す
る鉄、クロム、ニッケル、亜鉛等を含有するスラジ、同
じく油分を含有するスラジ、湿式集塵されたダスト等が
あり、いずれも問題なく処理することができる。本発明
でTFTは吹込み羽口前の熱バランスから求めることが
できる。熱バランスについて説明する。まず、送風・富
化酸素・湿分からのO2 (Nm3 /min)について
は、 B=0.21BV+E.O2 T+(11.2/1800
0)BV・BM 原料中水分からのO2 (Nm3 /min)は、 E=Wpow×{((%MO)/100)×MO /MMO
((%MOH)/100)×MO /MMON }×β+
((%H2 O)/100)×(16/18)×α}×
(22.4/32) 原料中水分からのH2 (Nm3 /min)は、 F=Wpow×{Σ((%MOH)/100)×(MH
OH)×β+((%H2 O)/100)×(2/18)
×α}×(22.4/2) 水蒸気として羽口前に存在するH2 O(g)(kmol
/min)は、 G=Wpow ×((%H2 O)/100)×(1/18)
×(1−α) 入熱は、(1)送風顕熱+(2)コークス顕熱+(3)
C燃焼熱である。
Examples of hydrous sludge include sludge containing iron, chromium, nickel, zinc, etc. generated during metal working, sludge similarly containing oil, and wet-collected dust. All of them can be treated without any problem. Can be. In the present invention, the TFT can be obtained from the heat balance before the blowing tuyere. The heat balance will be described. First, as for O 2 (Nm 3 / min) from ventilation, enriched oxygen, and moisture, B = 0.21 BV + E. O 2 T + (11.2 / 1800
0) BV · BM O 2 (Nm 3 / min) from water in the raw material is: E = W pow × {((% MO) / 100) × M O / M MO +
((% MOH) / 100) × M O / M MON } × β +
((% H 2 O) / 100) × (16/18) × α} ×
(22.4 / 32) H 2 (Nm 3 / min) from moisture in the raw material is: F = W pow × {Σ ((% MOH) / 100) × (M H /
M OH ) × β + ((% H 2 O) / 100) × (2/18)
× α} × (22.4 / 2) H 2 O (g) existing in front of the tuyere as water vapor (kmol
/ Min) is: G = W pow × ((% H 2 O) / 100) × (1/18)
× (1-α) Heat input is (1) sensible heat of blast + (2) sensible heat of coke + (3)
C is the heat of combustion.

【0015】(1)送風顕熱 A1 =BV×(0.362BT−24.2)+(1次
E.O2 )×(0.373BT−26.1)+(BV・
BM/1800)×(0.473BT−56.9) (2)コークス顕熱 A7 =(B+E)×(2/22.4)×12×(0.3
65×0.75×TFT+41.2) (3)C燃焼熱 A2 ={B−(11.2/18000)BV・BM)}
×{(2×12)/22.4}×(0.112BT+2
391) 出熱は、(4)ボッシュガス顕熱+(5)送風湿分分解
熱+(6)原料中水分蒸発・分解熱+(7)原料還元熱
+(8)原料水分顕熱である。
(1) Sensible heat of blast A 1 = BV × (0.362BT-24.2) + (primary EO 2 ) × (0.373BT-26.1) + (BV ·
(BM / 1800) × (0.473BT-56.9) (2) Coke sensible heat A 7 = (B + E) × (2 / 22.4) × 12 × (0.3
65 × 0.75 × TFT + 41.2) (3) C combustion heat A 2 = {B- (11.2 / 18000) BV · BM)}
× {(2 × 12) /22.4} × (0.112BT + 2
391) Heat output is (4) sensible heat of Bosch gas + (5) heat of decomposition of blast moisture + (6) heat of evaporation and decomposition of water in raw material + (7) heat of reduction of raw material + (8) sensible heat of raw material moisture .

【0016】(4)ボッシュガス顕熱 A8 =0.79×BV×(0.390×TFT−67.1) +F×(0.374TFT−70.2) +(B+E)×2×(0.393TFT−70.1) +G×(0.473TFT−56.9) ={0.79×0.39×BV +0.374×(F+(BV・BM/1000) ×(22.4/18) +(B+E)×2×0.393+G×0.473}×TFT −{0.79×67.1×BV+70.2 ×(F+(BV・BM/1000)×(22.4/18) +(B+E)×2×70.1+G×56.9} (5)送風湿分分解熱 A3 =(BV・BM/1000)×(0.066BT+
3238) (6)原料中水分蒸発・分解熱 A4 =Wpow ×((%H2 O)/100)×{539+
(0.066BT+3238)×α} (7)原料還元熱 A5 =Wpow ×{(%MO)/100×QMO+(%MO
H)/100×QMOH }×β (8)原料水分顕熱 A6 =Wpow ×γ×TFT+Wpow ×((%H2 O)/
100)×100 熱バランスは、 A1 +A7 +A2 =A8 +A3 +A4 +A5 +A6 である。これよりTFTを求めると次の通りである。
(4) Sensible heat of Bosch gas A 8 = 0.79 × BV × (0.390 × TFT-67.1) + F × (0.374TFT-70.2) + (B + E) × 2 × (0 .393TFT-70.1) + G × (0.473TFT-56.9) = {0.79 × 0.39 × BV + 0.374 × (F + (BV · BM / 1000) × (22.4 / 18) + (B + E) × 2 × 0.393 + G × 0.473} × TFT- {0.79 × 67.1 × BV + 70.2 × (F + (BV · BM / 1000) × (22.4 / 18) + ( B + E) × 2 × 70.1 + G × 56.9} (5) Heat of decomposition of blast moisture A 3 = (BV · BM / 1000) × (0.066BT +
3238) (6) Heat of evaporation and decomposition of water in the raw material A 4 = W pow × ((% H 2 O) / 100) × {539+
(0.066BT + 3238) × α} (7) raw material reducing heat A 5 = W pow × {( % MO) / 100 × Q MO + (% MO
H) / 100 × Q MOH } × β (8) Sensible heat of raw material moisture A 6 = W pow × γ × TFT + W pow × ((% H 2 O) /
100) × 100 The thermal balance is A 1 + A 7 + A 2 = A 8 + A 3 + A 4 + A 5 + A 6 . From this, the TFT is obtained as follows.

【0017】 P=A1 +A2 −A3 −A4 −A5 +(B+E)×(2×12/22.4)×41.2 −0.79×67.1×BV +70.2×(F+(BV・BM/1000) ×(22.4/18) +(B+E)×2×70.1 +G×56.9 −Wpow ×((%H2 O)/100)×100 Q=0.79×0.39×BV +0.374×(F+(BV・BM/1000) ×(22.4/18) +(B+E)×2×0.393+G×0.473 +Wpow ×γ−(B+E) ×(2×12/22.4)×0.365×0.75 TFT=P/Q (記号の説明) BV:送風量(Nm3 /min) E.O2 T:全富化酸素量(Nm3 /min) (一次E.O2 ):熱風炉より上流で富化された酸素量
(Nm3 /min) BM:送風中湿分(g/Nm3) Wpow :ドライベースでの原料吹き込み速度(kg/m
in) MO /MMO:金属酸化物中の酸素の重量比(−) MH /MMO:金属酸化物中の水素の重量比(−) MO /MMOH :金属水酸化物中の酸素の重量比(−) MH /MMOH :金属水酸化物中の水素の重量比(−) (%MO):原料中の金属酸化物の含有率(%) (%MOH):原料中の金属水酸化物の含有率(%) (%H2 O):ドライベースでの原料に対する水含有率
(%) BT:送風温度(℃) TFT:理論燃焼温度(℃) B:送風・送風湿分、富化酸素からの酸素量(Nm3
min) E:原料中水分からの酸素量(Nm3 /min) F:原料中水分からの水素量(Nm3 /min) G:羽口前での水蒸気量(Nm3 /min) A1 :送風顕熱(kcal/min) A2 :カーボン燃焼熱(kcal/min) A3 :送風湿分分解熱(kcal/min) A4 :送風中水分蒸発、分解熱(kcal/min) A5 :原料還元熱(kcal/min) A6 :原料水分顕熱(kcal/min) A7 :コークス顕熱(kcal/min) A8 :ボッシュガス顕熱(kcal/min) QMOH :金属酸化物の還元熱(kcal/kg) QMO:金属水酸化物の還元熱(kcal/kg) α:羽口前での水分分解率(−) β:羽口前での原料還元率(−) γ:原料比熱(kcal/kg) ここでα、βは操業条件、設備条件により異なるもので
あるので実施に当り適切な値を求めるべきものである。
以下の実施例では、操業中のレースウェイ内のガス、溶
融物のサンプリングなどにより、α=0.5、β=0.
4の値を採用した。
P = A 1 + A 2 −A 3 −A 4 −A 5 + (B + E) × (2 × 12 / 22.4) × 41.2−0.79 × 67.1 × BV + 70.2 × (F + (BV · BM / 1000) × (22.4 / 18) + (B + E) × 2 × 70.1 + G × 56.9−W pow × ((% H 2 O) / 100) × 100 Q = 0.79 × 0.39 × BV + 0.374 × (F + (BV · BM / 1000) × (22.4 / 18) + (B + E) × 2 × 0.393 + G × 0.473 + W pow × γ− ( B + E) × (2 × 12 / 22.4) × 0.365 × 0.75 TFT = P / Q (Explanation of symbols) BV: Air flow (Nm 3 / min) EO 2 T : Total enriched oxygen the amount (Nm 3 / min) (primary E.O 2): amount of oxygen enriched upstream of a hot-air oven (Nm 3 / min) BM: moisture in the air blowing (g / Nm 3) W pow : Raw material blowing velocity at Raibesu (kg / m
in) M O / M MO : weight ratio of oxygen in metal oxide (−) M H / M MO : weight ratio of hydrogen in metal oxide (−) M O / M MOH : weight ratio of metal hydroxide Weight ratio of oxygen (-) MH / MMOH : Weight ratio of hydrogen in metal hydroxide (-) (% MO): Content of metal oxide in raw material (%) (% MOH): In raw material (% H 2 O): Water content (%) with respect to the raw material on a dry basis BT: Blast temperature (° C.) TFT: Theoretical combustion temperature (° C.) B: Blast and blow Oxygen content from moisture and enriched oxygen (Nm 3 /
min) E: oxygen amount from moisture in raw material (Nm 3 / min) F: hydrogen amount from moisture in raw material (Nm 3 / min) G: water vapor amount in front of tuyere (Nm 3 / min) A 1 : blowing sensible (kcal / min) A 2: carbon combustion heat (kcal / min) A 3: blowing moisture degradation heat (kcal / min) A 4: blower in water evaporation, heat of decomposition (kcal / min) A 5: material reducing heat (kcal / min) a 6: feed water sensible (kcal / min) a 7: coke sensible (kcal / min) a 8: Bosch gas sensible (kcal / min) Q MOH: metal oxides Heat of reduction (kcal / kg) Q MO : Heat of reduction of metal hydroxide (kcal / kg) α: Moisture decomposition rate in front of tuyere (−) β: Reduction rate of raw material in front of tuyere (−) γ: Raw material specific heat (kcal / kg) where α and β are operating conditions and equipment Since different from the matters which should seek appropriate values per the implementation.
In the following examples, α = 0.5, β = 0.
A value of 4 was employed.

【0018】[0018]

【実施例】以下に、メタル生成量8t/d規模の竪型溶
融還元炉での実施例を説明する。実施例を表1に、比較
例を表2にそれぞれ示す。それぞれの操業点は、図1〜
図3上に〇、及び□で示した。原料は圧延工場から発生
する酸洗スラジであり、鉄、クロム、ニッケル等の水酸
化物を含む。水分を含まない原料を製錬する場合の基準
となる操業条件は、送風16.7Nm3 /min、酸素
富化量2Nm3 /min、送風温度800℃、メタル生
成量8t/dである。入熱量/製錬必要熱における入熱
量は送風顕熱とCOまでのコークス燃焼熱との和であ
り、製錬必要熱は原料の還元熱、水分の蒸発、分解熱、
生成した融体の顕熱の和である。いずれの操業において
も原料は上段羽口から吹込んだ。
The following describes an embodiment in a vertical smelting reduction furnace having a metal production amount of 8 t / d. Examples are shown in Table 1 and Comparative Examples are shown in Table 2. Each operating point is shown in Figure 1
In FIG. 3, they are indicated by 〇 and □. The raw material is pickling sludge generated from a rolling mill and contains hydroxides such as iron, chromium, and nickel. The operating conditions serving as standards for smelting a raw material that does not contain water are: blowing air at 16.7 Nm 3 / min, oxygen enrichment amount at 2 Nm 3 / min, blowing temperature at 800 ° C., and metal generation amount at 8 t / d. The heat input amount in the heat input amount / heat required for smelting is the sum of the sensible heat of blast and the heat of coke combustion to CO, and the heat required for smelting is the heat of reduction of the raw material, the evaporation of water, the heat of decomposition,
It is the sum of the sensible heat of the generated melt. In each operation, the raw material was blown from the upper tuyere.

【0019】実施例1は原料中に水分を含まない場合で
あり、基準の操業条件となる。実施例2は原料中水分5
%に対して、送風温度を1250℃に高めて操業した例
であり、吹込み羽口の理論燃焼温度、入熱量/製錬必要
熱とも基準条件と同等かそれを上回っており、羽口前の
輝度や出銑温度等の操業には問題は見られなかった。た
だし、送風温度をこれ以上高めることができなかったた
め、原料中水分5%以上の操業はできなかった。実施例
3は原料中水分5%に対して、送風量を37.4Nm3
/minに高めて操業した例であり、吹込み羽口の理論
燃焼温度、入熱量/製錬必要熱とも基準条件と同等かそ
れを上回っており、羽口前の輝度や出銑温度等の操業に
は問題は見られなかった。しかし、水分5%以上になる
とTFTを確保するためにさらに送風量の増加が必要に
なり、炉頂ガス温度が1100℃を越えることになり操
業を継続することはできないと判断した。実施例4〜7
は、原料中水分10、20、30、40%に対して、そ
れぞれ、上段羽口富化酸素量を2.6、4.6、7.
1、10.5Nm3 /minに増加して操業した例であ
り、いずれもTFTは1700℃を確保しており、入熱
量/製錬必要熱も基準条件を上回っており、羽口前の輝
度や出銑温度等の操業には問題は見られなかった。
Example 1 is a case where water is not contained in the raw material, which is a standard operating condition. In Example 2, the water content in the raw material was 5
%, The blow temperature was increased to 1250 ° C, and the theoretical combustion temperature of the injection tuyere and the heat input / heat required for smelting were equal to or higher than the standard conditions. No problems were found in the operation such as brightness and tapping temperature. However, since the blowing temperature could not be increased any more, the operation with a water content of 5% or more could not be performed. In Example 3, the amount of air blown was 37.4 Nm 3 with respect to the water content of 5%.
/ Min, and the theoretical combustion temperature of the injection tuyere and the heat input / heat required for smelting are equal to or higher than the standard conditions, and the brightness and tapping temperature in front of the tuyere There was no problem with the operation. However, when the water content was 5% or more, it was necessary to further increase the amount of air to secure the TFT, and the furnace top gas temperature exceeded 1100 ° C., so that it was judged that the operation could not be continued. Examples 4 to 7
Means that the upper-stage tuyere-enriched oxygen amount is 2.6, 4.6, and 7. respectively with respect to the water content of 10, 20, 30, and 40% in the raw material.
1, 10.5 Nm 3 / min, and the operation was increased. In each case, the TFT secured 1700 ° C., and the heat input / heat required for smelting exceeded the standard conditions. No problems were found in the operation such as tapping temperature and tapping temperature.

【0020】比較例2〜7では、入熱量/製錬必要熱が
基準条件と一致するように原料中水分に合わせて送風温
度(比較例2)、送風量(比較例3)、上段羽口富化酸
素量(比較例4〜7)を増加させたが、いずれも上段羽
口TFTが1600℃を下回り、操業中に羽口前が暗く
なったため操業を中断した。
In Comparative Examples 2 to 7, the blast temperature (Comparative Example 2), the blast amount (Comparative Example 3), and the upper tuyere were adjusted in accordance with the moisture content in the raw material so that the heat input amount / heat required for smelting matched the standard conditions. Although the enriched oxygen amount (Comparative Examples 4 to 7) was increased, the operation was stopped because the upper tuyere TFT was lower than 1600 ° C and the front of the tuyere became dark during the operation.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【発明の効果】本発明は2段羽口を有する竪型炉に水分
を含むスラジを吹込み、その水分量に応じて理論燃焼温
度を確保するよう富化酸素量を変更することにより、炉
床での冷え込みを起こすことなく有価金属を回収するこ
とができる。
According to the present invention, a furnace containing water is blown into a vertical furnace having a two-stage tuyere, and the amount of oxygen-enriched oxygen is changed so as to secure a theoretical combustion temperature in accordance with the amount of water. Valuable metals can be recovered without cooling on the floor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】理論燃焼温度及び入熱量/製錬必要熱を一定に
保つために必要な原料中水分と上段羽口富化酸素量との
関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the moisture in the raw material and the upper-stage tuyere-enriched oxygen amount necessary for keeping the theoretical combustion temperature and the heat input amount / the heat required for smelting constant.

【図2】理論燃焼温度及び入熱量/製錬必要熱を一定に
保つために必要な原料中水分と送風温度との関係を示す
グラフである。
FIG. 2 is a graph showing the relationship between the moisture in the raw material necessary for keeping the theoretical combustion temperature and the heat input / the heat required for smelting constant, and the blowing temperature.

【図3】理論燃焼温度及び入熱量/製錬必要熱を一定に
保つために必要な原料中水分と送風量との関係を示すグ
ラフである。
FIG. 3 is a graph showing the relationship between the moisture in the raw material and the amount of air blown to maintain the theoretical combustion temperature and the heat input / the heat required for smelting constant.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮川 昌治 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 (72)発明者 板谷 宏 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shoji Miyagawa 1 Kawasaki-cho, Chuo-ku, Chiba City, Chiba Prefecture Inside the Technical Research Institute of Kawasaki Steel (72) Inventor Hiroshi Itaya 1 Kawasaki-cho, Chuo-ku, Chiba City, Chiba Prefecture Kawasaki Steel Research Institute

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炭素系固体還元剤の充填層に高温空気を
吹込む上下少なくとも2段に設けられた複数の羽口を有
する竪型炉において、水分を含む粉粒状の金属酸化物及
び/又は金属水酸化物含有原料を少なくとも上段羽口か
ら吹込み溶融金属を製造することを特徴とする溶融還元
炉の操業方法。
In a vertical furnace having a plurality of tuyeres provided in at least two upper and lower stages for blowing high-temperature air into a packed bed of a carbon-based solid reducing agent, a powdery metal oxide containing water and / or A method for operating a smelting reduction furnace, wherein a molten metal is produced by blowing a metal hydroxide-containing raw material from at least the upper tuyere.
【請求項2】 羽口から吹込む粉粒状の金属酸化物及び
/又は金属水酸化物含有原料中の水分に応じて富化酸素
量を変更し羽口前温度を確保することを特徴とする請求
項1記載の溶融還元炉の操業方法。
2. The method according to claim 1, wherein the amount of oxygen enriched is changed in accordance with the water content of the powdery metal oxide and / or metal hydroxide-containing raw material blown from the tuyere to secure the tuyere pre-temperature. The method for operating a smelting reduction furnace according to claim 1.
JP7314997A 1997-03-26 1997-03-26 Operation of smelting reduction furnace Pending JPH10265815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7314997A JPH10265815A (en) 1997-03-26 1997-03-26 Operation of smelting reduction furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7314997A JPH10265815A (en) 1997-03-26 1997-03-26 Operation of smelting reduction furnace

Publications (1)

Publication Number Publication Date
JPH10265815A true JPH10265815A (en) 1998-10-06

Family

ID=13509852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7314997A Pending JPH10265815A (en) 1997-03-26 1997-03-26 Operation of smelting reduction furnace

Country Status (1)

Country Link
JP (1) JPH10265815A (en)

Similar Documents

Publication Publication Date Title
EP2191025B1 (en) Direct smelting of zinc bearing compounds to produce metallic zinc
US8545593B2 (en) Direct processing of metallic ore concentrates into ferroalloys
CN111575427B (en) Hydrogen metallurgy process with near zero emission
CN111440914B (en) Hydrogen metallurgy system of near zero release
CN212293639U (en) Hydrogen metallurgy device
US6602322B2 (en) High temperature metal recovery process
JPH10265815A (en) Operation of smelting reduction furnace
JP3236737B2 (en) Operating method of vertical iron scrap melting furnace
JP2007131929A (en) Solid fuel for vertical scrap-melting furnace, and method for operating vertical scrap-melting furnace
JP3336131B2 (en) Method for recovering zinc from zinc-containing dust
JP2817394B2 (en) Pig iron production method
YAMAOKA et al. A New Ironmaking Process Consisted of Shaft Type Reduction Furnace and Cupola Type Melting Furnace
JPS63118026A (en) Operating method for zinc blast furnace
JPH10273740A (en) Method for recovering valuable metal from powdery wet raw material
JPH0213017B2 (en)
JPS62230922A (en) Operating method for vertical type melt reduction furnace
JPS6248749B2 (en)
JPH11193409A (en) Method for simultaneously manufacturing reduced metal and clean fuel gas
JPS6131166B2 (en)
JPS634602B2 (en)
JPH0873916A (en) Method for melting iron scrap by using vertical furnace
JPS61291930A (en) Manufacture of molten metal containing chromium
JPS59176578A (en) Melting and reducing device

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040726

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060502